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Several models of gamma-ray burst progenitors suggest that the gamma-ray event may be followed
by gravitational wave signals of 103–104 seconds duration (possibly accompanying the so-called X-ray
afterglow “plateaus”). We term these signals “intermediate duration” because they are shorter than
continuous wave signals but longer than signals traditionally considered as gravitational wave bursts,
and are difficult to detect with most burst and continuous wave methods. The cross-correlation
technique proposed by [S. Dhurandhar et al., Phys. Rev. D 77, 082001 (2008)], which so far has been
used only on continuous wave signals, in principle unifies both burst and continuous wave (as well as
matched filtering and stochastic background) methods, reducing them to different choices of which
data to correlate on which time scales. Here we perform the first tuning of this cross-correlation
technique to intermediate duration signals. We derive theoretical estimates of sensitivity in Gaussian
noise in different limits of the cross-correlation formalism, and compare them to the performance of
a prototype search code on simulated Gaussian-noise data. We estimate that the code is likely able
to detect some classes of intermediate duration signals (such as the ones described in [A. Corsi & P.
Mészáros, Astrophys. J., 702, 1171 (2009)]) from sources located at astrophysically-relevant
distances of several tens of Mpc.

I. INTRODUCTION

Over the last decade, the LIGO and Virgo gravita-
tional wave (GW) detectors have carried out triggered
(or targeted) GW searches in coincidence with Gamma-
Ray Bursts (GRBs) and other electromagnetic transients
[1–15] as well as persistent electromagnetic sources [16–
28]. These searches have traditionally been optimized
to detect well-modeled “chirp” signals from neutron star
(NS)-NS and/or black-hole (BH)-NS binary inspirals, un-
modeled short (. 1−10 s) duration bursts of GWs in as-
sociation with electromagnetic transients, and persistent
(continuous) GWs from nearby rotating NSs. Searches
based on methods for a stochastic background have also
been adapted to continuous wave targets [23, 29].

Methods targeting an as of yet largely unexplored class
of “intermediate duration” GW signals have also been de-
veloped [30–32] and two so far have led to a search on real
data [13, 33].1 Intermediate duration GWs are of special
interest in several astrophysical scenarios (e.g., [13, 35–
43]), and their detectability over a large parameter space
remains mostly unexplored compared to the more tradi-
tional inspiral, burst, or continuous wave signals.

In this work, we focus on the possibility of detecting
103−104 s duration GWs in coincidence with GRBs. Our
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1 Those works use “long” to refer to signals of O(102) s duration,

because these durations are long compared to the O(. 1) s du-
ration signals traditionally targeted in burst data analyses. The
term “very long duration” signals has also been adopted to refer
to GWs lasting from hours to weeks, e.g. [34]. Here, we use “in-
termediate” to put the discussion in the broader context, which
includes the substantially longer continuous wave signals.

study is motivated by the need for a data analysis tech-
nique that is optimized to probe some of the long-lived
progenitor scenarios for (long and short) GRBs, such as
the so-called “magnetar model”. The magnetized NS
(magnetar) scenario has been invoked to explain X-ray
“plateaus” (102−104 s-long periods of relatively constant
emission) observed in & 50% of long, and in several short,
GRB afterglows [44–51]. Gravitational collapse leading
to the formation of a NS, in turn, has long been consid-
ered an observable source of GWs. In a rotating, newly
born NS, non-axisymmetric instabilities such as the sec-
ular Chandrasekhar-Friedman-Schutz [CFS, 52, 53] in-
stabilities, can yield GW emission with high efficiency
[54]. If the newly born GRB-magnetar emits GWs over
the plateau timescale (∼103 s), GW detectors such as the
advanced LIGO (aLIGO) and Virgo detectors may be
able to directly probe the source of the observed pro-
longed energy injection, and clarify one of the key open
questions on the nature of GRB central engines [38, 55].

Detecting intermediate duration GW signals, such as
the ones possibly associated with GRB plateaus, requires
search techniques that can bridge the gap (both in terms
of science reach and signal detection strategies) between
traditional inspiral/burst searches, and continuous wave
or stochastic ones. Traditional short duration inspiral
and long duration continuous wave searches make use of
highly sensitive coherent (and computationally limited
semi-coherent) techniques that leverage accurate knowl-
edge of the expected GW waveform (as a function of
a set of physical parameters). Traditional burst and
stochastic searches, on the other hand, assume little a
priori knowledge of the signal and depend respectively
on excess signal power (above the background noise) and
cross-correlation of power between interferometers for de-
tection.
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Here we address the problem of searching for inter-
mediate duration, large frequency bandwidth signals by
adapting the cross-correlation method of [56]. While
originally developed in the context of continuous waves,
the method by [56] encompasses all of the aforementioned
traditional search techniques when various parameters
are taken to the appropriate limits, and it shows how
to make best use of the information available about each
type of signal. (A Bayesian framework of similarly broad
relevance was developed later in Cornish and Romano
[57], but here like Dhurandhar et al. [56] we present an
essentially frequentist analysis.) We correct some small
errors in the original formalism of [56], and apply it for
the first time to intermediate duration signals by devel-
oping a code whose performance we test on simulated
data. We restrict ourselves to intermediate duration sig-
nals with large frequency bandwidth (such as the ones
described in [38]), since intermediate duration narrow
band signals have different astrophysical origins and are
treated with adaptations of continuous wave searches (see
e.g. [58]).

Our paper is organized as follows. In Sec. II we mo-
tivate the application of Dhurandhar et al.’s [56] cross-
correlation technique to intermediate duration GWs. In
Sec. III we describe our notation and assumptions. In
Sec. IV we briefly re-derive the general statistical be-
havior of the cross-correlation method, discuss explicitly
its limits and intermediate regimes, and show how sev-
eral assumptions made in [56] need to be modified for
the search of non well-modeled GW transients evolving
on 103 − 104 s timescales. In Sec. V we apply the cross-
correlation technique to the model of secularly unstable
GRB-magnetars described in [38], thus providing an ex-
ample of applicability to astrophysically motivated wave-
forms of intermediate duration. Finally, in Section VI, we
compare our results with other data analysis techniques
that have been proposed to search for intermediate du-
ration GW signals, and give our conclusions.

II. MOTIVATION FOR A
CROSS-CORRELATION SEARCH

GWs signals are typically predicted to have strengths
so close to the level of noise in the detectors that it is nec-
essary to filter the interferometer data streams to detect
the real GW events amongst spurious noise events. When
the functional form of the predicted GW signal is very
well known (as a function of a set of physical parameters),
matched filtering with template waveforms is the optimal
strategy (e.g., [59, 60]). Matched filtering involves com-
puting the cross-correlation between the interferometer
output and a template waveform, weighted inversely by
the noise spectrum of the detector. The signal-to-noise
ratio (SNR) is defined as the cross-correlation of the tem-
plate with a particular stretch of data divided by the
root-mean-squared (rms) value of the cross-correlation
of the template with pure detector noise.

Usually, a family of templates spanning the possible
range of parameter values (a so-called template bank)
is used in real data analyses. A template bank adds
to the search statistics a trial factor, which has to be
taken into account when estimating the detection sensi-
tivity. A template bank also involves more computational
cost since each template must be cross-correlated with
the data. While the parameters describing the search
templates typically vary continuously throughout a finite
range of values, a realistic template bank is composed of
templates whose parameter values vary in discrete steps
within the allowed range. The “mismatch” between the
signal and nearest of the discrete templates causes some
reduction in the expected matched filter SNR. Thus, the
number of templates to be used in a search is a compro-
mise between the maximum computational cost one can
sustain, and the maximum mismatch that one is willing
to tolerate (e.g., [61–64]).

When the maximum sustainable computational cost
implies a mismatch such that the loss in SNR reduces the
sensitivity of the search to a very limited portion of the
parameter space, modifications to the matched filtering
strategy toward sub-optimal techniques are mandatory.
In addition, in many cases, the GW signal waveform is
not known well enough for matched filtering. Indeed,
even if a very finely spaced discrete template bank is
used, a search may fail to detected a signal if the tem-
plates do not represent with sufficient accuracy the rel-
evant physics. In other words, a realistic search is
affected not only by the mismatch but also by the
so-called “fitting factor” [65–68], the fractional
loss in SNR caused by the fact that even the best
template in a family is only a “fit” to a hypothet-
ical exact gravitational waveform. In the context
of GWs from compact binaries, where numerical
relativity can be used to quantify the fitting factor
of phenomenological waveforms used to construct
template banks for matched filter searches (e.g.,
[69]), it has been estimated that fitting factors
< 3% are needed to achieve detection efficiencies
> 90% (see e.g. [65, 70]). Indeed, matched filter-
ing is by construction highly likely to miss a signal
even for moderately bad fitting factors. On the
other hand, sub-optimal (less sensitive) detection
techniques are more robust against the intrinsic
uncertainties in the underlying physics [71–73].

