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Monopole operators play a central role in 3 dimensional supersymmetric dualities: a careful un-
derstanding of their spectrum is necessary to match chiral operators on either sides of a conjectured
duality. In Chern-Simons theories (k 6= 0), monopole operators acquire an electric charge, thus
they need to be “dressed” by chiral matter superfields to be made gauge-invariant. Here we present
strong evidence that “dressed” monopoles appear in SU(N) chiral theories even for k = 0 because
of mixed CS terms generated along certain Coulomb branch directions. Our analysis is based on
the dimensional reduction of 4-dimensional dualities which, for the simplest s-confining case, allows
us to easily identify the spectrum of the electric chiral operators.

I. INTRODUCTION

Supersymmetry has had many important applications
over the years: it is the leading candidate for solving the
hierarchy problem, it allows a successful unification of
gauge couplings, it predicts a potential dark matter can-
didate, and it is a necessary ingredient of string theories
at high energy. However the arguably most successful
application of supersymmetry has been its use as a lab-
oratory for testing non-perturbative physics effects and
guessing dualities in various dimensions.

Supersymmetric dualities in 3D have been studied
since the late 90s [1–9]. One of their distinctive fea-
tures is the role played by monopole operators which are
non-trivially mapped across the dualities. Monopole op-
erators are local disorder operators defined by requiring
that the gauge field approaches a certain singular profile
close to the point where the operator is inserted [10, 11].
These operators are commonly referred to as monopole
operators because in Euclidean signature the gauge field
singularity looks like that of a Dirac monopole or its non-
Abelian generalization.

In theories with Chern-Simons (CS) terms (k 6= 0),
magnetically charged objects acquire an electric charge,
generically implying that a pure monopole operator Y is
no longer gauge invariant. Hence the right (chiral) opera-
tor that has to be matched across the duality is “dressed”
by some matter fields ϕ such that Ydress ≡ Ybareϕ

|k|,
where ϕ is an electrically charged operator. Dressed
monopoles are generic features of both U(1)k [12, 13]
and U(N)k [14, 15] theories.

Monopole operators have recently been systematically
studied (e.g. [12–18]). In particular in [15] the super-
conformal index was used to identify the chiral monopoles
of generic U(N)k theories (with chiral and non-chiral
matter) finding, surprisingly, that monopole operators
are not always chiral. Furthermore the authors of
[12, 13] have carefully investigated the relations between
monopole operators and Coulomb branch (CB) opera-
tors. Many of their results will be used here.

The study of monopole operators in U(1) and U(N)
theories is made feasible by the extra topological global
U(1)J symmetry [1]. Monopole operators are always
charged under the U(1)J , and are the only matter fields
carrying such a charge, making them clearly identifiable.
Simple gauge groups however don’t have this extra global
symmetry, making the study of the monopole operators
much harder in SU(N) theories. This is the task that we
will attempt to address here by investigating a concrete
chiral 3D N = 2 SU(N) model.

Using dimensional reduction [14] of 4D s-confining du-
alities [19, 20] we are able to obtain the low-energy de-
scription of 3D s-confining theories. These theories are
described in the IR by very basic “confined” dynamics
from which we can readily obtain the spectrum of the
chiral operators of the UV theory and in particular study
its monopole operators. By using this technique we can
present evidence for the existence of “dressed” monopole
operators in chiral SU(N) theories at zero CS level. Such
dressed monopoles have previously appeared [12–15] in
models with non-vanishing CS terms, but this is the first
example of such objects mixing the Coulomb and Higgs
branches without tree-level CS terms. A crucial ingredi-
ent necessitating the dressed monopoles is the presence
of matter in the antisymmetric representation of SU(N).
These will generate mixed CS terms at one-loop along a
particular unlifted U(1) direction, which in turn induces
the dressing of the monopole operator associated to that
U(1).

This effect appears to be a generic feature of chiral
theories with matter fields in tensor representations, and
is the last ingredient needed to find a complete classifica-
tion and description of all 3D s-confining theories, which
will be discussed in an upcoming more comprehensive
publication [21]. The purpose of this paper is to present
the complete and detailed analysis of one such s-confining
theory: the simplest one which exhibits all the dynamical
effects necessary to understand the full set of s-confining
theories [21].
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SU(6) SU(2) SU(4) U(1)3 U(1)4 U(1)R′

Q̄ � 1 � -6 1 0

A � 1 3 0 0

b1 ≡ AQ̄2
� -9 2 0

b3 ≡ A3 1 9 0 0

b4 ≡ A4Q̄2 1 0 2 0

M̃0 ≡ Y 1 1 0 -4 2

M̃3 ≡ AỸ � 1 9 -4 2

TABLE I: Matter content of the 3D duality obtained from the
4D theory by applying the dimensional reduction procedure.

