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Matter Neutrino Resonances (MNRs) can drastically modify neutrino flavor evolution in astro-
physical environments and may significantly impact nucleosynthesis. Here we further investigate
the underlying physics of MNR type flavor transitions. We provide generalized resonance conditions
and make analytical predictions for the behavior of the system. We discuss the adiabatic evolu-
tion of these transitions considering both Symmetric and Standard MNR scenarios. Symmetric
MNR transitions differ from Standard MNR transitions in that both neutrinos and antineutrinos
can completely transform to other flavors simultaneously. We provide an example of the simplest
system in which such transitions can occur with a neutrino and an antineutrino having a single
energy and emission angle. We further apply linearized stability analysis to predict the location
of self-induced nutation type (or bipolar) oscillations due to νν – interactions in the regions where
MNR is ineffective. In all cases, we compare our analytical predictions to numerical calculations.
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I. INTRODUCTION

Compact object mergers and core collapse supernovae release a significant fraction of their energy in the form of
neutrinos, e.g. [1–7]. These neutrinos play a number of roles, for example they are a key player in determining the
types of nucleosynthesis that come from the winds in these objects, e.g. [8, 9]. Developing further understanding of
neutrino flavor evolution in these environments is necessary for gaining a complete picture of the nature of neutrino
evolution in astrophysical settings. In addition, an understanding of the flavor content of the neutrino spectrum is
essential for determining whether the suitable conditions for the synthesis of various types of heavy elements can be
met, e.g. [10, 11] as well as for extracting the most information from future observations.

Neutrino flavor evolution in dense astrophysical environments is inherently a complex quantum many-body prob-
lem [12–20]. Neutrinos are known to be able to transform from one type to another as they propagate freely in space.
Interactions with the particles in the surrounding environment can drastically modify their flavor evolution with sig-
nificant consequences. The MSW resonance conversion effect is known to be responsible for the neutrino transitions
in the Sun, solving the long standing solar neutrino problem [21–24]. Neutrino interactions with other surrounding
neutrinos can become important in environments with extremely high neutrino densities, such as in supernovae or in
accretion disks above merging compact objects. In these environments, neutrino-neutrino potential can induce col-
lective nutation type flavor transformation effects distinct from the MSW effect [25–27]. At the highest densities, the
quantum many-body nature of the problem can break several commonly utilized assumptions leading to a possibility
of novel effects [17, 18, 20, 28–31].

In this manuscript, we concentrate on a new type of neutrino flavor transformation effect which was observed in the
recent simulations of neutrino flavor evolution above black hole accretion disks [11]. Accretion disks produce mostly
electron type neutrinos and antineutrinos. Antineutrinos have smaller emission disks with respect to neutrinos but
are emitted with a hotter spectrum than that of neutrinos. Therefore, close to the neutrino emission disk antineutrino
flux can dominate over neutrino flux. This is a distinct feature compared to standard proto-neutron star supernova
neutrino scenarios.

In Ref. [11], two new types of neutrino transformations were observed which differ from the known MSW resonance
and the self-induced bipolar transitions. In one of these transformations neutrinos fully convert to other flavors while
antineutrinos return to their original configuration. This transformation was further investigated in Ref. [32] and
was understood to be a consequence of a Matter Neutrino Resonance (MNR) achieved by an active cancellation
of the neutrino-neutrino potential and the background matter contribution. Hereafter, we refer to this type of
transformation as Standard MNR transition. Another type of transformation that was observed in [11] fully converted
both neutrinos and antineutrinos symmetrically. In Ref. [33] numerical studies were performed examining both
Standard and Symmetric MNR and exploring their consequences for nucleosynthesis. Similar effects can occur in other
non-linear systems that exhibit similar features, such as in the presence of neutrino-antineutrino spin coherence [29]
or active-sterile neutrino mixing.

In order to fulfill the MNR condition, the neutrino-neutrino and the background matter potentials are required
to have opposite signs. A characteristic feature of a MNR is that the system can maintain the resonance over
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extended period by suitably transforming neutrinos to other flavors. We will present analytic conditions for the
occurrence of MNR by deriving general resonance and adiabaticity conditions. We discuss the adiabatic evolution
of the (anti)neutrino in-medium energy eigenstates. We further demonstrate that analytic expressions, that describe
accurately (anti)neutrino survival probabilities during MNR transition, can be obtained by assuming the separation
of the in-medium energy eigenvalues stay close throughout the transition.

In the presence of large background matter, when MNR transition occurs, the analytic expressions for the survival
probabilities have only a small dependence on the vacuum mixing parameters. However, as discussed in [32] the
presence of MNR transitions does depend on the values of these parameters. Furthermore, the vacuum mixing and
the changing background potentials affect adiabaticity of the evolution impacting the feasibility of MNR transitions.
Here we will investigate the possible effects that the interplay between the vacuum parameters and the variation of the
background potentials can induce. For instance, in the absence of MNR transitions, neutrinos can undergo collective
self-induced nutation type (or bipolar) neutrino flavor transitions.

Analytic conditions for the occurrence of self-induced effects have been obtained for two-neutrino systems with
simplified (single-angle) geometrical dependence [27, 34–38]. The onset of these self-induced effects has been related
to the presence of an instability. In the context of supernova neutrinos the idea of employing linearized equations
was first pointed out in Ref. [39]. This idea was further developed in Ref. [40] where stability conditions were derived
for the self-induced nutation type flavor transitions allowing to study conditions for the multi-emission angle effects
in the case of two neutrino flavors. Thereafter, linearized stability analysis has been employed in several works,
studying the suppression of collective effects during the accretion phase [41, 42], the effects of realistic emission
angular distributions [43–45], the presence of spurious instabilities due to the numerical inputs [46], the effects of
neutrino scattering outside the neutrinosphere [47], instabilities triggered by flavor oscillation modes [48], the effects
of breaking the axial symmetry [49] and deleptonization asymmetry [50], temporal instabilities [51] and effects of
small scale features [52]. General linearized equations, applicable to arbitrary number of flavors and a general form
of the Hamiltonian, were derived in Ref. [18]. In this manuscript, for the first time, we will apply the linearization
procedure described in Ref. [18] to systems with MNR resonances.