In the case of secular bar-mode GW signals from GRB
afterglow plateaus, given the uncertainties related to the
physics of GRB central engines, the derived gravita-
tional waveforms are to be considered as simpli-
fied phenomenological models. Thus, a more robust
(when compared to matched filtering) search is neces-
sary. A very robust approach against signal uncertainties
consists of using the cross-correlation between the out-
put of different, non-co-located detectors. This approach
(which, differently from matched filtering, requires no a-
priori knowledge of the signal waveform and its prop-
erties) is typically used for stochastic GW background
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searches (e.g., [29, 74, 75]). The cross-correlation be-
tween different, non-co-located detectors, only relies on
the fact that, in the presence of a GW signal, the output
from distinct detectors (at the same times, after correct-
ing for the light-travel time between detectors) should be
correlated, while pure noise would remain uncorrelated.
Of course, this technique also implies a poor resolution
in the parameter space, and more expensive follow-ups
to verify possible detections [56].

It is important to note that the cross-correlation is at
the basis of two opposite search strategies: the (highly
sensitive) matched filtering (cross-correlation of the data
with a template), and the (very robust) “stochastic
search” (cross-correlation of different detector’s output).
Indeed, by noticing this fundamental fact, Dhurandhar et
al. 2008 [56] have provided an elegant formulation of the
cross-correlation statistic for periodic GW searches such
that, depending on the maximum duration over which
one believes phase coherence is preserved by the signal,
the statistic can be tuned to go from a “stochastic-type”
search using data from distinct detectors, to the semi-
coherent time-frequency methods with increasing coher-
ent time baselines (e.g., [62]), and all the way to a fully
coherent search (nearly recovering the matched filtering
statistic).

Dhurandar et al.’s formulation of the cross-correlation
statistic [56] leads to a unified framework that can be
used to make informed trade-offs between computational
cost, sensitivity, and robustness against signal uncertain-
ties. Studies based on the cross-correlation statistic as
formulated by [56] have focused on continuous GW emis-
sion from Supernova 1987a and Scorpius X-1 [76, 77], and
a number of refinements to the cross-correlation method
have also been published in recent years, particularly for
the treatment of spectral leakage [77, 78]. In what fol-
lows, we present a strategy tuned for the detection of in-
termediate duration (. 104 s) quasi-periodic GW signals,
and discuss its application to the case of secularly
unstable GRB magnetars (Section V).

III. NOTATION AND ASSUMPTIONS

A. The Short-duration Fourier Transform

The Short-time Fourier Transform (SFT) is a use-
ful tool when examining a signal whose frequency con-
tent is evolving with time. The time-domain output of
LIGO/Virgo detectors, x(t), can be represented as the
linear combination of a GW signal h(t), and background
noise n(t):

x(t) = h(t) + n(t). (3.1)

The SFT of the detector output is constructed by divid-
ing the time-series x(t) into NSFT segments of duration
∆TSFT (generally speaking, these segments may or may
not overlap), and by taking the Discrete Fourier Trans-

form (DFT) of each of these segments:

x̃I [fk] =
1

fs

Nbin−1∑
l=0

x[tl]e
−2πifk(tl−TI+∆TSFT/2), (3.2)

where fs is the sampling frequency (typically fs =
16, 384 Hz for the LIGO detectors); Nbin = ∆TSFT × fs
is the number of frequency bins of each SFT; and fk is
the frequency corresponding to the k-th frequency bin:

fk =
k

∆TSFT
for k = 0, ..., Nbin/2− 1, (3.3)

fk =
(k −Nbin)

∆TSFT
for k = Nbin/2, ..., Nbin − 1.(3.4)

Note that tl in Eq. (3.2) corresponds to the l-th time
sample i.e., tl = TI − ∆TSFT/2 + l/fs. For each I =
0, 1, ...Tobs/∆TSFT (where Tobs is the total duration of
the signal) and l = 0, 1, ..., Nbin, tl spans the time inter-
val TI − ∆TSFT/2 ≤ tl ≤ TI + ∆TSFT. Note also that
we distinguish between continuous time series x(...) and
their associated discretely-sampled time series x[...] by
using square brackets.

To reduce spectral leakage, a windowing function w[tl]
is often applied to the DFT [79]:

x̃I [fk] =

Nbin−1∑
l=0

w[tl]x[tl]e
−2πifk(tl−TI+∆TSFT/2). (3.5)

For simplicity, and following [56], hereafter we neglect the
window function (but discuss some of the related issues
in Section IV D).

B. The noise and its PSD

In this Section we consider the detector output in the
absence of a signal. In the continuum limit of Eq. (3.1),
the frequency (f) content of the detector noise can be
described by its Fourier transform:

ñ(f) =

∞∫
−∞

dt n(t)e−2πift. (3.6)

The single-sided (f & 0) Power Spectral Density (PSD)
of the noise, Sn(f), is defined as:

Sn(f) := 2

∞∫
−∞

dτ 〈n(t)n(t+ τ)〉e−2πifτ , (3.7)

where 〈n(t)n(t + τ)〉 is the autocorrelation function of
the noise, and the expectation value 〈·〉 represents an
average over an ensemble of noise realizations. The noise
autocorrelation function thus forms a Fourier transform
pair with its PSD. Note that hereafter we assume the
noise is stationary and Gaussian (with zero mean), thus
its autocorrelation function is independent of t.
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From Eq. (3.6), it follows that (see also [80]):

〈ñ∗(f ′)ñ(f)〉 =

〈 ∞∫
−∞

dt′ n∗(t′)e2πif ′t′
∞∫
−∞

dt n(t)e−2πift

〉
.

(3.8)
This product of independent integrals can be recast as:

〈ñ∗(f ′)ñ(f)〉 =

〈 ∞∫
−∞

dt′
∞∫
−∞

dt n∗(t′)n(t)e2πif ′t′e−2πift

〉
.

(3.9)
Noting that real detector output implies n∗(t) = n(t),
and given the linearity and limited multiplicativity2of the
expectation value, we have:

〈ñ∗(f ′)ñ(f)〉 =

∞∫
−∞

dt′
∞∫
−∞

dt 〈n(t′)n(t)〉 e2πif ′t′e−2πift.

(3.10)
Setting t = t′ + τ , yields:

〈ñ∗(f ′)ñ(f)〉 =
∞∫
−∞

dt′ e−2πi(f−f ′)t′
∞∫
−∞

dτ 〈n(t′)n(t′ + τ)〉e−2πifτ .

(3.11)

Then, using Eq. (3.7), we replace the integral over dτ
with the PSD,

〈ñ∗(f ′)ñ(f)〉 =
Sn(f)

2

∞∫
−∞

dt′ e−2πi(f−f ′)t′ . (3.12)

The remaining integral over dt′ is simply a delta function,

〈ñ∗(f ′)ñ(f)〉 =
1

2
δ(f − f ′)Sn(f), (3.13)

and using the finite time approximation of the delta func-
tion:

δ∆TSFT(f) =
sin(πf∆TSFT)

πf
, (3.14)

which reduces to ∆TSFT in the limit of f → 0, we can
relate the variance of the Fourier transformed detector
output to the PSD:

〈|ñI [fk]|2〉 ≈ ∆TSFT

2
Sn[fk]. (3.15)

2 The expectation value 〈XY 〉 of random variables X, Y is multi-
plicative if Cov(X,Y ) = 0. That is, only if X and Y are statis-
tically independent.

C. Short-duration Fourier Transform of the signal

We make the hypothesis that the GW signal h(t) is
quasi-periodic (by taking a sufficiently small time in-
terval the signal in such an interval can be considered
monochromatic), and assume that its time-frequency
evolution is described with sufficient physical accuracy,
for a time interval of Tcoh, via some known function of
a given set of parameters (although this function may
not have a closed form expression). By definition, this
“coherence timescale” is less than or equal to the total
observation time Tobs over which the signal is expected
to last (e.g. Tcoh . Tobs . 104 s for the type of signals of
interest in the context of GRB afterglow plateaus).

