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1. Introduction

Conformal field theories (CFTs) are the end-points of RG flows. As such, they could ultimately

allow a complete classification of CFTs as relevant deformations of a subset of CFTs. They also

describe the statistical behavior of second-order phase transitions, where the correlation length

diverges. The importance of a deep understanding of CFTs cannot be overstated.

The additional symmetries of CFTs, due to the dilatation and special conformal generators,

strongly constrain such theories. For example, two- and three-point correlation functions are

completely determined up to constant coefficients. The use of crossing symmetry [1, 2] on four-

point correlation functions leads to constraints on these coefficients. To implement this program

it is necessary to know expressions for the conformal blocks, which are completely settled by

conformal invariance.

A more fundamental quantity is the operator product expansion (OPE). Indeed, conformal

invariance implies that there exists an OPE which relates the product of two fields at different

points to a sum over all fields at an arbitrary point [3]. The OPE has profound consequences

since it allows one to compute all n-point correlation functions in terms of OPE coefficients and

two-point functions. From the OPE, the conformal blocks represent the exchange of a particular

field between the four initial fields, usually in the s-, t- or u-channel.

CFTs in d-dimensions naturally live in a (d + 2)-dimensional space called the embedding

space [4]. The embedding space has been used to obtain the two- and three-point correlation

functions (see e.g. [5]), but the OPE in embedding space has not been exploited to its full capacity

(for pioneering work see [1,6]). In this paper we describe the OPE in embedding space and use it

to obtain the scalar conformal block for four-point correlation functions of four scalar fields. The

main motivation is carrying out the conformal bootstrap [1,2] in embedding space (which is more

natural as the conformal algebra acts linearly in embedding space) which is possible due to the

fact that all conformal blocks can be obtained as appropriate derivatives of a unique entity: the

scalar conformal block.

Combining the OPE in embedding space with the recent observation [7] that conformal blocks

are related to virtual Koornwinder polynomials [8], which are the q-deformed hyperbolic extensions

of the Koornwinder polynomials [9, 10], it suggests that a complete analytic conformal bootstrap

can be implemented, leading to a Jacobi-like definition of CFTs solely in terms of the conformal

data.1 Indeed, the associated Fourier transform-like decomposition of the crossing symmetry

equations should simply be the hyperbolic version of the Fourier series-like decomposition in

terms of the orthogonal Koornwinder polynomials. The output should therefore be an infinite

sum of products of two OPE coefficients which ultimately vanishes, reminiscent of a non-compact

version of the Jacobi identity.

1For work that revived the numerical conformal bootstrap, the reader is referred to [11] and subsequent work.

1



This paper is organized as follows: In Section 2 the OPE in embedding space is described

and the appropriate differential operator for scalar fields is obtained. Section 3 discusses n-point

correlation functions from the point of view of the OPE in embedding space. We re-derive

well-known results for scalar fields for (n ≤ 4)-point correlation functions. In particular, we

compute the scalar conformal block from the OPE in embedding space and discuss the conformal

bootstrap in embedding space. Finally, in Section 4 we consider the analytic conformal bootstrap

from the point of view of the virtual Koornwinder polynomials, before discussing future work and

concluding. Throughout this paper, we use the notation of [1, 6] for coordinates in embedding

space, i.e. ηA is an embedding space coordinate.

2. Operator Product Expansion

The OPE is the most fundamental element defining a CFT. In embedding space, the OPE between

two fields Oi(η1) and Oj(η2) can be written as

Oi(η1)Oj(η2) =
∑

k

Nijk
∑

a=1

ac
k

ij aD
k

ij (η1, η2)Ok(η2). (2.1)

It is an infinite sum over fields Ok(η2) and for each of these fields, there is a finite sum over the

Nijk OPE coefficients ac
k

ij with the appropriate differential operators aD
k

ij (η1, η2).

