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Highly nonlinear wave solutions in a dual to the chiral model

S. G. Rajeev∗ and Evan Ranken†

Department of Physics and Astronomy
University of Rochester

Rochester, New York 14627, USA

We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual
to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free:
the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can
serve as a toy model for λφ4 theory in four dimensions, just as the principal chiral model is a useful
toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong
coupling limit and quantize them by the collective variable method. They describe excitations with

an unusual dispersion relation ω ∝ |k|
2
3 . Perhaps they are the “preons” at strong coupling, whose

bound states form massless particles over long distances.

PACS numbers: 11.10.Kk, 42.65.-k, 03.50.-z, 03.65.Fd

I. INTRODUCTION

We study the field theory [1–3] with equations of mo-
tion

φ̈ = λ
[
φ̇, φ′

]
+ φ′′, (1.1)

where φ is valued in a Lie algebra, φ : R1,1 → su(2). This
follows from the action

(1.2)
S1 ≡

∫
L1dxdt

=

∫
Tr

{
1

2λ
φ̇2 − 1

2λ
φ′

2
+

1

3
φ[φ̇, φ′]

}
dxdt.

In the λ → 0 limit, these equations admit linear wave
solutions. But in the high-coupling regime, the theory is
dominated by nonlinear effects.
S1 is closely tied to other models and subjects, which

we elaborate on in section II. These include the study
of slow light, the Wess-Zumino-Witten (WZW) model,
and the mathematical theory of hypoelliptic operators.
Of particular interest in this paper, the model described
by S1 is also classically dual to the well-studied principal
chiral model, described by the action

(1.3)
S2 =

∫
L2dxdt

=
1

2f

∫
Tr
{(
g−1ġ

)2 − c2 (g−1g′
)2}

dxdt

where g : R1,1 → SU(2). This is a special case of the
nonlinear sigma model, with target space SU(2).

Despite their classical equivalence, S1 and S2 lead to
entirely different quantum theories. S2 gives an asymp-
totically free theory: at short distances f → 0, giving
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us free massless excitations. But the true particles that
survive to long distances are bound states of non-zero
mass [4, 5]. For this reason, the principal chiral model is
often used as a toy model for 4-dimensional Yang-Mills
theory, notorious for its mathematical complexity. Not
only do the two theories share similar short-distance be-
havior, but the existence of a mass gap in the principal
chiral model has served as a proof of concept for the con-
jectured mass gap in Yang-Mills (though neither can yet
be proven with full mathematical rigor).
S1, on the other hand, leads to a renormalizable but

not asymptotically free quantum theory. At short dis-
tances the coupling constant λ → ∞, while at long dis-
tances we have weakly nonlinear massless excitations. It
makes sense to use S1 as a 2-D toy model for strongly cou-
pled theories, in particular 4-dimensional λφ4 theory1.
The behavior of quantum field theories at high coupling
is notoriously intractable, and the physical meaning of
such theories is still up for debate. For this reason, it is
still necessary to search for simple examples of such the-
ories and try to gleam what meaning, if any, they have
in the short distance limit.

In addition to sharing short-distance behavior, both
the S1 model and λφ4 theory can be described by hy-
poelliptic hamiltonian operators with a step-3 nilpotent
bracket algebra, suggesting some algebraic structure in
common (section II B and appendix A). The S1 model’s
relative simplicity makes it a good candidate for attempt-
ing to probe the high coupling regime of field theories
in general, but the connection to λφ4 theory seems the
closest. Additionaly, its classical duality to the principal
chiral model motivates a juxtaposition of the two theories
in the classical and quantum formulations.

To glimpse what becomes of our theory in the high cou-
pling limit, we take the modest approach of finding non-
linear wave-type solutions to the classical model which

1 that is, pure λφ4 theory, describing a Higgs-like particle with no
coupling to fermions



survive the λ → ∞ limit (section III). This set of solu-
tions defines a mechanical system or “reduced system”
in each of the dual models. While they physically ap-
pear very different, the resulting classical solutions can be
mapped from one system to another. We quantize these
collective variables to determine their dispersion relation
(section IV) in the short distance limit for each theory.
We have in mind the sine-Gordon theory, whose solitons
turns out to be the fundamental constituents which bind
to form the scalar particles [6, 7].

These reduced quantum theories yield two different re-
sults. In particular, the reduced model of S1 has an ex-
otic dispersion relation in the short distance limit. We
postulate that its spectrum may hint at the fundamental
constituents of the highly coupled theory, which need not
behave like traditional particles at all. In section V we
offer concluding remarks and a side-by-side comparison
of our work with S1 and S2.