Since the signal is quasi-periodic, we can define an SFT
baseline ∆TSFT ≤ Tcoh such that, within the baseline,
all of the signal power is concentrated in a single SFT
bin. More specifically, around each time TI we can ap-
proximate the signal received by the detector in the time
interval TI − ∆TSFT

2 . t . TI + ∆TSFT

2 , as:

h(t) ≈ h0(TI)A+F+ cos(Φ(TI) + 2πf(TI)(t− TI))+
h0(TI)A×F× sin(Φ(TI) + 2πf(TI)(t− TI)), (3.16)

where A+, A× are amplitude factors dependent on the
physical system’s inclination angle ι (for on-axis GRBs,
ι is the angle between the jet axis and the line of sight):

A+ =
1 + cos2 ι

2
, (3.17)

A× = cos ι, (3.18)

and F+, F× are the antenna factors that quantify the de-
tector’s sensitivity to each polarization state. Note that
for triggered searches targeting GRBs (as is the case in
Sec. V), the line of sight is expected to be nearly aligned
with the jet axis,3 thus ι ≈ 0 and A+ ≈ A× ≈ 1.

In order for the approximation in Eq. (3.16) to be
valid, the following conditions should be satisfied:

1. Tobs . 104 s so that, for a given GW detector, F+

and F× can be treated as constants as a function
of time (see e.g. [56]).

2. If ḟ(t) is the time derivative of the signal fre-

quency at a given time t, then the effects of ḟ(t)
on the signal phase should be negligible during the
time interval ∆TSFT. Using the quarter-cycle crite-

rion, this leads to 2π|ḟ(TI)|
(

∆TSFT

2

)2
< π

2 . Thus,

∆TSFT < 1/
√
|ḟ(TI)|.

3. ∆TSFT is small enough that h0(t) ≈ h0(TI) (con-
stant amplitude approximation) in the interval

3 That is, the line of sight is within the jet-opening angle, which
is expected to be of the order 5− 20 deg for long GRBs [81, 82].
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TI −∆TSFT/2 . t . TI + ∆TSFT/2. We consider

this condition satisfied if
∣∣∣ḣ0(TI)

∣∣∣∆TSFT/h0(TI) .

10%, based on typical LIGO amplitude calibration
errors (∼ 10% [83]; thus, any change of signal am-
plitude below 10% is not expected to significantly
affect the goodness of this approximation).

In addition, hereafter we assume that ∆TSFT is
large enough that the corresponding frequency
resolution, (∆TSFT)−1, still enables one to track
the time-frequency evolution of the signal.

Using Eq. (3.2), we can calculate the DFT of the signal
in Eq. (3.16) (see also Eq. (2.25) in [56]):

h̃I [fk] = h0(TI)e
iπfk,I∆TSFT×

[eiΦ(TI)A+F+,I − iA×F×,I
2

δ∆TSFT(fk − fk,I)+

e−iΦ(TI)A+F+,I + iA×F×,I
2

δ∆TSFT
(fk + fk,I)], (3.19)

or, equivalently,

h̃I [fk] =

√
A2

+F
2
+,I +A2

×F
2
×,I

2
h0(TI)e

iπfk,I∆TSFT

×
[
eiΦ(TI)eiϕI δ∆TSFT

(fk − fk,I)+

e−iΦ(TI)e−iϕI δ∆TSFT
(fk + fk,I)

]
, (3.20)

where we have set:

A+F+,I ± iA×F×,I =
√
A2

+F
2
+,I +A2

×F
2
×,Ie

∓iϕI ,

(3.21)

and

ϕI = arctan(−A×F×,I/A+F+,I). (3.22)

Note that, while in our limit of intermediate duration
GW signals the antenna response from one detector can
be considered constant over the observed duration of the
signal, for the multiple detector case the antenna re-
sponses refer to the specific GW detector from whose
output the I-th SFT is taken.

IV. THE CROSS-CORRELATION STATISTIC

Following [56], we define the raw cross-correlation
statistic as:

YIJ =
x̃∗I [fk,I ]x̃J [fk′,J ]

∆T 2
SFT

, (4.1)

where the frequency fk,I is the frequency at which all
of the signal power is concentrated during the Ith time
interval (see Eq. (3.19)), and is related to the frequency

fk′,J at which all of the signal power is concentrated dur-
ing the J th time interval via the relation:

fk′,J = fk,I −∆fIJ . (4.2)

In the above relation, ∆fIJ is the frequency difference
predicted by the model’s time-frequency evolution (in
this analysis the signal time-frequency evolution is as-
sumed to be known to some level of accuracy; see Section
III C). Note that, because for any I-th SFT the associ-
ated frequency bin k is fixed by the model’s predictions,
we omit the indexes k, k′ from YIJ for simplicity.

For a signal embedded in stationary Gaussian noise
with zero mean, the {YIJ} are themselves random vari-
ables with mean and variance given by

µIJ = h0(TI)h0(TJ)G̃IJ , (4.3)

σ2
IJ =

1

4∆T 2
SFT

Sn[fk,I ]Sn[fk′,J ], (4.4)

where we have used Eqs. (3.15) and (3.19), and the fact
that:

h̃∗I [fk]h̃J [fk+∆fIJ ] = h0(TI)h0(TJ)G̃IJδ2
∆TSFT

(fk−fk,I).
(4.5)

In the above equations, G̃IJ is the signal cross-correlation
function, defined here as

G̃IJ =

√
A2

+F
2
+,I +A2

×F
2
×,I

2

√
A2

+F
2
+,J +A2

×F
2
×,J

2
e−i∆θIJ ,

(4.6)

with ∆θIJ = θI−θJ = π∆fIJ∆TSFT +∆ΦIJ +∆ϕIJ . In
general, the subscripts (I), (J) in the antenna responses
refer to the specific GW detector from whose output the
I-th (or J-th) SFT is taken. Indeed, in the definition
of the {YIJ}, there is total freedom to correlate pairs
from one single detector or from an arbitrary number of
detectors.

Note that the e−iπ∆fIJ∆TSFT term that arises from
∆θIJ in Eq. (4.6) is absent from the definition of the
signal-cross-correlation function given in [56]. This dis-
crepancy was first noted in [76], and is discussed there
in detail. This term proves essential to properly tracking
the frequency evolution of a given signal across SFTs, so
we call attention to it here.

When cross-correlation pairs are only taken from the
output of a single detector over timescales of Tobs . 104 s,
then F+,×,I = F+,×,J = F+,×. This simplifies Eq. (4.6)
considerably:

G̃1D
IJ =

A2
+F

2
+ +A2

×F
2
×

4
e−iπ∆fIJ∆TSFTe−i∆ΦIJ . (4.7)

For two or more detectors, such as LIGO Hanford (H)
and LIGO Livingston (L), the indexes I and J are free to
range over SFTs from either detector, and so the above
simplification does not generally apply (even if the an-
tenna factors for each detector are approximately con-
stant within the considered time interval).
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Following [56], our detection statistic is then con-
structed as a weighted sum of the YIJ

ρ =
∑
IJ

(uIJYIJ + u∗IJY∗IJ), (4.8)

with nearly optimal weights4

uIJ =
G̃∗IJ
σ2
IJ

. (4.9)

For stationary Gaussian distributed white noise (see
Eq. 4.4), σIJ does not depend on frequency nor on time,
but it might still depend on the detector. Thus:

σ2
IJ =

1

4∆T 2
SFT

S2
n, (4.10)

for IJ pairs from a single detector (or identical detec-
tors), or:

σ2
IJ =

1

4∆T 2
SFT

SHn S
L
n , (4.11)

for e.g. a LIGO Hanford-Livingston IJ pair. Thus, using
the above equations and Eq. (4.6), we have in general:

uIJ =

√
(A2

+F
2
+,I +A2

×F
2
×,I)(A2

+F
2
+,J +A2

×F
2
×,J)

∆T−2
SFTe

−i∆θIJSn[fk,I ]Sn[fk,J ]
,

(4.12)

where, again, the antenna responses and detector’s noise
refer to the specific GW detector from whose output the
I-th (or J-th) SFT is taken.