The OPE in embedding space is constrained by consistency conditions on the embedding space

light-cone η2 = 0. Moreover, the differential operators are prescribed by conformal invariance and

by the irreducible Lorentz group representations of the fields. They are simple derivatives of

the embedding space positions which are well-defined on the embedding space light-cone. Most

importantly, the differential operators for non-scalar fields are straightforward generalizations of

the differential operators when all fields in the OPE are scalars. All the differential operators are

completely determined and are ultimately built from a unique fundamental differential operator

in embedding space.

Focusing on scalar fields φi, the homogeneity property in embedding space (see e.g. [1, 6]) is

η · ∂ φ(η) = −∆iφi(η), (2.2)

where ∆i is the conformal dimension of the scalar field φi, fixes completely the sole differential

operator (there is only one OPE coefficient when all fields are scalars) to be

D k
ij (η1, η2) =

1

(η1 · η2)
1

2
(∆i+∆j−∆k)

D(η1, η2)
− 1

2
(∆i−∆j+∆k),

D(η1, η2) = (η1 · η2)∂
2
2 − η1 · ∂2(d− 2 + 2η2 · ∂2).

(2.3)

The differential operator D(η1, η2) was introduced in [1,6]. Indeed, for three scalar fields, there is

only one OPE coefficient and the scalar differential operator (2.3) is the unique (up to normaliza-

tion) differential operator which acts coherently on the embedding space light-cone. From (2.3) it
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is straightforward to check that the OPE (2.1) satisfies the homogeneity property in embedding

space (2.2) for both coordinates η1 and η2. How to obtain the unique fundamental differential

operator which is the basis of all the differential operators aD
k

ij (η1, η2) will be described elsewhere.

3. Correlation Functions

With the knowledge of the OPE in embedding space, it is straightforward to investigate the

correlation functions. Focusing on scalar fields, it will be shown how the technique put forward

here naturally leads back to known results about n-point correlation functions.

3.1. One- and Two-point Correlation Functions

One-point correlation functions are trivial. The only operator with non-vanishing one-point corre-

lation function is the identity operator 1, which has a vanishing conformal dimension ∆1 = 0 and

for which 〈1〉 = 1. Therefore, from the OPE (2.1), it is clear that two-point correlation functions

simply single out the identity operator 1 on the RHS of (2.1).

For scalar fields, the associated differential operator in (2.3) is thus

D 1

ij (η1, η2) =
δ∆i∆j

(η1 · η2)
1

2
(∆i+∆j)

. (3.1)

Since the identity operator vanishes under the action of the differential operator (2.3) unless

∆i −∆j +∆1 = 0, the only non-trivial differential operator occurs when the scalar fields on the

LHS have the same conformal dimensions, ∆i = ∆j, which in turn implies (3.1).

From (2.1) and (3.1), the scalar two-point correlation function in embedding space is given by

〈φi(η1)φj(η2)〉 = c 1

ij

δ∆i∆j

(η1 · η2)∆i
. (3.2)

Projecting onto position space, following e.g. [5], gives the right scalar two-point function. From

Bose symmetry of scalar fields, the OPE coefficient c 1

ij is thus symmetric. Assuming the theory

is unitary c 1

ij is also positive-definite. Therefore, c 1

ij can play the role of a metric in field space

and it is usually convenient to diagonalize it.

More generally, the action of conformal Casimir operators on two-point correlation functions of

arbitrary fields shows that the only possible OPE with the identity operator on the RHS are the

ones where both fields on the LHS of (2.1) have the same Casimir eigenvalues, up to a possible

minus sign related to the two inequivalent spinor irreducible representations in even dimensions

(depending if they are self-conjugate or not). Group-theoretical arguments then imply that there

is only one OPE coefficient for operators of any spin

〈Oi(η1)Oj(η2)〉 = c 1

ij D 1

ij (η1, η2), (3.3)

3



generalizing the metric in field space to all fields. In terms of conformal data, the two-point

correlation functions are non-vanishing only if the conformal dimensions are the same as well

as all the Dynkin indices of the irreducible Lorentz representations of the two fields, up to the

possible interchange of the two spinor Dynkin indices in even dimensions (which is related to the

aforementioned minus sign in the language of Casimir eigenvalues).

