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Abstract
Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields,

predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields

two inconsistent values for the force on a curved or edged boundary (the “pressure anomaly”).

A still more realistic, but still easily calculable, model replaces the hard wall by a power-law

potential; because it involves no a posteriori modification of the formulas calculated from the

theory, this model should be anomaly-free. Here we first set up the formalism and notation for

the quantization of a scalar field in the background of a planar soft wall, and we approximate the

reduced Green function in perturbative and WKB limits (the latter being appropriate when either

the mode frequency or the depth into the wall is sufficiently large). Then we display numerical

calculations of energy density and pressure for the region outside the wall, which show that the

pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers,

which must tackle regularization and renormalization of divergences induced by the potential in

the bulk region.
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I. INTRODUCTION

The Casimir effect [1–3] is traditionally thought of as a force between electrical conductors
caused by the effects of these conducting boundaries on the spectrum of normal modes of
the quantized electromagnetic field in the region exterior to the conductors. (For simplicity
when investigating matters of principle, the EM field is often replaced by a scalar field, and
the boundary conditions of a perfect conductor replaced by the Dirichlet condition, φ = 0.
The present work deals with that model.) Crudely, the idea is that each mode acts as a
harmonic oscillator with ground-state energy 1

2
ω, so that when the energy is summed over

all modes of the system, the total vacuum energy is 〈E〉 = 1
2

∑
n ωn ; then the derivative

of 〈E〉 with respect to some geometrical parameter of the system constitutes a generalized
force, by the “principle of virtual work”.

This mode sum is clearly divergent, and its relation to physical realities measured in
the laboratory has been somewhat controversial. Formal regularizations, such as the zeta-
function method [4], usually give answers that are generally accepted as “correct”, but their
physical logic is unconvincing. Also, when the conductors are regarded as rigid and only
their relative positions are allowed to vary, a finite answer for the force (or energy difference)
can be obtained by sufficiently careful calculations [5–7]. It is generally agreed, however,
that the root of the problem is the failure of the idealized notion of a perfect conductor. A
real material does not act like a perfect conductor (or even a perfect dielectric) at very high
frequencies, and thus nature must provide an ultraviolet (or high-momentum [8]) cutoff. But
the detailed study of a real material is a complicated nonlinear problem of condensed-matter
physics, and it is of interest to step back and see if the phenomena can still be modeled, at
least qualitatively, entirely within the linear framework of the field alone.

The most common approach is to insert ad hoc an ultraviolet cutoff to make the integrals
over frequency finite. The simplest choice is an exponential cutoff:

〈E〉τ ≡
1

2

∑
n

ωne
−ωnτ ,

where τ is the cutoff parameter, which can also be considered as a Wick rotation of the
difference of two time coordinates, τ = −i(t− t′). A complementary approach is to calculate
expectation values of the local energy density and pressure (components of the stress tensor:
u ≡ 〈T00〉 , px ≡ 〈T11〉 , etc.), from which all the physically interesting quantities are in
principle derivable. From local calculations one sees that, once one removes the ubiquitous
zero-point energy that is present even for a completely free field, the vacuum energy density
at any point away from the boundary is finite even without a cutoff, and infinities in the total
energy (for a region of finite volume) arise only because the energy density is not integrable
near the boundary. Thus this approach significantly elucidates the physical meaning of the
divergences. Cutoff and local calculations fit very well together, as both can be based on a
Green function of the field equation corresponding to the geometry of the system considered
(e.g., [9, 10]).

It was reasonable to expect that keeping τ nonzero, and comparable (in natural units)
to an interatomic spacing, would yield an effective model of the Casimir effects of a realistic
imperfect conductor. However, when ultraviolet regularization is applied to the stress tensor,
it produces formulas for energy density and pressure that are inconsistent with each other
[11, 12]. The principle of virtual work, or energy-pressure balance, requires that a change
in the vacuum energy corresponding to some infinitesimal movement of a boundary of the

2



system be attributable to some vacuum pressure pushing against that boundary. As an
example, consider the pressure against a flat wall,

− ∂E
∂x

= F =

∫∫
p dy dz

(
E =

∫∫∫
u dx dy dz

)
. (1.1)

This relation does not follow by default from the local energy-momentum conservation law,
∂T µν/∂xµ = 0 (which is satisfied by the expectation values inside the cavity). It instead
constrains the equation of state of the quantized field (cf. [13]). It appears that the principle
of virtual work has been disrupted by the regularization method. Pressure balance can
be restored by replacing the timelike ultraviolet cutoff by point-splitting in a “neutral”
direction, one parallel to the wall [12, 14], but this is to repair the damage done by one ad
hoc measure by adding another one.

Therefore, Bouas et al. [15] proposed a new kind of model, the soft wall, wherein the
Dirichlet boundary is replaced by a smooth, steeply rising potential function. Although
regularization is still needed, as always in quantum field theory, the pathology of the perfect
conductor has been removed in a physically rigorous way. That is, the departure from ideal
conductivity is embodied from the start in a complete and consistent physical theory, rather
than imposed a posteriori by inserting a cutoff into the formal mathematical results of an
unrealistic theory. One has every reason to expect the principle of virtual work to hold (after
renormalization) in this context.

