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Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous
relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials
that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and
without a drift of the plasma as a whole. In addition to the currents present in the homogeneous
plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as
well as Ohm’s current) we derive several new terms associated with inhomogeneities of the plasma.
Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent
of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic
theory.
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I. INTRODUCTION

Nowadays there is a widespread interest in relativistic plasmas with a chiral asymmetry. This interest is driven
by a recent progress in the understanding of basic properties of numerous relativistic or pseudorelativistic systems,
ranging from Dirac and Weyl semimetals in condensed matter [1], whose low-energy quasiparticle excitations are
described by the Dirac and Weyl equations, to strongly coupled quark-gluon plasma created experimentally in heavy-
ion collisions [2-4], and to the primordial plasma in the early Universe [5, 6]. One of the most unusual features of
a chiral relativistic plasma, which is absent in a conventional non-relativistic one, is the possibility of a macroscopic
realization of the celebrated quantum anomalies [7]. For example, in a chirally asymmetric plasma in a magnetic
field B with an imbalance between the number densities of right- and left-handed fermions (described semirigorously
by the chiral chemical potential us), the chiral anomaly induces a new type contribution to the electric current:
ej = e?usB/(2n%c) [8-11]. The latter is known as the chiral magnetic effect [12, 13]. The Maxwell equations,
amended by such a contribution to the electric current, become anomalous Mazwell equations [14-23].

The inclusion of the anomalous currents drastically changes the self-consistent evolution of chiral charge densities
and helical magnetic fields [14, 18, 19, 21-23]. Moreover, the nonlinear interactions due to anomalous processes induce
an effective mechanism for transferring the energy from magnetic modes with short wavelengths (strongly affected by
dissipation) to modes with longer wavelengths (and longer lifetimes) — a phenomenon similar to the inverse cascade
in ordinary magnetohydrodynamics [24], but driven not by turbulence. Depending on the chosen initial conditions,
it was found that the helicity can be transferred from the fermions to the magnetic fields or vice versa. These results
support the suggestion made in Ref. [25] that all degrees of freedom with non-vanishing axial charge are equally
excited in the equilibrium.

The chiral anomaly in a relativistic matter exhibits itself not only via the chiral magnetic effect. Even if a chiral
asymmetry is absent, a nonzero magnetic field can induce an axial current j5 = euB/(27%¢) in a plasma with a nonzero
electric chemical potential. This phenomenon is known as the chiral separation effect [26]. Another prediction of the
anomalous Maxwell equations in a relativistic plasma, that utilizes an interplay of the chiral separation and chiral
magnetic effects, is a new type of collective excitation known as the chiral magnetic wave [27]. Further development
of these ideas is anomalous hydrodynamics, which contains new terms due to the chiral anomaly [22, 28-35].

The present study investigates the role of inhomogeneities in the chiral plasma evolution. Since the chiral anomaly
relation is local, it is clear that the electric and chiral chemical potentials should be inhomogeneous just like the
helical electromagnetic fields. An important question is whether additional contributions to the electric current exist
in the inhomogeneous case. The authors of Ref. [15] postulated the absence of such currents, while a different set of
equations was proposed in a recent study [22]. The present paper derives such inhomogeneous currents in a systematic
way. Our starting point in the analysis is the chiral kinetic theory [36-39].

This paper is organized as follows. We briefly review the chiral kinetic theory and kinetic equations in Sec. II.
The expressions for the electric and axial currents and equations for the local equilibrium chemical potentials in



inhomogeneous chiral plasma in the drifting state are derived in Sec. III. The electric and chiral currents to the
second order in electromagnetic field and derivatives are calculated in Sec. IV in the case where neutral particles exert
a substantial drag on the system. The summary and conclusions are given in Sec. V. Some table integrals and useful
relations are collected in Appendix A.

II. CHIRAL KINETIC THEORY

The chiral kinetic theory describes a time evolution of the one-particle distribution functions f (¢, x, p) for the right-
(A = +) and left-handed (A = —) fermions. It was recently suggested [36, 40, 41] that chiral fermions in external
electromagnetic fields are described by the chiral kinetic theory given by [36-39]
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where the factor (1 + eB - Q)/c)~! accounts for the correct phase-space volume [40, 41] and Q) = Ap/(2|p|®) is
the Berry curvature [42]. The Berry curvature is a crucial ingredient in the chiral kinetic theory that allows one
to capture the fermionic nature of particles [36-39]. The group velocity is defined from the quasiparticle energy as
follows: v = 9¢p/0p. By imposing the constraint of the Lorentz invariance in Ref. [36], it was suggested that the
dispersion relation for chiral fermions in a magnetic field B should be taken in the form e, = c|p| — Aep - B/|p|?,
which is valid to linear order in the field when |eB|/(cp?) < 1. Interestingly, however, such a definition for e, may be

problematic because the absolute value of the resulting group velocity, v = ¢y/1 + 2e (B - 2)) /¢ + O(B?), appears to
be larger than the speed of light when (B-€2,) > 0. In the present study, we will use the dispersion relation e, = ¢|p|
for which the group velocity equals c.

Eq. (1) is the kinetic equation for the distribution function f} of particles (i = p). A separate equation can be
written down for antiparticles (i = a). The corresponding equation can be obtained by simply replacing e — —e and
A — —Ain Eq. (1). Below, when there is no risk of confusion, we will omit index 7 and assume that the expressions
are given for particles. In the end, the results for charge densities and current densities will have to contain both
particle and antiparticle contributions.