The manuscript is structured as follows. In Sec. II we describe the two flavor monoenergetic model as well as the
density matrix formalism that we will use. In Sec. III we derive the resonance conditions and the analytical expressions
for the survival probabilities, illustrating the predictive power of our results with systems that exhibit either Symmetric
MNR transitions or Standard MNR transitions. We then consider systems that have MNR resonances but not MNR
transitions due to the suppression associated with small mixing angles. This analysis can also be used to mimic the
effects of varying background densities. In these cases, we demonstrate the usefulness of utilizing linear stability
analysis to predict traditional bipolar transition regions.

II. THE SET UP

A. The Model

In the following, we will consider a system that can be described by two (anti)neutrino flavors, which are produced
and emitted with a single energy and a single emission angle. Neutrinos are assumed to be produced with a specific
flavor described by an interaction eigenstate (or flavor state) |νf 〉 (f = e, µ or τ)1. The propagation eigenstates in
vacuum, |νi,j〉 (i, j = 1, 2), can be written in terms of the flavor eigenstates as

|ν1〉 = cos θV |νe〉+ sin θV |νx〉 ,
|ν2〉 = − sin θV |νe〉+ cos θV |νx〉 ,

(1)

with the vacuum mixing angle, θV , determining the relative proportionality of the states. We define the mass-squared
splitting between the neutrino propagation eigenstates in vacuum as δm2 ≡ m2

2 − m2
1. Similar equations hold for

antineutrinos.
The evolution of the considered system can be described by solving the following equations of motion for neutrino,

1 For a discussion on applicability of this assumption see e.g. Refs. [53] and references therein.
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ρ, and antineutrino, ρ̄, density matrices, respectively,2:

i
dρ

dr
= [H, ρ ] , i

dρ̄

dr
=
[
H̄, ρ̄

]
, (2)

where r represents a distance outside the neutrino emission surface from the center of the source object. In flavor
basis the neutrino and antineutrino density matrices are defined, respectively, as

ρ =

(
ρee ρex
ρxe ρxx

)
=

(
|aνe |

2
aνea

∗
νx

a∗νeaνx |aνx |
2

)
,

ρ̄ =

(
ρ̄ee ρ̄ex
ρ̄xe ρ̄xx

)
=

(
|aν̄e |

2
aν̄ea

∗
ν̄x

a∗ν̄eaν̄x |aν̄x |
2

)
,

(3)

where a(−)
νf

is a probability amplitude of a (anti)neutrino being in a given configuration f .

The total neutrino Hamiltonian of the investigated system in the flavor basis, HF , consists of the vacuum, HV , the
background matter, He, and the neutrino-neutrino interaction, Hνν , contributions:

HF = HV +He +Hνν . (4)

The vacuum Hamiltonian is given by

HV =
∆V

2

(
− cos 2θV sin 2θV
sin 2θV cos 2θV

)
, (5)

where ∆V ≡ δm2/(2E) with neutrino mass-squared splitting in vacuum, δm2, and neutrino energy, E. The background
matter contribution can be written as

He =

(
Ve 0
0 0

)
, (6)

where Ve =
√

2ne is the electron potential arising from the difference between net electron and positron number
densities ne = n−e −n+

e . The neutrino-neutrino interactions that couple the evolution of the neutrino and antineutrino
densities are described by

Hνν = µν (ρ− αρ̄∗ ) , (7)

with interaction strength, µν
3, asymmetry factor, α, defining the relative difference between the initial νe and ν̄e

number fluxes and * indicating complex conjugation operation. For antineutrinos the total interaction Hamiltonian
is given by

H̄F = HV −He −H∗νν . (8)

For a derivation of these contributions in the utilized formalism see Ref. [17].
A diagonal contribution can always be extracted from the Hamiltonian without impacting the flavor evolution

described by Eqs. (2). By subtracting a common factor 1/2 (Ve + µ(ρee + ρxx − α(ρ̄ee + ρ̄xx))) Diag(1, 1) from Eq. (4),
the total flavor basis neutrino Hamiltonian can be written in a symmetrized form as

HF =
1

2

(
−∆V cos 2θV + Ve + Vν ∆V sin 2θV + V exν

∆V sin 2θV + V xeν ∆V cos 2θV − (Ve + Vν)

)
, (9)

where

Vν ≡ µν (ρee − ρxx − α(ρ̄ee − ρ̄xx)) ,

V exν ≡ 2µν(ρex − αρ̄xe) .
(10)

The antineutrino Hamiltonian is obtained from the above expression by replacing Ve → −Ve, Vν → −Vν and V exν →
−V xeν .

2 For a derivation and listing of underlying assumptions of the utilized approach see Ref. [17].
3 In general, µν comprises the interaction scale and momentum dependence term:

√
2GF

∫
(1− p · q) with test and background neutrino

momenta p and q. Neutrino number flux density of a neutrino with flavor f described by density matrix, ρp,f , with momentum p, can
be written in terms of neutrino luminosity, L, and average energy, 〈E〉, as

∫
d3p/(2π)3 ρp,f =

∫
dE dφd cos θ L D(E, θ, φ)/(4πR2〈E〉),

with energy and angular distribution D, expressed in spherical coordinates with polar angle, θ, and azimuthal angle, φ.
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III. RESULTS

A. Resonance and Adiabaticity Conditions

First we will derive equations to predict the location of the Matter-Neutrino Resonance (MNR). Then we proceed
to derive equations to predict the anticipated behavior of the flavor evolution at the resonances by introducing a
generalized adiabaticity parameter. The symmetrized flavor basis Hamiltonian, Eq. (9), can be diagonalized using a
unitary SU(2) rotation matrix UM :

U†MHFUM ≡
∆M

2
Diag(−1, 1) ≡ HM , (11)

where HM is the instantaneous in-medium eigenbasis Hamiltonian with (anti)neutrino energy eigenstates ±
(−)