II. 3D IR DUALITY IN A CHIRAL SU(6)
GAUGE THEORY

To make our discussion more concrete we perform the
explicit analysis for a specific s-confining 3D theory. At
high energies the theory (referred to as the “electric” the-
ory) is a (2 + 1) dimensional N = 2 SU(6) gauge the-
ory with four fields in the antifundamental representation
of the gauge group (Q̄), two fields in the antisymmetric
representation of the gauge group (A), and a vanishing
superpotential. As mentioned above this is the simplest
s-confining theory that contains all the ingredients neces-
sary to eventually completely classify all 3D s-confining
theories, and thus perfectly suited for our purposes. At
low energies, this theory is described by a “magnetic the-
ory”, with several gauge singlet “meson-like” fields and
an s-confining superpotential. The matter and symmetry
content of this theory is presented in Table I.
The low energy properties of this theory are derived

from a similar (3 + 1) dimensional s-confining theory
through dimensional reduction. This procedure is by now
fairly standard. It involves compactifying a dimension on
both sides of a 4D duality to obtain a duality between
theories which live on R3 ×S1 and integrate out a flavor
through a real mass deformation to decouple the extra
super-potential term generated by a monopole configura-
tion (KK monopole [22–27]) wrapping around the com-
pactified dimension [14]. The s-confining superpotential
for the 3D theory can be obtained by removing from the
superpotential of the 4D s-confining theory those fields
which gain a mass when the flavor is decoupled [28].
Carrying out this procedure the 3D s-confining super-

potential becomes (ignoring the overall scale):

W 3D = M̃0

(
b24 + b23b

2
1

)
+ M̃3

(
b4b1 + b3b

2
1

)
. (1)

The details of the real mass deformation can be found in
Appendix A.
From Table I we can read off the chiral operators of the

electric theory. The bi’s are easily mapped to the gauge
invariant meson-like operator of the electric theory and it

is tempting to associate M̃0 and M̃3 to unlifted CB direc-
tions parametrized by monopole operators. In the next

section we will argue that while this is indeed the correct

interpretation, the matching of the M̃3 field presents fea-
tures NRLL which had not been observed in pre-
vious analyses of 3D s-confining models [28]; this
is due to the chiral nature of this theory.

A. The Coulomb Branch Operators

As was discussed in [28], and will be discussed in more
details in [21], for an SU(6) theory with a non-chiral field
content of fundamental and antisymmetric fields the un-
lifted CB of the theory is described by three monopole op-

erators, Y , Ỹ , and Ŷ , associated with three unlifted U(1)
directions. These operators can be written explicitly in
terms of the five “fundamental” monopole operators Yi,

i = 1, ..., 5, as Y ≡ Y1Y2Y3Y4Y5, Ỹ ≡
√
Y1Y

2
2 Y

2
3 Y

2
4 Y5

and Ŷ ≡
(
Y1Y

2
2 Y

3
3 Y

2
4 Y5

)1/3
. In a chiral theory, however,

we must be more careful. Alongside these directions,
some matter fields acquire real masses and must be inte-
grated out of the theory. The chiral nature of the theory
allows the possibility that this could generate CS terms
for the unbroken U(1) gauge groups. These could in turn
affect the equations of motions and change the structure
of the moduli space. We examine all three CB opera-
tors in details. We will find that the Y operator remains
unlifted while Ŷ is lifted. The operator Y is readily as-

sociated to M̃0. However the matching of the remaining

Ỹ operator is less trivial. In fact, a CS term is gener-

ated along the Ỹ direction. This causes this operator to
acquire an electric charge and to be “dressed up” into

the correct gauge invariant operator, AỸ . We will show
with an explicit calculation that this is indeed the cor-
rect operator to describe the flat direction of the electric
theory. Furthermore we will show that this operator has
exactly the right abelian and non-abelian global quan-

tum numbers to match the M̃3 chiral operator leading to
the association in Table I.