As we describe in more detail in what follows, the
mean and variance of ρ, as well its statistical distribu-
tion, depend on the choice of which SFT pairs are cross-
correlated. Because of the freedom in choosing which
data-segment pairs to correlate, we can naturally con-
sider one single detector or an arbitrary number of de-
tectors (with no need to modify our statistic), and we
can work in one of the following limits [56]:

1. We can choose to correlate only data segments
taken from distinct detectors at the same times (af-
ter correcting for the light travel time between dif-
ferent detectors; Section IV A). This limit is anal-
ogous in spirit to the methods of stochastic GW
searches, such as [84–87], and we hence refer to it
as the “stochastic limit”. In this case, the compu-
tational cost of the search is small and the search
is very robust against signal uncertainties. But the
sensitivity is the poorest, as is the resolution in pa-
rameter space.

4 Strictly speaking, these weights are only optimal when self-pairs
are excluded, as in [56]. For sufficiently small amplitude signals,
these weights remain optimal, to first order, even when self-pairs
are considered. For situations where this may not be the case,
we refer the reader to the discussion in the Appendix of [56].

2. At the other extreme, we can correlate all possible
SFT segments (Section IV B): This (nearly) corre-
sponds to a full matched filter statistic described for
coalescing compact binaries and continuous waves
in e.g. [60, 62, 88, 89]. The parameter space resolu-
tion becomes very fine and while this is ideally the
most sensitive method, is it also the most computa-
tionally expensive (prohibitive for wide parameter
space searches) and the least robust against signal
uncertainties.

3. In intermediate regimes, we can correlate data seg-
ments separated by a maximum coherence time
Tcoh . Tobs (Section IV C). This “semi-coherent”
approach is similar to several methods used for
continuous waves [71, 90–93] (though on signal
timescales much longer than what considered in
this work). Because in this limit the sensitivity
and robustness of the search can be tuned to the ex-
pected accuracy of a given model, this is the regime
of greatest interest to us.

4. Finally, one can consider all pairs except self-
correlations. This was the main focus of the anal-
ysis presented in [56] (see their Section IV). Here,
we do not focus on this limit because we consider
it as a more special case of the ones above (with no
particular advantages for the detection of the type
of signals considered in our study and with some
complications added to the statistical properties of
ρ). However, in what follows, we do discuss the
main differences of (1)-(3) above with respect to
this case (see also Section IV of [56]).

In discussing the above limits, it is useful to note that
we can re-write Eq. (4.8) in terms of Eq. (4.1) as:

ρ =
1

∆T 2
SFT

∑
IJ

uIJ x̃
∗
I [fk,I ]x̃J [fk′,J ] + u∗IJ x̃I [fk,I ]x̃

∗
J [fk′,J ],

(4.13)
which is equivalent to:

ρ =
2

∆T 2
SFT

∑
IJ

<{uIJ x̃∗I [fk,I ]x̃J [fk′,J ]} . (4.14)

A. Stochastic limit (independent pairs only)

Consider the output of two different detectors, x̃H

and x̃L. Each detector’s output can be divided into
Tobs/∆TSFT = NSFT segments. Of the (2NSFT)2 possi-
ble SFT pairs that can contribute to ρ we correlate only
pairs of SFTs from different detectors at the same time
(after correcting for the light travel time between detec-
tors), so that Npairs = NSFT. In this limit, Eq. (4.13)
becomes:

ρ = 2
∑
I

<{uIIYII} , (4.15)
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where the weights are described by e.g. Eq. (4.11). Writ-
ten explicitly, this becomes

ρ =
2

∆T 2
SFT

∑
I

<
{
uII x̃

∗H
I [fk,I ]x̃

L
I [fk′,I ]

}
, (4.16)

i.e., a weighted sum of completely independent random
variables that are each the product of two Gaussian vari-

ables with mean and variance given by Eqs. (4.3) and
(4.4). Thus, ρ converges to a Gaussian distribution (by
the Central Limit Theorem) with mean (see Eqs. (4.3),
(4.6), (4.12), and [56]) and variance (see also Eq. (4.4)
and Dhurandhar et al. [56]):

µρ = (A2
+F

2
+,H +A2

×F
2
×,H)(A2

+F
2
+,L +A2

×F
2
×,L)

∆T 2
SFT

2

∑
I

h2
0(TI)

SHn [fk,I ]SLn [fk,I ]
, (4.17)

σ2
ρ = (A2

+F
2
+,H +A2

×F
2
×,H)(A2

+F
2
+,L +A2

×F
2
×,L)

∆T 2
SFT

2

∑
I

1

SHn [fk,I ]SLn [fk,I ]
. (4.18)

The detection threshold is easily derived in terms of
the Cumulative Distribution Function (CDF) of a normal
distribution,

FN (ρ) =
1

2

[
2− erfc

(
ρ− µρ
σρ
√

2

)]
, (4.19)

and its inverse (see also [56]), where erfc is the comple-
mentary error function. For a False Alarm Probability
(FAP) α, the associated threshold is simply 1 − α =
FN (ρth), thus:

ρth =
√

2σρerfc−1(2α), (4.20)

where we have used the fact that the background distri-
bution is considered in the absence of a signal (µρ = 0).
When a signal is present, the detection probability γ, or,
equivalently, the False Dismissal Probability (FDP) 1−γ,
is given by γ = FN (ρth), i.e.:

γ =
1

2
erfc

(
ρth − µρ
σρ
√

2

)
. (4.21)

Thus, the detectability condition reads:

µρ
σρ

&
√

2S, (4.22)

where S = erfc−1(2α)− erfc−1(2γ). In the case of white
Gaussian noise, using Eqs. (4.17)–(4.18), the detectabil-
ity condition implies:

hrms &

√
2S1/2∆T

−1/2
SFT N

−1/4
SFT (SHn S

L
n )1/4

[(A2
+F

2
+,H +A2

×F
2
×,H)(A2

+F
2
+,L +A2

×F
2
×,L)]1/4

,

(4.23)
which generalizes Eq. (4.15) in Dhurandhar et al. [56]
to the case of a non-constant signal amplitude for which
(see also Eq. (3.16)):

hrms =
√
〈h2

0(TI)〉I =

√∑
I h

2
0(TI)

NSFT
. (4.24)
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FIG. 1. Comparison between the simulated and predicted
distribution of ρ in the stochastic limit, for 2048 s of simulated
white Gaussian noise sampled at a rate of fs = 2048 Hz,
from two detector’s outputs xH [t], xL[t]. We have used an
SFT baseline of ∆TSFT = 2 s and, for simplicity, we assumed
two idealized, co-located, and optimally oriented detectors
with aLIGO-equivalent PSDs Sn ≈ 1.75 × 10−47 Hz−1, see
Fig. 2. The simulated signal is a line of constant frequency
f0 = 128 Hz and constant amplitude h0 ≈ 10−24.

In Fig. 1 we show the distribution of ρ in the absence
of a signal for simulated Gaussian white noise, and in
the presence of a GW signal of constant amplitude h0

and constant frequency f0. (A signal with constant fre-
quency represents the simplest time-frequency evolution
to which the technique here presented can be applied and
is particularly useful for illustrative purposes.)
We stress that the independence of the pairs

that are added in ρ is essential for the validity
of the conclusion regarding the Gaussianity of ρ,
and for the validity of Eqs. (4.23)-(4.24). While
pairs are truly independent in the stochastic limit an-
alyzed in this Section, this is not strictly true for the
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FIG. 2. Method for generating Gaussian-distributed noise
with aLIGO PSD. A frequency range is defined with respect
to the maximum and minimum value of an injected signal’s
frequency (blue dotted lines). The constant Gaussian PSD Sn

(red dashed line) is calculated so that the area underneath it
(shaded red) is equal to the area underneath the aLIGO PSD
(shaded blue). For signals of constant frequency f0 (e.g. Figs.
1, 3, and 4), the red area is taken between 0.9f0 and 1.1f0.

combination of pairs considered in Section IV of [56] (ρ
includes all possible pairs but self ones - see also case 4
in Section IV) and in the Appendix of [56] (ρ includes all
possible SFT pairs - see also case 2 in Section IV). In
these cases, ρ is a sum of products that are not all inde-
pendent. Thus, while the expressions for the mean and
variance of ρ presented in Section IV of [56] (or, equiva-
lently, Eqs. (4.17) and (4.18) here) remain valid, we cau-
tion the reader that the lack of independence affects the
shape of the background distribution, and in some limits,
results in a distribution that cannot be reduced to a Gaus-
sian. Thus, the detection threshold needs to be modified
accordingly. Some brief discussion of these corrections
to [56] is also presented in Appendix B of [77]. In what
follows, our in depth discussion of cases 2–3 (Section IV)
shows explicitly that the corrections to [56] are crucial
for the detection of the family of intermediate duration
GW signals that we target in this analysis.