∆M . The
eigen-energies define the (effective) in-medium mass-squared splitting, δm2

eff :

(−)

∆M ≡
δm2

eff

2E
=

√(
∆V cos 2θV

(+)

− (Ve + Vν)
)2

+
(

∆V sin 2θV
(−)

+ V exν

)(
∆V sin 2θV

(−)

+ V xeν

)
, (12)

with parenthesis indicating the differences in case of antineutrinos.
The most general form of the rotation matrix (or in-medium mixing matrix) UM can be written as

UM =

(
1 0
0 e−iδM

)(
cos θM sin θM
− sin θM cos θM

)(
eiβ1M 0

0 eiβ2M

)
. (13)

where θM is the in-medium mixing angle and δM , β1M,2M are in-medium phases. The flavor composition of in-
medium eigenstates, |νiM 〉 (i = 1, 2), is obtained from the corresponding expression in vacuum, Eq. (1), by replacing
the vacuum mixing angle, θV , with the in-medium angle θM . The flavor Hamiltonian HF can then be written in
terms of the in-medium quantities as

HF = UMHMU
†
M =

∆M

2

(
− cos 2θM sin 2θMeiδM

sin 2θMe−iδM cos 2θM

)
. (14)

Notice that this expression is independent of the β phases. The expressions for the flavor basis Hamiltonian in
Eqs. (9) and (14) give the following relations for the in-medium quantities:

∆M cos 2θM = ∆V cos 2θV − (Ve + Vν) ,

∆M sin 2θMeiδM = ∆V sin 2θV + V exν .
(15)

Combining the above relations one obtains the following equations for the in-medium mixing angle, θM , and phase,
δM :

tan 2θMeiδM =
tan 2θV +

V exν
∆V cos 2θV

1− Ve + Vν
∆V cos 2θV

,

tan δM = i
V exν − V xeν

2∆V sin 2θV + V exν + V xeν
= − Im[V exν ]

2∆V sin 2θV +Re[V exν ]
.

(16)

The resonance condition is readily determined from above as:

(Ve + Vν)|r=rR = ∆V cos 2θV , (17)

where R indicates that the quantities are evaluated at the resonance location r = rR. This equation allows one to
determine the expected location of MNR.
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Neutrino flavor evolution at a resonance depends on how the resonance is crossed. We quantify the crossing behavior
by defining an adiabaticity parameter, γ, similarly as in Ref. [37]4:

γ ≡ |∆M |∣∣∣dθMdr
+ isin 2θM

2
dδM
dr

∣∣∣ , (18)

with the in-medium mass-squared splitting, ∆M from Eq. (12). The rate of change of the in-medium mixing is given
by

dθM
dr

=
∆M

dHee
dr
−Hee

d∆M
dr

2∆M |Hex|
, (19)

and the rate of change of the in-medium phase by

dδM
dr

=
HReex

dHImex
dr

−HImex
dHReex

dr
|Hex|2

, (20)

where

Hee = ∆V cos 2θV − (Ve + Vν) ,

Hex = ∆V sin 2θV + V exν
(21)

are, respectively, the diagonal and the off-diagonal elements of the flavor basis Hamiltonian in Eq. (9) with Vν and
V exν given by Eq. (10)5.

If the rate of change of the in-medium mixing is much smaller with respect to the splitting of the energy eigenstates
(γ > 1), neutrino stays on its in-medium eigenstate. In this case, we refer the evolution as being completely adiabatic.
At the other extreme, if neutrino jumps to the other in-medium eigenstate, the evolution is said to be completely non-
adiabatic (γ < 1). The adiabaticity of the resonance crossing in our systems can be evaluated by applying expressions
for the in-medium quantities in Eqs. (12) and (16) to the definition of the full adiabaticity parameter from Ref. [37].
At a location of the resonance the adiabaticity parameter becomes:

γR =
2∆2

M sin 2θM∣∣∣∣dVedr
+

dVν
dr

∣∣∣∣
∣∣∣∣∣∣∣∣
r=rR

. (22)

In case of no flavor transformation, at the location of resonance ∆M reduces to its vacuum contribution ∆V sin 2θV ,
such that, utilizing relation Eq. (15), in the above expression ∆2

M sin 2θM |r=rR = ∆2
V sin2 2θV .

While the expression for the adiabaticity parameter, γ in Eq. (18), can be used to indicate whether a neutrino
stays on its in-medium mass eigenstate or not, another measure of adiabaticity can be obtained by comparing the
in-medium mass eigenstate to the actual state of the system. The more similar these are, the more adiabatic the
system is. To make this comparison we will calculate the survival probability of the neutrinos and compare it to the
projection of the in-medium mass eigenstate onto the original neutrino flavor.

If a neutrino stays on its in-medium eigenstate, one can write the probability of finding a neutrino with a flavor f
from the in-medium state, |νiM 〉, as

P (νf |νiM ) ≡ |〈νf |νiM 〉|2 . (23)

Again, in case of completely adiabatic evolution, the above probability should match the neutrino survival probability.
Utilizing the relations in Eq. (15), the probability of finding an electron neutrino from an in-medium eigenstate |ν1M 〉

4 Notice that in Ref. [37] the authors defined a non-adiabaticity parameter Γ, which is the inverse of our definition: γ ≡ 1/Γ.
5 The superscripts Re and Im refer to real and imaginary components of the given matrix element, respectively.
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can be expressed as

P (νe|ν1M ) = |〈νe|ν1M 〉|2 = cos2 θM

=
1

2

(
1 +

∆V cos 2θV − (Ve + Vν)

∆M

)

=
1

2

1 +
1√

1 + |tan 2θM |2

 ,

(24)

where

|tan 2θM |2 =
(∆V sin 2θV + V exν )(∆V sin 2θV + V xeν )

(∆V cos 2θV − (Ve + Vν))
2 , (25)

with neutrino-neutrino interaction potential, Vν , and the off-diagonal contribution, V exν , given by Eq. (10). In the
next two subsections, we study adiabaticity in systems that exhibit MNR type transitions.