Generalities

Here we present the essential ingredients to understand
the CB dynamics of 3D N = 2 gauge theories. For re-
views and more details see [1, 2, 14, 28].
A generic point of the CB of a N = 2 3D SU(N) gauge

theory is parametrized by the VEV of the scalar compo-
nent of the vector multiplet which, using gauge trans-
formations, can be diagonalized. Thus a generic point
of the CB can be parametrized by N parameters: σi’s,
i = 1, ..., N , satisfying σ1 ≥ σ2 ≥ ... ≥ σN and

∑
i σi = 0:

ϕ =




σ1 0 ... 0

0 σ2 ... 0

0 0
. . . 0

0 0 ... σN




,

N∑

i=1

σi = 0 (2)
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For generic values of the σ’s SU(N) → U(1)N−1. Each
unlifted U(1) direction is parametrized by an operator
Yi, i = 1, .., N − 1, and thus semi-classically the theory
has a N−1 dimensional CB. Each Yi is associated to one
of the N − 1 fundamental monopoles.
At the quantum level, 3D instantons generate contri-

butions to the super-potential [29] which, in absence of
matter, fully lift the CB. In the presence of matter, how-
ever, the analysis becomes considerably more elaborate
as the CB splits in different regions in which some of the
quantum corrections are not generated because of the
presence of fermionic zero-modes [1, 2, 14, 28].
After accounting for non-perturbative corrections, we

are left at most with operators describing unlifted U(1)
directions. For a Coulomb vacuum associated to a par-
ticular U(1)a to be allowed, it needs to satisfy1:

∑

i

2πn
(a)
i

∣∣Φi

∣∣2 = ξ
(a)
eff +

∑

b

k
(a,b)
eff σ(b), (3)

(
mR,i + n

(a)
i σ(a)

)
Φ

(a)
i = 0 , (4)

where n
(a)
i and σ(a) are, respectively, the charge of the ith

field under and the scalar VEV for the unbroken U(1)a,

while Φi is the VEV of the ith matter field. The k
(a,b)
eff

are the CS terms generated at one-loop [12, 13]:

k
(a,b)
eff =

1

2

∑

i

n
(a)
i n

(b)
i sign(mR,i) , (5)

where mR,i is the real mass of the field i. Note that in all
the cases we are interested in here, mR,i will be induced

by a given U(1)ā VEVs, thus mR,i = n
(ā)
i σ(ā). These

formulae allows for both “pure”, a = b, and “mixed”, a 6=
b, CS terms. A similar formula applies for the effective
Fayet-Iliopoulos (FI) term

ξ
(a)
eff =

1

2

∑

i

n
(a)
i mR,isign(mR,i) . (6)

Furthermore, CS terms will induce electric charges for
the fields which are charged under the topological U(1)J ’s
associated with the various U(1) gauge factors:

q
(a)
i = −

∑

b

k
(a,b)
eff q

(b)
J,i , (7)

where q
(a)
i is the electric charge under U(1)a generated

for the ith field.
One loop CS terms can also be generated for non-

abelian groups. Eq. (5) then generalizes to:

kGeff =
1

2

∑

ri

T2(ri)sign(mR,ri) . (8)

where the real masses mR,ri will again be induced by
U(1) VEVs.

1 Here we assuming that both the tree level CS and FI terms van-
ish, k = ξ = 0.

The Y Direction

Far along on the moduli space, the Y operator de-
scribes the direction diag(σ, 0, 0, 0, 0,−σ). This field
configuration spontaneously breaks SU(6) to SU(4) ×
U(1)1 × U(1)2 where, up to an irrelevant normaliza-
tion, the U(1)1 and U(1)2 factors are respectively as-
sociated with the generators diag(1, 0, 0, 0, 0,−1) and
diag(2,−1,−1,−1,−1, 2). Under the unbroken gauge
group the matter content of the theory decomposes as
follows :

� → �(0,1) + 1(−1,−2) + 1(1,−2) ,

→
(0,−2)

+�(1,1) +�(−1,1) + 1(0,4) . (9)

We can now compute the possible CS terms generated
by integrating out the heavy matter fields. From Eq. (9)
we see that that all fields charged under n(1) come in
pairs of fields whose contributions to the pure CS terms
are equal and opposite: hence, all pure CS terms vanish.
This argument does not apply to the mixed CS term
however, which must be computed:

k
(1,2)
eff =

1

2
(−8− 8 + 8 + 8) = 0 . (10)

So the mixed CS term also vanishes, but this is not a
generic result and only occurs because of a non-trivial
cancellation between the different contributions from the
matter fields in the theory. All FI terms also vanish.
It follows that this CB direction remains unlifted and
unmodified by the chiral effects.