Specifically, [15] and [10], summarized in [14], studied a “power wall” set at the plane
z = 0 (see Eq. (2.2)). It models a conducting plate whose thickness is much greater than its
skin depth and whose size is large enough that edge effects are negligible. That project was
continued in the thesis [16], whose results are reported here with some corrections. Following
Milton [10], we express the components of the vacuum stress-energy tensor in terms of the
reduced Green function formed from the solutions of the z dependence of the field in the
imaginary-frequency regime (Sec. II). In Sec. III we study those solutions analytically (in
the limits of large and small frequency) and numerically. Energy density and pressure in the
region outside the potential are plotted in Sec. IV; there, as expected, we find no indication
of an anomaly in the energy-pressure balance. Sec. V sets up some machinery to be used
in the future to tackle the more difficult problem of the interior of the wall, and Sec. VI
summarizes the results and the outlook. Some references to older or tangentially related
work that did not fit into this introduction are provided in an appendix.

II. FORMULATION OF THE MODEL

A. Field equation, basis solutions, and Green function

We consider the scalar field equation

∂2Φ

∂t2
= ∇2Φ− V (z)Φ, (2.1)

where

V (z) =

{
0 if z ≤ 0,

zα if z > 0,
(2.2)
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is a scalar potential (or position-dependent Klein–Gordon mass). The field is classically
real, hence Hermitian as a quantum field. The space-time coordinates are (t, x, y, z) =
(x0, x1, x2, x3) = x, and the metric tensor has signature (−1, 1, 1, 1). One often writes r⊥ for
(x, y), and k⊥ for the conjugate wave numbers, (k1, k2). We use the natural units h̄ = 1 = c
and in addition choose the unit of length so that the coupling constant implied in Eq. (2.2) is
unity; the fundamental length scale that emerges for a general coupling constant is identified
in [15].

To avoid introducing gratuitous singular behavior around z = 0, we take α to be a positive
integer. As α→∞, the potential formally approaches

V (z) =

{
0 if z < 1,

∞ if z > 1,
(2.3)

which represents a hard wall (Dirichlet boundary condition) at z = 1. Our goal is to
understand the ground-state expectation values of energy density and pressure, which will
be of significant magnitude only in some interval surrounding the interval 0 ≤ z ≤ 1.

When Eq. (2.1) is solved by separation of variables, the dimensions (t, x, y) are trivial,
and the z dependence is given by solutions of(

− ∂2

∂z2
+ V (z)− p2

)
φ(z) = 0, (2.4)

as detailed in [15]. However, following [10], we find it more useful to express vacuum expec-
tation values in terms of a reduced Green function, built out of solutions of Eq, (2.4) with
the sign of the spectral parameter reversed:(

− ∂2

∂z2
+ V (z) + κ2

)
φκ(z) = 0. (2.5)

For each (positive) value of p or κ, there are two linearly independent solutions of Eq.
(2.4) or (2.5). Most obviously relevant are the solutions that decay as z → +∞; let F (z) be
such a solution, normalized at the origin for definiteness:

F (0) = 1, lim
z→∞

F (z) = 0. (2.6)

A convenient choice of second solution is defined by

G(0) = 0, G′(0) = 1. (2.7)

In constructing the Green function, however, the most pertinent second solution is one that
decays at −∞:

H(0) = 1, lim
z→−∞

H(z) = 0. (2.8)

It is sometimes convenient to relax the normalization conventions F (0) = G′(0) = H(0) =
1, and even the condition G(0) = 0 (provided that G and F stay independent). When we
give formulas that do not make those assumptions, we write the function names in the
calligraphic font. For example, one notes immediately that for z ≤ 0,

Hκ(z) = eκz, (2.9)
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FIG. 1: (color online) Fκ(z) (solid, green) and Gκ(z) (long dashed, red) for α = 1, κ = 1, and

Fκ(z) (dashed, black) and Gκ(z) (dotted, blue) for α = 2, κ = 0.5, The differences between the two

pairs of curves (in this region of small z) are caused more by the change in κ than by the change

in α. All graphics in this paper were prepared with Mathematica.

and hence that

κ = H ′κ(0) =
H′κ(0)

Hκ(0)
. (2.10)

For z ≥ 0, the case α = 1 is easily solved using Airy functions, and the case α = 2 also
produces an exact solution involving parabolic cylinder functions. For α = 1, the solutions
(normalized as above) are

Fκ(z) =
Ai(κ2 + z)

Ai(κ2)
, (2.11)

Gκ(z) =
Bi(κ2) Ai(κ2 + z)− Ai(κ2) Bi(κ2 + z)

Ai′(κ2) Bi(κ2)− Ai(κ2) Bi′(κ2)
. (2.12)

For α = 2, the solutions are

Fκ(z) =
D−(κ2+1)/2(

√
2z)

D−(κ2+1)/2(0)
, (2.13)

Gκ(z) =
D−(κ2+1)/2(−

√
2z)−D−(κ2+1)/2(

√
2z)

2
√

2 D(1−κ2)/2(0)
. (2.14)

In reference to the denominator in Eq. (2.14) see [17, (19.6.2) and (19.3.5)]. Examples
of these functions are plotted in Fig. 1. Unfortunately, there are no known closed-form
solutions to the differential equation when α > 2. Since we intend to examine the limiting
case as α→∞, we will need to find approximate solutions to these equations.