3.2. Three-point Correlation Functions

With the help of the two-point correlation functions (3.3), three-point correlation functions are

directly obtained from (2.1)

〈Oi(η1)Oj(η2)Ok(η3)〉 =
∑

k′

Nijk′
∑

a=1

ac
k′

ij aD
k′

ij (η1, η2) 〈Ok′(η2)Ok(η3)〉

=
∑

k′

Nijk′
∑

a=1

ac
k′

ij aD
k′

ij (η1, η2)c
1

k′k D 1

k′k (η2, η3)

=

Nijk
∑

a=1

acijk aDijk(η1, η2, η3),

(3.4)

where in the first line the OPE was used between Oi(η1) and Oj(η2), while in the last line the

result is written in a more symmetric way to match the symmetry of the LHS. Note also that

using the OPE on any two fields in the three-point correlation function must give the same result,

which implies symmetry relations for the OPE coefficients and the differential operators once they

are properly contracted with the metric and its corresponding differential operator. This can be

seen explicitly by focusing on three scalar fields.

It is straightforward to first compute the three-point correlation function of three scalar fields,

which is given by

〈φi(η1)φj(η2)φk(η3)〉 =
∑

k′

c k′

ij D k′

ij (η1, η2)c
1

k′k

δ∆k∆k′

(η2 · η3)∆k

=
cijk

(η1 · η2)
1

2
(∆i+∆j−∆k)(η1 · η3)

1

2
(∆i−∆j+∆k)(η2 · η3)

1

2
(−∆i+∆j+∆k)

,

(3.5)

using (3.4), (3.2) and (2.3). This result follows from the identity

D(η1, η2)
q(η2 · η3)

s = (−2)q(−s)q(−s+ 1− d/2)q(η1 · η3)
q(η2 · η3)

s−q, (3.6)

defined on the embedding space light-cone where (α)m = Γ(α + m)/Γ(α) is the Pochhammer

symbol. The identity (3.6) is shown by direct computation for a positive integer q and fractional

calculus is used to extend the result to any real q. Projecting (3.5) onto position space (see

e.g. [5]) shows once again that this technique reproduces known results for scalar three-point

correlation functions.
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Bose symmetry of the three scalar fields in the three-point correlation function (3.5) implies

that cijk is fully symmetric under the interchange of its indices. In terms of the OPE coefficients

however, one has

cijk = (−2)−
1

2
(∆i−∆j+∆k)(∆k)− 1

2
(∆i−∆j+∆k)

(∆k + 1− d/2)− 1

2
(∆i−∆j+∆k)

∑

k′

c k′

ij c 1

k′k ,

which demonstrates that the symmetry properties of c k
ij are not as simple (this extends to

arbitrary OPE coefficients).

3.3. Four-point Correlation Functions

Up to now the OPE in embedding space was used to obtain one-, two- and three-point correlation

functions. The results conform with the literature although they are somewhat trivial. The real

challenge is to reproduce the conformal blocks using the OPE in embedding space.

For arbitrary fields, the four-point correlation functions in the s-channel are

〈Oi(η1)Oj(η2)Ok(η3)Oℓ(η4)〉 =
∑

m,n

Nijm
∑

a=1

Nkℓn
∑

b=1

ac
m

ij bc
n

kℓ aD
m

ij (η1, η2)bD
n

kℓ (η3, η4) 〈Om(η2)On(η4)〉

=
∑

m,n

Nijm
∑

a=1

Nkℓn
∑

b=1

ac
m

ij c 1

mn bc
n

kℓ aD
m

ij (η1, η2)bD
n

kℓ (η3, η4)D
1

mn (η2, η4).

(3.7)

The conformal blocks are simply obtained by isolating the appropriate exchanged field in the

s-channel.