The Ỹ Direction and the Dressed Monopole

Far along on the moduli space, the Ỹ direction de-
scribes the direction diag(σ, σ, 0, 0,−σ,−σ). This field
configuration spontaneously breaks SU(6) to SU(2)t ×
SU(2)m × SU(2)b × U(1)1 × U(1)2. The subscripts “t”,
“m” and “b” stand for “top”, “middle” and “bottom”,
and refer to the embedding of the SU(2) subgroup of
SU(6) in the matrix representation of the group. Up
to an irrelevant normalization, the U(1)1 and U(1)2
factors are respectively associated with the generators
diag(1, 1, 0, 0,−1,−1) and diag(1, 1,−2,−2, 1, 1). Under
the unbroken gauge group the matter content of the the-
ory decomposes as follows:

� → �
t

(−1,−1) +�
m

(0,2) +�
b

(1,−1),

→ 1(2,2) + 1(0,−4) + 1(−2,2)

+
(
�

t,�m
)
(1,−1)

+
(
�

t,�b
)
(0,2)

+
(
�

m,�b
)
(−1,−1)

.

(11)

Once again, all pure CS terms will necessarily cancel
because fields with non-vanishing n(1) terms necessarily
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come in pairs with opposite-sign real masses. This time,
however, there is a non-vanishing mixed CS term:

k
(1,2)
eff =

1

2
(−8− 8 + 8 + 8− 8− 8) = −8 . (12)

From Eq. (6), we see that there should also be an effec-

tive FI term generated for the U(1)2 group, ξ
(2)
eff = −8σ.

Hence (3) and (4) are modified to:

∑

i

2πn
(1)
i |Φi|

2 = k
(1,2)
eff σ(2) = −8σ(2) , (13)

∑

i

2πn
(2)
i |Φi|

2 = k
(1,2)
eff σ(1) + ξ

(2)
eff = −16σ(1) , (14)

where Φi represents the i-th massless field of the theory
and the σ(1),(2) are the VEVs of the scalar component of
the vector supermultiplets associated with the respective
abelian gauge groups. In our notation, the “undressed”

Ỹ direction corresponds to σ(1) = σ > 0 while the matter
fields’ VEVs Φi and σ(2) are set to zero. This vacuum
configuration is perfectly compatible with Eq. (13) but
it is inconsistent with Eq. (14) due to the non-vanishing

k
(1,2)
eff and ξ

(2)
eff . This condition can now only be satisfied

if some VEVs for the matter fields are turned on. For con-
sistency with Eq. (13) those fields must have n

(1)
i = 0.

Furthermore, since the right-hand-side of Eq. (14) is neg-

ative, those fields must also have n
(2)
i < 0. From Eq.

(11), we see that there is only one possible candidate:
the 1(0,−4) field which was initially part of the field A
in the antisymmetric SU(6) representation. Therefore,
the effects of the chiral dynamics boil down to turning

the CB parameter into a dressed monopole AỸ . This
is similar to the dressed monopoles that show up in [12–
15]. However, in all of these previous examples, the mod-
els in which the dressed monopoles appeared were chiral
theories obtained from real mass deformations of parent
non-chiral theories. All of these theories had tree-level
CS terms. The example we present here is the first ex-
ample of a dressed monopoles in a model without such a
tree-level CS term and the simplest in a series of models
that will be systematically explored in [21].

As an independent check, we can verify that AỸ is
in fact a gauge invariant operator. As explained above
A → 1(0,−4), thus it has charges (0,−4) under the un-
broken U(1)’s. From (7), computing the U(1)2 electric
charge generated by the mixed CS term and the U(1)1
magnetic charge, Ỹ has charges (0, 4) making the dressed
operator gauge invariant. It is important to stress that
gauge invariance of the dressed monopole implies the

presence of the square root in the definition of the Ỹ .
As we will show below, this dressed monopole also pos-

sesses the correct global quantum numbers to match the

field M̃3 on the magnetic side of the duality. Note that
this also includes the non-abelian flavor SU(2) charge

which A1(0,−4)
Ỹ inherits from the A field. All the one-

loop non-abelian CS terms vanish:

k
SU(2)t
eff =

1

2
(4 ∗ (−1) + 2 ∗ 2 ∗ (+1)) = 0 ,

k
SU(2)m
eff =

1

2
(2 ∗ 2 ∗ (+1) + 2 ∗ 2 ∗ (−1)) = 0 ,

k
SU(2)b
eff =

1

2
(4 ∗ (+1) + 2 ∗ 2 ∗ (−1)) = 0 . (15)

The vanishing of all the non-abelian CS terms depends,
once again, on a non-trivial cancellation which is realized
for this specific matter content. In a generic chiral theory,
these terms could be present.