The term on the right-hand side of the kinetic equation (1) is a collision integral. In the simplest approximation,
one can take I, = 0. This corresponds to the so-called collisionless limit, which is useful when the collective particle
dynamics is driven primarily by averaged electromagnetic fields. One of the simplest approximations beyond the

collisionless limit is the relaxation-time approximation with I.on = —(fx— f)(\CQ)) /743, 44], where 7 ~ 1/ [e*T'In(1/|e|)]

[45] is the relaxation time and fieQ) is the local equilibrium distribution function. In the absence of electromagnetic
fields, it is the standard Fermi-Dirac distribution function
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where €, = ¢|p|. The corresponding equilibrium distribution function for antiparticles is obtained by replacing
tx — —px. Here we introduced the notation for the chemical potentials of the right- and left-handed fermions,
pa(t,x) = p(t,x) + Aus(t,x). It should be noted that, in the case of local equilibrium, the temperature 7' in
distribution functions could also depend on the space-time coordinates, T'(t,x). However, in order to simplify our
analysis below, we will neglect such a dependence in what follows. In the presence of electromagnetic fields, the choice

of f)(\cq)(t, x,p) is a delicate issue and we will discuss it in more detail below.

In a general case, the local equilibrium chemical potentials u) evolve with time. Therefore, one of the central and
crucial points of our analysis is the evolution equations for py which we derive from the kinetic equation. Integrating
the left-hand side of the kinetic equation (1) over momentum leads to the continuity equations for the electric and
chiral currents, where the latter equation includes the chiral anomaly term. This means that in order that the particles
densities be conserved it is necessary that the integral of the collision integral over momentum be equal zero. This
requirement will play a crucial role in our analysis below.

A collision integral IBGK = —(fy — 2 )(\0))/7 of the Bhatnagar-Gross-Krook (BGK) type [46] was used in Ref. [21].
X

coll
Here ny is a local fermion number density, §O) is a given distribution function (for example, in the analysis of non-

(0)
A

relativistic particle dynamics in Ref. [46], a Maxwell velocity distribution function was used), and ny "’ is determined

by fio). Clearly, such a collision integral automatically conserves the particle number and agrees with the chiral
anomaly relation. We found that when studying the evolution of electromagnetic fields and the chiral asymmetry
in the presence of strong magnetic fields, where the chiral chemical potential evolves with time, it is crucial to use



the local equilibrium function ficq) rather than a fixed fio), otherwise, the kinetic equation is not entirely consistent.

We checked, however, that the results obtained for the BGK-type collision integral with ficq) instead fio) are not

much different from those found in the relaxation time approximation described above. Since the relaxation time

approximation with T.on = —(f\ — Cq)) /7 is slightly simpler, we will use it in our analysis below.

The evolution of electric and magnemc fields is determined by the Maxwell equations
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By definition, the electric charge density is given by en(x) = >, > ,_ e;n}(x), where the sum over ¢ includes the
contributions due to particles (i = p) and antiparticles (p = a). Note that the latter comes with the opposite sign.
The number density of particles of a given chirality A is given by

m0 = [ 4 (1458 2) fipo) )

Here, the factor 1 4+ eB - €2, /c in the integrand takes care of the correct phase-space volume. After multiplying the
kinetic equation (1) by 1+ eB-Q)/c, integrating over momentum p, and using the Maxwell equations, we obtain the
following relation:
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where we integrated by parts in the last equality and used the following identity for the Berry curvature V- 2\ =
2mA63(p). The electric current density is given by ej(x) = >, >, _, €;j4(x), where the contribution due to particles
of a given chirality is determined by [36, 37, 43]
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We should note that the definition of the current in Ref. [43] differs from that in Ref. [36]. The latter has an extra

«(cur

term jy 1), the explicit form of which can be obtained by integrating the definition of current in Ref. [36] by parts,

jem) = w / = FrepQa. (10)

As we see, this contribution is a total curl and, thus, does not contribute to the continuity equation. However, such a
current affects the Maxwell equation (6). From the structure of the corresponding equation and the structure of the
current, we see that the integral on the right hand on Eq. (10) plays the role of a magnetization. Then, the current
itself can be viewed as a “magnetization” current [47].

It is instructive to emphasize that, in the case of hot relativistic plasmas, it is essential that the complete expressions
for the electric/chiral charge densities, as well as the corresponding currents contain the contributions of both particles
and antiparticles. This is in contrast to the case of dense relativistic plasmas at low temperatures, T < |uy|, when
the contributions of antiparticles are exponentially suppressed and, therefore, could be safely neglected. In the high-
temperature regime, T >> |ua|, which is of prime importance in cosmology, the antiparticle number densities are given
by the same expressions as in Eq. (7), but in terms of the antiparicle distribution functions f{. Taking into account
that antiparticles carry the opposite electric charge, we will find that, as expected, the corresponding high-temperature
plasma will be almost neutral. Perhaps even more importantly, antiparticles will contribute approximately as much
as particles to the electric current and, thus, will effectively double the result.

It is interesting to note that taking the contribution of antiparticles into account is critical also in order to obtain
the correct chiral anomaly relation from Eq. (8). The right-hand side of the corresponding equation for particles is
proportional to the local equilibrium distribution function ff (cq) (p = 0), which depends on py and temperature. This
seems to be at odds with the topological nature of the corresponding relation. The same is true for antiparticles.
However, in view of the identity Y, fi(p = 0) = 1, the total chiral current j5 = Y, > ,_, Aji does satisfy the



conventional continuity equation with the correct anomalous term e2E - B/(272¢c). Note that, in the low-temperature
regime, the correct result is saturated almost exclusively by the contribution of particles. (Of course, it is easy to
check that the electric current ej = Y, >, _, e;j} satisfies the usual non-anomalous continuity equation.)