Concentrating on the scalar exchange in a four-point correlation function of four scalar fields,

from (3.7) the quantity of interest for the corresponding conformal block is

G̃ = D m
ij (η1, η2)D

m
kℓ (η3, η4)

1

(η2 · η4)∆m

=
1

(η1 · η2)
1

2
(∆i+∆j−∆m)(η3 · η4)

1

2
(∆k+∆ℓ−∆m)

×D(η1, η2)
− 1

2
(∆i−∆j+∆m)D(η3, η4)

− 1

2
(∆k−∆ℓ+∆m) 1

(η2 · η4)∆m
.

(3.8)

For scalar fields the remaining terms in (3.7) only change the normalization of G̃. Introducing

the conformal ratios u and v which are defined as

u =
(η1 · η2)(η3 · η4)

(η1 · η3)(η2 · η4)
and v =

(η1 · η4)(η2 · η3)

(η1 · η3)(η2 · η4)
, (3.9)
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in embedding space, the quantity

G∆m(u, v) = c
(η1 · η2)

1

2
(∆i+∆j)(η1 · η3)

1

2
(∆k−∆ℓ)(η1 · η4)

1

2
(∆i−∆j−∆k+∆ℓ)(η3 · η4)

1

2
(∆k+∆ℓ)

(η2 · η4)
1

2
(∆i−∆j)

G̃

= c
(η1 · η2)

1

2
∆m(η1 · η3)

1

2
(∆k−∆ℓ)(η1 · η4)

1

2
(∆i−∆j−∆k+∆ℓ)(η3 · η4)

1

2
∆m

(η2 · η4)
1

2
(∆i−∆j)

×D(η1, η2)
− 1

2
(∆i−∆j+∆m)D(η3, η4)

− 1

2
(∆k−∆ℓ+∆m) 1

(η2 · η4)∆m
,

(3.10)

obtained from (3.8), is the scalar conformal block up to a normalization factor c. The scalar

conformal block (3.10) is thus encoded in the function

G
(p,q;s)
d = D(η1, η2)

pD(η3, η4)
q(η2 · η4)

s, (3.11)

for p = −1
2(∆i −∆j +∆m), q = −1

2(∆k −∆ℓ +∆m) and s = −∆m.

Acting first with D(η3, η4) in (3.11) leads to the following result

G
(p,q;s)
d = (−2)q(−s)q(−s+ 1− d/2)qD(η1, η2)

p(η2 · η3)
q(η2 · η4)

s−q, (3.12)

as can be seen from the three-point correlation function (3.6). Acting then with D(η1, η2) is not

as straightforward. First, it is important to notice that D(η1, η2) commutes with (η1 · η2)
α and

acts non-trivially only on (η2 · η3) and (η2 · η4). Moreover, the form of the conformal block must

be expressible in terms of the conformal ratios (3.9). Thus, it is convenient to re-express the

differential operator D(η1, η2) as

D(η1, η2) =
(η1 · η3)(η1 · η4)

(η1 · η2)(η3 · η4)
D(u, v),

where by the chain rule one obtains

D(u, v) = (−2)
{

u3∂2
u − u2(u− v̄)∂u∂v̄ + u2(1− v̄)∂2

v̄ −
(

d
2 − 2

)

u2∂u − u
[

u+
(

d
2 − 1

)

v̄
]

∂v̄
}

.

(3.13)

Here v̄ = 1− v for future convenience. Re-expressing (3.12) in terms of the conformal ratios gives

G
(p,q;s)
d = (−2)q(−s)q(−s+ 1− d/2)q

(η1 · η3)
p+q−s(η1 · η4)

p−q

(η1 · η2)p−s(η3 · η4)p−s
D(u, v)pu−svq, (3.14)

which leads to

G∆m(u, v) = c(−2)q(−s)q(−s+ 1− d/2)qu
s/2−pD(u, v)pu−svq, (3.15)

for the scalar conformal block. By a change of variables, it is possible to verify that the generating

function D(u, v)pu−svq is related to Koornwinder polynomials [9]. Indeed, when p is a positive

integer, [10] showed that

D(u, v)pu−svq = 2p(−q)p(q − s)pu
2p−svq−pF4(−p, s− p+ d/2; q − p+ 1, s − p− q + 1; v/u, 1/u),
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where F4 is the fourth Appell function,

F4(α, β; γ, δ;x, y) =
∑

m,n≥0

(α)m+n(β)m+n

(γ)m(δ)nm!n!
xmyn.