B. Matched filter limit (all pairs)

In this limit, we choose to correlated all possible SFT
segments (from one or multiple detectors). Starting from
Eq. (4.14), we replace the weights with their explicit form
given by Eq. (4.12),

ρ = 2<

Npairs∑
I,J

√
(A2

+F
2
+,I +A2

×F
2
×,I)

Sn[fk,I ]

√
(A2

+F
2
+,J +A2

×F
2
×,J)

Sn[fk,J ]
x̃∗I [fk,I ]x̃J [fk,J ]ei∆θIJ

 , (4.25)

where Npairs = N2
SFT and NSFT = NdetTobs/∆TSFT, with

Ndet being the number of detectors from which data are
taken. Under the change of variable

x̃′I [fk,I ] =

√
(A2

+F
2
+,I +A2

×F
2
×,I)

Sn[fk,I ]
x̃I [fk,I ]e

−iθI , (4.26)

Eq. (4.25) simplifies to:

ρ = 2

{
NSFT∑
I

|x̃′I [fk,I ]|
2

+ 2

NSFT∑
I>J

< [x̃′∗I [fk,I ]x̃
′
J [fk′,J ]]

}
.

(4.27)
It then follows that,

ρ = 2

∣∣∣∣∣
NSFT∑
I

x̃′I [fk,I ]

∣∣∣∣∣
2

. (4.28)

Or alternatively,

ρ = 2

(NSFT∑
I

<(x̃′I [fk,I ])

)2

+

(
NSFT∑
I

=(x̃′I [fk,I ])

)2
 .

(4.29)

For stationary Gaussian noise with zero mean, x̃I [fk]
follows a complex normal distribution. We note that the
scaling and complex rotation applied in Eq. (4.26) have
no effect on the shape of the distribution of the x̃′I when
compared to the x̃I (but they do change the mean and
variance of the distribution). Thus, the real and imagi-
nary parts of x̃′I are still Gaussian distributed as the x̃I ,
and so are their sums. Indeed, in the absence of a signal,
the sums of the real and imaginary parts of the x̃′I are
Gaussian variables with zero mean and variance (see Eq.
(3.15)):

σ2
Σ =

NSFT∑
I

[
∆TSFT(A2

+F
2
+,I +A2

×F
2
×,I)

4Sn[fk,I ]

]
. (4.30)

So we can re-write the expression for ρ as:

ρ = Cχ ×

(∑NSFT

I <(x̃′I [fk,I ])

σΣ

)2

+

(∑NSFT

I =(x̃′I [fk,I ])

σΣ

)2
 , (4.31)
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FIG. 3. We simulate 2048 s of white Gaussian noise for a sin-
gle optimally-oriented detector with aLIGO-equivalent noise
PSD given by Sn ≈ 1.75 × 10−47 Hz−1. We used a sam-
pling frequency of fs = 2048 Hz and an SFT baseline of
∆TSFT = 2 s. All possible pairs are included in the cross-
correlation statistic ρ which is thus distributed as a scaled χ2

distribution with 2 degrees of freedom. The simulated signal
was a line of constant frequency f0 = 128 Hz and constant
amplitude h0 ≈ 3.30× 10−25.

which is the sum of the squares of two normally dis-
tributed variables, scaled by a factor:

Cχ = 2σ2
Σ =

NSFT∑
I

[
∆TSFT(A2

+F
2
+,I +A2

×F
2
×,I)

2Sn[fk,I ]

]
.

(4.32)

Thus, the resulting ρ statistic is distributed as a χ2 with
2 degrees of freedom (Fig. 3; see also [77]).

Continuing from Eq. (4.31), in the absence of a signal,
the variance of ρ is simply,

σ2
ρ = 4Cχ = 2

NSFT∑
I

[
∆TSFT(A2

+F
2
+,I +A2

×F
2
×,I)

Sn[fk,I ]

]
.

(4.33)

In the presence of a signal, the distribution of ρ in
Eq. (4.31) becomes a non-central χ2 with two degrees of
freedom, χ2

nc(2; λ), of mean:

µρ = Cχ(2 + λ). (4.34)

The non-centrality parameter can be derived using the
above relation, and noting that µρ can be easily calcu-
lated using Eqs. (4.5), (4.6), and (4.25). This yields to
(see also Eq. (4.24) and Fig. 3):

λ =

NSFT∑
I

h2
0(TI)

[
∆TSFT(A2

+F
2
+,I +A2

×F
2
×,I)

Sn[fk,I ]

]
. (4.35)

Note that in this limit the number of SFT pairs only af-
fects the variance (and mean) of the two Gaussian vari-

ables
∑NSFT

I <(x̃′I [fk,I ]) and
∑NSFT

I =(x̃′I [fk,I ]). It does
not affect the number of degrees of freedom in ρ, which
remains two independently of the number of SFTs. Thus,
as NSFT increases, the distribution of ρ does not approach
a Gaussian. This is a critical distinction to make, since
it changes the (false alarm and false dismissal) thresh-
olds of ρ significantly from the ones that were adopted in
the appendix of [56], where a Gaussian distribution was
incorrectly assumed for ρ.

In the case in which all pairs come from a single detec-
tor (or from co-located, equally oriented detectors, with
identical Sn), the variance of ρ simplifies substantially to:

σ2
ρ = 4Cχ = 2Tobs

[
(A2

+F
2
+ +A2

×F
2
×)

Sn

]
, (4.36)

where we have used Tobs = NSFT∆TSFT. The non-
centrality parameter likewise simplifies, yielding,

λ =
h2

rmsTobs(A2
+F

2
+ +A2

×F
2
×)

Sn
, (4.37)

where we have used Eq. (4.24).
In either case, the corresponding detection threshold

for a given false alarm and detection rate is now sub-
stantially different than in the stochastic limit:

ρth = CχF
−1
χ (1− α; 2), (4.38)

γ = Fncχ(ρth/Cχ; 2, λ). (4.39)

The CDF for the χ2(2) is known in closed form (and even
invertible), while the CDF for the non-central case can
be calculated numerically, with results as shown in Fig.
5.

In this limit, the sensitivity approaches that of
matched filtering. However there is one significant er-
ror in the description in [56]: the limit approached is
that of filtering with an unknown overall phase constant,
which is commonly handled by summing the squares of
two matched filters a quarter cycle out of phase with
each other—e.g., [61]. Hence the resulting statistic is dis-
tributed as a χ2 with 2 degrees of freedom rather than
a Gaussian. Under idealized circumstances, this reduces
the sensitivity by approximately 13% with respect to a
Gaussian distribution (with FAP=0.1% and FDP=50%).

C. Semi-coherent regime

As discussed in Section II, the semi-coherent regime is
the most relevant for an astrophysically motivated search
where the expected GW signal is known to limited accu-
racy. In this regime, the total observation time Tobs is
broken up into Ncoh coherent segments, each of dura-
tion Tcoh. The coherence time (Tcoh) is once again de-
fined as the length of time wherein the signal is expected
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FIG. 4. Comparison between the simulated and predicted dis-
tribution of ρ in the semi-coherent limit, for 1024 s of simu-
lated white Gaussian noise sampled at a rate of fs = 2048 Hz,
from one detector’s output x(t). We have used an SFT base-
line of ∆TSFT = 2 s and we assumed an optimally oriented
detector with PSD Sn ≈ 1.91 × 10−47 Hz−1. The coherence
time is Tcoh = 256 s for a total of Ncoh = 4 coherent seg-
ments. The simulated signal was a line of constant frequency
f0 = 128 Hz and constant amplitude h0 ≈ 8.47× 10−25.

to maintain phase coherence (and therefore good agree-
ment) with the model predictions. All possible SFT-pairs
within each coherent time segment are cross-correlated,
and the results for each segment are then combined in-
coherently.5

In order for the resulting sum of χ2(2) distributed vari-
ables to add to a χ2(2Ncoh) distributed detection statis-
tic, it is essential that all coherent segments have identi-
cal scale factors.6 This condition is satisfied for a detec-
tor network of arbitrary size only if the detectors have
similar antenna factors for the given sky location
of the event, and each detector has (stationary) white
Gaussian noise (although the frequency independent Sn
of the detectors need not be identical). In the case of
colored noise, the scale factors will vary between coher-
ence segments (since the frequency of the signal is evolv-
ing with time, which causes Sn[fk,I ] to change from seg-
ment to segment). Thus, in the presence of colored
noise, whitening the data over the signal band-
width prior to analysis is desirable.