The complete set of the Maxwell equations (3) through (6), the kinetic equation (1) in the relaxation time approx-
imation supplemented by the definitions of the number densities (7) and currents (9) form a system of self-consistent
equations for the one-particle distribution functions of the left- and right-handed fermions and electromagnetic fields.
Therefore, to study, for example, the evolution of inhomogeneous magnetic fields and chiral asymmetry in magnetized
plasma, one should solve the corresponding system of equations. The corresponding task is formidable. In order to
simplify it, we will derive an approximate set of equations in the case where electromagnetic fields are weak.

Before proceeding to the derivation of a complete set of equations that describe the evolution of an inhomogeneous
chiral plasma coupled to electromagnetic fields, it is instructive to identify generic classes of such plasmas, depending
on their composition and underlying dynamics. In particular, as will become clear below, an important role in the
analysis is played by a possible presence of additional neutral particles and their interactions with the charged carriers
of the plasma.

In order to understand the role of neutral particles better, let us remind a very special property of a plasma that
contains no such particles. When a configuration of perpendicular electric and magnetic fields, E | B (assuming only
that E < B), is applied, such a plasma drifts as a whole with the velocity perpendicular to both electric and magnetic
fields [48]
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see also Sec. III below. It is crucial that the drift velocity v does not depend on the specific values of charges (and
masses, if present) of particles. In fact, despite the drift, the plasma is in perfect equilibrium. It is described by a
boosted, rather than the usual form of the Fermi-Dirac distribution function. (This can be also understood from a
different angle: there is no electric field in the boosted reference frame, moving with the velocity v with respect to
the laboratory frame.)

It should be clear that the above-mentioned drifting state of the plasma should be profoundly affected whenever
a background is present that exerts a drag on the system. In solid state materials, for example, the corresponding
background could be due to the lattice of ions or impurities. In other plasmas, it could be due to neutral particles,
which are not affected by electromagnetic fields directly. In the latter case, of course, it is assumed that the time scale
for the neutral component to develop its own drift (via the interaction with the charged particles) is much longer than
the characteristic time scales for the evolution of electromagnetic fields and inhomogeneities.

In this paper, we will discuss both cases with and without a drift of the plasma as a whole. Perhaps one of the best
realistic examples of the plasma that is subject to the drift is a relativistic QED electron-positron plasma. An example
of a plasma where the drift may not fully develop to involve the background of neutral particles is the quark-gluon
plasma at sufficiently high temperatures. The (electromagnetically) neutral particles in the latter case are gluons. In
the case of chiral plasmas in Dirac/Weyl semimetals, the background is due to the lattice ions or impurities that do
not develop any drift at all.

III. CHIRAL PLASMA IN THE DRIFTING STATE: EXPANSION IN E|, B, AND DERIVATIVES

In this section, we will derive the equations describing the evolution of a weakly inhomogeneous chiral plasma and
electromagnetic fields without any additional components (e.g., neutral particles, pinned impurities, or ion lattices)
present that could exert a substantial drag on the charged particles. If additional components are present, it is
assumed that their interaction with charged particles is negligible and has no qualitative effect on the electromagnetic
dynamics. We will use the kinetic equation (1) in the relaxation time approximation. The distribution functions for
charged particles (i = p) and their antiparticles (i = a) satisfy the following equations:
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where e; = e, Q§ = Q, for particles and e; = —e, Q4 = —Q, for antiparticles.

In the case of a plasma made of only charged degrees of freedom, the standard Fermi-Dirac distribution (2) may
not be the best choice for the zeroth order of the equilibrium distribution function. Ideally, one would want to capture



the drift of the plasma as a whole by a modified distribution function. The line of arguments that allows one to obtain
the corresponding function is well known.

Before considering a general configuration of electromagnetic fields, let us start by recalling that a field configuration
with constant E L B (and E < B) has no dissipative effects on the plasma. (Of course, this will change when the
parallel component E is added later as a perturbation.) The whole system simply drifts with the velocity v [48], see
Eq. (11). Of course, this is connected with the fact that, in the reference frame K’ moving with the drift velocity v
with respect to the laboratory reference frame K, the electric field is absent [49]. In the absence of electric field in
the K’ frame, the equilibrium state is naturally described by the standard Fermi-Dirac distribution function in the
relativistic notation [50] (for the sake of simplicity, we suppress the particle/antiparticle index 7)
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where p'¥ = (€p//c,p’) and v’V = (v'9,u’) = (c,0,0,0) is the proper velocity. We emphasize that this consideration
assumes that either no neutral particles are present or that their interaction is too weak to change the evolution of
electromagnetic fields in the inhomogeneous plasma on the timescale of order 7.

By performing the inverse Lorentz transformation in Eq. (13), we easily find the equilibrium distribution function
in the laboratory frame, i.e.,

e 1
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where u” = (u0,u) = (c/\/1 Gy - (@/0)2), T =T'\/T— (3/0)2, and p = /T — (3/c)2. Note that T"
and p), are Lorentz scalars that have the meaning of the temperature and chemical potentials in the local rest frame
of the plasma. From the form of the distribution function (14), the parameters T and u) appear to play the role
of the temperature and chemical potentials in the laboratory reference frame. Such an interpretation of 7" and
should be used with caution, however, because the plasma is not stationary with respect to the laboratory frame. It
is not difficult to check that the distribution function (14) is indeed a stationary solution of the kinetic equation (12)
for constant perpendicular electric and magnetic fields.