The Ŷ Direction

Far along on the moduli space, Ŷ describes the di-
rection diag(σ, σ, σ,−σ,−σ,−σ). This field configuration
spontaneously breaks SU(6) to SU(3)t ×SU(3)b×U(1).
The subscripts “t” and “b” stand for “top” and “bot-
tom”, and refer again to the position of the embedding
of SU(3) in the matrix representation of SU(6). Up to
an irrelevant normalization, the U(1) factor is associated
with the generator diag(1, 1, 1,−1,−1,−1). Under the
unbroken gauge group the matter content of the theory
decomposes as follows:

� → �
t

(−1) +�
b

(1),

→ �
t

(2) +�
b

(−2) +
(
�

t,�b
)
(0)

. (16)

No abelian CS term is generated for the unbroken U(1).
By Eq. (6), no FI term is generated either. However,
non-abelian terms are generated for both SU(3) factors:

kteff =
1

2
(4 ∗ (−1) + 2 ∗ (+1)) = −1 ,

kbeff =
1

2
(4 ∗ (+1) + 2 ∗ (−1)) = 1 . (17)

We now argue that it is plausible that the effect of these
non-abelian CS terms, combined with non-perturbative
dynamics, result in the Ŷ direction being lifted. The
non-abelian CS-terms generated by the Ŷ direction af-
fect the equations of motions for the VEVs of the two
unbroken SU(3) in a manner analogous to Eqs. (13-14).

Since turning on the directions Y or Ỹ requires giving
VEVs to some of the generators which live in these SU(3)
subgroups, we can see that chiral effects forbid us from
turning on the Ŷ direction when either of the other two
directions are turned on. However, if we study the dif-
ferent regions of the CB of this theory, we can see that

in all the regions where the Ŷ operator is defined, the Ỹ
operator is necessarily also defined. Ultimately it is the
full dynamics that will determine whether along these

regions of the CB the theory settles along the Ỹ or Ŷ
directions. The effective low energy description (1) ob-
tained through the compactification suggests that in all
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of these branches the theory settles to the Ỹ direction,
and so Ŷ gets lifted.
It would be very interesting to gain a more detailed

understanding of the underlying dynamics leading to the

lifting of Ỹ . In particular one can construct a UV free
completion of the IR sector, e.g. by integrating in some
extra singlets, hoping to better understand the nature of
the duality under consideration here. 2 A more detailed
analysis of the different regions of the CB and their rela-
tionship to the properties of the unlifted directions will
be provided in a future publication [21].

U(1) Charges

A non-trivial check of the claimed mapping between

the fields M̃0, M̃3 and Y , A1(0,−4)
Ỹ is the matching of

the global quantum numbers on both sides of the dual-
ity. The global quantum numbers of the fields on “the
magnetic side” are listed in Tab. I and are inherited from
those of the “parent” 4D theory. In the 3D theory there
is an extra U(1) symmetry, U(1)4, which originates from
the diagonal generator of the flavor SU(5) in 4D. On “the
electric side”, the quantum numbers of the CB param-
eters are inherited from the Yi’s monopole operators of
which they are composed. These operators acquire global
symmetry charges at one-loop [1] which can be computed
by counting matter zero modes using the Callias index
theorem [1, 2, 28, 30]. We use this fact to compute
the global charges of the two relevant CB parameters

Y and Ỹ . As explained above, the CB splits in different
regions and these operators are associated to inequiva-
lent ones. We report the detailed calculation elsewhere
[21]. Carefully keeping track of the splitting and the non-
perturbative contributions to the super-potential, we ob-
tain the following charge assignments:

U(1)3 U(1)4 U(1)R′

Y1 0 -4 10

Yi6=1 0 0 -2

Y ≡ Y1Y2Y3Y4Y5 0 -4 2

M̃0 0 -4 2

(18)