On The Notation

We regard φ = 1
2i [φ1σ1 + φ2σ2 + φ3σ3] = 1

2iφ · σ as
a traceless anti-hermitian matrix. Recall then that the
commutator and cross product are related by

[X,Y ] =
1

2i
(X×Y) · σ. (1.4)

Also, we define TrX ≡ −2trX so that

Trφ2 = φ2
1 + φ2

2 + φ2
3. (1.5)

In relativistically invariant notation, (1.1) and (1.2) can
be written as

∂µ∂µφa −
λ

2
εabcε

µν∂µφ
b∂νφ

c = 0, (1.6)

(1.7)
S1 =

1

2λ

∫
∂µφ

a∂νφ
aηµνd2x

+
1

6

∫
εabcφ

a∂µφ
b∂νφ

cεµνd2x

where µ, ν = 0, 1 and a, b, c = 1, 2, 3 ; also, εµν , εabc are
the Levi-Civita tensors. This is a particular case of the
general sigma model studied in [8] as the background of
string theory, with a flat metric on the target space and
a constant 3-form field εabc.

II. RELATION TO OTHER MODELS

A. The c→ 0 Limit and Slow Light

Consider the equations of motion (1.1) where the speed
of linear propagation at low coupling is taken to be c
rather than 1:

φ̈ = λ
[
φ̇, φ′

]
+ c2φ′′. (2.1)

If we rescale φ→ λaφ, t→ λbt, this becomes

λa−2bφ̈ = λ1+2a−bφ̇× φ′ + c2λaφ′′. (2.2)

Set a = 2b and 1 + 2a = b to get

φ̈ = φ̇× φ′ + c2λ−
2
3φ′′. (2.3)

Thus the strong coupling limit λ→∞ at fixed c is equiv-
alent to the limit c→ 0 with λ = 1:

φ̈ = φ̇× φ′. (2.4)

The strongly coupled limit can be thought of as the
limit in which the waves move very slowly. It has been
noted in that literature [9] that when the speed of light
in a medium is small, nonlinear effects are magnified. Al-
though the specific equations appearing there are differ-
ent, it is possible that the solutions of the sort we study
are of interest in that context as well.

From a field theoretic context, the equivalence of these
limits seems troubling. At short distances, the highly-
coupled theory will not be relativistic. It is a sort of
“post-relativistic” regime, where c → 0. This is much
the opposite of the case in the theory of S2; there the
short-distance excitations are massless, but form mas-
sive bounds states which survive to long distances and
can be non-relativistic in the traditional c → ∞ sense.
Perhaps some exotic excitations at high coupling are in
fact the fundamental constituents in the S1-model, form-
ing as bound states the ordinary massless particles which
appear in the long distance limit. As we know from the
quark model, the short distance excitations do not need
to be particles in the usual sense; they could be confined.
In any case, it is important to know what solutions might
survive the high coupling limit, whether they be unphys-
ical or simply unintuitive.

We will see an example of wave solutions which clas-
sically survive the c → 0 limit, continuing to propagate
through nonlinearity alone. Since the energy density is
constant, these solutions do not violate causality: they
are analogous to the Continuous Wave solutions in a
medium where the phase velocity is greater than c.

B. Sub-Riemannian Geometry and the Strong
Coupling Limit

Many physical problems (Yang-Mills, Fluid Mechan-
ics) become intractable in the strong coupling limit where
the non-linearities dominate. It would be nice to have a
unified geometric approach to understanding these sys-
tems. We have such an approach in the weak coupling
limit: small perturbations around a stable equilibrium
are equivalent to a harmonic oscillator.

A larger picture emerges if we think in terms of Rie-
mannian and sub-Riemannian geometry. The orbits of
many mechanical systems of physical interest (again,
Yang-Mills or incompressible Fluids) can be thought of
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as geodesics in some appropriate Riemannian manifold.
In the simplest case, the harmonic oscillator describes
geodesics in the Heisenberg group. The anharmonic os-
cillator (and many nonlinear field theories with quartic
coupling) can also be thought of as geodesic motion on a
nilpotent Lie group, by introducing an additional gener-
ators (see Appendix A for more detail).

In the limit of strong coupling, the metric degener-
ates and becomes sub-Riemannian [10]. That is, the
contravariant metric tensor has some zero eigenvalues
so that it can be written as

∑
j Xj ⊗ Xj for some vec-

tor fields Xj whose linear span may be smaller than the
tangent space. Moreover, in the cases of interest, these
vector fields satisfy the celebrated Hörmander condition:
Xj along with their repeated commutators span the tan-
gent spaces at every point. In such a case, there are still
geodesics connecting every pair of sufficiently close points
(Chow-Rashevskii theorem, [10]). Thus, we can define a
distance between pairs of points as the shortest length of
geodesics.

These ideas came to the notice of many physicists
following a model for the self-propulsion of an amoeba
[11], though they have roots in the Carnot-Caratheodory
geometric formalism of thermodynamics and in control
theory. Hörmander [12] discovered independently that
the same criterion is sufficient for the sub-Riemannian
Laplace operator ∆ =

∑
j X

2
j to be hypoelliptic, mean-

ing the solution f to the inhomogenous equation ∆f = u
is smooth whenever the source u is smooth. This can be
thought of the quantum version of the above condition
on subgeodesic connectivity.