The velocity v = ¢E x B/B? is known in the plasma physics as the drift velocity [48] because the motion of charged
particles in constant perpendicular electric and magnetic fields is the superposition of circular motion around a point
called the guiding center and a drift of this point with the velocity v. It is crucially important for us that the drift
velocity does not depend on the charges (and masses) of particles. In fact, this remains true also in a non-relativistic
plasma.

It should be emphasized that the plasma drift is well defined only when F, < B. In this case the drift speed
U = ¢F, /B is smaller than the speed of light ¢. In the opposite case, F; > B, there is no reference frame K’ in
which the perpendicular component of the electric field vanishes.

By using function (14) as the zeroth order approximation for the distribution function, let us proceed to the analysis
of the general case when the parallel component of the electric field E|| is also present and drives the system out of
equilibrium. We will seek the solution for fy in the form of an expansion, i.e.,

= oD+ (15)

where 0 fil) defines a deviation from the local equilibrium to the first order in the parallel electric field E;;, magnetic
field B, and the first derivatives of electromagnetic fields and chemical potentials.

By substituting expansion (15) into the kinetic equation (12) and keeping only the terms up to linear order, we
obtain

DyO(uy+p-v) Dy (B-B)(v-B) Dy d(u+p-v) , of"
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where we used the notation Dy (i) = f)(\cq) (1 - f)(\cq)) = eleP=PV=i)/T J(eler=Pv=1)/T 1 1)2 Note that the drift

velocity v is defined in terms of electromagnetic fields and, thus, may depend on the spacetime coordinates. By
solving the above equation, we obtain
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By making use of this first-order correction to the distribution function f)i\(cq), we can now calculate the charge
densities and current densities to the same order.
The first-order result for the chiral charge densities reads
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where, by definition,
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In deriving expression (18), we took into account that (B -v) = 0.
To the same first-order, the current densities are given by
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where the first four contributions are independent of the relaxation time, while the last one, jg\3)

Hall current has the standard form, i.e.,
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The explicit expressions of the other two nondissipative terms are given by
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By making use of the definition for the drift velocity, it is easy to check that, in addition to a perpendicular component,
the first current, J( ), also contains a contribution parallel to the magnetic field. By combining the corresponding

parallel component with the other current, jE\2), we obtain the usual currents of the chiral magnetic and chiral

separation effects
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The remaining contribution is perpendicular to the magnetic field. Its explicit form reads
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This is a new topological contribution, associated with the drift of plasma. It is induced when there are both parallel
and perpendicular components of the electric field. While it is intimately connected with the chiral magnetic effect,
it is not just a Lorentz boosted form of it in the laboratory frame.

To the first order in gradients and fields, the magnetization current is given by
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An interesting byproduct of this result is that the drift may induce a nonzero magnetization in a chirally asymmetric
plasma.



Finally, the last (dissipative) term in the complete expression for the current (20) reads
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Note that, in the limit of small drift velocities v/c — 0, these functions are nonsingular: go ~ 2/3 + O (v%/c?),
g1~ 0 (v/c), and g3 ~ O (v°/c?)

The result in Eq. (24) renders the standard chiral separation and chiral magnetic effect currents. In addition,
Eq.(21) gives the following currents due to the Hall effect as well as its generalization to the case of axial current:
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These have the expected structure and are not very surprizing. Much more surprizing are the new contributions to
current densities in Eq. (25). The corresponding currents appear to be of topological origin. Indeed, they appear
due to the presence of the Berry connection in the definition of current (9) and do not depend on temperature or the
relaxation time 7. They give rise to the following electric current and axial current densities:
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These currents resemble the chiral magnetic/separation currents, but flow perpendicularly to the magnetic field.
They are of the first order in electromagnetic fields and appear to be non-dissipative. The fact that these currents are
proportional to E-B may hint at their possible connection with the chiral anomaly. We also observe that currents (33)
and (34) are deeply connected with the existence of the plasma drift. They exist only when both the perpendicular
and parallel components of the electric field are nonvanishing. This latter suggests that the new topological currents
cannot be eliminated, or reduced to the chiral magnetic/separation currents, by a simple boost transformation.

The Ohm’s current in Eq. (27) has only the longitudinal projection with respect to the magnetic field. This is
due to the fact that the perpendicular component of the electric field is exactly accounted in the drift velocity. In
addition to the standard Ohm’s and diffusion currents, given by the first two terms in Eq. (27), there are also other
dissipative contributions in jg\g), which are associated with the inhomogeneity of the drift flow. These latter appear
to be connected with a nonzero viscosity of chiral plasma.

To linear order in electromagnetic fields and derivatives, the continuity equation reads
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In the complete set of the anomalous Maxwell equations, these two relations determine how local equilibrium electric
and chiral chemical potentials evolve in a self-consistent way in a chiral plasma.