B. Numerical Results

In this section, we use the expressions from the previous section to solve the evolution equations by numerical
integration and use the results to determine the adiabaticity of the evolution of a neutrino in a Symmetric MNR
system. We illustrate our results with an example which is configured to capture the primary features and the relative
scales of the symmetric MNR systems that were first seen in [11, 33]. We consider a scenario where the neutrino
potential starts negative and becomes positive, with an explicit parametrization of µν = 10 000 [∆V ] and the initial
νe and ν̄e asymmetry factor, α(r) = a + br, with a = 1.3 and b = −0.048 with distance expressed in units of inverse
vacuum scale [∆−1

V ]. The matter potential is assumed to be constant: Ve = 1000 [∆V ].
Using the above parametrization, we numerically solve the evolution equations, Eqs. (2), assuming an inverted

neutrino mass hierarchy, ∆V = −1, and a vacuum mixing corresponding to the measured value of θ13; θV = 0.15.
In Fig. 1, we plot the diagonal element of the neutrino density matrix in Eq. (3), corresponding to the neutrino
survival probability, as the dashed red line. We also use the numerical solutions of Eqs. (2) to determine the electron
flavor component of the in-medium mass eigenstate and plot the corresponding probability, Eq. (24), shown as the
orange solid line in Fig. 1. Here, we can see that the numerically computed survival probability and the probability of
finding an electron neutrino from the in-medium eignestate match well over long timescales. However, over a shorter
timescale, we can see oscillations in the numerical in-medium state solution that do not appear in the true state as
determined from the numerically computed survival probability. From this, we can infer that the system is adiabatic
over long timescales and nonadiabatic over shorter timescales.

Using the numerical solutions of Eqs. (2), we also calculate the adiabaticity parameter, γ in Eq. (18), over both
scales. This parameter requires information about the off-diagonal components of the density matrices in Eq. (3)
which we have plotted in the bottom panel of Fig. 1. In order to compute the adiabaticity parameter, we also need to
compute the derivatives in Eqs. (19) and (20). To determine the adiabaticity over the entire length of the transition
we use values of the derivatives in Eqs. (19) and (20) averaged over the length of the entire transition. This procedure
yields γ ≈ 2. To determine the adiabaticity over the shorter timescale seen in Fig. 1, we again calculate the average
derivatives, but this time over one fourth of the visible oscillation scale seen in the top panel of Fig. 1. For this
smaller scale, we find that the adibaticity parameter has a significantly smaller value, γ ≈ 0.06. Thus, our test for the
adiabaticity using Eq. (18), predicts (barely) adiabatic behavior over long scales and non-adiabatic behavior on the
shorter scale. We note that the derivative of the phase, Eq. (20), becomes larger in the smaller scale case, however,
in both the larger and the smaller timescales, the derivative of the in-medium mixing angle, Eq. (19), dominates the
denominator in the expression for the adiabaticity parameter, Eq. (18).

C. Analytical Expressions for the Survival Probabilities

We now consider two different analytic methods to predict the survival probability during a MNR transition. Neither
of these methods use the numerical integration of the evolution equations described in the previous section. First, we
demonstrate that analytical expressions for the neutrino during MNR transitions can be obtained by assuming that
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FIG. 1: (Color online) Numerical results for the elements of the neutrino density matrix obtained by numerically solving the
evolution equations Eq. (2). Top figure: νe survival probability, Pνe (red), and a probability, P (νe|ν1M ), given by Eq. (24)
(orange lines) of finding an electron neutrino from in-medium eigenstate, ν1M . Bottom figure: real and imaginary components
of the off-diagonal neutrino density matrix elements. Here we have considered the Symmetric MNR model (see text for details)
in inverted neutrino mass hierarchy, ∆V = −1 with vacuum mixing angle θV = 0.15.

the in-medium energy values stay close throughout the transition. Then, we show that another, similar expression
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can be obtained by assuming that a neutrino remains on its in-medium eigenstate during the MNR transition. We
will compare both of these probabilities with the numerical solutions presented in the previous subsection.

1. Vanishing In-medium Splitting Assumption

The separation of the in-medium neutrino energy eigenvalues defines the in-medium mass splitting, ∆M , given by
Eq. (12). Assuming that at some point during the evolution the in-medium eigenvalues become very close, this “gap”
reaches its minimum when ∆M ≈ 0. By inspection of Eq. (12) one obtains two conditions, one for the flavor diagonal
contributions:

∆V cos 2θV − (Ve + Vν) ≈ 0 , (26)

and another one for the flavor off-diagonal contributions:

∆V sin 2θV + V exν ≈ 0 (or ∆V sin 2θV + V xeν ≈ 0) . (27)

The first condition, Eq. (26), is equivalent with the resonance condition Eq. (17).
The second condition, Eq. (27), reduces to the conditions found in Ref. [32] for the off-diagonal terms in the limit of

vanishing vacuum contribution6. Neglecting the vacuum terms, in Ref. [32] the above conditions were used to obtain
analytical expressions for the electron (anti)neutrino survival probabilities when the MNR conditions are fulfilled:

Pνe ≡ ρee =
1

2

(
1 +

α2 −R2 − 1

2R

)
,

Pν̄e ≡ ρ̄ee =
1

2

(
1 +

α2 +R2 − 1

2αR

)
,

(28)

where R ≡ Ve/µν is the ratio of the neutrino-electron and neutrino-neutrino interaction scales. These equations were
found to be in excellent agreement with the numerical results in Ref. [32] during the MNR transition.

We compare the numerically calculated Symmetric MNR transition probability with the analytic prediction, Eq. (28)
in the top left of Fig. 2 for the same Symmetric MNR system as in Fig. 1. From the figure we can see that the analytic
prediction, stemming from the assumption of maintaining a small “gap” between the instantaneous eigenvalues closely
tracks the numerics.

In obtaining Eq. (28) we have not assumed that the neutrino remains on an in-medium eigenstate, only that
the eigenvalues come close together. However, we demonstrated numerically in the previous section that the long
timescale behavior of the system can, on average, be adiabatic. Therefore, in the next section we derive an expression
assuming that the state of the system remains similar to the in-medium eigenstate.