We denote the Wronskian of two solutions by

W (y1, y2) = y1y
′
2 − y′1y2 , (2.15)

where the functions may be evaluated at any value of z, in particular at z = 0.
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The reduced Green function is to satisfy(
− ∂2

∂z2
+ V (z) + κ2

)
gκ(z, z

′) = δ(z − z′). (2.16)

By a well known formula or method, one finds

gκ(z, z
′) =

Hκ(z<)Fκ(z>)

W (Fκ,Hκ)
=
Hκ(z<)Fκ(z>)

κ− F ′κ(0)
, (2.17)

z< = min(z, z′), z> = max(z, z′). (2.18)

Further reduction is postponed to later sections, because the most useful approach depends
on whether one is working outside or inside the wall.

B. Stress tensor

The stress-energy-momentum tensor of a massless scalar field in flat space-time with
curvature-coupling (conformal) parameter ξ is

Tµν =∂µΦ∂νΦ−
1

2
gµν(∂λΦ∂

λΦ + V Φ2)

− ξ(∂µ∂ν − gµν∂λ∂λ)Φ2, (2.19)

where gµν = ηµν = diag(−1, 1, 1, 1). The equation of motion (2.1) can be used [18] to rewrite
Eq. (2.19) so that V does not explicitly appear. Also, the notation

β = ξ − 1
4

(2.20)

is convenient. Thus one arrives at these formulas for the energy density and pressure:

T00 =
1

2
(∂0Φ)2 − 1

2
Φ(∂0)

2Φ− β∇2Φ2, (2.21a)

T11 =
1

2
(∂1Φ)2 − 1

2
Φ(∂1)

2Φ + β(−∂20 + ∂22 + ∂23)Φ2, (2.21b)

and totally analogous expressions for T22 and T33 . The remaining, off-diagonal, components
of Tµν play almost no role in our study; it is easy to show that their vacuum expecta-
tion values must vanish for a single, flat boundary as considered here (although they may
temporarily develop nontrivial cutoff-dependent terms when point-splitting regularization is
used with an oblique direction of point separation [19]).

The expression of the vacuum expectation values 〈Tµν〉 in terms of Green functions has
been detailed in previous papers [10, 14, 15], but in a variety of formalisms. Here we shall
not rehearse the standard quantum field theory leading to the main results, but rather
concentrate on establishing consistent notations. On the one hand, the expectation value of
the product of two field operators is a certain Green function for the wave equation,

〈0|Φ(x)Φ(x′)|0〉 =
1

i
G(x, x′), (2.22)
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of the form

G(x, x′) =

∫
dω

2π

dk⊥
(2π)2

e−iω(t−t
′)eik⊥·(r⊥−r′

⊥)g(p2; z, z′) (2.23)

(all three integrations being over (−∞,∞)), with

p2 = ω2 − k2
⊥ (2.24)

(which, despite the notation, is not necessarily positive). The vacuum energy density and
pressure can now be found from Eq. (2.23) and the expectation values of Eqs. (2.21). If we
set

ω = iζ, t− t′ = i(τ − τ ′), (2.25)

and formally rotate the ζ integration back to the real axis, we get

−iG(x, x′) =

∫
dζ

2π

dk⊥
(2π)2

ei(ζτ+k⊥·r⊥)gκ(z, z
′), (2.26)

which we have here simplified by setting τ ′ and r′⊥ equal to zero. We now have

κ2 = ζ2 + k2
⊥, (2.27)

which is always positive. On the other hand, the calculation of the expectation values can
be based from the outset on the “cylinder kernel”, a certain Green function for the equation

∂2Φ

∂τ 2
+∇2Φ− V (z)Φ = 0. (2.28)

Standard construction of that function leads rigorously to Eq. (2.26), times −2:

T (τ, r′⊥, z, z
′) = −2

∫
dζ

2π

dk⊥
(2π)2

ei(ζτ+k⊥·r⊥)gκ(z, z
′), (2.29)

with κ defined as the positive root of Eq. (2.27).
The next step of the calculation is most simply expressed by writing the vacuum stress

as a Fourier transform:

〈Tµν〉 =

∫
dζ

2π

dk⊥
(2π)2

eiζτeik⊥·r⊥tµν

∣∣∣
z′→z

. (2.30)

From Eqs. (2.21), (2.22), and (2.26) one gets

t00 = −ζ2gκ(z, z)− 2β(∂2z + ∂z∂
′
z)gκ(z, z

′)
∣∣
z′→z, (2.31a)

t11 = k21gκ(z, z) + 2β(∂2z + ∂z∂
′
z)gκ(z, z

′)
∣∣
z′→z, (2.31b)

t22 = k22gκ(z, z) + 2β(∂2z + ∂z∂
′
z)gκ(z, z

′)
∣∣
z′→z, (2.31c)

t33 = − 1

2
(∂2z − ∂z∂′z)gκ(z, z′)