This kind of sub-Riemannian geometry may present a
powerful geometric framework for strongly-coupled field
theories. The example we work out in this paper is ar-
guably the simplest interesting case of a strongly cou-
pled field theory, and the solutions we study correspond
to sub-Riemannian geodesics in the limit λ → ∞. We
hope to apply such geometric ideas to other cases in the
future, using this as a prototype.

C. Relation to the WZW model

We can also regard our equations as a limiting case of
the Wess-Zumino-Witten model2 [13]

SWZW =
1

4λ2
1

∫
tr ∂µg∂µg

−1d2x+
n

24π

∫
M3

tr (g−1dg)3

(2.5)

as n → ∞ and λ1 → 0, keeping λ = λ2
1 (n/2π)

2
3 fixed3.

To see this, let g(x) = ebiσaφ
a(x) and expand in powers

2 Witten’s Tr is our tr. His λ is our λ1.
3 Here, M3 is a 3-manifold of which the two-dimensional space-
time is the boundary. We do not require λ21 to take the confor-

mally invariant value 4π
n

.

of b:

(2.6)
SWZW =

b2

2λ2
1

∫
∂µφa∂µφ

a

+
n

24π
b3
∫
M3

2εabc dφ
adφbdφc + · · ·

To this order the WZW term is an exact differential, so
we can write it as an integral over space-time

(2.7)
SWZW =

1

2

b2

λ2
1

∫
∂µφa∂µφ

a

+
n

12π
b3
∫
εabc φ

adφbdφc + · · ·

SWZW reduces to S1 if we identify b3 = 2π/n and λ
as above. By taking this limit, we can easily get the
renormalization of our model. Recall that [13] the one
loop renormalization group equation of the O(N) WZW
model is

dλ2
1

d log Λ
= −λ

4
1(N − 2)

2π

[
1−

(
λ2

1n

4π

)2
]

(2.8)

We need the particular case of N = 4 corresponding to
the target space being S3 ≈ SU(2). Thus in our limit
n→∞, λ1 → 0 keeping λ fixed,

dλ

d log Λ
=
λ4

4π
(2.9)

It is useful to take this limit rather than calculating loop
corrections from scratch, as the renormalization group
evolution of the WZW has been studied to high order
[14, 15]. Including these higher order terms does not
alter the short-distance divergence of λ.

D. Duality with the principal chiral model

We have now seen that the S1 model is strongly cou-
pled in the short-distance limit. Yet, as a classical field
theory, it can be viewed [1, 2] as a dual to the asymptoti-
cally free principal chiral model with equation of motion

∂µ[g−1∂µg] = 0, g : R1,1 → SU(2). (2.10)

To see this, we define the currents

I =
1

λ
φ̇, J = φ′ (2.11)

so the equations of motion become

J̇ = λI ′, İ = λ[I, J ] +
1

λ
J ′. (2.12)

We can solve the second equation with the relations

I =
1

λ2
g−1g′, J =

1

λ
g−1ġ. (2.13)

3



Then the first equation becomes

∂0

[
g−1ġ

]
= ∂1

[
g−1g′

]
(2.14)

which is the non-linear sigma model. Thus, the same
classical equations of motion follow from the action

S2 =
1

2f

∫
Tr
{(
g−1ġ

)2 − c2 (g−1g′
)2}

dxdt (2.15)

if we identify f = λ2. A summary of relevant correspon-
dences in the dual models can be found in table I at the
end of section V.

We also briefly note that our theory is closely related
to the sigma model on the Heisenberg group (see [16]).

III. REDUCTION TO A MECHANICAL
SYSTEM

We will look at propagating waves of the form

φ(t, x) = eKxR(t)e−Kx +mKx, K =
i

2
k

(
1 0
0 −1

)
(3.1)

for constants k,m. These solutions are equivariant under
translations: the “potential” φ changes by an internal ro-
tation and a constant shift under translation, while the
currents only change only by the internal rotation. Thus,
the energy density is constant. They are to be contrasted
with soliton solutions, which have energy density concen-
trated at the location of the soliton. They are more anal-
ogous to the plane wave solutions of the wave equation,
or a Continous Wave (CW) laser beam. Moreover, the
currents

I =
1

λ
eKxṘe−Kx, J = eKx {[K,R] +mK} e−Kx

(3.2)
are periodic in space with wavelength 2π

k . Defining

L ≡ [K,R] +mK, S ≡ Ṙ+
1

λ
K, (3.3)

We can write the equations of motion and identity (2.12)
in a symmetric form

L̇ = [K,S], Ṡ = λ[S,L]. (3.4)

This new choice of variables will allow us to connect to
the dual theory, identify the conserved quantities and to
pass to the quantum theory more easily.

A. The reduced system Lagrangian

Three conserved quantities follow immediately:

s2k2 ≡ Tr S2

C1k
2 ≡ TrSL (3.5)

C2k
2 ≡ Tr

[
1

2
L2 − 1

λ
KS

]
.