2. Adiabatic Assumption

In an adiabatic assumption, one assumes that the projected probability of finding a certain type of (anti)neutrino
from a given in-medium eigenstate equals to the (anti)neutrino survival probability given by the diagonal element of
the (anti)neutrino density matrix. Rewriting Eq. (24), we find

ρee = Pνe ≈ P (νe|ν1M ) =
1

2

(
1 +

∆V cos 2θV − Ve − Vν(ρee, ρ̄ee)

∆M (ρee, ρ̄ee, ρex, ρ̄ex)

)
. (29)

and a similar expression for antineutrinos. A conservation rule exists relating the diagonal and the off-diagonal density
matrix elements that places a further constraint on Eq. (29):

[2Re(ρex)]2 + [−2 Im(ρex)]2 + (2ρee − 1)2 = 1 . (30)

6 In Ref. [32] the conditions were written in neutrino flavor isospin formalism (NFIS) [54]: sx,y ≈ −αs̄x,y . In addition, the conservation
rule s2x+s2y+s2z = 1/4 expressed in neutrino flavor isospin (NFIS) formalism translates to [2Re(ρex)]2 +[−2 Im(ρex)]2 +(2ρee−1)2 = 1
in the density matrix formalism utilized in this manuscript (similarly for antineutrinos).
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with, again, a similar equation for antineutrinos. If we wish to find a solution to Eq. (29) subject to the conservation
rule Eq. (30) we need a third condition. It was suggested in Ref. [54, 55] that adiabatic solutions can be defined
as those which have a negligible off-diagonal imaginary component, Im(ρex). Typically during a symmetric MNR
transition the off-diagonal imaginary component averages to zero over the entire transition. An example of this can
be seen in the bottom panel of Fig. 1. If we require Im(ρex) = 0, and further neglect terms proportional to sin 2θV ,
a simple closed form analytic expression can be obtained

Pνe ≡ ρee =
1

2

(
1 +

α2 −R2 − (1− ε)2

2R(1− ε)

)
,

Pν̄e ≡ ρ̄ee =
1

2

(
1 +

α2 +R2 − (1− ε)2

2αR

)
,

(31)

with ε = 2∆V cos 2θV /(Ve + ∆V cos 2θV ). In the limit of a large background matter contribution, Ve � ∆V , ε can be
neglected and these equations reduce to the MNR expressions for the (anti)neutrino survival probabilities obtained
by assuming a vanishing separation between the in-medium eigenvalues, Eq. (28). Eqs. (31) are particularly useful
when the scales (vaccuum, matter and neutrino potentials) in the problem come close together and the imaginary
components of the density matrix can be neglected. We illustrate the usefulness of Eq. (31) in section III F by
considering a system where interaction scales are close to each other. In the next section, we will explore the
generality of our findings by discussing two distinct systems in which MNR transitions can take place.

D. Discussion of Symmetric and Standard MNR Transitions

In this section we further investigate our MNR conditions described in the previous sections. We consider two
scenarios: one that produces a Standard MNR transition as described in Ref. [32], together with the simplest system
exhibiting Symmetric MNR motivated by the results presented in Ref. [11] (see Region (III) in Figure 5 of [11]).
A characteristic feature of the Symmetric MNR region is that the initial neutrino-neutrino potential starts with a
negative sign (antineutrinos dominate close to the neutrino emission) and changes its sign to positive (neutrinos
dominate further out) [33]. This is different than the Standard MNR transition region where the neutrino-neutrino
potential always remains negative [32].

Therefore, we introduce two models, A and B, that capture the essential features of a Symmetric and a Standard
MNR transition, respectively. The parameters of model A were also used in Fig. 1. Repeated here, they are µν =
10 000 [∆V ] and α(r) = a+br, with a = 1.3 and b = −0.048. The matter potential is kept constant at Ve = 1000 [∆V ].
For the model B, we use the same parameterization as in [32]: µν(r) = 10 000 e−r/10[∆V ], α = 4/3 and Ve = 1000 [∆V ].
In both of these models, r represents distance in units of inverse |∆V |. We have defined ∆V so that it is +1 for the
normal hierarchy and −1 for the inverted hierarchy. Consistent with available estimates for the placement of MNR in
compact object mergers and core collapse supernova accretion disks [11, 33], we have chosen models where µν >> ∆V

throughout the transition.

Model A B

∆V ±1 ±1

Ve [∆V ] 1000 1000

µν [∆V ] 10 000 10 000 e−r/10

α 1.3− 0.048 r 4/3

TABLE I: Chosen parameter values for the Symmetric model (Model A) and the Standard model (Model B): vacuum scale,
∆V (+1 for normal, -1 for inverted neutrino mass hierarchy), background matter potential, Ve, neutrino-neutrino interaction
strength, µν , and the νe and ν̄e asymmetry factor, α.

In our calculations, we assume neutrinos to be produced as pure flavor states. We follow the evolution of
(anti)neutrinos by solving the evolution equations in Eq. (2) with the following initial conditions for the neutrino
and antineutrino density matrices in Eq. (3):

ρ0 ≡ ρ(r = 0) =

(
1 0

0 0

)
= ρ̄(r = 0) ≡ ρ̄0 . (32)
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Taking Eq. (32) and substituting it into Eq. (10) provides information about what Vν would be in the absence of any
oscillation, i.e. V unoscν = µν(1− α).

Having set up both models we have one last choice to make which is the vacuum mixing angle. In this section
we take the value of the vacuum mixing angle to be consistent with θ13: θV = 0.15 [56]. We can now turn to our
results, which are presented in Figs. 2 and 3. In the top panels of these figures we show the comparison of analytic
and numerical results for the Symmetric (Fig. 2) and Standard (Fig. 3) cases for the inverted and normal hierarchies.
In all four top panels, the analytical results match well with the numerical results for the survival probabilities and
the transition starts at the resonance location as predicted.