∣∣
z′→z. (2.31d)

It is noteworthy that 〈T33〉 is independent of β (or ξ).
Note that primed coordinates other than z′, and derivatives with respect to them, have

been eliminated, so without loss of generality we may set those coordinates equal to 0. Now
the 4-vector

δ = (τ, r⊥, (z − z′)) (2.32)
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should be regarded as the separation between the two space-time points that are arguments
of the fields in the quadratic field observables; it is still needed to regularize the formulas
for the vacuum energy and pressure. In the present work, however, we have no need to
consider splitting in the z direction, so we can set z′ = z as soon as the derivatives indicated
in Eqs. (2.31) have been taken. To understand the pressure anomaly it is essential, though,
to consider point-splitting in an arbitrary direction in the (τ, r⊥) 3-space [12, 20].

Putting Eqs. (2.30) and (2.31) together, we obtain formulas for 〈Tµν〉. For example, the
energy formula is

〈T00〉 =

∫
dζ

2π

dk⊥
(2π)2

eiζτ+ik⊥·r⊥ (2.33)

× [−ζ2gκ(z, z)− 2β(∂2z + ∂z∂
′
z)gκ(z, z

′)
∣∣
z′→z].

After z′ is taken to z, the δ of Eq. (2.32) can be thought of as a 3-vector and the exponent
in Eq. 2.33 can be written κ · δ, where

κ = (ζ,k⊥). (2.34)

As in [10], we make a change of variables to polar coordinates, defined by

κ2 = |k⊥|2 + ζ2, cos θ =
ζ

κ
, (2.35a)

δ2 = |r⊥|2 + τ 2, cosφ =
k1
|k⊥|

. (2.35b)

Note next that z′ can be completely eliminated from Eqs. (2.31a)–(2.31c) by recognizing
the total derivative

d2

dz2

[
gκ(z, z

′)
∣∣
z′→z

]
= 2
[ ∂2
∂z2

gκ(z, z
′)
∣∣
z′→z +

∂

∂z

∂

∂z′
gκ(z, z

′)
∣∣
z′→z

]
. (2.36)

We then rewrite Eq. (2.33) as

〈T00〉 =
1

(2π)3

(
∂2

∂τ 2
− β ∂2

∂z2

)∫ ∞
0

dκ κ2
∫ 1

−1
d cos θ

×
∫ 2π

0

dφ eiκ sin θ(cosφ r1+sinφ r2)eiκ cos θ τgκ(z, z) (2.37)

and integrate over the angular coordinates. Doing the same for the other components, we
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finally arrive at the expectation values of the stress-energy tensor components:

u ≡ 〈T00〉 =
1

2π2

(
∂2

∂τ 2
− β ∂2

∂z2

)∫ ∞
0

dκ κgκ(z, z)
sinκδ

δ
, (2.38a)

px ≡ 〈T11〉 =
1

2π2

(
− ∂2

∂r21
+ β

∂2

∂z2

)∫ ∞
0

dκ κgκ(z, z)
sinκδ

δ
, (2.38b)

py ≡ 〈T22〉 =
1

2π2

(
− ∂2

∂r22
+ β

∂2

∂z2

)∫ ∞
0

dκ κgκ(z, z)
sinκδ

δ
, (2.38c)

pz ≡ 〈T33〉 = − 1

4π2

∫ ∞
0

dκ κ

[(
∂2

∂z2
− ∂

∂z

∂

∂z′

)
gκ(z, z

′)

]∣∣∣∣
z′→z

× sinκδ

δ
. (2.38d)

It is readily seen that the only dependence remaining on the point-splitting vector inside
the integral is in the scalar δ, which depends on the differentiation variables (τ, r⊥) in a
symmetrical way. If there were no divergences, we would now find the physical energy
density and pressure by taking δ → 0. In that limit, formally u = −px = −py , which is
the expected relation between energy density and pressure as predicted by the principle of
virtual work. To visualize this fact, place a test wall (say the x–z plane) perpendicular to
the existing soft wall. If a pressure px pushes the test wall, there should be a decrease in
energy corresponding to the amount of work done in the process of moving the test wall;
since u is independent of the position of the test wall, this energy change is simply u times
the displacement. Thus Eq. (1.1) is satisfied — in fact, the integrands on the two sides
are pointwise the same. Thus, insofar as the integrals in Eqs. (2.38) converge, no pressure
anomaly arises. We must now examine the precise situation outside and inside the wall
separately (Secs. IV and V).

III. PERTURBATION THEORY

When either z or κ is large, solutions of Eq. (2.5) in the potential region are well ap-
proximated by the (Carlini–Liouville–Green–Jeffreys–) WKB method for the exponential
(nonoscillatory) regime. Since the theory and formulas are well known, we shall simply
introduce the expressions when needed.