The quantity s will be of importance in the dual picture,
while the other constants have less obvious roles there.
Moreover, we have the identity

TrKL = mk2. (3.6)

Of the six independent variables in S and L, only two
remain after taking into account these constants of mo-
tion. The dynamics are described by the effective la-
grangian density (dropping a total time derivative and
an overall factor of volume of space divided by λ)

L1 = Tr

{
1

2
Ṙ2 +

λ

3
R
[
Ṙ, [K,R] +mK

]
− 1

2
([K,R] +mK)

2

}

(3.7)= Tr

{
1

2
(S − 1

λ
K)2 +

λ

3
R

[
S − 1

λ
K, L

]
− 1

2
L2

}
and hamiltonian density

H1 = Tr

[
1

2

(
S − 1

λ
K

)2

+
1

2
L2

]
, (3.8)

B. Reduction to One Degree of Freedom

It is useful to work with the first two components of R
as a single complex variable. Defining Z = R1 + iR2, we
can write explicitly

L =
k

2

(
im Z̄
−Z −im

)
. (3.9)

To describe the third component, we define

u ≡ 1

k
Ṙ3 −

1

λ
, (3.10)

allowing us to write a similarly compact expression for
S,

S =
1

2i

(
uk ˙̄Z

Ż −uk

)
. (3.11)

The three conserved quantities (3.5) can now be writ-
ten in terms of Z and u as

s2k2 = u2k2 + |Ż|2

C1k
2 =

ik

2

[
Z̄Ż − ˙̄ZZ

]
−mk2u

C2k
2 =

k2

2

(
m2 +

2u

λ
+ |Z|2

)
. (3.12)

Using the identity(
d

dt
|Z|2

)2

= 4|Z|2|Ż|2+( ˙̄ZZ − Z̄Ż)2, (3.13)
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we can combine these three equations to eliminate Z and
yield an ODE for u(t),

u̇2 = k2λ2

{[
2C2 −m2 − 2

λ
u

]
(s2 − u2)− [mu+ C1]

2

}
.

(3.14)

C. Solution in terms of elliptic functions

The ODE for u(t) describes an elliptic curve. Setting
u = av + b, we can pick the constants

a =
2

k2λ
, b =

C2λ

3
(3.15)

to bring our ODE to Weierstrass normal form in terms
of v:

v̇2 = 4v3 − g2v − g3. (3.16)

The somewhat unsightly expressions for g2 and g3 can be
obtained by symbolic computation:

g2 =
1

3
k4λ2

(
3C1λm+ C2

2λ
2 + 3s2

)
g3 =

1

108
k6λ4(27C2

1 + 18C1C2λm+ 4C3
2λ

2

− 36C2s+ 27m2s2) (3.17)

The solution to the Weierstrass differential equation
(3.16) is then

v(t) = ℘(t+α) =⇒ u(t) =
2

k2λ
℘(t+α) +

C2λ

3
, (3.18)

where ℘ is the Weierstrass P -function and α is a complex
constant determined by the initial conditions. We can
most immediately solve for R3(t). Recalling (3.10), we
have

Ṙ3 =
2

kλ
℘(t+ α) + k

(
C2λ

3
+

1

λ

)
. (3.19)

In order for to obtain a sensible solution, ℘(t+α) must
be real and bounded. This requires Im(α) = |ω2|, where
ω2 is the imaginary half-period of the Weierstrass P -
function (which depends on the elliptic invariants g2, g3).
The real part of α merely shifts our solution in time, so
we can take α = ω2 for simplicity. Using the relationship∫

℘(u)du = −ζ(u), (3.20)

where ζ is the Weierstrass ζ-function, and taking R3(0) =
0 gives the solution

R3(t) =
2

kλ
[ζ(ω2)− ζ(t+ ω2)]+

(
C2λ

3
+

1

λ

)
kt. (3.21)

The solution for the other two components is found
by making the substitution Z = reiθ in (3.12). Writing
|Z2|= r2 quickly yields

r2(t) =
4

3
C2 −m2 − 4

k2λ2
℘(t+ ω2). (3.22)

Note that the choice of Re(α) = 0 we made earlier implies
that t = 0 is a turning point of the radial variable, as
℘′(ω2) is necessarily 0. It is useful to write

r2(t) =
4

k2λ2
[℘(Ω)− ℘(t+ ω2)], (3.23)

where

℘(Ω) = k2λ2

(
C2

3
− m2

4

)
. (3.24)

Then we can use the identity

℘(z)− ℘(Ω) = −σ(z + Ω)σ(z − Ω)

σ2(z)σ2(Ω)
, (3.25)

where σ is the Weierstrass σ-function, in order to simplify
a later result. We obtain the solution

r(t) =
2

λkσ(Ω)

√
σ(t+ ω2 + Ω)σ(t+ ω2 − Ω)

σ(t+ ω2)
(3.26)