The analytical results were derived from the assumption that the difference between the instantaneous in-medium
eigenvalues was close to zero. We verify the appropriateness of this assumption in the middle panels in these figures
where we plot the difference of the in-medium mass eigenvalue. We see that this difference, 2 ∆M , approaches zero.
Another prediction, given in Eq. (26), was that the neutrino-neutrino potential Vν will mirror the matter potential
Ve. As can be seen from the bottom panels in these four figures, Vν deviates strongly from the value it would take on
if no oscillation occurred, V unoscν , and tracks Ve as expected.

E. Sensitivity to the Vacuum Mixing - Linearized (In)stability Analysis

The models that have been studied in the previous literature (see Ref. [32]), fulfill the MNR conditions outlined
in Section III. However, in realistic accretion disk scenarios one expects a variety of conditions that can impact the
occurrence of MNR type transitions. According to Eq. (22), which describes the adiabaticity at the location of a
resonance, the presence or absence of the resonance transition depends on the interplay of the vacuum parameters
and the background density gradients. In previous literature, the measured values for the vacuum mixing parameters
have ensured a successful MNR transitions in the considered scenarios. Either reducing the mixing angle or steepening
the neutrino and/or matter profiles will shut off the MNR transition. While the vacuum mixing angles are measured,
the density gradients of the neutrino and matter profiles in the astrophysical environments are uncertain. The effect of
varying density gradients can effectively be mimicked by reducing the vacuum mixing angle. In addition, active-sterile
mixing can also induce MNR type transitions. The possible active-sterile mixing angles are currently unknown and
their exact values can impact sterile neutrino induced MNR transitions. For simplicity, in this section we illustrate
the interplay of the vacuum parameters and the background density gradients by reducing the vacuum mixing angle.

In Figs. 4 and 5 we present the results for our Symmetric (Model A in Table I) and Standard MNR system (Model
B) with a reduced vacuum mixing of θV = 0.001. It can be seen from the top panels of these two figures that no
transition begins at the initial MNR resonance position (first dashed line). From the middle panels, we also see that
the difference of the in-medium mass eigenvalues does not hover around zero between the dashed lines, as it would
during a MNR transition. Due to the small value of the vacuum mixing, the resonances are non-adiabatic. However,
looking again at the top panels, we see that in the inverted hierarchy transitions do take place at other locations.
These are self-induced nutation type transitions similar to the type found in core collapse supernovae.

The onset of the self-induced effects has been related to the presence of an instability [18, 39, 40]. In the following,
we will apply the linearized stability analysis procedure outlined in Ref. [18] to describe conditions for neutrino flavor
instability in systems which have MNR resonances. In order to study the stability of the systems we consider here, it
is sufficient to consider the following 2× 2 stability matrix (see Appendix):

S =

(
A12 B12

B̄21 Ā21

)
, (33)

with

A12 =H0
11 −H0

22 + (ρ0
22 − ρ0

11)
∂H12

∂ρ12
,

B12 =(ρ0
22 − ρ0

11)
∂H12

∂ρ̄21
,

Ā21 =H̄0
22 − H̄0

11 + (ρ̄0
11 − ρ̄0

22)
∂H̄21

∂ρ̄21
,

B̄21 =(ρ̄0
11 − ρ̄0

22)
∂H̄21

∂ρ12
,

(34)
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FIG. 2: (Color online) Comparison of numerical results with analytical predictions in the Symmetric MNR model assuming
vacuum mixing angle θV = 0.15 (model A). Left (right) figures display the results in normal (inverted) mass hierarchy, ∆V =
+1(−1). Top figures: Survival probabilities for νe (solid) and ν̄e (dashed-dotted lines) with a comparison of numerical results
(red) with analytical prediction given by Eq. (28) (green lines). Middle figures: Comparison of MNR assumption, ∆M = 0
(light gray line), with numerically computed in-medium eigenvalue difference (purple line), utilizing Eq. (12) and numerical
results for the neutrino and antineutrino densities. Bottom figures: Contributions to the total neutrino Hamiltonian, Eq. (9):
Vacuum (blue), background matter potential, Ve (cyan), neutrino self interaction potential, Vν (solid red line) as well as V unoscν

(dashed red line). During MNR transition, neutrino-neutrino potential actively cancels the background matter contribution
and should be compared with −Ve. Vertical dashed lines represent the resonance locations according to Eq. (17).

where ρ0 is given by Eq. (32) and the system is initially described by the Hamiltonian H0 = HM with ρ = ρ0, that
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FIG. 3: Comparison of numerical results with analytical predictions in the Standard MNR model (model B) assuming vacuum
mixing angle θV = 0.15. Lines are as described in Fig. 2.

is, by Eq. (11) with neutrino and antineutrino density matrix elements given according to Eq. (32):

(−)

H 0
22 −

(−)

H 0
11 =

(−)

∆ 0
M =

√(
∆V cos 2θV

(+)

− (Ve + µν(1− α))
)2

+ ∆2
V sin2 2θV ,

∂H12

∂ρ12
= µν ,

∂H12

∂ρ̄21
= −µνα ,

∂H̄21

∂ρ12
=− µν ,

∂H̄21

∂ρ̄21
= µνα .

(35)
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Then, the elements of the stability matrix become (in the limit θV → 0):

A12 = − (∆V − Ve − µν(1− α))− µν ,
Ā21 = (∆V + Ve + µν(1− α)) + αµν ,

B12 = αµν ,

B̄21 = −µν .

(36)

Instability conditions are obtained by solving the eigenvalues, λ, of the stability matrix:

|S− λ| = 0 . (37)

A complex value for the eigenvalue indicates an unstable mode. The stability matrix has eigenvalues

λ =
1

2

(
A12 + Ā21 ±

√
(A12 − Ā21)2 + 4B12B̄21

)
. (38)

The system is unstable if eigenvalues become imaginary, that is, if

(A12 − Ā21)2 + 4B12B̄21 < 0 . (39)

This stability analysis predicts the conditions under which the system becomes unstable to small perturbations. In
the context of self-induced collective effects, the stability analysis gives the conditions for the on-set of self-induced
flavor transformations. In the normal mass hierarchy (NMH), eigenvalues of the stability matrix in Eq. (38) are always
real. Hence, the system is flavor stable and no flavor transformation occur. In the inverted mass hierarchy (IMH),
eigenvalues of the stability matrix become imaginary. The region where the eigenvalues become imaginary for Models
A and B is shown as the shaded region in Figs. 4 and 5. The system has an unstable region and exhibits self-induced
nutation type transformations in this region.

