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We construct a new global, fully analytic, approximate spacetime which accurately describes the
dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic
merger process. This approximate solution of the vacuum Einstein’s equations can be obtained
by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian
metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric
even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid
on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous
works. This metric is well suited for long term dynamical simulations of spinning black hole binary
spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds
of binary orbits.
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I. INTRODUCTION

The recent announcement of GW150914 [1] from the
Laser Interferometer Gravitational wave Observatory
(LIGO) [2] has provided the first strong evidence of a
black hole binary (BHB) coalescence due to the emis-
sion of gravitational waves (GWs). This discovery kicks
off the era of gravitational wave astronomy, and pro-
vides further justification to the study of the inspiral
and merger of BHBs. The merger of stellar-mass black
holes (BHs), such as GW150914 and other BHB potential
LIGO sources, are not expected to have any electromag-
netic (EM) counterparts [3]. However, Ref. [4] reported a
potential γ-ray EM counterpart observed by the Gamma-
Ray Burst Monitor [5] on Fermi which is consistent with
the sky localization of GW150914.

The existence of supermassive BHs residing in the cen-
ters of galaxies [6] indicates another type of possible
BHB, one for which EM counterparts are not only possi-
ble, but are also frequent. Galaxies will undergo mergers
as the Universe evolves [7, 8]. In the process of the galac-
tic merger, the supermassive BHs will form a bound pair
due to torques exerted by the surrounding gas and stars,
dynamical friction, and gravitational slingshots that eject
stars from the nucleus of the merging system. Gravita-
tional radiation becomes the dominant energy loss mech-
anism as the BHBs become closely separated, eventually
driving the two BHs to the full merger. The consequences
of such mergers for galactic evolution can be far reach-
ing, as strong correlations between galactic structure and
central BH mass indicate tight feedback between BH and
galaxy growth.

Future space-based GW missions, like the pro-
posed European New Gravitational wave Observatory
(NGO) [9–11] and the DECi-hertz Interferometer Grav-

itational wave Observatory (DECIGO) [12], will be sen-
sitive to such events, but are decades away from launch.
Fortunately, in the case of supermassive BHBs, highly-
relativistic magnetized gas could flow around the pair, as
well as around each BH companion. Therefore, powerful
EM signals should accompany the inspiral and merger of
BHBs [13, 14].

The main research focus of the authors is to simu-
late the effects of spinning supermassive BHB mergers
on nearby gas in sufficient detail to enable EM obser-
vations of these events. This paper represents a major
step forward in achieving this goal by providing an an-
alytic spacetime that can handle spinning BHBs. Since
2005 [15–17], a handful of numerical relativity simula-
tions of BHBs have been successfully carried on for nearly
a hundred orbits [18, 19], providing the necessary wave-
forms for current and future GW detectors [20, 21].

However, in the case of BHBs in a gaseous environ-
ment, numerical magnetohydrodynamic (MHD) simula-
tions are still very expensive to carry out [22–32]. This
is because we need to resolve turbulences and shocks in
the gas, as well as secular variations in the circumbi-
nary disk on the time scale of hundreds to thousands
of binary orbits (see Ref. [33] for detailed discussion).
In order to make long-term and accurate MHD simula-
tions possible, we developed a complementary analytic
approach to treat dynamical, nonspinning, BHB space-
times [33–36]. This spacetime is a solution to the Ein-
stein field equations in the approximation that the BHB
is slowly inspiralling to merger. In this situation, gravity
is weak [rg/r = GM/(rc2) � 1] and motions are slow
[v/c � 1], so the post-Newtonian (PN) approximation
is a very good description of spacetime. Using a space-
time accurate to 2.5PN order (i.e., including terms up to
∼ (rg/r)

5/2), and using the 3.5PN equations of motion
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(EOM) to describe the GW driven inspiral of the orbital
evolution [37], we demonstrated that circumbinary disks
can track a supermassive BHB for hundreds of orbits un-
til the binary practically reaches the relativistic merger
regime [33].

In a more recent paper [34], we extended the metric all
the way down to the horizons of each BH. We did this by
broadening the framework introduced in Refs. [38–40] for
constructing a spacetime metric valid for initial data, to a
full dynamical spacetime metric valid for arbitrary times.
This metric is constructed by stitching together different
spacetime metrics valid in different regions of the full
BHB spacetime (see II). We extend this framework here
to include the effects of spinning BHs.

There are important spin-based effects which affect the
dynamics of the BHB that can also significantly alter the
dynamic of the surrounding gas. The mechanisms asso-
ciated with accretion at larger separations may drive the
spins into alignment with both the binary orbital axis
and the circumbinary disk axis [41–43]. In this case, an-
other mechanism due to spin-orbit coupling can delay or
prompts the merger of the BHB according to the sign of
the spin-orbit coupling [44]. This could have a signifi-
cant effect on the total pre-merger light output and its
time-dependence.

At closer BHB separations, little is know about the
effectiveness of these accretion driven spin-alignment
mechanisms. In this situation, spin-spin and spin-orbit
interactions can also cause the spins to precess, leading
to time-dependence in non-planar gas orbits [45]. Grav-
itomagnetic torques arising from the BH spins oblique to
the orbital axis may then push the accretion streams onto
the BHs out of the orbital plane and alter the tidal limi-
tation of the mini-disks, particularly for relatively small
binary separations. Another interesting spin effect is the
recently discovered spin-flip-flop phenomenon [18, 46],
where the spin of one of the BHs completely reverses.
This may cause the gas in the neighborhood of the bi-
nary to be continually disturbed in a manner that will
produce a very distinct EM signature from the disk. Fi-
nally, highly spinning BHBs may recoil at thousands of
km/s [47–50] due to asymmetrical emission of gravita-
tional radiation induced by the BH spins [51, 52]. The
resulting ejected BH may carry along part of the origi-
nal accretion disk causing it to be bright enough to be
observable (see [53] for a review).

In this paper, we generalize [34] to spinning BHBs,
with spins aligned and counteraligned with the orbital
angular momentum of the binary, in a quasi circular in-
spiral. We will address the case of oblique spins and
spin precession [54] in future work [55]. Our new spin-
ning global metric must, of course, approximately satisfy
the Einstein equations, if it is to be considered a true
spacetime metric representing a BHB. For each zone, we
check the validity of the spacetime analytically in the
black hole perturbation, the PN and the post-Minkowski
(PM) approximations by computing the deviations from
Einstein’s equations. We can construct several curva-

ture invariants to determine the overall accuracy of the
approximations. One such invariant is the Ricci scalar,
which can be compared against the exact vacuum solu-
tion quantity of R = 0. Another quantity is the Hamilto-
nian constraint, which is used in the numerical relativity
community to measure the amount of “fake” mass in the
system caused by violations to the Einstein vacuum field
equations. Finally, we introduce an invariant quantity
related to the Kretschmann invariant RµνρδR

µνρδ, which
has the benefit of being a normalized measure of the vi-
olation of the global metric to the Einstein equations.

This paper is organized as follows. Sec. II outlines
the different approximate metrics, and details of their
construction and matching to obtain the global metric.
Sec. III discusses the numerical analysis of this global
metric by the calculation of several spacetime invariants
that impress upon us the validity of the global metric.
Finally, Sec. IV contains useful discussion, conclusions,
and future work. The appendices A, B, C and D describe
the choice of transition functions that are utilized in the
global metric, the details of the ingoing Kerr to Cook-
Scheel coordinate transformation, the innermost stable
circular orbit (ISCO) and an effective evaluation of the
inner zone metric.

Throughout this paper, we follow the notation of Mis-
ner, Thorne and Wheeler [56], specifically, greek letters
(α, β, γ, ···) used as indices are indicative of spacetime co-
ordinates, and latin letters (i, j, k, · · ·) are used in discus-
sions of spatial coordinates only. The covariant metric is
then written as gµν , and has a signature of (−,+,+,+).
We use the geometric unit system, where G = c = 1,
with the useful conversion factor 1M� = 1.477 km =
4.926× 10−6 s.