IV. EXPANSION IN POWERS OF ELECTROMAGNETIC FIELDS AND DERIVATIVES

In the previous section, we studied the chiral plasma in the drifting state. This allowed us to account for the plasma
drift exactly in the zeroth approximation of the distribution function. In this section, we consider the case where
neutral particles exert a substantial drag on the system so that one can use the Fermi-Dirac distribution function
(2) as the equilibrium distribution function. We will treat both electric and magnetic fields as perturbations. From
a physics viewpoint, this is the regime of a large collision rate [48, 51]. In this case, an expansion in powers of both
electric and magnetic fields is justified. Since the calculations in this case become much simpler than those in the
previous section, we will derive the expressions for the densities and currents to the second order in electromagnetic
fields and derivatives. For some earlier studies using the effective action formalism, see also Ref. [52].

A. Distribution function to quadratic order in electromagnetic fields and derivatives

We seek the solution to Eq. (12) in the form of a series in powers of electromagnetic fields, i.e.,

fr = f}(\GQ) + 5f(1) + 5f>(\2) 4o (38)

and treat each space/time derivative as an extra power of electromagnetic field. By substituting the above ansatz in
Eq. (12) and keeping the terms up to linear order in electromagnetic fields, we obtain:

Dy Oux Dy
AN A k.
T o T BV

1
Dy, O, 0L

TV ok T =0 (39)

where we used the notation Dy (uy) = e(P=#2)/T /(eleP=r2)/T 1 1)2. The above equation is satisfied when

5 = T2 (e(EA v - %) . (40)

Here, by definition, Ey = E — e~ '9u,/0x. By making use of this result, we derive the following formal results for the
densities and currents:

nx _231gn e; /
e

where sign(e;) was included in order to correctly account for the contribution of antiparticles. As is clear, to this
order, the magnetization current in Eq. (10) does not contribute. Then, by making use of the continuity equation, to
linear order in the fields and derivatives we obtain

por (B3 +7T%) 7 (3% + 7*T2) dux
672c3 672c3 ot '’

(Ao + Sy Y) = £ (41)

AeBuy  TeEy (3u3 + 72T?)
4m2c 1872¢

[@+@Exng+%waxDﬁ@”+wﬁ“q= (42)

3u3 + T2 Oy
6m2c3 ot
This result implies that the time derivative of u) unlike the case of the drifting state considered in the previous section

vanishes to linear order. In fact, as we will see below, it is of second order in fields. Taking this into account, the
leading order correction to the distribution function takes the following form:

~0. (43)

ectDy

R ==

——(Ex-p), D= (44)

SR ke

where we also took into account that v = cp.



Before proceeding to the derivation of the quadratic correction to the distribution function, let us note the following
results:

951 ecrDy @

85f)(\1) B eC2TD>\ (ea)\ . D) ec . .

op i (1 - 2f)\ ) P (E)\ -p) + T; [EA - p(E>\ : p)] s (46)
35]")(\1) _ectD, (eq) . Oux ectDy O .

A = 2 (1= 2fY) (Ba - B) 5 + T o (BB (47)

To quadratic order in electromagnetic fields, the solution § f§2) to the kinetic equation takes the form:

7D\ 0 e?c?t?D o R ect?D 0 0 R
6f)(\2):__)‘ﬂ+7)‘(1_2f)(\q))(E)\-p)2— A( +Cp-—>(E)\'p)

T ot T2 T ot 0x
e*TDy . e?ct? Dy . e?ct? Dy . .
T (Ex-B)(Q\-p) — T > (BxEy) — T (E-E)) — (E-p)(Ex-D)]
e?rD) . etD)y Opx
e (B-Qy)(Ex-p) - (EXQA)'g~ (48)

Having determined the corrections to the local equilibrium distribution function in the first and second order in
electromagnetic field and derivatives, it is not difficult to find the corresponding charge and current densities.

B. Equations for the chemical potentials

We have the following results for the densities and currents:

(2m)?

D) (,ui + 7r2T2) T (3/& + 7r2T2) Oy er? (3/& + 7T2T2) V.Es 4
o 6723 6m2c3 ot 1872¢ A 4m2c 3n2c

) d? i(e i € i pie e; PR i
m = Yosign(en) [ B (R0 510 + LB AC + LB 2R +51)

A ox

Ae’7(Ey - B) B er? (E (9u,\)

(49)

. . d3p i € i i(e i i i «(cur
= Zﬁgn((ﬁﬁ/ e Kv +e¢E x Q) + zB(v . Q/\)) fA( @ 4 (v + ¢;E x Q/\) 6f)\’(1) + véf)\’(Q)] —I—J& b

_ABn | TeB BE+wT?)  er? B4 T OB i g e

_
2T E). 50
ir2c 1872¢ 187%¢ ot 6n o2 Y X (nE) (50)

To this quadratic order, we had to also take into account the magnetization current in Eq. (10). The corresponding
additional contribution is the last term in Eq. (50). It can be rewritten in an equivalent form as follows:

(curl) _ et VxE-_ et E % _ _)\eT/u\a_B B et %
I R DY e 1272 ot 1272 ox

(51)

where we used the Maxwell equation (4) in the last equality. In the continuity equation, of course, such a current
plays no role. By substituting the results in Eqgs. (49) and (50) into the continuity equation, we obtain the sought
equations for the chemical potentials

313 + m2T? Oy Te (3p3 4+ w2T7?)
6m2c3 ot 1872¢

V-E\+

4r2c

Tel) opx\ Me’E, -B
3m2c (E ox ) n ’ (52)
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These are equivalent to the following equations for the electric and axial charge chemical potentials:

(3u% + 3u2 + n°T?) [% — 1V2 T(;CQ . } + 6pipis [% — %VQ ] gec2 (B . %)
+27pc? |eE - gi <%) - <%> + 2752 [eE : % - 2% : %} =0, (53)
(3u® + 3z + wT?) [% - ZV%] + Gppis [% - %VQ ﬁv E] gecz (B : %)
+2705¢% | ¢E - gi <gi) <%> + 27 pc? [eE : % - 2% : %} =0. (54)

These equations determine how local equilibrium electric and chiral chemical potentials evolve in an inhomogeneous
chirally asymmetric plasma. In order to complete our derivation of anomalous Maxwell equations for inhomogeneous
chiral plasma, we should find the explicit expressions for the currents to the second order in electromagnetic field and
derivatives.