F. Sensitivity to the Interaction Scales

In this section we provide an example that demonstrates the predictive power of our new analytic expression in
Eq. (31) obtained by utilizing the adiabatic assumption, Eq. (24), and neglecting the imaginary component of the
off-diagonal density matrix element

In Fig. 6 we have considered the same Symmetric MNR system as described in section III B with reduced neutrino-
neutrino interaction strength, µν = 100 [∆V ], and matter potential, Ve = 10 [∆V ]. Similarly as in Fig. 1, in the top
panel, we illustrate the numerically calculated electron neutrino survival probability and a projected electron neutrino
probability associated with the in-medium eigenstate, ν1M , Eq. (24). We can see that the in-medium mass eigenstate
tracks the true state of the system over long timescales, as anticipated. In addition, the projected eigenstate solution
also better tracks the system over smaller timescales which was not seen in our previous examples where the matter
potential was much larger than the vacuum scale. We calculate the adiabaticity parameter, γ in Eq. (18), over both
scales and find it to be above 200 for the long (transition) scale and around 50 for the shorter (visible large oscillation)
scale, indicating an adiabatic evolution at both scales.

In the bottom panel we also plot the off-diagonal contributions to the density matrix. Again, we find that the
off-diagonal imaginary component is nearly zero on average. Therefore, we proceed to use the analytic expression
for survival probabilities corrected by the vacuum contribution, Eq. (31), which we plot with dot-dashed line in the
top panel. We see that the analytic expression works well on long timescales and correctly predicts the location of
resonance conversion to be around 10 [∆−1

V ]. If we were to neglect the vacuum contributions and predict the behavior

of the survival probability using Eq. (28), the transition would be expected to take place between 5 [∆−1
V ] and 8 [∆−1

V ].
The analytic expression in Eq. (31), while it accurately predicts the location of the transition, does not do quite as
well describing the small scale behavior as does the numerically calculated projection of the in-medium state using
Eq. (24). This is because in the analytic prediction the imaginary off-diagonal terms are neglected, and it is these
terms that give rise to the oscillations seen in the survival probability.
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FIG. 4: (Color online) Comparison of numerical results with analytical predictions in the Symmetric model assuming small
vacuum mixing angle θV = 0.001 (other parameters as in Model A described in Table I). The figure labels and lines plotted are
as in Fig. 2. Due to the very small vacuum mixing no flavor transitions take place at the MNR resonance locations (vertical
dashed lines). The shaded area represents the instability region according to Eq. (39) (visible only in inverted mass hierarchy
(IMH) as the normal mass hierarchy (NMH) is flavor stable, see Section III E for more details). The instability analysis correctly
predicts the location of the self-induced nutation type neutrino flavor transitions.
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FIG. 5: (Color online) Comparison of numerical results with analytical predictions in the Standard MNR model assuming small
vacuum mixing angle θV = 0.001 (other parameters as in model B described in Table I). The figure labels and lines are as in
Fig. 4. The instability region present in IMH (the shaded area) appears after the MNR region (between vertical dashed lines).
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FIG. 6: (Color online) Results for our Symmetric MNR model (see text for details) with interaction strengths Ve = 10 and
µν = 100. Top figure: Comparison of numerical calculated νe survival probability, Pνe (red), and probability, P (νe|ν1M ) given
by Eq. (24) (orange lines) of finding an electron neutrino from in-medium eigenstate, ν1M with analytical prediction given by
Eq (31). Bottom figure: real and imaginary components of the off-diagonal neutrino density matrix element.
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IV. CONCLUSIONS

In this manuscript we have studied neutrino systems of interest in astrophysical environments, such as compact
object mergers, that have the potential to exhibit Matter Neutrino Resonances (MNRs). During MNR transitions
the neutrino-neutrino potential actively cancels with the background matter contribution. This can render neutrino
flavor transitions at high densities close to the cores of their sources. Therefore, MNRs are of keen interest for
nucleosynthesis and also potentially affect the dynamics of the environment.

Using models of monoenergetic neutrino gases, we have provided general resonance conditions applicable to MNR
transitions. We have shown that the MNR criteria can be obtained by assuming a small separation of the neutrino
in-medium energy eigenstates during the transition. These criteria lead to analytical expressions for neutrino survival
probabilities that accurately describe the neutrino flavor evolution during MNR transitions. Furthermore, by assuming
an adiabatic evolution, we have derived new analytic expressions for the neutrino survival probabilities that can be
applied when the neutrino interaction and the vacuum mixing scales become closer to each other and no evolution
occurs in the imaginary off-diagonal density matrix. This offers a powerful tool to predict a location of resonance
conversion effects at low background matter potentials when MNR conditions are not fulfilled.

While MNR was originally discussed as a mechanism which leaves neutrinos converted but antineutrinos in their
original configuration, we have discussed that MNR transitions can also fully convert both neutrinos and antineutrinos
in some cases. Although the final flavor content is different, these symmetric transitions are described in the same
way as the standard MNR transitions.

In the systems we have studied, the presence of a MNR transition suppressed the type of self-induced flavor
transformation that has been studied in the context of core collapse supernovae. This is because the required initial
conditions at the instability point were not met. In order for MNR transitions to take place, the vacuum mixing
has to be sufficiently large. In our example models, the measured value of the ‘reactor’ neutrino mixing angle θ13 is
sufficient to trigger the MNR transitions. However, smaller angles and/or steeper potentials will suppress these MNR
transitions.