To find θ(t) from (3.12), we substitute (Z̄Z − Z̄Ż) =

−2ir2θ̇, obtaining

(3.27)
θ̇ =

C3

r2
+
kmλ

2

=
k2λ2C3

4[℘(Ω)− ℘(t+ ω2)]
+
kmλ

2
,

where

C3 ≡ k
[
m3λ

2
− C1 −mλC2

]
(3.28)

Using the identity∫
dz

℘(z)− ℘(Ω)
=

1

℘′(Ω)

[
2zζ(Ω) + log

σ(z − Ω)

σ(z + Ω)

]
(3.29)

and taking θ(0) = 0, we have

(3.30)
θ(t) =

k2λ2C3

4℘′(Ω)

[
2tζ(Ω)

+ log
σ(t+ ω2 − Ω)σ(ω2 + Ω)

σ(t+ ω2 + Ω)σ(ω2 − Ω)

]
+
kmλ

2
t

We can use the Weierstrass differential equation (3.16)
directly to obtain ℘′(Ω) = (i/2)k2λ2C3, leading to a
seemingly remarkable cancellation. We then have

eiθ(t) =

√
σ(t+ ω2 + Ω)σ(ω2 − Ω)

σ(t+ ω2 − Ω)σ(ω2 + Ω)

· exp

[
−
(
ζ(Ω) +

ikmλ

2

)
t

]
. (3.31)
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Finally, a few terms cancel in the overall expression for
Z, yielding

Z(t) =

[
2

λkσ(Ω)

√
σ(ω2 − Ω)

σ(ω2 + Ω)

]
σ(t+ ω2 + Ω)

σ(t+ ω2)

· exp

[
−
(
ζ(Ω) +

ikmλ

2

)
t

]
. (3.32)

A sample solution is plotted in Fig. 1. We can see
that, in the R1-R2 plane, the solution traces an oscillat-
ing curve in between some inner and outer radius. Mean-
while, the solution propagates in the R3 direction with
non-uniform speed. This behavior is typical over all pa-
rameter values we tested.

IV. MECHANICAL INTERPRETATION AND
QUANTIZATION OF THE REDUCED SYSTEMS

The equations of motion following from the ansatz
(3.4), defining the reduced system for S1, can be writ-
ten as

R̈ = λ[Ṙ, [K,R] +mK] + [K, [K,R]]. (4.1)

These are the equations of motion of a particle in a static
electromagnetic field, given by (working in cylindrical po-
lar coordinates where R1 = r cos θ, R2 = r sin θ, z = R3)

~B = krθ̂ +mkẑ, ~E = k2rr̂, (4.2)

which follow from the vector and scalar potentials

~A =
λk

2

(
mrθ̂ + r2ẑ

)
, V =

k2

2
r2. (4.3)

The classical Hamiltonian is then

H1 =
1

2
p2
r +

1

2

[pθ −Aθ]2

r2
+

1

2
[pz −Az]2 + V (r). (4.4)

It is clear that pθ and pz are conserved. This formula-
tion lends some physical intuition to the solutions found
in section III. We can pass to the quantum theory as
usual by finding the covariant Laplacian in cylindrical
co-ordinates,

Ĥ1ψ = − h̄
2

2

1

r

∂

∂r

[
r
∂ψ

∂r

]
+

1

2r2
[−ih̄∂θ −Aθ]2 ψ

+
1

2
[−ih̄∂z −Az]2 ψ + V (r)ψ. (4.5)

The conservation of pθ, pz leads us to seek a solution to
the Schrodinger equation of the separable form

ψ(r, θ, z) =
1√
r
ρ(r)eilθei

pzz
h̄ (4.6)

FIG. 1. The orbit in the R1-R2 plane (above) and the evolu-
tion of R3 with time (below). The sample solution is plotted
for 0 < t < 21 and uses parameters k = 1, λ = 2.4, C1 = 0.5,
C2 = 1, s = 2, m = 0.5.

for integer l = pθ
h̄ . The system is then reduced to a one-

dimensional Schrodinger equation

− h̄
2ρ′′(r)

2
+ U(r)ρ(r) = Eρ(r) (4.7)
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with effective potential

U(r) = − h̄2

8r2
+

1

2

[h̄l −Aθ]2

r2
+

1

2
[pz −Az]2 + V (r)

=
1

2

[
h̄2
[
l2 − 1

4

]
r2

− h̄kλml

r
+

(
k2λ2m2

4
+ p2

z

)

+ (k − λpz)kr2 +
λ2k2r4

4

]
. (4.8)

At low coupling (λ→ 0), we have

−h̄2ρ′′ +

{
h̄2
[
l2 − 1

4

]
r2

+ p2
z +

k2

2
r2

}
ρ = Eρ, (4.9)

and we see by dimensional analysis

[h̄k] = 1/L2 ⇒ E ∼ |h̄k|. (4.10)

These are weakly coupled massless excitations. But in
the high coupling limit (λ→∞), we have

−h̄2ρ′′ +

{
k2λ2

4
(m2 + r4)

}
ρ = Eρ, (4.11)

which yields a much more peculiar spectrum

[h̄2kλ]2 = 1/L6 ⇒ E ∼ |h̄2λk|2/3. (4.12)

If this dispersion relation describes some fundamental
constituents of the theory, then they are certainly not
particles in the traditional sense. We propose that this
may be a glimpse of some post-relativistic constituents
as mentioned in section II A.