Changes in the antenna factors F+, F× over the

5 An alternative, but equivalent, description is to define a “coher-
ence window” of duration Tcoh which is then stepped across the
SFT according to a given spacing criterion. All segments in each
step are cross-correlated then combined incoherently.

6 In general, for random χ2 variables Xi, their linear combina-
tion Y =

∑
i CiXi is itself a χ2 variable if and only if the scale

coefficients Ci are identical (or 0). However, if the normalized co-
efficients Ci/〈Ci〉 are close to unity, Y is reasonably approximated
by a χ2 distribution.

duration of a signal in a non-idealized search i.e.,
deviations from assumption 1 in Section III C,
can also affect the statistic. For the GRB X-
ray plateaus of interest to Section V, >50% of
events with sufficiently shallow plateau decays7

have plateau durations . 104 s [94]. For circularly-
polarized signals of this duration, we tentatively
estimate that time-varying antenna factors will
cause fluctuations of ≈15% in amplitude sensi-
tivity, comparable to LIGO amplitude calibration
uncertainties [83]. We leave to future work a more
in depth examination of deviations from this as-
sumption.

When all coherent segments have identical scale
factors, ρ is an incoherent sum of Ncoh independent vari-
ables, each distributed as a scaled χ2(2) distribution.
The scale parameter for each coherent segment is given
by Eq. (4.32) but now with NSFT = Tcoh/∆TSFT, so
that:

CSC
χ =

Cχ
Ncoh

. (4.40)

The variance of the semi-coherent ρ then reads:

σ2
ρ,SC = 2CSC

χ (2Ncoh) = 4Cχ, (4.41)

which is identical to the variance in matched-filter limit,
see Eq. (4.33).

When a signal is present, the non-centrality parameter
for each coherent segment will, in general, vary from one
semi-coherent chunk to the other due to the time-varying
amplitude of the signal in Eq. (4.35). But, since the
total λ for the semi-coherent regime is additive across all
coherent segments, the total non-centrality parameter for
the semi-coherent ρ likewise remains unchanged from the
matched filter limit. The resulting distribution thus has
mean:

µρ,SC = CSC
χ (2Ncoh + λ). (4.42)

The above Equation reduces to (4.34) in the limit of
Ncoh = 1 (matched-filter limit). The detection thresh-
old for a given signal will differ from the matched filter
limit due to the higher number of degrees of freedom of
the χ2 distribution of the semi-coherent ρ, and can be
calculated numerically as shown in Fig. 5 (along with
other limits).

In the limit of large Ncoh, the χ2(2Ncoh) distribution
tends toward a Gaussian. Continuous wave searches us-
ing this cross-correlation technique, e.g. [77] can have
Ncoh of order 104, and hence can set their thresh-
olds based on Gaussian statistics as assumed by [56].
However, searches for intermediate duration GW signals

7 We consider specifically Type IIa GRBs as described in
[94] with plateau power law decay indexes of magnitudes
.0.5.
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(such as those of interest to this paper) can have Ncoh

smaller by 1–2 orders of magnitude, so it is essential to
correct the corresponding detection thresholds to account
for non-Gaussianity. In particular, the Central Limit
Theorem reduces the skew of the χ2(2Ncoh) distribution
relatively slowly as Ncoh grows.

We finally remark that, for simplicity, we have assumed
coherence segments that do not overlap and no window-
ing function for the SFTs. For a more detailed discussion
of the effects of overlapping segments and windowing, see
[78].
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FIG. 5. The smallest detectable GW amplitude hmin

is plotted versus FAP with a set FDP of 1− γ = 50%.
A matched filter with known initial phase (black dot-
ted line, with gray shading) is the idealized optimal
search, and it provides an absolute limit on the sensi-
tivity of any real search. Hence, the shaded gray area
is forbidden. The matched-filter limit of the cross-
correlation method (dashed blue line) is expected to
approach (but not converge with) the black-dotted
line. The semi-coherent limit (dash/dotted purple
lines) becomes less sensitive for increasing Ncoh, even-
tually approaching the stochastic limit (dotted red).
The Ncoh = NSFT = 512 limit of the cross-correlation
method (red dash/double-dot red line) differs from
the stochastic limit in that it includes self-pairs (au-
tocorrelations). As discussed in the text, the assump-
tions of Gaussian statistics and known phase constant
in [56] yield incorrect results as the resulting sensi-
tivity (green solid line) does better than the optimal
matched filter for sufficiently small FAP.

D. Spectral Leakage Effects

Several of the assumptions made in the previous Sec-
tions are expected to lead to some amount of spectral
leakage. These include the finite-time approximation of

the delta function in Eq. (3.14), the quarter-cycle cri-
terion, and SFT windowing effects (that is, the simpli-
fication of using a simple rectangular window). A full
treatment of the effects of spectral leakage is outside the
scope of this paper but we mention some of its effects
here.

As shown in Fig. 6, spectral leakage is an issue any
time the signal frequency does not precisely correspond
to the center of one of the SFT frequency bins. In
the simplest case of a constant frequency periodic sig-
nal, spectral leakage can cause a reduction of up to 50%
in the SNR (µρ,signal/σρ,noise) for the ρ statistic in each
of the fully coherent segments. This effect is worsened
when one considers time-varying frequencies: while the
quarter-cycle criterion restricts the leakage from first or-
der terms (ḟ), higher order components of the frequency

evolution (f̈ ,
...
f , etc) can lead to additional leakage. The

net result is that, on average, neglecting spectral leakage
will result in reduced SNR that is roughly 75% of the
idealized case, see Figures 6a and 6b, and also [78].

The typical solution for this problem is to introduce
a windowing function for the SFT, but this is not with-
out tradeoffs. Each windowing function (of which there
are many) has different strengths and weaknesses. The
commonly used Hann window is well equipped to handle
spectral leakage and maintains good frequency resolu-
tion, but suffers in amplitude accuracy [78]. SFT win-
dows must then be overlapped in an attempt to regain
some of the lost amplitude information, increasing com-
putational cost. The Tukey window, commonly used in
continuous wave searches, is – by contrast – not as good
at diminishing the effects of spectral leakage but retains
more of the original power. Recent work within the cross-
correlation framework has examined the effects of differ-
ent windowing functions in detail [77, 78].

Other methods can also be used to reduce
spectral leakage. These include over-resolving
each SFT by zero-padding (although this can still
lead to some spectral leakage for signals whose
frequency varies continuously with time), sinc-
interpolating between SFT bins (thus leveraging
the sampling theorem [95]), or simply adding con-
tributions from neighboring SFT bins. Includ-
ing just the two adjacent SFT bins when cross-
correlating can improve recovery of the expected
SNR from ≈77% to ≈90% [78].

In what follows, we acknowledge that spectral leak-
age could lead to SNRs that are roughly ≈75% of the
idealized value for the ρ statistic (i.e. up to a factor of√
.75 ≈ 87% in signal amplitude and/or distance reach

for cases in which f̈ and higher terms may not be neg-
ligible). This is consistent with the estimate of 77.4%
for rectangular windowing described in [78] and related
searches, e.g. [77]. Signals for which a chosen base-

line is particularly close to the limit set by ḟ
via the quarter-cycle criterion (assumption #2
in Sec. III C) may experience additional leakage

(not to exceed the maximum loss of
√
.5 ≈ 71% in
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bin. Thus, the maximum loss in amplitude sensitivity from
spectral leakage should be no more than

√
50% ≈ 71% for a

signal satisfying the quarter-cycle criterion (see Sec. III C).
The grey shaded region corresponds to the 3σ error region

resulting from 512 independent simulations.
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(b) SNR variation with respect to the location of f0 for a
pulsar-like evolution, f(t) = f0 + f1t, where f1 = −1/1024 Hz was
chosen such that the frequency would change by one frequency bin

(1/∆TSFT Hz) over the entire duration of the signal (Tobs), well
within the quarter-cycle criterion. Here, the factor of f1 guarantees
that the signal never precisely corresponds to the center of the bin,
which averages out to roughly 75% of the SNR (or

√
75% ≈ 87%

in amplitude) for any given f0 The grey shaded region
corresponds to the 3σ error region resulting from 512

independent simulations.