II. CONSTRUCTION OF APPROXIMATE
GLOBAL METRIC

We are concerned with the construction of the approx-
imate global metric with spin for a BHB pair on a quasi
circular inspiral, in the inspiral regime. To find this
global metric for the BHBs, we first consider the individ-
ual regions where different approximations and assump-
tions hold (see Table I); the inner zone (IZ) around BH1
(IZ1) and around BH2 (IZ2), the near zone (NZ) around
the two BHs, and the far zone (FZ) or wave zone farthest
out.

A. Subdividing spacetime

In the inner region very close to the individual BHs, we
treat the spacetime as a vacuum Kerr solution with linear
perturbations as in Ref. [59]. The PN metric subdivision
that was briefly discussed above is known as the NZ. This
metric is valid in the slow motion, weak field limit. The
addition of spins to the NZ will add terms to the PN ex-
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TABLE I. Regions of validity for the different zones and BZ
locations. Here r1 and r2 are the distances from the first or
second BH with mass m1 or m2, r is the distance from the
center of mass to a field point, r12 is the orbital separation,
and λ is the gravitational wavelength. For BZs to exist, the
system must satisfy m1,2 � r12, though we expect that the
metric will break down before this condition is violated. (This
was also presented in Refs. [34, 57, 58].)

Zone Region of Validity
IZ1 0 < r1 � r12
IZ2 0 < r2 � r12
NZ mA � rA � λ
FZ r12 � r < ∞

IZ1-NZ BZ m1 � r1 � r12
IZ2-NZ BZ m2 � r2 � r12
NZ-FZ BZ r12 � r � λ

pansion which, to lowest order, are the 1.5PN 1 leading
order spin-orbit coupling and 2PN leading order spin-spin
terms. The NZ is defined to be valid in a region far away
from the individual BHs (to not violate the weak field ap-
proximation), but not farther away than a gravitational
wavelength (λ ∼ 2π/ωGW ∼ π/ωorb ∼ π(r312/M)1/2,
where M = m1 +m2 is the total mass) from the center of
mass of the binary system. The region even farther out
than a gravitational wavelength from the center of mass
can be described as the FZ, in which the metric takes the
form of flat (Minkowski) space, with outgoing GWs per-
turbing the spacetime. The FZ is modeled with a PM (or
multipolar) formalism [60]. Unlike in PN formalism, PM
expansions correctly treat the retardation of the gravita-
tional field, which is essential for understanding the FZ.
This subdivision of the spacetime into different regions
will only be valid as long as the slow motion approx-
imation holds, and will break down around an orbital
separation r12 ≈ 10M [61, 62].

Once we have the individual metrics for the different
zones, we need to stitch them all together into a global
metric, asymptotically matching the IZ, NZ, and FZ to
each other in BZs. The procedure of matching adjacent
metrics to one another requires the metrics to be in the
same coordinate system. In other words, one of the met-
rics (and its parameters) will be related to the next door
metric via some coordinate transformations, constructed
such that the transformed metric asymptotes to the ad-
jacent metric in the BZ. Asymptotic matching in GR has
been successfully done in Refs. [38–40, 57, 63–66], but in
all of these papers, the authors asymptotically matched
in the context of initial data for BHB simulations, which
implies that their focuses were on a particular spatial
hypersurface. However, in the context of this work, this

1 A PN order N is said to be a term of order (v/c)2N for the slow
motion expansion (e.g., 1.5PN is order (v/c)3).

restriction must be lifted if there is to be any hope of
dynamic, long time evolutions of BHBs. Ref. [34] suc-
cessfully removed this restriction in the context of non-
spinning BHs. The task now is to do this in the context
of spinning BHs. The extension to spinning BHs should
be more astrophysically relevant than the non spinning
BHB case covered in Ref. [34], because it is thought that
most astrophysical BHs have spin [67].

Once the metrics have been asymptotically matched,
we construct a global metric by introducing transition
functions that take us from one metric to the next in
the BZs without introducing artificial errors [66] into the
metric that are larger than the errors already incurred in
the approximations used in construction of the individual
metrics.

FIG. 1. A schematic diagram detailing the different zones for
the approximate analytic spacetime looking down the z-axis
at a particular instant in time. The black dots on the x-axis
represent the two BHs, with an orbital separation of r12. The
cyan shells indicate the BZs – regions where two adjacent
metrics have overlapping regions of validity. The outermost
shell is the NZ-FZ BZ, with both the IZ1-NZ and IZ2-NZ BZs
labeled around the individual BHs. The IZ, NZ, and FZ are
denoted as the regions contained by the BZs. Note that the
circular nature of the BZs is not physical, only schematic, and
in general it is expected that they will have some distortions.
(This was also presented in Refs. [34, 57, 58].)

The different zones and their associated BZs are sum-
marized in Fig. 1 and Table I. The cyan shells indi-
cate the BZs between the individual subdivided metrics,
where both of the adjacent metrics are valid. We note
that the figure is purely schematic; in general, there is
no inherent symmetry that would cause the BZs to be
like the spherical shells depicted, so in reality these BZs
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would be distorted. It is in these BZs that asymptotic
matching of the individual metrics takes place. Finally,
the resulting matched metrics are stitched together with
the proper transition functions satisfying the Franken-
stein theorems [66], yielding a global analytic approxi-
mate spacetime. The construction of the asymptotically
matched global metric has been calculated in Ref. [57],
but only in the context of initial data and not for long
time evolutions of the BHB system.

B. Inner Zone

The IZs in Fig. 1 and Table I are constructed following
the work laid out in Ref. [59], and applied to BHB initial
data on a single spatial hypersurface in Ref. [57]. The
IZ metric is approximately described by the Kerr metric
gKerr
µν plus a linearized vacuum perturbation hIZµν :

gIZµν = gKerr
µν + hIZµν . (1)

Here the Kerr metric is given by the mass of the Kerr
BH mKerr, and the dimensional spin parameter a, which
can be related to the dimensionless spin parameter χ by
a = χmKerr and the dimensional spin S = χm2

Kerr. It
is convenient to work with χ in our calculations because
it is a normalized quantity (0 ≤ |χ| ≤ 1), with zero be-
ing a non spinning (Schwarzschild) BH, and one being a
maximally spinning Kerr BH.

The metric perturbation hIZµν has been studied and ap-
plied for Schwarzschild BHs, where we can use the Regge-
Wheeler-Zerilli-Moncrief formalism [68–71], which is gen-
erally valid for static spherically symmetric spacetimes.
However, when looking at the case of the Kerr back-
ground, this formalism is not applicable, because Kerr
is not spherically symmetric, and so there is not a multi-
pole decomposition of metric perturbations, and the Ein-
stein equations cannot be uncoupled into wave equations.
A reformulation due to Newman and Penrose [72] (from
here out referred to as the NP formalism) of the Ein-
stein equations and Bianchi identities projected along a
null tetrad coinciding with the null symmetries of the
spacetime (Kerr BHs are a type D algebraically special
solution) allowed Teukolsky [73] to write down a single
master wave equation for the perturbations of Kerr in
terms of the Weyl scalars (constructed from contract-
ing the Weyl tensor with the same conveniently chosen
null tetrad, called the Kinnersley tetrad) ψ0 or ψ4. Solu-
tions to the Teukolsky equation yield the perturbed Weyl
scalars.

To obtain the metric perturbation from the Weyl
scalar, we must use the Chrzanowski procedure [74],
which takes the Weyl scalar ψ0 and acts a differential op-
erator on it to yield a valid metric perturbation. This was
later amended by Wald [75], and Kegles and Cohen [76]
to use a Hertz potential Ψ instead of a Weyl scalar (ψ0 for
ingoing radiation, suitable for studying perturbations, or
ψ4 for outgoing radiation, suitable for GW studies [77]).

A brief description of the metric perturbation construc-
tion via the Chrzanowski procedure is summarized in the
following.