The charges of Y match those of the the operator M̃0, as

claimed. For Ỹ :

U(1)3 U(1)4 U(1)R′

Y2 6 -4 8

Yi6=2 0 0 -2

Ỹ ≡
√
Y1Y

2
2 Y

2
3 Y

2
4 Y5 6 -4 2

AỸ 9 -4 2

M̃3 9 -4 2

(19)

2 We would like to thank Ofer Aharony for emphasizing this issue
to us.

We see that while Ỹ by itself does not match any of
the operators on “the magnetic side” of the theory, the

dressed monopole, A1(0,−4)
Ỹ , has the same abelian global

quantum numbers as M̃3. In addition, because of the
A1(0,−4)

field, the dressed monopole is in the � repre-

sentation of the global flavor SU(2), just like M̃3. Since

we expect the Ŷ operator to be lifted we do not list its
quantum numbers.

B. Consistency Check from the Partition Function

Finally we discuss a further powerful check of our con-
jectured IR dynamics by reducing the four dimensional
superconformal index3, a topological invariant quantity
counting a set of protected BPS operators in a 4D super-
symmetric field theory, [31, 32] to the three dimensional
partition function [33, 34] which is a measure of the 3D
degrees of freedom. Because of the technical nature of
this section we will not report many of the details. They
will be discussed thoroughly in [21].
Starting from the result of [35, 36] of the matching

between the 4D indices in the confining case, we can
show the identity of the 3D partition function for the ex-
pected 3D duals through dimensional reduction. We ob-
serve in this process the appearance of the extra dressed
monopole operators discussed above. This relation be-
tween the 4D index and 3D partition function has al-
ready been used to study the dimensional reduction of
4D dualities in [14, 37].
In our case, from the exact identity between the 4D

index of the SU(6) theory and the index of its confin-
ing phase, we obtain the relation between the partition
functions for the effective duality on R3 × S1. We can
consider the compactified theories as effective 3D theories
with the finite size effects from S1 representing the non-
perturbative dynamics. We obtain the following relation
matching the partition functions for the dual phases:

∫ ∏6
i=1

(
dσiΓh(µ1 + σi)

∏5
β=1 Γh(νβ − σi)

)
δ(
∑

σi)
∏

i<j Γh(±(σi − σj))
∏2

γ=1 Γ
−1
h (σi + σj + τγ)

=

5∏

β=1

(
Γh(µ1 + νβ)

2∏

γ=1

(
Γh(µ1 + τ1 + τ2 + τγ + νβ)

5∏

ρ=β+1

Γh(τγ + νβ + νρ)
) 5∏

ρ=β+1

Γh(2(τ1 + τ2) + νβ + νρ)
)

∏

iM∈{1,2}

Γh(τi1 + τi2 + τi3 ) (20)

The functions Γh are called hyperbolic gamma functions
[38] and they represent the one loop determinants of the

3 The definition of the index requires only a conserved R-current;
the theories do not necessarily have to be superconformal.
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vector and matter multiplets in the computation of the
partition function from localization. The variables σi are
the eigenvalues of the scalars in the vector multiplet as
in (2). The parameters µ, ν and τ are holomorphic com-
binations of the real masses for the fields and their R-
charges. They correspond to turning on a background
gauge field for each global symmetry. 4 Even though
in the field theory analysis we fixed the R-charges as in
Table I, here we consider a more general definition, con-
sistent with the other abelian global symmetries. We
observe that in this case the R-charges can be treated
as unconstrained. This is consistent with the absence of
superpotential in the electric theory. This procedure al-
lows a better identification of the zero modes carried by
the (dressed) monopole operators, acting as singlets in
the dual theory, in terms of the elementary fields of the
electric theory.
The non-perturbative effects from the finite size of the

circle generate an extra superpotential in the electric the-
ory. It breaks an abelian symmetry which is anomalous
in the 4D electric parent. In the dual theory this sym-
metry is broken by the 4D superpotential (which is not
modified by compactification). On the partition function
this effect corresponds to a relation between the param-
eters µ, ν and τ . In fact the equality (20) is valid if the
parameters satisfy the relation

µ1 +
5∑

β=1

νβ + 4
2∑

γ=1

τγ = 2ω (21)

The equality (20) can be further reduced to the SU(6)
theory with four antifundamentals and two antisymmet-
rics that we studied above by a real mass flow [38]. At
the end of the mass flow we obtain the relation