To this order, the electric current and axial current densities are

eBs TeEy (3p3 4+ m2T7) er? (3u3 + ©21?) OE 212y
Sy BT e P

et
- B xE 2T E), (55
om2c 187%¢ 187%¢ ot onz (B X )‘)+;127r2 X (1), (55)

_ eBpu TGE)\ (3p3 + 72T?) er? (3u3 + ©21?) OE 272y et
A A BxE T Vx(u\E), (56
= 2r2c Z 187%¢ XA: 187%¢ ot XA: 2 (B AHZA: 1oz VX (InE), (56)

while the electric and axial charge densities are

n= Z pox (13 +7*T?) Z T (3pX +7°T?) o Z er? (33 +*1?) V-E,

~ 6m2c3 - 6m2c3 ot 1872¢
er s er? O
-7 (B. N T (R, O 57
2m2c ( ox ) ; 3n2c A ox ) (57)
- Z)\/u NA + 7T2T2) B Z/\T (3,u§ + 7T2T2) % B Z/\eT2 (3,u§ + 7r2T2) V.E,
67m2c3 6m2c3 ot 1872¢

) S ).

Since electric and chiral chemical potentials are much smaller than temperature in a primordial plasma, it is useful
to determine the charge and current densities in the high-temperature limit.

C. Electric and chiral currents in the high-temperature limit

In the high-temperature limit, the electric current and axial current densities are

eBus 11?2 o €T2T2 OE
~ = (e
272¢ * 9¢ <e ox “9¢ ot (59)
. eB T2 9
e el v (60)

2m2¢ 9¢ Ox’

while the electric and axial charge densities are
T*u  1T%0p 7277 ,_, er ous
~N - — -E)—-—— | B- 1
"Z 358 T 38 ot + 9¢ (Vip— eV -E) 2m2¢ ( 8x> (61)

T?us  7T%0ps 7717 _, et ou
~ —_—— eE— — | -B. 62
1 3c3 3c3 ot + 9¢ Vit o 2m2¢ ox (62)




11

In the high-temperature limit, |uy| < T, the equations for the chiral ps and fermion number u chemical potentials
read

O 3¢2 Ous — 1c?
o o B gk~ (VrmeV B =0 (63)
% 3¢2 o B 7'_62 2 3¢2’E - B

ot 212 ox 3 ¢ 1T Tanr (64)
It is interesting to point that the equations of motion for the chemical potentials contain the diffusion terms, pro-
portional to V2us/3 and V?1/3, with the diffusion constant given by 7¢?/3. This is in agreement with the general
arguments in Ref. [27]. Our derivation in the present paper not only establishes such a term, but also leads to a formal
expression for the diffusion constant in terms of the relaxation time. In general, in the presence of a nonzero magnetic
field, one expects that there are two different diffusion terms, a longitudinal one proportional to %u, and a transverse
one proportional to Arpuy, see, for example, Eq. (9) in Ref. [53]. By making use of the chiral kinetic theory, both
diffusion terms can be rigorously derived. As we see from our analysis above, to the quadratic order in the fields, the
longitudinal and transverse diffusion constants are the same. It can be shown, however, that the longitudinal diffusion
constant will have a nonzero correction of order B? that comes from the term of the type (B - V)(B - duy/0x).

In the case of a constant magnetic field and vanishing electric field, the above set of the equations has a solution
in the form of a (diffusive) chiral magnetic wave. Indeed, by setting E = 0 and assuming that the magnetic field B is
constant, we find that there is a solution that describes a diffusive chiral magnetic wave with the following dispersion
relation:

3c?

_ L a2
Note that the speed of the chiral magnetic wave is given by
3c%|eB]
veMw = o272 cos 0Bk, (66)

where gy is the angle between the wave vector k and the magnetic field.

D. Explicit expressions for currents

It is instructive to discuss the physical meaning of separate contributions in the expressions for the electric current
(55) and axial current (56) densities. Let us start from the electric current density. After performing the sum over A,
we derive

eBus  7T? 3(p? + 1) o\ | €ru 2erpupis Ops
- KA A’ VA Y ) DR IS RV - Zés
2m2¢ 9¢ * w272 ¢ ox 3rz " 3r2c Ox
et ou et s Ous er?T? 3+ ud)\ OE  erus 0B et Ous
Bx 2H Bx 25 _ 14 W TR N O TS 92 T gy G5 g7
32 ( . 8x> * 32 < " o ) 9¢ ( + w212 > 8t 6n2c 9t 6n2 . ox (67)

Obviously, the first term describes the current of the chiral magnetic effect, which is the current induced by a nonzero
chiral chemical potential along the direction of the magnetic field. The second terms combines the Ohm’s and diffusion
currents. Let us note that the conductivity equals

X, (68)

where we introduced the short-hand notations

o _ O 3p® 4 3u2 + w2

69

X on 3m2es ’ (69)

n® = 3 (13 +7°T%) _ p(p® + 33 + 7°T?) (70)
)\ 6m2c3 3m2c? '

In order to apply our results for a deconfined quark-gluon plasma, one could fix the relaxation time parameter by
using the lattice results [54, 55] for the quark-gluon plasma conductivity (obtained at T = 1.457,) and Eq. (68):

240 MeV)

9
7 037 =~ 375 fin/c ( -

(71)
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The last five terms in Eq. (67) are new types of terms that are produced by time dependent electric and magnetic
fields and gradients of the chemical potentials and, to the best of our knowledge, have not been discussed in the
literature before. We will discuss the physical meaning of each of them, as well as their possible implications in the
subsection below.