The metric perturbation hµν is constructed via the
Chrzanowski procedure by applying a certain differential
operator to the so-called Hertz potential. The Hertz po-
tential must satisfy a certain differential equation with
a source given by the NP scalar ψ0, and the differen-
tial equation can be inverted to yield the potential Ψ
totally in terms of ψ0 [75, 78]. Therefore, the construc-
tion of the metric perturbation hµν boils down to finding
an appropriate solution for the NP scalar ψ0. The met-
ric perturbation is in the ingoing radiation gauge, given
by the perturbation contracted along the tetrad compo-
nents, h`` = h`n = h`m = h`m = hmm = 0 where `µ and
mµ are components of the Kinnersley null tetrad, and
mµ is the complex conjugate of mµ.

This NP scalar must, of course, satisfy the Teukolsky
equation [73]. However, when the external universe (the
source of the perturbation) is slowly-varying (as is the
case of most interest to this work, when the external
universe is a second BH on a quasi-circular inspiral with
a large separation), it is possible to solve this equation
perturbatively [59]. Thus, we can write ψ0 in terms of
the spin-2 weighted spherical harmonics 2Ylm as

ψ0 =
∑
`,m

R`m(r)z`m(v) 2Y`m(θ, φ) , (2)

where the radial and time dependence are product de-
composed into terms of unknown real functions R`m(r),
and complex functions z`m(v). Here, v is the advanced
Kerr-Schild time coordinate. z`m can be written in terms
of electric and magnetic tidal tensors, which to leading
order in BH perturbation theory [79] can be truncated at
the ` = 2 quadrupolar deformation. The radial functions
R`m must then satisfy the (time-independent) Teukolsky
equation, and can be solved in terms of hypergeometric
functions. Solving the time-independent Teukolsky equa-
tion implies that the z`m functions are slowly varying or
constant in time. This can then be reconstructed into a
functional form for ψ0.

With this NP scalar under control, it is possible to
compute the Hertz potential, and from that, the full met-
ric perturbation hµν . Ref. [59] provides the full form of
hµν in Eddington-Finkelstein (ingoing Kerr) coordinates.

The final form of the IZ metric needs to have several
desirable features to be of use. One of which is horizon
penetrating, Cook-Scheel harmonic (CS-H) coordinates
(T, X, Y, Z) [80]. The details of taking the IZ from the
IK coordinates to the more useful CS-H coordinates is left
to Appendix B. From the CS-H coordinates, it is simply
a matter of applying yet another transformation to take
the metric from the IZ coordinates to the coordinates
used in the NZ, the PN harmonic (PNH) coordinates.
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C. Near Zone

The NZ in Fig. 1 and Table I is the region sufficiently
distant from either BH that the metric can be described
through the PN metric:

gNZ
µν = ηµν + hNZ

µν , (3)

where ηµν is the Minkowski (flat space) metric, and hµν is
a PN metric perturbation [57]. In the PN approximation,
the Einstein equations are solved in an expansion of both
v/c� 1 (slow motion) and GM/(Rc2)� 1 (weak fields),
where M is the total mass of the BHs, R is the orbital
separation (r12) or the center of mass to one BH (r1,2),
and the G’s and c’s have been replaced for convenience.
By construction, the PN approximation models the BHs
as point particles.

The metric perturbation we use is specified in Ref. [81]
for the spin independent terms and the first non-
vanishing spin terms are outlined in Refs. [82, 83], giv-
ing us a 1.5PN metric in PNH coordinates (which are a
Cartesian-like, rectangular coordinate system) to match
the IZ to as

gNZ
00 + 1 =

2m1

r1
+
m1

r1

[
4v2

1 − (n1 · v1)2
]
− 2

m2
1

r21

−m1m2

[
2

r1r2
+

r1
2r312

− r21
2r2r312

+
5

2r2r12

]

+
4m1m2

3r212
(n12 · v12)

+
4

r21
εijkv

i
1s
j
1n
k
1 + (1↔ 2) +O(v6) ,

gNZ
0i =− 4m1

r1
vi1 −

2

r21
εijks

j
1n
k
1 + (1↔ 2) +O(v5) ,

gNZ
ij − δij =

2m1

r1
δij + (1↔ 2) +O(v4) , (4)

where mA, siA, yiA and viA denote the mass, spin angular
momentum, location and velocity of the Ath PN particle,
respectively. Other notations that have been introduced
above are r12 = |y1 − y2|, n12 = (y1 − y2)/b, v12 =
v1 − v2, rA = |x − yA|, niA = (xi − yiA)/rA and εijk is
the Levi-Civita symbol.

In practice, we use higher order PN EOM than is
strictly allowed by matching. Since the IZ metric is a
first order BH perturbation theory, we cannot use any
higher order than linear for the NZ metric in the match-
ing calculation. We can, however, use a higher order
PN EOM outside of the matching to have more accurate
PN dynamics in the NZ for long time evolutions of BHB
systems. The higher order formulas are summarized in
the appendix of Ref. [84], and also in Ref. [37] (see also
Sec. III F). More specifically, we may use the energy func-
tion in Eq. (A.11), flux function in Eq. (A.13), and mass
loss in Eq. (A.14) given in Ref. [85] and follow the pro-
cedure to derive the orbital phase evolution presented in

Sec. 9.3 of Ref. [37]. This gives the aligned spinning ver-
sion of Eq. (317) in Ref. [37] which is for the nonspinning
case.

D. Asymptotic Matching

The IZ metric is described by the CS-H coordinates
Xα and the parameters Λα = (mKerr, a, zR,m, zI,m),
where zR,m and zI,m are the real and imaginary parts
of z2m respectively. On the other hand, the NZ metric
is written in PNH coordinates xα with the parameters
λα = (m1, m2, b, s

i
1, s

i
2). We require that these two ex-

pressions be diffeomorphic to each other, leading us to
a set of equations that relate the coordinates of the two
metrics

gNZ
αβ =

∂Xγ

∂xα

∂Xδ

∂xβ
gIZγδ , (5)

and expressions that relate the parameters used in each
zone. We consider b = r12 a constant in the matching
calculation here and recover the time dependence in the
final expression.

In the BZ in Fig. 1 and Table I, we use series expansions
with respect to (m2/b)

1/2 = O(v). The IZ coordinates
and parameters are expanded as

Xα
(
xβ
)

=

n∑
i=0

(m2

b

)i/2
(Xα)i

(
xβ
)

+O(vn+1) ,

Λα
(
λβ
)

=

n∑
i=0

(m2

b

)i/2
(Λα)i

(
λβ
)

+O(vn+1) , (6)

where (Xα)i and (Λα)i denote ith expansion functions of
the NZ coordinates xβ and those of the NZ parameters
λβ , respectively.

In the asymptotic matching between the IZ1 and NZ
metrics to O[(m2/b)

1], i.e., n = 2 in the above equa-
tions, we have already discussed in Ref. [57] that the
non-spinning matching transformation is sufficient, even
if we consider the matching of the spinning case. This is
because the spinning body effect arises from the n = 3
matching. Obtaining the mass mKerr = m1 (also the di-
mensional spin parameter a = sz1/m1 for non-precessing,
spinning BHBs), the quadrupolar field is

zR,0 =
2m2

b3
,

zR,2 =
6m2

b3
cos 2ωt , zR,−2 =

6m2

b3
cos 2ωt ,

zI,2 = −6m2

b3
sin 2ωt , zI,−2 =

6m2

b3
sin 2ωt , (7)

where ω ∼
√
M/b3 to lowest PN order, and the other

components vanish.
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E. Expansion of the Nonspinning Part of the IZ
and NZ Metrics

Using m1 � r1 � b in the BZ in Fig. 1 and Table I,
we expand the NZ and IZ metrics. First, the NZ metric
is expanded as in Ref. [40]

gαβ =(gαβ)0 +

√
m2

b
(gαβ)1 +

(m2

b

)
(gαβ)2 +O(v3) ,

(8)

where

(gNZ
αβ )0 =ηαβ , (gNZ

αβ )1 = 0 ,

(gNZ
αβ )2 =

[
2m1

m2

b

(r1)0
+ 2− 2

b

{
(r1)0 · (b̂)0

}
+

1

b2

{
3[(r1)0 · (b̂)0]2 − [(r1)0]2

}]
∆αβ . (9)

Here, ∆αβ = diag(1, 1, 1, 1), and (b̂k)0 = β̂k =
{cosωt, sinωt, 0} is a unit vector. Note that there is
no spin contribution which is 1.5PN order.