∫ ∏6
i=1

(
dσi

∏4
β=1 Γh(νβ − σi)

)
δ(
∑4

i=1 σi)
∏

i<j Γh(±(σi − σj))
∏2

γ=1 Γ
−1
h (σi + σj + τγ)

=

Γh(MM̃0
)Γh(MM̃3

)
∏

iM∈{1,2}

Γh(τi1 + τi2 + τi3 ) (22)

4∏

β<ρ

(
Γh(2(τ1 + τ2) + νβ + νρ)

2∏

γ=1

Γh(τγ + νβ + νρ)
)

From which we can read off the quantum numbers of
the operators in the spectrum. We find that the two
terms parameterized by M

M̃0
and M

M̃3
have the same

charges as the monopole Y and the dressed monopole

AỸ discussed above. This is an additional powerful check

that the correct CB directions are Y and AỸ as discussed

4 The real part of these parameters reproduce the weight of the
representation for each charged matter multiplet under the (non
R) global symmetries. The imaginary term is associated to the
gauging of the R-symmetry and it is proportional to the squash-
ing parameter through the formula ω = i(b+ 1/b).

previously. More precisely we have M
M̃0

= 2ω(1−4∆A−

2∆Q)−4m3 and M
M̃3

= (ω(2−5∆A−4∆Q)−4m3+9m4.
The parameters m3 and m4 are the real masses of the
abelian U(1)3 and U(1)4 global symmetries. The identity
(22) holds when the condition

4∑

β=1

νβ +

2∑

γ=1

τγ = −4(m3 − ω(∆Q̃ + 2∆A)) (23)

is imposed on the parameters.
We conclude this section with a comment on the

matching of the 3D superconformal index which could
be an extra check of the relations studied in this section
by performing the calculation on S2 × S1 [39]. This can
be obtained from direct computation or from the match-
ing between the partition on T 2 × S2 recently discussed
in [40, 41] This check can also be performed by follow-
ing a different strategy: first one can factorize the index
on the S3

b in terms of holomorphic blocks [42], and then
glue the blocks together as explained in [43] to obtain the
matching of the index. We leave this analysis to future
investgations.
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Appendix A: Real Mass deformation

The real mass deformation procedure is applied on a
compactified R3 × S1 theory to decouple a flavor and
get rid of the KK terms, giving us with the 3D theory
with the properties described above. We go through this
procedure step-by-step below. The field content of the
4D electric and magnetic theories is given in Table II.
The s-confining superpotential for the mesons of the

4D theory is:

W 4D =
1

Λ11

(
B2

4M0 +B4M3B1 +B3M3B
2
1 +B2

3M0B
2
1

)
.

(A1)

We now add a vector-like real mass deformation to the
unique Q field and the fifth flavor of Q. This can be done
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SU(6) SU(2) SU(5) U(1)1 U(1)2 U(1)R

Q � 1 1 -5 -4 0

Q̄ � 1 � 1 -4 0

A � 1 0 3 1/4

M0 ≡ QQ̄ 1 � -4 -8 0

M3 ≡ QA3Q̄ � � -4 1 3/4

B1 ≡ AQ̄2
� 2 -5 1/4

B3 ≡ A3 1 0 9 3/4

B4 ≡ A4Q̄2 1 2 4 1

TABLE II: Matter content of the 4D s-confining theory along
with the global symmetries and the charges of the confined
mesons.

by ”fictitiously” gauging a linear combination of the di-
agonal generators of the flavor groups and of U(1)1 such
that only these flavors are charged under this combina-
tion; we can then imagine turning on a background scalar
field for this gauge group, providing us with the desired

real mass deformation. The mesonic fields which are left
massless (and thus remain in the spectrum) under this
procedure are:

• Bab
1 with a, b < 5, which we rename b1.

• B3, which we rename b3.

• Bab
4 with a, b < 5 which we rename b4.

• M5
0 ≡ M̃0.

• M5
3 ≡ M̃3.

These are the fields which will be part of the s-confined
description of the 3D theory.

The 3D duality can now be written by applying the
real mass deformation on both sides of the 4D duality.
For the electric side, this consists simply of removing
one flavor. For the magnetic side, the field content is
reduced to those massless mesonic fields listed above and
the superpotential is obtained by setting all other fields
to zero in Eq. (A1). Doing so, we obtain the matter
content displayed in Table I and the superpotential of
Eq. (1).
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