A. quantization of the dual reduced system

In the dual picture (nonlinear sigma model), our ansatz
picks out a class of solutions that correspond to a differ-
ent mechanical system. Though the equations of motion
in each picture can be mapped to one another via the du-
ality, the correspondence is not immediately obvious, and
the systems will appear very different upon quantization.

After the ansatz, the duality relations (2.13) read

g−1g′ = λeKx
(
S +

1

λ
K

)
e−Kx, g−1ġ = λeKxLe−Kx.

(4.13)
Writing g = h(t, x)e−Kx yields

h−1h′ = λS h−1ḣ = λL. (4.14)

We further suppose that h is separable as h(t, x) =
F (x)Q(t). Then the equation for S can be separated
as

F−1(x)F ′(x) = λQ(t)S(t)Q−1(t) (4.15)

Both sides are equal to some constant traceless matrix
C. Since Q(t) is only unique up to multiplication on the
left by a constant matrix in SU(2), we can use this to
choose C to be diagonal and thus proportional to K. We
then have

Q(t)S(t)Q−1(t) = sK, (4.16)

implying that TrS2 = s2k2. (4.15) is satisfied if

F (x) = eλsKx. (4.17)

Thus, the full corresponding ansatz for the field variable
in the dual theory is

g(t, x) = eλsKxQ(t)e−Kx, (4.18)

where Q is related to the previous variables by

S = sQ−1(t)KQ(t), L =
1

λ
Q−1Q̇. (4.19)

The dual Lagrangian can now be written as

L2 =
1

2f2
Tr

[(
Q−1Q̇

)2

−
(
λsQ−1KQ−K

)2]
. (4.20)

It is useful to parameterize Q in terms of the Euler angles:

Q = e
i
2σ3γe

i
2σ1βe

i
2σ3α. (4.21)

The traces in L2 can then be computed directly, yielding

L2 =
1

λ2

{
α̇2 + β̇2 + γ̇2

2
+ cosβα̇γ̇ − V (β)

}
(4.22)

where (dropping a constant shift)

V (β) = −2k2λs cosβ. (4.23)

As a mechanical system, this is the well known spinning
top (isotropic Lagrange top). It is instructive to write

L2 =
1

λ2

[
1

2
gijα̇

iα̇j − V
]

(4.24)

where

gij =

 1 0 cosβ
0 1 0

cosβ 0 1

 (4.25)

is the metric of the rotation group and V is the gravita-
tional potential of the top. The overall constant 1

λ2 in the

action leads to a rescaling of h̄ 7→ h̄λ2 upon quantization.
To pass to the quantum theory, we find the Laplacian

operator with respect to the metric g of Eulerian coordi-
nates,

∇2ψ =
1
√
g
∂i
[√
ggij∂jψ

]
(4.26)
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The Hamiltonian is then

Ĥ2 = − h̄
2λ4

2

[
∂2
α + ∂2

γ − 2 cosβ ∂α∂γ

sin2 β

+ ∂2
β + cotβ∂βψ

]
+ V ψ (4.27)

We can again reduce the Schrodinger equation Ĥ2ψ =
Eψ to a one-dimensional Schrodinger equation with the
ansatz

ψ(α, γ, β) = eimααeimγγ
B(β)√
sinβ

, (4.28)

yielding

−h̄2λ4B
′′(β)

2
+ U(β)B(β) = EB(β) (4.29)

where

U(β) = − h̄
2λ4

8
+

h̄2λ4

2 sin2 β

[
mα

2 +m2
γ

− 2mαmγ cosβ − 1

4

]
− 2k2λs cosβ. (4.30)

This can be studied by standard techniques for peri-
odic potentials (Floquet theory or Bloch waves etc.) We
content ourselves with a quick look at low energy excita-
tions: small oscillations around the classical equilibrium
q = 0 and setting mα = 0 = mγ . Changing variables
β = h̄λ2q and expanding around the classical minimum
q = 0 gives

(4.31)−1

2

d2B

dq2
+

{
q2
(
h̄2k2sλ5

)
− 1

8q2
−2k2s

}
B ≈EB

The solutions involve Laguerre polynomials and the spec-
trum is, in this approximation En ≈

√
2(2n+1)h̄k

√
sλ

5
2 .

If we remove the zero-point energy (n = 0), we have the

energy of n free particles each of energy e1 = h̄k
√

8sλ
5
2 .

This is the dispersion relation of massless particles, ex-
cept for a rescaling of the speed.