FIG. 6. The effects of spectral leakage on signals of the form h(t) = h0 sin Φ(t) with Φ(t) = 2π
∫
f(t)dt and h0 = 10−24 injected

into Gaussian noise with zero mean and Sn ≈ 1.75 × 10−47 Hz−1. Two frequency evolutions are considered: a line feature of
constant frequency f(t) = f0 (left); a pulsar-like evolution of the form f(t) = f0− f1t (here f1 = 1/1024 Hz/s, right). The SFT
baseline used to calculate the SNR is ∆TSFT = 2 s, resulting in SFT bin widths of 1/2 Hz (e.g. the center of the bin located
at f0 = 128.0 Hz has edges at 128.25 and 127.75, red vertical dashed lines). In all cases the total duration of the signal is
Tobs = 512 s.

amplitude sensitivity, see Fig. 6a).

V. GRB PLATEAU SEARCH SENSITIVITY

In this Section we apply the cross-correlation statistic
to the specific model of intermediate duration GW signals
described in [38]. This model describes the scenario of
a secularly unstable GRB-magnetar possibly associated
with a GRB afterglow plateau (see also Section I).

In the Newtonian limit, the l = m = 2 f -mode be-
comes secularly unstable when the ratio β = T/|W | of
the rotational kinetic energy T to the gravitational bind-
ing energy |W | is between 0.14 and 0.27. This mode
has the shortest growth time of all polar fluid modes,
1 s . τGW . 7× 104 s for 0.24 & β & 0.15 [54] and may
be an important source of GWs. Under the hypothesis
that a secular bar-mode instability does indeed set in for
a magnetar left over after a GRB explosion, Corsi and
Mészáros [38] have followed the NS quasi-static evolu-
tion under the effect of gravitational radiation according
to the analytical formulation given by [54]. Since τGW
is generally much longer than the dynamical time of the
star, the evolution is quasi-static, i.e., the star evolves
along an equilibrium sequence of Riemann-S ellipsoids.
Differently from what was done by Lai and Shapiro [54],

Corsi and Mészáros [38] added into the evolution energy
losses due to magnetic dipole radiation, assuming that
those will not substantially modify the dynamics, but
will act to speed up the overall evolution along the same
sequence of Riemann-S ellipsoids that the NS would have
followed in the absence of radiative losses.

In the model proposed by Corsi & Mészáros 2009 [38],
the resulting quasi-periodic GW signal depends on five
parameters: β, the initial kinetic-to-gravitational po-
tential energy ratio of the magnetized NS [54]; n, the
NS polytropic index; M , the NS mass; R0, the unper-
turbed NS radius; and B0, the initial dipolar magnetic
field strength at poles. For a typical parameter choice
of M = 1.4 M�, R0 = 20 km, n = 1, B0 = 1014 G, and
β = 0.20 (Fig. 7, red), [38] have estimated a distance
reach (assuming a matched filter search) of ≈100 Mpc
for the aLIGO-Virgo detectors (for FAP≈ 5 × 10−5 and
FDP=50%).

We have tested the detectability of this class of sig-
nals using the adaptation of the cross-correlation statistic
described in the previous Sections, and assuming Gaus-
sian noise with Sn(f) ≈ 1.83×10−47 Hz−1 approximately
equal to that of whitened aLIGO-Virgo noise in the sig-
nal’s frequency band (Fig. 2). The results are reported
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FIG. 7. Frequency evolution for two representative signals
generated via the Corsi and Mészáros model. The signals are
for a typical choice of parameters M = 1.4 M�, R0 = 20 km,
n = 1, B0 = 1014 G, and different β (β = 0.20 is in the center
of the allowed range of 0.14 < β < 0.27). For more details on
the model used to generate these waveforms, see [38].

in Table I for an optimally oriented GRB8.
A matched filter analysis yields the highest sen-

sitivity, and thus the largest horizon distance
limits. For a typical choice of model parame-
ters (e.g. β = 0.20, B0 = 1014 G, M = 1.4M�,
R0 = 20 km), if we assume that the initial phase
is known as in [38], we obtain a distance limit
of ≈139 Mpc for a FAP of 0.1% and a FDP of
50% using data from a single detector. This
is consistent with the estimate of ≈100 Mpc re-
ported in [38] (which assumed a smaller FAP).
A real matched filter search will have an over-
all unknown phase constant (see the last para-
graph in Sec. IV B), which reduces the hori-
zon distance to ≈118 Mpc (for the same model
parameters). Our cross-correlation matched fil-
ter limit yields an horizon distance of ≈103 Mpc,
or 103 Mpc/

√
75% ≈119 Mpc when correcting for

spectral leakage (see Fig. 6), in agreement with
the (real) matched filter.

We finally note that signals with faster fre-
quency evolutions are affected more by spectral
leakage, for a fixed choice of ∆TSFT (satisfying
the quarter cycle criterion). For example, the
GW signal from a magnetar with β = 0.26 would
have a faster frequency evolution than that from

8 Here, “optimally oriented” is taken to mean that the
GRB jet is aligned with the line of sight (so that ι = 0
and the GW is circularly polarized, i.e. A+ = A× = 1,
see Sec. III C) and the GRB sky location is such that
the line of sight is orthogonal to the plane containing
the detector (so that F 2

+ + F 2
× = 1).

a source with β = 0.20 (with other source param-
eters unchanged; Fig. 7). The distance horizon
we achieve in the cross-correlation matched filter
limit for β = 0.26 (and for a ∆TSFT equal to the
one used for the β = 0.20 case) is ≈ 216 Mpc. This

is ≈
√

57% of the expected matched filter horizon
of 287 Mpc (see Table I), worse than what we
would have expected for average spectral leakage
losses of

√
75%, but still within the maximum ex-

pected value of
√

50% (see Fig. 6a). Such extremal
losses are consistent with baselines very near to
(but not exceeding) the maximum value set by
the quarter-cycle criterion. These losses can be
improved by optimizing the size of the baseline,
given each frequency evolution, and is planned
for future work. These results are summarized in
Table I.

TABLE I. Single-detector distance horizons for simula-
tions in which the search is performed on the “correct”
frequency-time track for with B0 = 1014 G, M = 1.4M�,
R0 = 20 km and varying values of β using the model pro-
posed by [38]. The search techniques used are matched
filtering with unknown phase (MF), the cross-correlation
matched filter limit (χ2MF, see Sec. IV B), and the cross-
correlation stochastic limit (see Sec. IV A).

β Value
Distance Horizon (Mpc)

MF χ2MF Stochastic

0.20 118 103 20

0.26 287 216 40

While a detailed study of the parameter space
of the model by [38] is beyond the scope of this
paper, we also carried out several simulations to
demonstrate the effectiveness of a semi-coherent
approach in: (i) enhancing the robustness of
the search against signal uncertainties when com-
pared to a matched-filter limit; and (ii) enhancing
the sensitivity of the search when compared to a
“stochastic approach”. We do so by calculating
the distance horizons for situations in which the
assumed time-frequency track differs from the ac-
tual signal by some amount. This difference is
quantified by an error (δM, δR, δB) on the val-
ues of the true signal parameters (M, R, B). The
size of these errors help determine the parame-
ter space resolution for an effective search. The
results of these tests are summarized in Tables II
and III.

Because an error in signal parameters implies a mis-
match between the true signal time-frequency evolution
and the time-frequency track adopted for the calculation
of the ρ statistic, we expect the cross-correlation search to
completely miss the signal in the limit of large coherence
timescales, Tcoh → Tobs (approaching the matched-filter
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limit, which is not robust against such deviations). On
the other hand, in the limit of small coherence timescales,
Tcoh → ∆TSFT, while the search is expected to be robust
against signal uncertainties, the sensitivity is significantly
lower than the matched-filter case. Thus, for a given pa-
rameter space resolution, one can define an optimal co-
herence timescale, which can then be used to quantify
the distance reach of the semi-coherent regime (for given
FAP and FDP).

We obtain the optimal coherence time (Topt) by calcu-
lating the detection efficiency for given FAP (here, 0.1%)
as a function of Tcoh, for a signal at a fixed distance. The
Tcoh that is associated with the maximal detection effi-
ciency is then used for a series of injections of varying
distance, but fixed Tcoh. The distance that is associated
with an efficiency of 50% (which is equivalent to a FDP
of 50%) is then taken to be the distance horizon for that
step size. The step sizes taken for each model parame-
ter informs the size of the parameter space that a semi-
coherent cross-correlation search should cover. We ran
simulations with two classes of step size: “large” steps
that correspond to a coarse grid in the parameter space,
and “small” steps that correspond to finer (and subse-
quently, more computationally intensive) grid in the pa-
rameter space.