Next, we treat the IZ metric in the BZ. The IZ metric
up to the second order is derived as

(gIZαβ)0 =ηαβ (gIZαβ)1 = 0 ,

(gIZ00)2 =
2(mKerr)0

m2

b

(R)0
− 1

b2
(Ēkl)0(Xk)0(X l)0 ,

(gIZ0i )2 =
1

3b2
(Xi)0
(R)0

(Ēkl)0(Xk)0(X l)0

+
2

3b2
(R)0(Ēik)0(Xk)0 ,

(gIZij )2 =

(
2(mKerr)0

m2

b

(R)0
− 1

3b2
(Ēkl)0(Xk)0(X l)0

)
δij

− 2

3b2
(Ēij)0(R)20 . (10)

Here, the electric Ekl tidal tensor components are related
to the parameters zR,m and zI,m as

EXX = −1

8
zR,−2 −

1

4
zR,0 −

1

8
zR,2 ,

EXY = −1

8
zI,−2 +

1

8
zI,2 ,

EXZ = −1

4
zR,−1 −

1

4
zR,1 ,

EY Y =
1

8
zR,−2 −

1

4
zR,0 +

1

8
zR,2 ,

EY Z = −1

4
zI,−1 +

1

4
zI,1 ,

EZZ =
1

2
zR,0 , (11)

where EXX + EY Y + EZZ = 0, and Ekl is expanded as

Ekl =
m2

b3
(Ēkl)0 +O(v3) . (12)

Since the magnetic tidal tensor components, Bkl, is
higher order than Ekl, we ignore them when we discuss
the matching up to O[(m2/b)

1], and (Ēij)0 is written as

(Ēij)0 = δij − 3β̂iβ̂j . (13)

We are using the notation β̂α = {0, cosωt, sinωt, 0}
above.

F. Matching Calculation

We presented the formal expression of the asymptotic
matching in Sec. II D, then the IZ and NZ metrics in the
BZ in Sec. II E. Using the results from Sec. II E, we cal-
culate the coordinate transformation for the asymptotic
matching. This consists of solving Eq. (5) order by order
to O[(m2/b)

1] with respect to (m2/b)
1/2.

1. Zeroth-order matching: O[(m2/b)
0]

At zeroth order, we have the matching equation

(gNZ
αβ )0 = (Aα

γ)0(Aβ
δ)0(gIZγδ)0 , (14)

with Aα
β = ∂αX

β . Using (gNZ
αβ )0 = (gIZαβ)0 = ηαβ , and

taking into account the position of BH1, the zeroth order
coordinate transformation is given by

(Xα)0 = xα − m2

M
b β̂α = x̃α . (15)

We also understand (ri1)0 = x̃i. Here, it is noted that β̂α

has a time dependence, i.e.,

∂t(X
α)0 = t̂α − m2

M
bω ν̂α = t̂α −

√
m2

b

√
m2

M
ν̂α , (16)

where t̂α = {1, 0, 0, 0} and ν̂α = {0, − sinωt, cosωt, 0}.
The last term in the above equation creates the difference
between Ref. [57] and this paper.

2. First-order matching: O[(m2/b)
1/2]

At first order, the matching equation becomes

(gNZ
αβ )1 =(Aα

γ)0(Aβ
δ)0(gIZγδ)1

+ 2 (A(α
γ)1(Aβ)

δ)0(gIZγδ)0 , (17)

where T(αβ) denotes symmetrization about two indices.

Using (gNZ
αβ )1 = (gIZαβ)1 = 0, (gIZγδ)0 = ηαβ , ∂i(X

α)0 = δi
α

and Eq. (16), the above equation is written as

(A(αβ))1 +

√
m2

M
t̂(αν̂β) = 0 . (18)
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One of the solutions can be obtained as

(Xα)1 = −
√
m2

M
ỹC t̂

α , (19)

where ỹC = ν̂ix̃
i = ν̂αx̃

α. We also use the notation

x̃C = β̂ix̃
i = β̂αx̃

α in the following analysis. x̃C and ỹC
are the coordinates centered on BH1 that are co-rotating
with the binary.

3. Second-order matching: O[(m2/b)
1]

In the above leading and first order analysis, we have
derived

(Xα){1} = x̃α −
√
m2

b

√
m2

M
ỹC t̂

α , (20)

where {1} denotes the leading + first order quantity. At
second order, we have a formal expression for the match-
ing as

(gNZ
αβ ){2} =(Aα

γ){2}(Aβ
δ){2}(g

IZ
γδ){2} . (21)

Again, {2}means the leading + first order + second order
quantity, and (Aα

γ){2} is written by

(Aα
γ){2} =δα

γ +

√
m2

b

[√
m2

M
t̂αν̂

γ −
√
m2

M
ν̂αt̂

γ

]
+
m2

b

[
−1

b

(
x̃C +

m2

M
b
)
t̂αt̂

γ + (∂αX
γ)2

]
.

(22)

Finding the solution for (Xγ)2 is the remaining task to
complete.

Using the explicit expression of

[(Aα
γ)(2)(Aβ

δ)(2)ηγδ](2) = ηαβ +
m2

b

[
−2

b
x̃Ct̂αt̂β −

m2

M
t̂αt̂β −

m2

M
ν̂αν̂β + 2(A(αβ))2

]
, (23)

and Eq. (13) for (Ēkj)0, we may solve

2(A(αβ))2 =

[(
2− 2

b
x̃C

)
∆αβ +

2

b
x̃Ct̂αt̂β +

m2

M
t̂αt̂β +

m2

M
ν̂αν̂β

]
+

[
δiαδ

j
β

2

b2

(
x̃2Cδij − (r1)20β̂iβ̂j

)]
+

[
(δiαt̂β + δiβ t̂α)

1

3b2

(
3(r1)0x̃i −

3

(r1)0
x̃2Cx̃i − 6(r1)0x̃Cβ̂i

)]
. (24)

The second order coordinate transformation (Xα)2 is
derived as follows. From the first bracket in Eq. (24), we
obtain a particular solution,

(Xα)2,p1 =
(

1 +
m2

2M

)
(x̃β t̂β)t̂α +

(
1− x̃C

b

)
∆αix̃

i

+
∆ij x̃

ix̃j

2b
β̂α +

m2

2M
ỹCν̂α ,

(25)

and from the second bracket, a particular solution is

(Xα)2,p2 = − 1

b2

(
(r1)20x̃Cβ̂i − x̃2Cx̃i

)
δiα . (26)

The third bracket gives a particular solution,

(Xα)2,p3 =
1

3b2
(
(r1)30 − 3x̃2C(r1)0

)
t̂α . (27)

Finally, combining the above three particular solutions,
the coordinate transformation is written as

(Xα)2 =(Xα)2,p1 + (Xα)2,p2 + (Xα)2,p3 , (28)

where we have ignored the homogeneous solution which is
required in higher order matching. This means that the
resultant coordinate transformation is not unique. The
series expansion of (Xα)0+

√
m2/b(X

α)1+(m2/b)(X
α)2

with respect to t/b� 1 gives the same coordinate trans-
formation as obtained in Ref. [57].