If MNR resonances are ineffective, neutrinos can still undergo self-induced flavor transitions. We have applied
a general linearization procedure to our Symmetric and Standard MNR models and constructed a stability matrix
allowing us to study the flavor stability in these models. In symmetric scenarios, the instability region lies within
the MNR resonance region. Thus, if the MNR transition is suppressed, self-induced flavor transition will still occur
within the resonance region in the case of the inverted hierarchy. In standard scenarios, the instability region comes
after the MNR resonance region.

In an astrophysical system, the exact location of transitions is of significance in determining the impact on dynamical
evolution of the environment and conditions for nucleosynthesis. Further investigations are required in order to
understand the consequences of neutrinos encountering Matter Neutrino Resonances in more realistic scenarios.
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V. APPENDIX: LINEARIZED (IN)STABILITY ANALYSIS

The (anti)neutrino flavor evolution of our models is described by Eq. (2). Therefore, the evolution of an ij element
of the (anti)neutrino density matrix is given by

i
dρij
dr

=
∑
k

(Hikρkj − ρikHkj) ,

i
dρ̄ij
dr

=
∑
k

(
H̄ikρ̄kj − ρ̄ikH̄kj

)
,

(40)

where indices ij refer to the ij element of the corresponding matrix. The above set of evolution equations can be
linearized by considering a time dependent small amplitude variation, δρ, around the initial configuration, ρ0, and a
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corresponding variation of the density dependent Hamiltonian, δH, around the initial Hamiltonian H0:

ρij =ρ0
ij + δρij , with δρij = ρ′ij e−iωr + H.c. and

Hij =H0
ij + δHij , with δhij = H ′ij e−iωr + H.c. ,

(41)

where ρ′ij , H
′
ij are the variation amplitudes and ω describes the variation frequency.

In the case of self-induced collective neutrino effects, the small amplitude variations around the initial configuration,
ρ′ij in Eq. (41), are induced by the off-diagonal elements of the (anti)neutrino density matrix. According to our
convention, the off-diagonal neutrino Hamiltonian matrix element Hij (i 6= j) depends on the neutrino density matrix
element ρij and on the antineutrino density matrix element ρ̄ji. By retaining only the contributing terms, the variation
amplitude of the neutrino Hamiltonian due to the variation of the (anti)neutrino densities can be written as

H ′ij =
∑
k<l

(
∂Hij

∂ρkl
ρ′kl +

∂Hij

∂ρ̄lk
ρ̄′lk

)
. (42)

The initial configuration is described by the in-medium Hamiltonian that is obtained by diagonalizing the flavor
basis Hamiltonian at the initial time. Neutrino mixing is modified in-medium as described by Eq. (16). Hence,
with large interaction potentials, the in-medium eigenstates initially coincide with flavor states. Therefore, the initial
system is described by [

H0, ρ0
]

= 0 , (43)

and the initial configuration can be written as

ρ0
ij = ρ0

i δij , H0
ij = H0

i δij . (44)

Substituting Eqs. (41), (42) and (44) into the evolution equations, Eq. (40), collecting the positive frequency modes,
e−iωr (i < j), and neglecting the higher-order corrections from [δh, δρ], one obtains the following eigenvalue equations

ωρ′ij =
∑
k<l

{[
(H0

k −H0
l )δikδjl + (ρ0

j − ρ0
i )
∂Hij

∂ρkl

]
ρ′kl + (ρ0

j − ρ0
i )
∂Hij

∂ρ̄lk
ρ̄′lk

}
,

ωρ̄′ji =
∑
k<l

{[
(H̄0

l −H0
l )δilδjk + (ρ0

i − ρ0
j )
∂H̄ji

∂ρ̄lk

]
ρ̄′lk + (ρ̄0

i − ρ0
j )
∂H̄ji

∂ρkl
ρ′kl

}
,

(45)

with eigenvalues ω and eigenvectors
(−)

ρ ′. There exist two sets of eigenvalue equations, one for ω and another one for
its complex conjugate which can be obtained by collecting the e+iω∗r modes.

If the eigenvalues ω ∈ Re, system has a stable solution with collective oscillation modes

ρij = 2ρ′ij cosωsr . (46)

where ωs represents the synchronized oscillation frequency with oscillation amplitude 2ρ′ij . On the other hand, if
ω ∈ Im, the variations can grow exponentially, indicating that the system has become unstable and the linearized
equations no longer serve as a good approximation. In the context of self-induced collective neutrino effects, instability
indicates the on-set of the nutation type (or bipolar) oscillations.

The linearized eigenvalue equations, Eqs. (45), can be written in a compact matrix form by introducing Stability
matrix, S:

ω

(
ρ′

ρ̄′

)
= S

(
ρ′

ρ̄′

)
, (47)

where

S =

(
A B

B̄ Ā

)
, (48)
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with elements

Aij,kl = (H0
k −H0

l )δikδjl + (ρ0
j − ρ0

i )
∂Hij

∂ρkl
,

Āij,kl = (H̄0
l −H0

l )δilδjk + (ρ0
i − ρ0

j )
∂H̄ji

∂ρ̄lk
,

Bij,kl = (ρ0
j − ρ0

i )
∂Hij

∂ρ̄lk
,

B̄ij,kl = (ρ̄0
i − ρ0

j )
∂H̄ji

∂ρkl
.

(49)

(−)

A,
(−)

B are N × N matrices with N = 0.5nf × (nf − 1) × nE × nu × nini where nf , nE , nu, nini are the number of
neutrino families, neutrino energies, angular modes and initial conditions, respectively, while ρ′ and ρ̄ are in turn
N -dimensional vectors of variation amplitudes.

Instability conditions are obtained by studying the eigenvalues of the stability matrix as discussed in Section III E.
In case of two (anti)neutrino flavors with single energy and emission angle, the system can be decomposed into two
subsystems described by a subsystem with (1, 2) element of the neutrino density matrix linked to (2, 1) element of
the antineutrino density matrix and another subsystem described by the complex conjugates of the corresponding
elements. The two subsystems have identical stability conditions. This consideration leads to the form of the stability
matrix as shown in Eq. (33).
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