A few words are in order about the third term in Eq. (67), which is nothing else but the celebrated Hall current. At
the first sight it appears to be strange that the corresponding current is proportional to the square of the relaxation
time. Yet, we emphasize that this is a standard result in the limit of large collision rate (small 7), see for example,
Sec. 6.10 in Ref. [48]. Moreover, the usual experimental setup for measuring the Hall effect, in which one enforces
jy = 0, will lead to the well known relation between the electric current in the z direction and the electric field in
the y direction, i.e., j, o« n?E,/(uB) up to small corrections suppressed by the second power of the magnetic field
and the relaxation time [51]. Now, the leading order term in such a result is indeed standard and independent of the
relaxation time.

Similarly, after performing the sum over A in the expression for the axial current density in Eq. (56), we derive

_eBu erT? |+ 3(u* +p3)\ Ous | 2¢%Tpps o, 672u5B (B o
2m2¢ 9¢ w272 ox 3m2c 32 ox

et (B " %)  2eTpps Op 2e7? s OE  erp 0B et E op

Js

+

_— - — . 72
372 ox 3m2c Ox 3m2¢c Ot  6m2c Ot 672 ox (72)

The first term in j5 is the celebrated chiral separation effect current. The second term is a diffusion current. The
third term is the axial current associated with the chiral electric separation effect [56, 57]. The rest are new terms.

E. New contributions to the electric current

Let us discuss the new terms in the electric current (67) connected with inhomogeneities of the electric and axial
charge densities in chiral plasma. The first of the three new types of currents is associated in a simple way with a
chiral diffusion,

2eT s Opis
3n2c Ox
It is induced in a plasma in which both the fermion-number and chiral chemical potentials are nonzero. The direction

of the current coincides with the gradient Ous/0x. The current of the second type goes perpendicularly to the
magnetic field, as well as to the gradient of the electric/chiral chemical potential, i.e.,

2 2
ipo = =L (B x @> + b <B X 6“5) , (74)

j@x - - (73)

32 0x 32 0%

therefore, we will call this current the Hall diffusion. The currents in Eqgs. (73) and (74) occur already in absence of
electric fields. The current of the third type is driven by a time-dependent electric field,

22 2, 2
er*T <1+ 3(u +,u5)> OE (75)

JoE = T, w212 ot

ot
This current is clearly a time-dependent electric field analogue of the Ohm’s current, cf. the second term in Eq. (67).
Finally, we also get the following contributions due to the magnetization current:

cur) _ _CTHs OB et o Ops
J 6m2c Ot 672 ox
The second term is very interesting. It describes a current perpendicular to the electric field and the gradient of

the axial chemical potential. Such a current resembles the anomalous Hall effect current [58], which happens in the
absence of magnetic field. In the case of the chiral plasma at hand, it describes the anomalous chiral Hall effect.

(76)

F. New contributions to the axial current

Let us now turn to the new terms in the axial current (72). The first of them, i.e.,

e?7? M5

372

jS,EB = E x B, (77)
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is a chiral analogue of the Hall effect with the axial current induced in a medium with ps # 0 [59]. The existence of
this term is very interesting. In principle, it allows one to determine experimentally the sign of the chiral charge of
dominant carriers in a chiral plasma. The corresponding sign could be extracted from the direction of j5 in orthogonal
electric and magnetic fields.

The current of the second type is driven by gradients of the electric and chiral chemical potentials and a perpen-

dicular magnetic field, i.e.,
et s ou et ous
j =——(Bx — Bx—|. 78
5. Bx0 = g0 ( x 8x) * 32 ( x 8x> (78)

Obviously, this current is a chiral analogue to the Hall diffusion current in Eq. (74). The last contribution to the axial
current is given by two terms

2eTups O 2er?pus OF
3n2c Ox 3n2c Ot

Js.0,E = — (79)
Since current (79) vanishes in a plasma where p or s equals zero, this current defines diffusion and time-dependent
electric field analogues of the current of the chiral electric separation effect given by the third term in Eq. (72) (note
that the corresponding numerical coefficients of the currents match too). At last, the magnetization current gives the
following contribution to the axial current density:

s(curl) €T 0B €T « 6_/14
I5 T 6m2c Ot 672 ox’

(80)

The last term is analogous to the anomalous chiral Hall effect current, given by the last term in Eq. (76). However,
the corresponding contribution to the axial current is perhaps even more interesting. It implies that, in an electric
field, the perpendicular component of the gradient of the chemical potential should lead to a nonzero js.

Before concluding this section, let us emphasize that the main results of this section are the explicit expressions
for the currents in an inhomogeneous chiral plasma. These expressions provide a critical ingredient in the analysis
of the anomalous Maxwell equations (3) through (6), together with the equations for time-dependent and spatially
inhomogeneous chemical potentials. The corresponding complete set of equations is a starting point for the future
studies of the inverse cascade scenarios with a realistic treatment of plasma inhomogeneities.