In practice, we use the following explicit expressions
for the coordinate transformation. Using the PN orbital
phase evolution ωt = φ = φ(t) and the PN evolution of
the orbital separation b = r12 = r12(t), and introducing
the notations x̃α = {t, x̃, ỹ, z} and r̃1 =

√
x̃ix̃i(= (r1)0),

T = t−
√
m2

r12

√
m2

M
ỹC +

m2

r12

(
1

3

r̃31 − 3 x̃2Cr̃1
r122

−
(

1 +
1

2

m2

M

)
t

)
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= t−
√
m2

r12

√
m2

M
ỹC +

m2

r12

(
1

3

r̃31 − 3 x̃2Cr̃1
r122

)
+

5

384

(2M +m2)(r312 − r12(0)3)

M2m1
,

X = x̃+
m2

r12

(
− r̃

2
1x̃C cosφ− x̃2Cx̃

r122
+ x̃

(
1− x̃C

r12

)
+

1

2

r̃21 cosφ

r12
− 1

2

m2 ỹC sinφ

M

)
,

Y = ỹ +
m2

r12

(
− r̃

2
1x̃C sinφ− x̃2Cỹ

r122
+ ỹ

(
1− x̃C

r12

)
+

1

2

r̃21 sinφ

r12
+

1

2

m2 ỹC cosφ

M

)
,

Z = z +
m2

r12

(
x̃2Cz

r122
+ z

(
1− x̃C

r12

))
. (29)

Here, some terms with t in the T -component have been
rewritten via the rate of change of the orbital separation
as in Ref. [34],

t

r12
=

∫ t

0

dt

r12
=

∫ r12

r12(0)

dr12

(
dr12
dt

)−1
1

r12

= −
∫ r12

r12(0)

dr12
5r212

64M3η

= −5(r312 − r12(0)3)

192M3η
, (30)

where r12(0) is the initial orbital separation which we set
in the numerical calculation.

G. Global Metric

With the asymptotic matching of IZA (A= 1, 2) to the
NZ in hand, we can stitch the IZ metric to the NZ met-
ric (and similarly with the NZ to FZ) together via the
proper transition functions in the BZ in Fig. 1 and Ta-
ble I. These transition functions are specially selected to
obey the Frankenstein theorems of Ref. [66], and there-
fore will not introduce any error into the metric calcula-
tion that is larger than the error already generated in the
individual zones. The global metric is then a weighted
average

gµν =(1− ffar)
{
fnear

[
finner,1 g

NZ
µν + (1− finner,1) gIZ1µν

]
+ (1− fnear)

[
finner,2 g

NZ
µν + (1− finner,2) gIZ2µν

]}
+ ffar g

FZ
µν , (31)

where the transition functions ffar, fnear, finner,1, and
finner,2 are summarized in Appendix A.

Here, it is noted that we have used various different
type/order approximations in the IZ, NZ, and FZ met-
rics, and the EOM. Therefore, to choose the BZs, we
need to take into account for the largest possible error
which arises from the finite order truncation in the ap-
proximations, for example, O[(m2/b)

3/2] in the IZ1-NZ
BZ. Using these BZs, we can obey the Frankenstein the-
orems of Ref. [66], and avoid any unphysical behavior due
to different approximations.

To demonstrate that the matching and the construc-
tion of the global metric do not introduce any pathologi-
cal behavior in the coordinate choice outside the horizon,
we show here the volume element,

√
−g, for the global

metric, which encodes, for example, the IZ metric in the
PN harmonic coordinates, after the coordinate transfor-
mation and transition function have been carried out.

100 101 102 103

x[M]

2

1

0

1

2

3

4

5

√ −
g

FZBZNZBZ

χ1 =0.0,χ2 =0.0

χ1 =0.3,χ2 =0.3

χ1 =0.6,χ2 =0.6

χ1 =0.9,χ2 =0.9

FIG. 2. Comparison of the volume element,
√
−g, for the

global metric for differing values of the spin parameter χ,
where both black holes have spin aligned with the orbital
angular momentum of the binary.

III. NUMERICAL ANALYSIS

To verify the correctness of the analytic metric ap-
proximating a spinning BHB spacetime, we developed a
battery of different and independent tests to judge the
quality of the analytic approximation as in Ref [34]. We
are mainly interested in identifying how much this an-
alytic approximation deviates from the true solution to
the Einstein’s equations. In order to achieve a reason-
able, independent analysis of this approximation we re-
sort then to the computation of spacetime scalar invari-
ants and their comparison against their expected values
for vacuum spacetimes. While these analysis might not
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be sufficient to judge all aspects of this new metric it
is definitely necessary to assess its overall quality espe-
cially when compared against other analytic, approxima-
tive metrics.

We summarize in the following subsections which
scalar invariants we have used in our analysis. We then
present the results for this analytic metric. Discussion
on how these scalar invariants are computed in our codes
is left to the end of this section III E.

A. Ricci Scalar

Using this global approximate metric, we calculate the
Einstein tensor Gµν , the Ricci tensor Rµν , the Ricci
Scalar R and the relative Kretschmann invariant K (see
below) to test the validity of the approximate metric. If
the BHB spacetime constructed is a valid vacuum so-
lution, then it naturally must satisfy the ten Einstein
equations in vacuum, Rµν = 0. Therefore, any devi-
ations from R = gµνR

µν = 0 can be interpreted as a
measure of the violation to the Einstein equations that
the global metric has incurred by the approximate con-
struction. In the following analysis, we use the sign con-
ventions laid out in Ref. [56] (see also Wald’s “General
Relativity” [86]) for all different geometric quantities en-
tering the computation of Ricci scalar. Note also that
we have used projections of the Ricci tensor along the
hyperspace normal and into the time slices to compute
the Hamiltonian and Momentum constraints, which are
consistent with the Ricci scalar analysis we present.

B. Relative Kretschmann

In principle, it is possible to construct many invariants
for the BHB problem. Here we present a new concept
that we can use to evaluate the validity of the approxi-
mate, analytic metric. One of the pitfalls of using a quan-
tity such as the Ricci scalar in analysis of the violation to
the Einstein equations is that it is not a normalized quan-
tity. The Ricci scalar can be large without bound, and
it is therefore difficult to assign meaning to a numerical
quantity in the Ricci scalar without a scale to compare
our results with. The only scale that the Ricci scalar pro-
vides in vacuum is how far it deviates from zero. A Ricci
scalar value of 10−9 is better than a value of 10−6, but
that is all that we can really say about it. If we wish to
use this as an assessment of the error, it becomes difficult
to assign meaning to the results if they are far from zero.

It would therefore be desirable to have a quantity that
both measured the violation of the Einstein equations
and provides a scale, so values could be compared directly
and we can easily interpret them.

For this purpose, we introduce an invariant that can
still give us a measure of the violation to the Einstein
equations and has the added benefit of being normalized:
the relative Kretschmann curvature scalar.

We start with the definition of the Weyl tensor Cµνρδ
from Ref. [75],

Rµνρδ =Cµνρδ + (gµ[ρRδ]ν − gν[ρRδ]µ)− 1

3
Rgµ[ρgδ]ν .

(32)

From here, we contract the Weyl tensor with itself, even-
tually yielding Kretschmann curvature scalar:

RµνρδR
µνρδ = CµνρδC

µνρδ + 2RµνR
µν − 1

3
R2 . (33)

We now can say that if the solution is exact, we know that
this contraction of the Riemann tensor should be equal
exactly to the contraction of the Weyl tensor. In exact
solutions to Einstein’s equations, contraction of the Rie-
mann tensor and the Ricci scalar are both zero. There-
fore, we can define a relative Kretschmann from the re-
mainder:

Krel =

∣∣∣∣2RµνRµν −R2/3

RµνρδRµνρδ

∣∣∣∣ , (34)

which is the remainder from the exact vacuum solution
normalized by the Kretschmann invariant RµνρδR

µνρδ.
We expect that this value will be less than one anywhere
in the global spacetime for small violations from the vac-
uum spacetime. For larger violations, it may be possible
to have Krel > 1. This is because there is no constraint
for the energy-momentum tensor which is converted from
the Ricci violation. We can now use this as a measure of
the exactness of the solution, and plot the residual that
we obtain to get an idea what the relative violation is to
the true (exact) solution. Essentially this normalization
introduces a scale to which we can compare the errors our
approximation produces, giving us the desirable feature
of having a direct way achieve this task in our spacetime.