When both z and κ are small, a different approximation method is needed. One can
write a solution of Eq. (2.5) as a power series in κ2. To first order,

Fκ(z) ≈ F0(z) + κ2F1(z), (3.1a)

Gκ(z) ≈ G0(z) + κ2G1(z). (3.1b)

Luckily, the equation can be solved exactly when κ = 0. We introduce the notations

b =
1

α + 2
, (3.2)

k(z) =
√
zKb

(
2bz

1
2b

)
, (3.3a)

i(z) =
√
zIb

(
2bz

1
2b

)
, (3.3b)
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where K and I are the modified Bessel functions. Then

F0(z) = c1 k(z), (3.4a)

G0(z) = c2 i(z), (3.4b)

where c1 and c2 are constants used to match the normalization conditions (2.6) and (2.7).
F1 must be of the form

F1(z) =

∫ ∞
0

g(z, z′)F0(z
′) dz′, (3.5)

g being a suitable Green function for the nonhomogeneous equation

F ′′1 − zαF1 = F0 . (3.6)

By hypothesis c1 has already been chosen to match the boundary data exactly, so the proper
solution must satisfy F1(0) = 0 as well as vanishing at infinity. Therefore,

g(z, z′) =
i(z<)k(z>)

W (i, k)
. (3.7)

The solution for G1 is similar, but this time the Green function must annihilate both G(0)
and G′(0), with no condition at infinity. Thus we arrive at

F1(z) =
1

W (i, k)

(
k(z)

∫ z

0

i(a)F0(a) da+ i(z)

∫ ∞
z

k(a)F0(a) da

)
, (3.8a)

G1(z) =
1

W (i, k)

(
k(z)

∫ z

0

i(a)G0(a) da− i(z)

∫ z

0

k(a)G0(a) da

)
, (3.8b)

where the Wronskian is defined as in Eq. (2.15).
In Figures 2–5 the exact Airy-function solutions with α = 1 are compared with the

perturbative and the WKB approximations, for various values of κ. As expected, as κ grows
there is a transition from perturbative to WKB regime. The WKB formulas used here are
the first-order ones,

F (z) ≈ cF (κ2 + zα)−
1
4 exp

[
−
∫
dz
(√

κ2 + zα
)]

, (3.9a)

G(z) ≈ cG(κ2 + zα)−
1
4 sinh

[∫
dz
(√

κ2 + zα
)]

. (3.9b)

Calculations with special functions determine that

W (i, k) = − 3

2
, c1 =

2bb

Γ(b)
, c2 =

Γ(b)

3bb
. (3.10)

and hence that

F ′0(0) = −b2b−1Γ(1− b)
Γ(b)

, F ′1(0) = −
√
πb1−2b

24b−1
Γ(2b)Γ(3b)

Γ(b)Γ
(
1
2

+ 2b
) . (3.11)

We remark that higher-order z-derivatives at 0 may not exist, because fractional powers of
z arise in the expansion of k(z).
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FIG. 2: (color online) Exact (solid, gray), perturbation (long dashed, green), and WKB (dotted,

purple) solutions of F (z) for α = 1, κ = 0.7. The perturbation solution closely matches the exact

solution.

FIG. 3: (color online) Exact (solid, gray), perturbation (long dashed, green), and WKB (dotted,

purple) solutions of F (z) for α = 1, κ = 1. The WKB solution closely matches the exact solution.

The perturbative expansion of Fκ may be applied with negative values of κ2 to approxi-
mate the eigenfunctions, solutions of Eq. (2.4).

Conceptually it is easy to extend the perturbative expansions to higher order in κ2 by
formulas of the structure

Fn(z) =

∫
dz1 · · · dzn g(z, z1) · · · g(zn−1, zn)F0(zn). (3.12)

We have not implemented any order above the first, because the iterated numerical integra-
tions would become demanding. We tried a second-order WKB approximation but found,
as usual for a nonconvergent asymptotic series, that it made the results worse in the region
of moderate z where an improvement was most needed.
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FIG. 4: (color online) Exact (solid, gray), perturbation (long dashed, green), and WKB (dotted,

purple) solutions of G(z) for α = 1, κ = 0.8. The perturbation solution closely matches the exact

solution.

FIG. 5: (color online) Exact (solid, gray), perturbation (long dashed, green), and WKB (dotted,

purple) solutions of G(z) for α = 1, κ = 1.1 The WKB solution closely matches the exact solution.