The results for the large steps are shown in Fig. 8,
and summarized in Table II. Optimal coherence times,
see Fig. 8 (left), are of O(1) s, which lead to maximal
detection distances around 20− 30 Mpc (recovering only
≈ 25% of the matched filter limit), see Fig. 8 (right).
In the case where all three parameters are stepped si-
multaneously (δAll), the optimal coherence time is only
twice the SFT baseline of ∆TSFT = 0.25 s and provides
no significant gains over the stochastic limit, see Table
II.

TABLE II. Single-detector distance horizons for large
steps in each of the model parameters with, β = 0.20,
B0 = 1014 G + δB0, M = 1.4M� + δM , R0 = 20 km + δR0.
The resulting distance horizons are approximately 20-30 Mpc,
which is up to a 50% improvement over the stochastic limit,a

but only ≈25% of the matched filter limit. All errors of order
O(1) Mpc.

Var Step Size Topt (sec)
Distance Horizon (Mpc)

Semi-Coh Stochastic

δB0 1012 G 1 22 20

δM 5× 10−3M� 2 28 20

δR0 20 m 2 29 20

δAll As above 0.5 20 20

a A factor of 1.5 in distance horizon increases the expected
detection rate by a factor of 1.53 ≈ 3.

The small step sizes produce optimal coherence times
of as high as 256 s, see Fig. 9 (left), which lead to max-
imal detection distances of ≈60-80 Mpc, roughly ≈75%

of the matched filter limit, see Fig. 9 (right). For com-
parison, we note that nearest long GRB on record was
GRB 980425, located at a distance of 40 Mpc [96, 97].
These results suggest that the large steps considered
above are indeed too large to adequately resolve the pa-
rameter space, while the small steps represent a good
starting point for a finer exploration of the physically
relevant parameter space. We note that an in depth
discussion of parameter space range and resolu-
tion must also include the effect of the implied
number of trials on the detection statistic. This
effect is expected to be more important for longer
coherence times. A full study of the parameter
space for intermediate-duration GWs, using the
cross-correlation search technique described here,
is planned for future work.

TABLE III. Single-detector distance horizons for small
steps in each of the model parameters with, β = 0.20,
B0 = 1014 G + δB0, M = 1.4M� + δM , R0 = 20 km + δR0.
The simulation used Tobs = 1024 s and ∆TSFT = 0.25 s. The
resulting distance horizons are approximately 60-80 Mpc, up
to four times as large as the stochastic limit,a and &75% of
the matched filter limit. All errors of order O(1) Mpc.

Var Step Size Topt (sec)
Distance Horizon (Mpc)

Semi-Coh Stochastic

δB0 1010 G 64 61 20

δM 5× 10−5M� 256 73 20

δR0 0.2 m 256 76 20

δAll As above 64 58 20

a A factor of 4 in distance horizon increases the expected
detection rate by a factor of 43 = 64.

VI. DISCUSSION AND CONCLUSION

We have explored the application of the cross-
correlation technique described in [56] to a new class
of intermediate duration GW signals of duration Tobs .
104 s, specifically the bar mode instability model for mil-
lisecond magnetars developed in [38]. In doing so, we
have corrected the statistical properties of the cross-
correlation statistic reported in [56] for both the semi-
coherent, and full-coherent matched-filter limits. In ad-
dition, we have done a cursory exploration of the param-
eter space for this model.

There are several parallels between limits of the cross-
correlation method and other search techniques used for
LIGO data analysis. Natural examples are the tech-
niques derived from efforts to quantify the stochastic GW
background. Two such methods are the Stochastic Tran-
sient Analysis Multi-detector Pipeline (STAMP), a cross-
power statistic widely used for LIGO all-sky searches
[30, 98], and stochtrack, a seedless clustering algorithm
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that has been tested on signal models comparable in du-
ration to those considered here [31]. Both these methods
are similar (in spirit, if not necessarily implementation)
to the stochastic limit of the cross-correlation approach.

Because of their significant robustness against signal
uncertainties (and relatively low computational costs)
stochastic-inspired methods (as the two described above)
are attractive for many search regimes, and especially as
a first pass when searching for viable GW candidates with
wide parameter spaces. On the other hand, the improve-
ment in sensitivity (and therefore distance reach) enabled
by the semi-coherent limit of the cross-correlation ap-
proach lends itself to deeper searches. A potential way
to leverage the strengths of both regimes is to develop a
framework in which a stochastic-inspired search is used
for discovery, with semi-coherent cross-correlation fol-
lowup for parameter estimation and refinement. This
could be done entirely within cross-correlation method
described in this work, or by using an established stochas-
tic technique (e.g. STAMP) for discovery and cross-
correlation for follow-up.

Overall, the results of our study are encouraging:
The tunable robustness versus sensitivity of the cross-
correlation technique is well suited for intermediate du-
ration GW signals that evolve on timescales of 103-104 s,
and can reach astrophysically relevant distance horizons
with the expected noise characteristics of GW detectors
such as aLIGO and Virgo. However, a full parameter
space exploration is yet to be completed, as is testing on
real instrument noise. Additionally, the trials factor for
a full parameter space search will reduce, to some extent,
the idealized horizon distances calculated here. We in-
tend to explore these aspects of the analyses in future
work.
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FIG. 8. Efficiency (1-FDP) plots for large steps δB0 = 1012 G (blue), δM = 5 × 10−3M� (green), δR0 = 20 m (red) and all
three combined (purple). All plots assume FAP=0.1% and distances are extracted using FDP=50% (black dotted line and gray
shaded area). On the left, optimal coherence time plots. The signal is injected at a constant distance, Tcoh is then varied to
find the value that maximizes detection efficiency (Topt). On the right, Tcoh is fixed at the optimum value for each step, and

then distance is varied. The result is fit by an asymmetric sigmoid of the form sig(x) = [1 + exp(p0{x − p1})]−1/p2 (where
p0, p1, p2 are constants to be fit), which is then used to interpolate and determine the max distance (dmax).
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FIG. 9. Efficiency (1-FDP) plots for small steps in δB0 = 1010 G (blue), δM = 5 × 10−5M� (green), δR0 = 0.2 m (red) and
all three combined (purple). All plots assume FAP=0.1% and distances are extracted using FDP=50% (black dotted line and
gray shaded area). On the left, optimal coherence time plots. The signal is injected at a constant distance, Tcoh is then varied
to find the value that maximizes detection efficiency (Topt). On the right, Tcoh is fixed at the optimum value for each step,

and then distance is varied. The result is fit by an asymmetric sigmoid of the form sig(x) = [1 + exp(p0{x− p1})]−1/p2 (where
p0, p1, p2 are constants to be fit), which is then used to interpolate and determine the max distance (dmax).
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[38] A. Corsi and P. Mészáros, Gamma-ray Burst Afterglow
Plateaus and Gravitational Waves: Multi-messenger Sig-
nature of a Millisecond Magnetar?, Astrophys. J. 702,
1171 (2009), 0907.2290.

[39] M. H. P. M. van Putten, Gravitational Waveforms of
Kerr Black Holes Interacting with High-Density Matter,
Astrophys. J. Lett. 684, L91 (2008).

[40] C. D. Ott, TOPICAL REVIEW: The gravitational-
wave signature of core-collapse supernovae, Class. Quant.
Grav. 26, 063001 (2009), 0809.0695.

[41] A. L. Piro and C. D. Ott, Supernova Fallback onto Mag-
netars and Propeller-powered Supernovae, Astrophys. J.
736, 108 (2011), 1104.0252.

[42] A. L. Piro and E. Thrane, Gravitational Waves from Fall-
back Accretion onto Neutron Stars, Astrophys. J. 761, 63
(2012), 1207.3805.

[43] D. D. Doneva, K. D. Kokkotas, and P. Pnigouras, A grav-
itational wave afterglow in binary neutron star mergers,
ArXiv e-prints (2015).

[44] J. A. Nousek, C. Kouveliotou, D. Grupe, K. L. Page,
J. Granot, E. Ramirez-Ruiz, S. K. Patel, D. N. Burrows,
V. Mangano, S. Barthelmy, et al., Evidence for a Canoni-
cal Gamma-Ray Burst Afterglow Light Curve in the Swift
XRT Data, Astrophys. J. 642, 389 (2006), arXiv:astro-
ph/0508332.

[45] B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Mészáros,
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