V. CONCLUSIONS AND OUTLOOK

Because they only exist in the short distance limit, it
is difficult to say whether objects like “preons” we dis-
cuss could correspond to directly observable objects in
an experiment. Quarks were not considered at first to
be directly observable things either, as they could not
be created as isolated particles. In the S1-model’s strong
coupling limit, the Minkowski geometry of space-time ap-
pears to be lost, and wave propagation is sustained en-
tirely by the non-linearity. However, these waves do not
appear to transmit information, and perhaps any “post-
relativistic” effects are hidden by some sort of confine-
ment when they form bound states.

It is at least intriguing to question whether highly cou-
pled theories have fundamental constituents whose na-
ture is so exotic that they have been overlooked. Draw-
ing paralells with λφ4 theory, it is tempting to speculate
that the Higgs particle of the standard model is such a
composite of some strongly bound preons existing only
at short distances. Were this the case, one could sensibly
describe a “pure Higgs” at short distances.

For a more complete understanding, we must quantize
the whole theory rather than just its mechanical reduc-
tion. Since the equations have a Lax pair, it should be
possible to perform a canonical transformation to angle-
variables and then pass to the quantum theory. Such
a quantization was achieved for sine-Gordon theory [7],
proving that the solitons are fermions which bind to form
the scalar waves. A similar analysis of our model is a
lengthy endeavor, and we hope to return to this later
after laying the groundwork and motivation here.

We present a side by side comparison of comparison of
our work with the two models in Table I below.
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Appendix A: quadratic hamiltonians with nilpotent
bracket algebras

Many classical systems have a quadratic Hamiltonian
together with Poisson brackets (or commutators in the

quantum case) which generate a Lie algebra:

H =
1

2
habvavb, {va, vb} = ccabvc (A1)

Where ccab are the structure constants of the bracket
algebra and va the dynamical variables. The quadratic
nature of the Hamiltonian immediately affords a geo-
metric interpretation: hab defines a left-invariant metric,
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Nilpotent Field Theory (S1) Principal Chiral Model (S2)

L1 = Tr
{

1
2λ
φ̇2 − 1

2λ
φ′

2
+ 1

3
φ[φ̇, φ′]

}
Lagrangian density L2 = 1

2λ2 Tr
{

(g−1ġ)2 − (g−1g′)2
}

I = 1
λ
φ̇, J = φ′ Currents I = g−1g′, J = g−1ġ

λI ′ = J̇ Current Identity İ − 1
λ
J ′ + λ [J, I] = 0

İ − 1
λ
J ′ + λ [J, I] = 0 Equation of Motion λI ′ = J̇

Reduced System of S1 Reduced System of S2

φ(t, x) = eKxR(t)e−Kx +mKx Wave Ansatz g(t, x) = eλsKxQ(t)e−Kx

I = eKxṘe−Kx Wave Currents I = eKx
{
λsQ−1KQ−K

}
e−Kx

J = eKx {λ[K,R] +mK} e−Kx J = eKx{Q−1Q̇}e−Kx

S = Ṙ+ 1
λ
K Common Variables S = sQ−1KQ

L = [K,R] +mK L = 1
λ
Q−1Q̇

L̇ = [K,S] Current Identity Ṡ = λ[S,L]

Ṡ = λ[S,L] Eqn. of motion L̇ = [K,S]

H1 = Tr
{

1
2

(
S − 1

λ
K
)2

+ 1
2
L2
}

Hamiltonian H1 = H2 H2 = Tr
{

1
2

(
S − 1

λ
K
)2

+ 1
2
L2
}

L1 = Tr
{

1
2

(
S − 1

λ
K
)2

Lagrangian L1 6= L2 L2 = 1
2
Tr
{
L2 − (S −K)2

}
+ 1

3
R [S −K,L]− 1

2
L2
}

E ∼ |k|2/3 (λ→∞) short-range dispersion E ∼ |k| (λ→ 0)

TABLE I. A comparison of results in the dual models

h ∈ g ∨ g on the Lie group G (with generating algebra
g). The equations of motion then describe geodesics on
the Lie group under this metric.

A nilpotent Lie Algebra of step n is a Lie algebra
in which all repeated brackets of order n vanish. The
combination of a quadratic Hamiltonian and a nilpotent
bracket algebra can allow one to solve for the spectrum
of a quantum system algebraically, using only the repre-
sentation structure of the associated Lie group. This is
done by using a representation to generate raising and
lowering operators, as is familiar in the case of the har-
monic oscillator. While we did not take this (somewhat
ambitious) approach here, it is carried out in [17] for a
magnetic system very similar to the one we discuss in
section IV. It is worth at least mentioning this point
of view, as it connects the model studied here to other,
more well-known models.