IV. OUTSIDE THE WALL

When z ≤ 0, Fκ(z) has the form c−(κ)(e−κz+γ−(κ)eκz). A calculation from the boundary
data (2.6) yields

γ−(κ) =
κFκ(0) + F ′κ(0)

κFκ(0)−F ′κ(0)
=
κ+ F ′κ(0)

κ− F ′κ(0)
. (4.1)

Thus, when both z arguments are negative, the Green function (2.17) reduces to [10]

gκ(z, z
′) =

1

2κ
e−κ|z−z

′| +
1

2κ
eκ(z+z

′)γ−(κ). (4.2)

The first term in Eq. (4.2) is the Green function for empty Minkowski space, which is the
same regardless of the presence of the wall. This term has been exhaustively studied already;
more can be read about it in almost any introductory text on the Casimir effect (for example,
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[21]) and, with special reference to point-splitting regularization, in [19]. Christensen’s
formula [19, Eq. (6.2)] does exhibit a dependence on the direction of point-splitting in a
way that differs from one component of 〈Tµν〉 to the next and hence would be considered
“anomalous” in the sense of [12] if the point separation were to be regarded as a physical
regularization to be kept nonzero at the end. That is, however, never done; the direction-
dependent terms are argued away as artifacts of a noncovariant regularization procedure,
and the entire Minkowski-vacuum stress tensor is set equal to either zero or a multiple of
gµν (cosmological constant term) [14, 22–24].

Returning to the second term in Eq. (4.2), one sees that it contains all of the effects of the
wall on space outside the wall (i.e., for z < 0). Furthermore, because of the rapid decrease
of that term as κ→∞, its contributions to the energy density and pressure are continuous
and convergent as δ → 0. So, we may now set δ = 0 and z′ = z, and as pointed out in Sec.
II B we may be confident that the two pressures parallel to the wall are equal to −u. The
perpendicular pressure pz now also works out correctly: In the limit δ → 0, the integrand
of Eq. (2.38d) becomes identically zero for all values of κ, so pz = 0. This confirms the
principle of virtual work, because the total energy of the system does not change when the
soft wall moves perpendicularly to itself: the boundary energy density is concentrated near
the boundary and is merely dragged along with the wall. (However, the pressure acting on
the boundary from the right from inside the wall remains to be investigated.) Finally, as in
[10], Eq. (2.38a) reduces to

u(z) =
1− 6ξ

6π2

∫ ∞
0

dκκ3e2κzγ−(κ). (4.3)

(We emphasize that the Minkowski zero-point energy has already been removed from this
quantity, which was called u(z)− u0 in [10].)

The next task is to find a good approximation to γ−(κ). At small κ we can use the
perturbative formulas (3.1) and (3.11) to get and evaluate

γ−(κ) ≈ κ+ F ′0(0) + κ2F ′1(0)

κ− F ′0(0)− κ2F ′1(0)
. (4.4)

At large κ, using a WKB formula one finds an accidental cancellation in (4.1) such that it
predicts γ− identically zero. To get a nontrivial result, we perform the reweighting of terms
carried out in [10, Sec. IV] to arrive at [10, Eq. (4.29)]

γ−(κ) ≈ − Γ(α + 1)

(2κ)α+2
. (4.5)

(It is clear that this leading term would appear in a WKB calculation only at a rather high
order, increasing with α.)

For α = 1 and 2 these two approximations can be tested against exact calculations from
Eqs. (2.11) and (2.13). They match γ−(κ) very well for small and large κ, respectively,
but there is a significant intermediate region in which neither is accurate. After some
experimentation, we remedied this very well by introducing the spline function

s(κ) = ea+bκ, (4.6)
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FIG. 6: (color online) Approximations (perturbation in long green dashes, Milton (4.5) in purple

dots, spline in red dashes) and exact solution (solid gray) for −γ− in the case α = 1.

FIG. 7: (color online) Approximations (perturbation in long green dashes, Milton in purple dots,

spline in red dashes) for −γ− in the case α = 6. A numerical approximation of the exact solution

is shown in solid gray. Notice that the spline matches the exact function well even when the two

asymptotic approximations are far apart.

where a and b are chosen so that the functions match at the endpoints of a central interval
[d1, d2],

s(d1) =
F ′0(0) + d1 + d21F

′
1(0)

F ′0(0)− d1 + d21F
′
1(0)

(4.7)

s(d2) =
Γ(α + 1)

(2d2)α+2
, (4.8)

and then d1 and d2 are chosen so that the derivatives also match there (by an application
of Newton’s method in Mathematica). (The exponential spline is superior to a linear one
because it qualitatively reproduces the obvious convex behavior of γ−(κ).) We approximate
|γ−(κ)| by a piecewise-defined function given by the perturbation solution when κ < d1 , the
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spline function (4.6) when d1 < κ < d2 , and the large-κ solution when d2 < κ. Since this
piecewise function is seen to be strictly greater than the exact solution, our value for u(z)
will be an upper bound. Some plots of these approximations are given in Figs. 6 and 7, with
comparisons to the exact Airy formula for α = 1 and to a numerical solution for α = 6.

Now that we have γ−(κ), we can find the energy density outside the wall by numerical
integration of Eq. (4.3). Representative resulting plots are in Figs. 8 and 9. As anticipated
in [10], the integral for u(0) converges only for α > 2. The present method is a significant
improvement over the preliminary treatment in [10] in regards to the contributions from
small κ.

FIG. 8: (color online) Approximation (dashed) and exact solution (solid) for 〈T00〉 outside the wall

in the α = 1 case. The factor 1− 6ξ is omitted. The vertical axis is an asymptote.