This solution, however, does not have the appropriate limiting behavior at u → 0 and v̄ → 0 and

is furthermore not symmetric under the interchange of p and q, contrary to (3.10). The correct

answer is

D(u, v)pu−svq = (−2)p(−s)p(−s+ 1− d/2)pu
p−svq−p

[

Γ(p− q)Γ(−s)

Γ(p− s)Γ(−q)
F4(q − s,−p;−s+ 1− d/2, q − p+ 1;u, v)

+
Γ(q − p)Γ(−s)

Γ(q − s)Γ(−p)
vp−qF4(p − s,−q;−s+ 1− d/2, p − q + 1;u, v) ] ,

(3.16)

which implies

G∆m(u, v) = c(−2)p+q(−s)p(−s)q(−s+ 1− d/2)p(−s+ 1− d/2)qu
−s/2vq−p

[

Γ(p− q)Γ(−s)

Γ(p− s)Γ(−q)
F4(q − s,−p;−s+ 1− d/2, q − p+ 1;u, v)

+
Γ(q − p)Γ(−s)

Γ(q − s)Γ(−p)
vp−qF4(p − s,−q;−s+ 1− d/2, p − q + 1;u, v) ] .

(3.17)

This solution now has the appropriate limiting behavior and is symmetric under the interchange

of p and q. It is interesting to note that both terms in (3.16) satisfy the recurrence relation

originating from the generating function D(u, v)pu−svq for integer p. However, only the first one

has the correct boundary condition at p = 0. The second term is homogeneous and thus vanishes

at p = 0. Thus, the second term can be added with an appropriate constant prefactor to enable

the p ↔ q symmetry. Moreover, (3.17) can be seen as the non-compact version of the Koornwinder

polynomials. Consequently, the orthogonality properties of the polynomials, when translated to

the non-compact case, should allow an analytic version of the conformal bootstrap.

Finally, defining

G(α, β, γ, δ;x, y) =
∑

m,n≥0

(δ − α)m(δ − β)m
(γ)mm!

(α)m+n(β)m+n

(δ)2m+nn!
xmyn, (3.18)

which can be related to the fourth Appell function with the help of a classical identity for the

2F1 Gauss hypergeometric function,

G(α, β, γ, δ;x, y) =
∑

m≥0

(δ − α)m(δ − β)m
(γ)mm!

(α)m(β)m
(δ)2m

2F1(α +m,β +m; δ + 2m; y)xm

=
Γ(δ)Γ(δ − α− β)

Γ(δ − α)Γ(δ − β)
F4(α, β; γ, α + β − δ + 1;x, 1 − y)

+
Γ(δ)Γ(α + β − δ)

Γ(α)Γ(β)
(1− y)δ−α−βF4(δ − α, δ − β; γ, δ − α− β + 1;x, 1− y),
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the scalar conformal block becomes

G∆m(u, v) = u−s/2vq−pG(q − s,−p,−s+ 1− d/2,−s;u, v̄).

Here the constant c was chosen to reproduce the conformal blocks of [12].

This subsection demonstrates that the OPE in embedding space allows the computation of

the scalar conformal block. Generalizing the OPE in embedding space to arbitrary fields leads

to all arbitrary conformal blocks, which are computed as appropriate derivatives of the minimal

scalar conformal block.2 The details of the general case will be discussed elsewhere.