C. Accuracy of the Global Metric: the Ricci Scalar

In Ref. [34], we showed how the violations of the Ricci
scalar change as we increase the order of approximation
for an equal mass non-spinning BHB spacetime. For-
tunately as expected from the analytical point of view,
those violations became smaller everywhere as we went
from a first order metric (with the quadrupole (IZ)-1PN
(NZ) matching) to a second order metric (with the oc-
tupole (IZ)-2PN (NZ) matching). We reproduce that re-
sult here in Fig. 3. Our work in this paper is the first
step towards higher order of approximation for spinning
BHBs. As shown in Sec. II D, the matching for the space-
time construction is first order with the quadrupole order
for the IZ and 1PN order for the NZ. Since we do not have
at the moment a higher order spinning BHB spacetime
to compare to, we use the first and second order met-
rics for non-spinning BHB as a reference for the spinning
metric. The idea is make sure that the spinning BHB
metric does not introduce any larger violations of the
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Ricci scalar than what we have already seen in the non-
spinning case. As we can see in Fig. 3 this is fortunately
the case. The first order matched spinning BHB met-
ric results into Ricci violations that follow most closely
the second order violations of the non-spinning metric
for regions far away from the BHs and lies in between
first and second order cases for regions closer to the BHs.
The reason we obtain much better results for the first
order spinning BHB metric than for the first order non-
spinning BHB metric is that we are indeed using higher
order spinning metric components here while keeping the
matching to first order only. The rationale is that while
we would like to have a consistent order counting in this
work and a future one for second order one, we can al-
ready take advantage of higher order metric pieces with
smaller Ricci violations right now for our upcoming gas
and MHD simulations.
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100

|R
|

FZBZNZBZ NS 2nd
NS 1st
χ1 =0.0,χ2 =0.0

χ1 =0.9,χ2 =0.9

FIG. 3. The absolute value of the Ricci scalar along the x
coordinate, at an initial separation of 20M . We compare here
the violations of the Ricci scalar for the spinning BHB metric
against the non-spinning (NS) BHB first and second order
metrics [34]. It is interesting to note that the new spinning
BHB metric has violations of the same order of magnitude
as the previous non-spinning BHB metric. In this plot and
the following plots, the horizon is denoted by the grey dashed
vertical line, discussed in more detail in Fig. 5. The ISCO is
the orange dashed vertical line (see Appendix C for details).
The green dash-dotted vertical lines indicate the boundaries of
the different zones, and are consistent for all of the subsequent
plots. It is good to note here that the zone boundaries do
change for differing spins, though not by much, so here we
picked the fiducial zone boundary for the χi = 0.9 (highly
spinning) and aligned case.

As we increase the spin parameter value, χi, from its
non-spinning value, χi = 0, to a very large spinning con-
figuration, χi = 0.9, we observe very little variations in
the Ricci violations in the NZ and FZ. That indicates the
perturbation by spin addition to the system is small (see
Fig. 4). As we zoom into the NZ, Fig. 5, the differences
in violation amongst all spinning cases become more ev-

ident. Only at a small spacetime volume between the
horizon location and a radius set by an ISCO for an indi-
vidual BH do these violation differences span more than
one order of magnitude. While of great importance to ac-
curately describe the spacetime in the vicinity of a BH, it
is not so crucial in determining particle or gas dynamics
since they are expected to follow unstable circular orbits
and accrete into the BH. We hope in a future work to im-
prove on these violation differences between the spinning
cases by introducing a second order asymptotic matching
between the IZ and NZ.
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χ1 =0.9,χ2 =0.9

FIG. 4. The absolute value of the Ricci scalar along x, at an
initial separation of 20M . The spin parameter is varied in
this plot. We see that there is little qualitative variation in
changing χi.

Next we exploit the effects of spin anti-alignment with
the orbital angular momentum. We fix our attention to
the large spinning case, |χi| = 0.9. Again very little
variation amongst the aligned, anti-aligned and the zero-
sum cases is observed in the NZ and FZ (see Fig. 6). As
we zoom into the IZ, Fig. 7, we can distinguish better
among the cases, but none of them differ from each other
more than two orders of magnitude at ISCO locus.

Finally we show snapshots of the Ricci scalar as the
binary evolves in time, starting from a separation of
r12 = 20M up until r12 = 8M roughly. We were careful
to pick the instants of time when the BHs cross the x axis
so that a comparison would be meaningful. As the sep-
aration decreases, the perturbation parameters become
larger and larger leading to a poorer approximation of
the spacetime. As expected then, the violations of the
Ricci scalar increases with evolution time or decreasing
binary separation as Fig. 8 shows for the aligned χi = 0.9
case. The take home lesson from that figure is that the
violations do increase with time, but in a orderly and
smooth fashion.
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FIG. 5. The absolute value of the Ricci scalar along x, for
aligned spins, zoomed in on the inner region near the hori-
zon. The horizon is denoted by the grey dashed vertical line,
roughly at a position of xh = xBH,1±M/2 on the x-axis, and
is easier to distinguish here than in the previous plots. The
ISCO is the orange dashed vertical line (see Appendix C for
details). The inset shows the behavior close to the horizon.
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FIG. 6. The absolute value of the Ricci scalar along x, at an
initial separation of 20M . This plot shows the spin parameter
χi varied for anti-aligned spins.

D. Accuracy of the Global Metric: the Relative
Kretschmann

Here we plot the accuracy of the metric with respect to
the relative Kretschmann invariant, to contrast the Ricci
analysis above.

As we can see from Fig. 9, the Kretschmann invariant
becomes large near the BHs, and falls off as 1/r6 as we
move away from the BHs. This means that any error in
the FZ will be divided by a very small number, and so the
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FIG. 7. The absolute value of the Ricci scalar along x, zoomed
in near the BH to show the violation near the horizon. This
plot shows the spin parameter χi varied for anti-aligned spins.
The inset shows the behavior close to the horizon.
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FIG. 8. The absolute value of the Ricci scalar along x, at
an initial separation of 20M , 12M , and 8M , for spins χ1 =
χ2 = 0.0 (top) and χ1 = χ2 = 0.9 aligned (bottom). Note
that the violation increases smoothly as we decrease in orbital
separation. This gives good indication that the dynamics is
not introducing any spurious error into the metric.

relative Kretschmann will be large in the FZ. Therefore,
in the weak gravitational field, the relative Kretschmann
cannot be used to meaningfully measure the accuracy.
On the other hand, it will be extremely small in the IZ
where it is being divided by a very big number. Thus,
when the true gravitational field is strong, the relative
Kretschmann can be used as a meaningful measure of
the spacetime accuracy.

We briefly discuss the FZ behavior in Figs. 10 and 12.
In the FZ, the solution does not follow the 1/r behav-
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FIG. 9. The Kretschmann invariant calculated for the
BHB spacetime for differing values of spin, all of which are
aligned with the orbital angular momentum of the binary,
at an initial separation of r12 = 20M . The 1/r6 behavior
seen far from the two BHs (∼ 40M) is consistent with the
value of the Kretschmann in the single Schwarzschild BH case:
K = 48M2/r6, where M is the total mass of the binary cen-
tered on the origin. The inset shows the behavior close to
the horizon, where the spin effects become noticeable. The
Kretschmann becomes large as it approaches a BH, because
the invariant blows up at a true singularity.
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FIG. 10. The relative Kretschmann for an initial separation
of r12 = 20M , with a grid resolution of 0.0125. In this plot,
we are plotting aligned spinning BHs, and increasing the di-
mensionless spin parameter χi from non spinning to highly
spinning. Observe the normalized behavior that these plots
exhibit. The violation to this invariant is very good close to
the horizon due to the way that we are normalizing. See Fig. 9
for the normalization function.

ior that is expected. This is because the coefficients are
calculated in the PN approximation. We can show this
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FIG. 11. Zoomed in view of Fig. 10 around the IZ. The inset
shows the behavior close to the horizon.
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FIG. 12. The relative Kretschmann for an initial separation
of r12 = 20M , with a grid resolution of 0.0125 for varying val-
ues of the dimensionless spin parameter χi. In this plot, we
are looking at what the relative Kretschmann does for anti-
aligned BHs with high χi values. Observe the normalized
behavior that these plots exhibit. The violation to this in-
variant is very good close to the horizon, due to the way that
we are normalizing. See Fig. 9 for the normalization function.

schematically as follows. Imagine a schematic expression
of the FZ metric,

hFZµν ∼
Hµν

r
exp(−iω(t− r)) +O(1/r2) , (35)

where Hµν is evaluated from the PN multipole sources.
When we plot the Ricci scalar in the FZ, we have a 1/r
factor that will act as a damping term. However, in the
relative Kretschmann calculation, this 1/r dependence
cancels out due to the r dependence in the Kretschmann
invariant. Therefore, any error accumulated in the PN
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FIG. 13. Zoomed in view of Fig. 12 around the IZ. The inset
shows the behavior close to the horizon.

expression for Hµν will become an important contribu-
tion to the overall error in the FZ, leading to some large
finite amplitude of the Kretschmann at large r.