1. Nilpotent Mechanical Systems

The simplest system of this type is a harmonic oscilla-
tor,

H =
1

2

(
p2 + ω2q2

)
, {p, q} = 1. (A2)

Here the canonical variables p and q form a step-2

nilpotent Lie algebra, where all double commutators van-
ish. Of course, any Hamiltonian in terms of the canon-
ical variables will have this bracket algebra, but what
happens in the non-quadratic case? Consider the anhar-
monic oscillator,

H =
1

2

(
p2 + ω2q2

)
+ λq4 (A3)

We can recast this as a quadratic Hamiltonian with
step-3 nilpotent bracket algebra by defining q2 = q2, and
then treating this as a distinct element of the algebra.
We then have

H =
1

2

(
p2 + ω2q2

)
+ λq2

2 (A4)

{p, q2} = 2q, {p, q} = 1, {q2, q} = 0, (A5)

where one can see that all triple commutators van-
ish. Thus, the classical anharmonic oscillator describes
geodesics in the corresponding nilpotent Lie group. It is
then possible to solve such quantum theories using the
methods of [17].

The mechanical reduction of our field theory gives an-
other example. The equations of motion (3.4) follow from
the hamiltonian (3.8) with Poisson Brackets

{Sa, Sb} = λεabcLc, {La, Lb} = 0, {Sa, Lb} = εabcKc

(A6)
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This a step three nilpotent Lie algebra. Its on the space
of functions of R is what we used to quantize the theory.
In the dual picture the Poisson brackets would not be
nilpotent: the Lie algebra it is the semi-direct product of
SU(2) with an abelian algebra.

2. Nilpotent Field Theories

Interestingly, we find that some of the most important
field theories of particle physics can be described in this
way. The bosonic part of the standard model consists of
Yang-Mills theory coupled to a Higgs sector described as
a λφ4 scalar field theory.

In field theory, the obvious analogue of the anharmonic
oscillator is pure λφ4 theory. Identifying φ2(x) = φ2(x),
this theory can be described by

H =
1

2

∫ [
π2(x) +m2φ2(x) + λφ2

2

]
dx (A7)

{π(x), φ2(y)} = 2φ(x)δ(x− y), {π(x), φ(y)} = δ(x− y)

(A8)

Pure λφ4 theory (without coupling to fermions) in 4 di-
mensions remains intractable in the short distance limit:
is not an asymptotically free theory. We see here that
it follows from a Hamiltonian with one degree of extra
nilpotency in the bracket algebra. This suggests that
perhaps the theory is easier tamed with an algebraic ap-
proach.

Another famously puzzling theory, Yang-Mills theory,
can be cast in the same language. Here the Poisson
Brackets and Hamiltonian are best expressed in terms
of the electric field

E[a] =

∫
Ebiabidx (A9)

(where a is a smooth test function) and the magnetic
field B = dA+A ∧A:

{E[a], B} = da+ [A, a],

{E[a], A} = a,

{Aaj(x),Abj(y)}= 0, (A10)

H =
1

2

∫ (
E2 +B2

)
dx. (A11)

Yang Mills theory, however, is an asymptotically free the-
ory. The fact that it can be brought to the same form as
pure λφ4 theory suggests some commonality in structure
of the two theories, though they might appear glaringly
different due to their short-distance behavior.

We pause to note that not all systems are nilpotent.
The simplest example would be the rigid rotor, whose
bracket algebra is that of angular momentum, where re-
peated commutators do not vanish. Such a Lie algebra
is perhaps misleadingly labeled as simple in the mathe-
matics literature. Also, the Euler equations of an ideal
fluid can be formulated with a quadratic hamiltonian on
the Lie algebra of vector fields. Nilpotent Lie algebras
could be useful as approximations here.

3. The current algebra of S1

The equations of motion (2.12) follow from the hamil-
tonian

H1 =
1

2

∫
[λIaIa +

1

λ
JaJa]dx (A12)

and the Poisson brackets from S1,

{Ja(x), Jb(y)}1= 0

{Ia(x), Jb(y)}1 = −δbaδ′(x− y)

{Ia(x), Ib(y)}1 = εabcJ
cδ(x− y). (A13)

So this theory can also be cast as a quadratic Hamil-
tonian with step-3 nilpotent algebra. This further moti-
vates the analogy between our model and λφ4 theories.

It is natural, in nilpotent Lie algebras, to take the
singular limit of the metric where the coefficient of the
higher-step generators shrinks to zero. (This geometry
has been well-studied in the simplest case of the Heisen-
berg group [10]). This is precisely the strong coupling
limit λ→∞ of our theory: the second term in the hamil-
tonian 1

2

∫
[λIaIa + 1

λJ
aJa]dx tends to zero. In this limit

the co-metric is not invertible.
The resulting sub-Riemannian geometry still has

geodesics connecting nearby points: the Hormander con-
dition is satisfied because the commutator of the surviv-
ing generators Ia(x) generate the remaining ones Ja. The
Chow-Rashevsky theorem does not directly apply here
as we are dealing with an infinite dimensional manifold.
But, it does suggest that there are propagating solutions
even in the limit λ → ∞. We found some examples nu-
merically first, and then found analytic solutions includ-
ing these examples. So at least in this case, the intuition
provided by the sub-Riemannian geometry was useful in
understanding the strong coupling limit.
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