3.4. Conformal Bootstrap in Embedding Space

Repeating the previous section for the t- and u-channels, it is possible to implement the conformal

bootstrap directly in embedding space. Indeed, applying (3.7) in all channels leads to the following

consistency conditions,

∑

m,n

Nijm
∑

a=1

Nkℓn
∑

b=1

ac
m

ij c 1

mn bc
n

kℓ aD
m

ij (η1, η2)bD
n

kℓ (η3, η4)D
1

mn (η2, η4)

= (−1)Fjk

∑

m,n

Nikm
∑

a=1

Njℓn
∑

b=1

ac
m

ik c 1

mn bc
n

jℓ aD
m

ik (η1, η3)bD
n

jℓ (η2, η4)D
1

mn (η3, η4)

= (−1)Fik(−1)Fiℓ

∑

m,n

Niℓm
∑

a=1

Njkn
∑

b=1

ac
m

iℓ c 1

mn bc
n

jk aD
m

iℓ (η1, η4)bD
n

jk (η2, η3)D
1

mn (η4, η3),

(3.19)

where (−1)Fij takes into account the statistics of the permuted fields in the four-point correlation

function.

Projecting onto different irreducible representations of the Lorentz group, eliminating the

common tensor structures, and applying orthogonality conditions on the resulting equations lead

to the implementation of the conformal bootstrap directly in embedding space.

4. Discussion and Conclusion

In this paper we showed how to calculate conformal blocks from the operator product expansion

in embedding space. We focused on the scalar exchange in a four-point correlation function of

four scalar fields and reproduced the results found in the literature. The power of our technique

2Recent work on arbitrary conformal blocks in 3 and 4 dimensions can be found in [13], where the seed conformal

blocks were obtained. It is important to note that the OPE in embedding space implies that all conformal blocks are

generated from the scalar conformal block.
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comes from the simplifications one encounters in embedding space where the conformal group

acts linearly. In our approach, all conformal blocks are computed from appropriate derivatives of

the minimal scalar conformal block, and then the conformal bootstrap is executed in embedding

space.

Indeed, since the embedding space is a more natural setting for a conformal field theory, there

is absolutely no reason to project back onto position space to implement the conformal bootstrap.

It is more convenient to single out the contributions with the same structure under the Lorentz

group in embedding space and thereafter proceed with the conformal bootstrap.

Since the building block for implementing the conformal bootstrap is the scalar conformal

block, it is important to study its properties carefully. Being related to Koornwinder polynomials,

which are orthogonal polynomials in two variables, it is normal to expect that there exist a non-

compact extension of the related orthogonality properties for the conformal blocks. The crucial

step from the trigonometric to the hyperbolic case has been recently made in [7], which relates

the conformal blocks for symmetric-traceless field exchange in four-point correlation functions of

four scalar fields to virtual Koornwinder polynomials (see [8]). This important observation allows

an analytic version of the conformal bootstrap for four-point correlation functions of four scalar

fields. Since all conformal blocks are obtained from derivatives of the minimal scalar conformal

block, it strongly suggests that the analytic conformal bootstrap can be extended completely

to include fields in arbitrary representations of the Lorentz group. Such a complete analytic

conformal bootstrap would give a Jacobi-like definition of conformal field theories where only the

conformal data (the conformal dimensions, the irreducible representations of the Lorentz group

and the operator product expansion coefficients) appear, without any conformal blocks.

A supersymmetric extension of the operator product expansion in embedding space to the

operator product expansion in supersymmetric embedding space (see [14]) is also an interesting

future topic of research, especially when combined with a possible supersymmetric extension

of the Casimir equations and their solutions as hinted in [7]. This would also allow a complete

extension of the analytic superconformal bootstrap to all superfields, resulting again in a definition

of superconformal field theories in terms of the superconformal data only.

In a forthcoming publication it will be shown how the different differential operators aD
k

ij (η1, η2)

for arbitrary fields in the OPE in embedding space are built from a unique differential operator.
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