FIG. 9: (color online) Approximation for 〈T00〉 outside the wall in the α = 6 case. The factor 1−6ξ

is omitted. The vertical axis has an intercept.
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V. INSIDE THE WALL

The problem of finding the energy density inside the wall, where the potential is nonzero,
is substantially more difficult than the case outside the wall. First, we need to compute not
only the coefficient γ+(κ) but also the solutions Fκ(z) and Gκ(z), functions of two variables.
Second, there are divergences “in the bulk” proportional to local functionals of the potential,
which need to be identified and removed by renormalization in the usual sense of quantum
field theory [25]. Third, the Green function does not divide neatly and uniquely into two
terms, one purely divergent and the other containing all the real physics, as happened in
Eq. (4.2). Finally, at small κ it is difficult to normalize WKB solutions properly, since
the boundary conditions (2.6) and (2.7) must be applied at 0, precisely where the WKB
approximation is least valid. It is this last nuisance that forces us to consider the whole
family of more general normalization conventions.

We begin, as we did in the previous section, by expressing the Green function more
explicitly in terms of the basis functions. Let

Hκ = c+(κ)(Gκ + γ+(κ)Fκ) (5.1)

(thereby defining c+ and γ+). Then

γ+(κ) = − κGκ(0)− G ′κ(0)

κFκ(0)−F ′κ(0)
=

1

κ− F ′κ(0)
. (5.2)

It follows that

gκ(z, z
′) = c+(κ)

(Gκ(z<) + γ+(κ)Fκ(z<))Fκ(z>)

W (Fκ, eκz)
= (Gκ(z<) + γ+(κ)Fκ(z<))Fκ(z>). (5.3)

Because W (F , eκz) = c+W (F ,G), the middle (generic) version of Eq. (5.3) reduces to

gκ(z, z
′) =

Gκ(z<)Fκ(z>)

W (Fκ,Gκ)
+ γ+(κ)

Fκ(z)Fκ(z′)
W (Fκ,Gκ)

, (5.4)

which is [10, Eq. (4.5)]. Here the generic formula for γ+ (the middle member of Eq. (5.2))
must be used.

Because of the freedom to redefine G by adding a multiple of F , the division of gκ in
Eq. (5.4) into two terms is rather arbitrary. In the extreme case that G = H, the second
term vanishes completely. Ideally one would like to go to the opposite extreme and make the
first term “purely divergent”, so that all the interesting physics is in the second term. (Note
that, because of rapid decay as function of κ, the second term yields convergent integrals
that are continuous functions of the point separation δ, so one can set the points equal
before trying to evaluate them.) The convention Gκ(0) = 0 is certainly not that ideal; it
makes the first term in gκ into the Green function for a problem with a Dirichlet condition
at z = 0, and the resulting vacuum stress will have the singular behavior associated with a
perfectly reflecting boundary there. Since our real problem does not have such a boundary,
but only a mild coefficient singularity that weakens with increasing α (see [26, p. 25] and [15,
p. 146]), these boundary terms must be cancelled by contributions from the second term.

We present here a preliminary numerical exploration in the spirit of the previous section,
starting with lowest-order approximations for γ+(κ). One can use the WKB form of F (z)
in the high κ region to find the leading term

γ+(κ) ≈ 1

2κ
. (5.5)
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FIG. 10: (color online) γ+(κ) for α = 1. The solid gray line is the exact solution, the long-dashed

green line is the perturbation expansion, and the dotted purple line is the WKB approximation.

In the region of small κ, one approximates F ′κ(0) ≈ F ′0(0) to get

γ+(κ) ≈ 1

κ+ b2b−1Γ(1− b)/Γ(b)
(5.6)

where b = (α + 2)−1 as before. Although the results in Fig. 10 are as expected, we then
found that the spline technique we used for γ− does not work as well for γ+ ; details would
be premature here.

We proceed to tackle the Green function. In creating Figs. 11–12 we used the perturbative
form of γ+(κ) and the perturbative solutions (3.1), (3.8) for Fκ(z) and Gκ(z) to obtain a
“perturbative approximation”, and the WKB form of γ+(κ) and the WKB solutions (3.9) for
Fκ(z) and Gκ(z) to obtain a “WKB approximation”. As expected, Fig. 11 shows that the
perturbative expansion is good for a small κ, and Fig. 12 shows that the WKB expansion
is good for a large κ. Ultimately, there is no reason why the approximation used for F (z)
and G(z) must be the same as that used for γ+ , which implicitly involves z = 0, since the
location of the transition to WKB behavior depends on z.

VI. CONCLUSION

The power wall is a promising model of the effects of a boundary on the vacuum state
of a quantum field. It helps to separate the genuine effects from the pathologies associated
with idealized boundary conditions.

This paper deals with a flat wall interacting with a scalar field. We have set up a
systematic notation for the solutions of the separated field equation and developed useful
approximations for them in the limits of large and small imaginary wavenumber κ, which
have been tested numerically. In the region outside the wall, we obtained approximations
for the energy density that closely match the exact solutions in both asymptotic limits and
are reasonably accurate in between.