The Kretschmann invariant is not an independent mea-
sure of the error in the approximations, just another way
to look at the violation of the spacetime. The Ricci
scalar contains information about the spacetime viola-
tion, and since the behavior of the Ricci scalar in the
FZ is damped as expected, the observed behavior in the
relative Kretschmann is not necessarily a concern given
the issues with this diagnostic discussed earlier due to
the finite PN expression being divided by a small value
of the Kretschmann. This is by no means a proof that
the error in the FZ is not dominated by noise that could
be suppressed by taking the code to a higher precision,
however, because the Ricci scalar shows good behavior
in the FZ, it is not worth the analysis that would be re-
quired since other complementary invariants have shown
excellent small violations in the FZ.

For these reasons, although the relative Kretschmann
is a good way to measure errors in the IZ, where the fields
are strong and dynamical, it is a poor way to measure
the overall accuracy of the global metric in the weak field
limit far from the compact sources.

E. Numerical methods

In order to compute the several geometric quantities
needed for our analysis partial derivatives of the metric
components are needed. One could try to obtain these
derivatives analytically, in a closed form, for each piece of
the metric used when composing the global metric, how-
ever this would result into extremely large expressions
which could potentially defeat the goal of obtaining ana-
lytic approximations of BHB spacetimes that are cheaper

to compute than a full general relativistic numerical com-
putation. In addition this fully analytic approach to the
computation of the derivatives would be extremely tricky
to implement in the BZs where not only we need to worry
about the metric matching but also the matching of its
derivatives. These analytic complications give us incen-
tive to compute these derivatives numerically. In all com-
putations showed in this paper we have discretized the
partial derivatives using a centered, fourth order finite
difference stencil. In Fig. 14 we show the Ricci scalar con-
vergence factor (Q(t = 0, x) = (R4h−R2h)/(R2h−Rh) =
2p +O(h), where h is the mesh spacing and p = 4 in our
case. See Ref. [34] for more details) for several differ-
ent resolutions demonstrating convergence to the contin-
uum solution to the 4th order of approximation. Since
the solution spans several scales of length, different re-
quirements in terms of mesh spacings is needed to re-
solve the solution. For example, on the top panel the
highest resolutions used to compute the convergence fac-
tor, hH/M = {0.025, 0.0125, 0.00625}, does resolve well
the solution features in the vicinity of the BH location,
xBH,1/M = 10 in this case. In addition we can see clearly
the convergence factor tending to 16.0 around x/M = 9
or x/M = 11 as we increase the resolution used in QL to
the ones in QM and QH , a clear indication of 4th order
convergence. However it is interesting to note that the
high resolution mesh spacing set drives the convergence
factor outside the convergence regime approximately out-
side the interval [7M, 13M ]. This is mainly due to the
limited precision to represent numbers in these computa-
tions (double precision in our case). Subtractions of very
similar numbers results in catastrophic loss of precision
which in turn results in poor convergence order compu-
tation. A quadruple precision version of the code was
used in the past to evaluate and confirm this loss of pre-
cision, however its general use for our current simulations
is prohibitively expensive and we do not report its results
here.

One interesting reading from Fig. 14 concerns iden-
tifying the mesh spacing requirement for each of the
zones describing our metric. For example, in the
vicinity of the BH location, [10.5M, 11.5M ] we can
safely say that the set of mesh spacings h/M =
{0.00625, 0.0125, 0.025, 0.05} lies within the convergence
radius of the 4th order scheme. As this x interval ex-
tends beyond, roughly [11.5M, 20.0M ], the requirement
changes to the set of h/M = {0.0125, 0.025, 0.05, 0.1}.
As we increase the interval farther away, [20.0M, 50.0M ],
the set of h/M = {0.1, 0.2, 0.4, 0.8} seem reasonable.
As we go farther away the BH location the resolution,
[50M, 200M ], the resolution requirement drops for h =
{0.8, 1.6, 3.2, 6.4} approximately. Finally as we extend
to intervals of [200M, 1000M ] and beyond, mesh spac-
ings of h/M = {3.2, 6.4, 12.8, 25.6} seem reasonable to
obtain converging solutions. From these studies it is clear
then that we are able to obtain 4th order converging so-
lutions from the IZ to the FZ if we are careful in selecting
the appropriate mesh spacings.
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FIG. 14. Convergence factor along x. Each of the above pan-
els show the Ricci scalar convergence factor Q at t = 0 along
the coordinate x-axis for different intervals in x, depending on
the set of mesh spacing used in the convergence factor compu-
tation. On all panels the red dotted line represents the con-
vergence factor for the low resolution mesh spacing set used
in that panel, while the blue dashed and black solid lines the
medium and high resolution mesh spacing set, respectively.
The green horizontal dashed line at Q = 16.0 is the theoret-
ical solution at infinite resolution h = 0. On the top panel,
the low resolution mesh set, hL/M = {0.1, 0.05, 0.025}, is
used to compute QL, while the medium and high resolu-
tion ones are hM/M = {0.05, 0.025, 0.0125} and hH/M =
{0.025, 0.0125, 0.00625}, respectively. We masked out QH

outside the interval [7M, 13M ] to avoid noise due to round-
off precision errors. On the second panel from above, the low
resolution set is hL/M = {0.8, 0.4, 0.2}, while the medium
and high ones are hM/M = {0.4, 0.2, 0.1} and hH/M =
{0.2, 0.1, 0.05}, respectively. We also mask out QH and QM

for x > 25M and x > 35M , respectively, to avoid round-off
noise. On the third panel, we use hL/M = {6.4, 3.2, 1.6},
hM/M = {3.2, 1.6, 0.8} and hL/M = {1.6, 0.8, 0.4}. We
mask out QH and QM for x > 90M and x > 140M , re-
spectively. Finally on the bottom panel, we use hL/M =
{51.2, 25.6, 12.8}, hM/M = {25.6, 12.8, 6.4} and hL/M =
{12.8, 6.4, 3.2}. These different sets of resolutions were used
here to emphasize the mesh spacings required to be in the
convergence regime for different zones.

F. Orbital hang-up effect, and long time evolutions
of the BHB

In Ref. [57] the Ricci violation was shown for an ini-
tial spatial hypersurface. This work has presented figures
for the Ricci violation and relative Kretschmann by us-
ing Eq. (29) as the coordinate transformation for long
time evolutions of our dynamic spacetime, these figures
just capture a snapshot at an instant in time which is
basically the same procedure that was used for the ini-
tial data. This means that we just need the EOM at
an instant in time, and it is not necessary to solve the
EOM. Therefore, it is not clear that we have introduced
an appropriate EOM for long time evolutions of the BHB
system, and thus to confirm our results we present the
orbital evolutions.

A natural way to test this implementation of the EOM
is to see if this work can reproduce any of the known ef-
fects of spin dynamics in aligned non-precessing systems,
such as the orbital hang-up effect discovered in Ref. [44].
Recovering the hang up effect is an easy way to show
the correctness in the implementation of the EOM for
the binary. The orbital hang-up effect is an effect where
the spin of the individual BHs add to the orbital angular
momentum of the binary, causing the orbit to inspiral
more slowly, as it has to dissipate more angular momen-
tum. This leads to a pile up of the orbits, causing the
“hang-up”. For the following plot, we will be considering
equal mass BHs in quasi circular orbits, with dimensions
in terms of the total mass M = m1 + m2 of the binary.
This effect was shown to be the strongest at merger in
Ref. [44], but as we show here it also has an effect in the
PN regime.