V. CONCLUSION

In this paper, by making use of the chiral kinetic equation, we derived a closed set of anomalous Maxwell equations
relevant for the study of relativistic plasmas with chiral asymmetry and inhomogeneities. By utilizing an expansion
in powers of electromagnetic fields and derivatives, we derived electric and axial currents as well as a closed set
of the coordinate-space equations for the electric (or fermion number) and chiral chemical potentials. We studied
the two regimes in which the zero order distribution function is given by the standard Fermi-Dirac distribution
function and a boosted one. The latter realizes the drifting state where the plasma drifts as a whole with the drift
velocity perpendicular to both electric and magnetic fields. In this case, the expansion proceeds only in powers of the
component of electric field parallel to the magnetic field whereas the perpendicular component of electric field is taken
into consideration exactly. In addition to the Hall current for the electric current, we found its analogue for the axial
current generated by the axial density. The chiral magnetic effect current is reproduced exactly in the drifting state.
What is surprizing is that we also found two additional electric and axial currents of a possible topological origin.
They resemble the chiral magnetic/separation currents, but flow perpendicular to the magnetic field and are driven
by the perpendicular component of electric field, as well as the scalar product of the electric and magnetic fields.

While a relativistic QED electron-positron plasma provides perhaps one the best examples of a plasma in the
drifting state, quark-gluon plasma at sufficiently large temperatures may give an example of plasma where the drift is
not fully developed because electromagnetically neutral gluons provide an essential drag on the charged particles. For
such a case, we treated both electric and magnetic fields as perturbations and derived the expressions for the densities
and currents to the second order in electromagnetic fields and derivatives. In the special case of vanishing electric
field, we found a solution in the form of a diffusive chiral magnetic wave with the propagation speed vomw o |eB|/T?,
see Eq. (66). The diffusion constant is given by ¢?7/3, where 7 ~ 1/ [¢*T In(1/|e])] is the relaxation time [45].

In the framework used, we also derived the explicit expressions for the fermion-number and chiral densities, as
well as the corresponding currents. The results are in agreement with the continuity equations, supplemented by the
appropriate quantum anomaly term. The final results reproduce several previously known effects. In the case of the
electric current, we reproduced the Ohm’s and diffusion currents, as well as the the chiral magnetic effect. In addition,
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we found several new types of contributions connected with inhomogeneities in relativistic plasma that have not been
reported before. They are the chiral diffusion and two diffusion terms of the Hall type perpendicular to the magnetic
field. There is also a term driven by a time-dependent electric field. One of the very interesting new contributions
is the anomalous chiral Hall effect current, which describes an electric current perpendicular to the applied electric
field and the gradient dus/0x. The origin of this current is related to the Berry curvature. We also find that there
is its counterpart in the axial current density, which is driven by the electric field and the gradient of the chemical
potential. It is even more amazing because it can be induced even in a chirally symmetric plasma.

In the case of the chiral current, we reproduced the well known results for the chiral separation and chiral electric
separation effects. We also found an expected diffusion current and several new types of currents including a chiral
analogue of the Hall effect, which may allow one to experimentally determine the sign of the chiral charge of dominant
carriers in a chiral plasma. In addition, there are two new types of chiral diffusion currents of the Hall type and two
diffusion and time-dependent electric field analogues of the chiral electric separation effect.

The theoretical framework of our study here is a starting point in the study of the inverse cascade scenario proposed
in a number of recent papers. In the simplified analysis of the corresponding dynamics, it is often assumed that a
space-average currents and density correctly capture the underlying dynamics of the inverse cascade. It is quite
natural to suggest that such an assumption may not be justified. Indeed, the underlying mechanism relies on the
clear separation of the short- and long-range modes at the scale set by the chiral chemical potential. If the latter
is not uniform, a whole window of length scales opens, where the dynamics does not have a preferred direction of
the cascade. If the underlying processes in this region would happen to enhance the degree of inhomogeneities, the
corresponding window of length scales would widen and prematurely quench the cascade. Indirectly, this may have
been suggested by a recent study in Ref. [60], although the conclusions of that study may not be conclusive. In
fact, there are indications that the inverse cascade in the model of Ref. [60] should be realized when sufficiently large
lattices are used [61].

The natural continuation of the present study is a critical re-examination of the cosmological inverse cascade
scenario, in which plasma inhomogeneities are properly accounted for. The corresponding investigation seems possible
only by making extensive use of numerical methods. That is beyond the scope of the present paper, but will be
attempted in the future study and reported elsewhere.

Noted added: When finishing this paper, we became aware of a partially overlapping study by Jiunn-Wei Chen,
Takeaki Ishii, Shi Pu, and Naoki Yamamoto [62].
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Appendix A: Useful table integrals and relations

In this appendix, for reader’s convenience, we list the key table integrals and relations used in the main text.

By making use of the short-hand notation D (uy) = fieQ) (1 - f)(\m)) = elep=m)/T /(eler=1)/T 1 1)2 s it straight-



forward to derive the following results of integrations over the momenta:
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(A1)
(A2)
(A3)
(Ad)

(A5)

When calculating the contributions of antiparticles, one also encounters similar integrals with Dy (px) — Dx(—py)-
In order to simplify the final expressions for currents and densities, then, it is often useful to take into account the
following relations:
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