Progress in the region inside the wall has been slow, because of both technical problems
and the conceptual complication of renormalization in the presence of a nontrivial potential.
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FIG. 11: (color online) gκ(z, z) for α = 1 and κ = 0.15. The solid gray line is the exact solution,

the long-dashed green line is the perturbation expansion, and the dotted purple line is the WKB

approximation. The perturbation expansion is quite good here throughout our range of z, whereas

the WKB expansion takes a long time to converge to the correct value.

FIG. 12: (color online) gκ(z, z) for α = 1 and κ = 0.8. The solid gray line is the exact solution,

the long-dashed green line is the perturbation expansion, and the dotted purple line is the WKB

approximation. The perturbation expansion is very poor here, but the WKB expansion quickly

converges to a reasonable value.

The renormalization problem has been investigated separately [25, 27] for a general potential;
[27] uses higher-order WKB approximations, with special attention to the application to the
power wall. Precise calculation of the renormalized stress tensor, including contributions
from the non-WKB region of the spectrum, are in process.

The foremost motivation for this work was to resolve the “pressure anomaly” in the force
on a perpendicular wall that has been observed [12] in calculations for a hard wall regularized
by a finite cutoff. Outside the soft wall, we have calculated the energy and pressure and
shown that the anomaly does not occur in this model. (Eventual success inside the wall
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is expected.) We attribute this success to the fact that the soft-wall model is a consistent
physical system whose energy density is well behaved from the start, rather than being
forced to be finite by an ad hoc cutoff.

Calculations so far (here and in [10, 16, 27]) deal primarily with small values of α and
hence with the extraneous divergences near z = 0 caused by the singularity in the potential
there. For very large values of α these divergences must disappear, and the stress tensor
must resemble that of a hard wall near z = 1. Until such computations are available, it is
not meaningful to make a comparison of our results with others, such as those of Barton or
Passante et al. (see Appendix).
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Appendix A: Historical perspective

First to base the analysis of the Casimir effect on local quantities (i.e., the expectation
values of components of the stress tensor) rather than total energy or force were Brown
and Maclay [28]. DeWitt [29] recognized the importance of this topic for understanding
quantum field theory in curved space-time. Consequently, the generic behavior of the stress
tensor near boundaries was investigated from differing points of view by two groups in Austin
[30, 31]; Deutsch and Candelas [30] argued that divergences in the total energy are related to
finite and physically meaningful, though nonintegrable, distributions of energy density near
the boundary and, therefore, must be taken seriously. This can be regarded as the origin of
the modern program of softening (not discarding) surface terms by improved modeling of
the boundaries themselves. Later, the analysis of the energy in a box in terms of classical
paths by Hertzberg et al. [32] demonstrated that energy density near boundaries has physical
meaning and can be responsible for counterintuitive signs in some parts of Casimir forces.

One of the most ambitious programs in the direction of improved modeling has been
conducted by Barton [8, 33–36], studying nonlinear interactions of the field with degrees of
freedom inside the walls.

Closer to the spirit of the present work is Ford and Svaiter’s investigation of a hard
boundary whose location is subjected to random fluctuations [37]. Similar work has been
done recently by Passante et al. [38–40]

Qualitatively similar results appear in a large number of papers by Graham, Jaffe, Olum,
and coworkers (such as Refs. [6, 41–43]) culminating in the book [44]. That program differs
from ours superficially by dealing with a high, narrow potential hill (instead of a one-
sided wall), and more fundamentally in the choice of calculational methods (techniques of
scattering theory instead of local, differential-equation analyses), which results in a rather
different point of view. An earlier paper in that tradition is Bordag [45].

The present program is rooted in [9], which proposed to model a soft wall simply by main-
taining a finite ultraviolet cutoff in calculations for a hard wall. Results were qualitatively
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so similar to those of Ford and Svaiter [37] and Graham and Olum [42, 43] as to suggest
that all the approaches were on the same track. However, in calculations for a spherical
boundary, Martin Schaden and Fulling (unpublished, but summarized in [11]) discovered a
pressure anomaly — a violation of Eq. (1.1). Detailed examination [12, 14] showed that this
problem existed for flat boundaries also, and that it was related to the direction dependence
of vacuum energy as regularized by point-splitting [19]. That is the motivation for the study
of the soft wall [10, 14–16, 27].

The closest work to ours that we know of in previous literature (until [10] and [25])
is that of Actor and Bender [46], in which the perfectly reflecting wall is replaced by a
harmonic-oscillator potential. That paper was written before the modern critiques of formal
renormalization [5, 6] and the modern emphasis on local quantities (such as energy density).
It deals with total energies calculated by zeta-function regularization.

Here we have not reviewed papers on scalar quantum field theory in general background
scalar potentials and the resulting issues of renormalization, since that topic relates more
to [27] and possible later papers. Nor have we listed the large body of papers on fields
interacting with slabs of material (such as dielectrics) or delta-function potentials; such
models are not truly “soft” by our definition, since boundary divergences remain. The
remarks on the works of Graham et al. and Actor and Bender are paraphrased from [14].
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