This effect can be seen clearly in Fig. 15. Had the spins
been anti-aligned, the reverse would be seen, with the
highly spinning BHs plunging quickly compared to the
non spinning case. Comparisons to the orbital dynamics
in Refs. [33] and [87] yield good confirmation between the
trajectory plotted and the non spinning trajectory here,
offering reassurance that the correct dynamics are being
calculated in the PN approximation, and thus that our
results are valid for long time evolutions.

IV. DISCUSSION

We have constructed a globally analytic, approximate
BHB spacetime via asymptotically matching BH pertur-
bation theory to PN formalism farther out to a PM space-
time even further away. The procedure of asymptotic
matching had to be generalized from Ref. [57] to be valid
on all spatial hypersurfaces, instead of a small group of
initial hypersurfaces near t− t0. Matching the metrics in
this way allows us to construct a global metric, which is
correct until the PN approximation breaks down, around
10M in orbital separation.

The validity of this global metric was extensively tested
using several different techniques. We first calculated the
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FIG. 15. The top panel is the orbital hang-up effect shown
by plotting the individual trajectories of BH1. Note that
the orbits get bunched up as the spin is increased from
χ1 = χ2 = 0.0 to 0.9. Both of the BH spins are aligned with
the orbital angular momentum of the binary. The bottom
panel shows the orbital hang-up effect as a decrease in the or-
bital separation as a function of time for varying aligned spin
parameters, with the fiducial spin values chosen to coincide
with the spins used in the Ricci and relative Kretschmann
analyzes. For both the top and bottom panels, the evolution
was terminated at 14000M in time.

absolute value of the Ricci scalar and plotted it along a
particular axis and compared it with the exact solution
value R = 0. Then the evolution of the Ricci scalar was
explored, to ensure that there were no sporadic errors in
the evolution that would contribute unduly to the overall
error. Fortunately, the behavior observed in this evolu-
tion was a smooth increase in the violation to the Ein-
stein field equations due to the slow motion assumption
breaking down as the BHs inspiral.

To contrast with the Ricci scalar analysis, we per-
formed an analysis by using the relative Kretschmann
Krel in Eq. (34). However, it was noticed that this mea-

sure of the error in the global metric is not the best in
the FZ, since the FZ behavior is not damped, and in-
deed appears to be the largest contributor of error. As a
result of this analysis, though the relative Kretschmann
has the attractive feature of being an invariant with a
natural scale of comparison, we will be using the Ricci
scalar as the measure of the accuracy of the global met-
ric out to the FZ, electing to use the Kretschmann for
studies of the violation close to either BH.

This metric is valid dynamically and for long time evo-
lutions, which makes it an ideal metric to use when study-
ing effects happening in the relativistic regime of BHBs.
The immediate application of this metric is to implement
it into the Harm3d code, which can then be used to
study MHD in the context of the BHB problem with
spins. This will allow new studies of accretion physics,
giving us the theoretical tools to make predictions for the
EM signatures of BHBs with spin.

Certain practical considerations are required when
talking about this global metric construction. In this
paper, we have considered only one choice of transition
function, which is summarized in Appendix A. The tran-
sition functions’ arguments were chosen by pragmatic
considerations; experimentally shown to give a lower vio-
lation to the Einstein field equations, and not necessarily
by any mathematical arguments, such as the Franken-
stein theorems of Ref. [66].

A study which will be important for the future is an
in depth analysis of the transition region near the IZ-
NZ BZ. From preliminary hydrodynamic simulations, the
mini disks around the individual BHs fall entirely in the
BZ, and the choice of transition function may have a
significant impact on the spacetime, and thus the gas
dynamics will be impacted. Practical choices of the free
parameters need to be explored further and will be highly
valued for upcoming MHD runs.

Another test that can be done is to explore test par-
ticle trajectories in the spacetime. This powerful tool
will give us a good idea of how the spacetime is doing
complementary to the violation of the Ricci scalar and
relative Kretschmann invariant. This is being developed
currently, and will be explored in detail in a future paper.

A final step for this project is to generalize this to
arbitrarily aligned spins, which will lead to precession.
This has the added benefit of being able to study even
more interesting spin effects such as transitional preces-
sion and spin flips. This will require refinement in our
techniques. The IZ metric will have to take into account
that the tidal fields are no longer solely along the r di-
rection, but shifted so that the spin axis is arbitrarily
aligned with the orbital angular momentum. The EOM
need to be updated to take into account the higher order
spin dynamics, and the metric will need to be modified to
generate spins along any direction. Though this process
will be arduous, a fully analytic spacetime describing a
precessing, arbitrarily aligned, spinning BHB spacetime
will allow for GRMHD simulations to explore completely
new territory of gas dynamics in the context of precessing
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BH spins.
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Appendix A: Transition functions

When constructing the global metric, we must intro-
duce appropriate transition functions in the BZs to avoid
erroneous behaviors [66]. In this analysis, we follow
Ref. [34], and use the following transition function:

f(r, r0, w, q, s) =


0 , r ≤ r0 ,
1

2

{
1 + tanh

[
s

π

(
χ(r, r0, w)− q2

χ(r, r0, w)

)]}
, r0 < r < r0 + w ,

1 , r ≥ r0 + w ,

(A1)

where χ(r, r0, w) = tan[π(r− r0)/(2w)], and r0, w, q and
s are parameters. Great detail on this transition function
can be found in Refs. [38–40]. This transition function
uses different parameters in each of the BZs, that are
modified from Ref. [40].

In the analysis, we started by using the parameters
from Ref. [34]:

fnear = f(x, 2.2m2 −m1r12/M, r12 − 2.2M, 1, 1.4),
(A2)

finner,A = f(rA, 0.256rTA, 3.17(M2r512)1/7, 0.2, r12/M).
(A3)

Here rTA is the transition function radius, derived by re-
quiring the uncontrolled remainders of the IZ and NZ
approximations be roughly equal. The NZ-FZ transition
function is unchanged with respect to Ref. [34], and the
details of this choice of transition function can be ex-
plored in that paper. It should be noted that although
we should formally use the transition functions given in
Ref. [57] due to the matching order according to the
Frankenstein theorems of Ref. [66], we have used the
above transition functions because it was found by ex-
periment that they give overall better results in the Ricci
calculation. While this is not mathematically rigorous,
it is a practical choice that we made to minimize the vi-
olation to the Einstein field equations represented by the
Ricci scalar and the relative Kretschmann invariant.

It is also noted here that in practice we use the value
s = b/M where b is a (constant) initial orbital separa-
tion, as opposed to r12/M which is time dependent. This
choice was made in Ref. [34], so to compare as directly as
possible, we use the same s parameter as is used there.

In the course of doing large separation runs (≈ 100M)
with the non spinning global metric, a problem was found
with the IZ-NZ transition function. At large separation,
the value of s = r12/M becomes large. As discussed
in Ref. [39], q determines the location where the transi-
tion function equals 1/2, and s sets the slope, given by
s(1 + q2)/(2w). When we discuss the Ricci scalar of the
spacetime, s becomes more sensitive than q in setting the
slope for fixed r0 and w. Due to the value of r12 setting
the slope, in large separation runs with m1 = m2 = m/2,
the second derivative of the transition function finner,A
can become very large. Because of this, a new value of s
is suggested to minimize the absolute value of the second
derivative of this transition function. Due to analytic
testing of the transition function, this s parameter was
set to 12 for our future work and implementation into
Harm3d.

Of course, there are many other parameters that set
the transition function, all of which can have wildly dif-
ferent values. In future work, it would be nice to have a
way of optimizing the parameters to give the minimum
violation to the Ricci scalar. This could be achieved by
using a Monte Carlo simulation to explore this param-
eter space and pinpoint the ideal values of the different
parameters, while still being a valid transition function
(i.e. obeying the Frankenstein theorems [66]). This will
be reserved for future work.
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Appendix B: Ingoing Kerr Coordinates to
Cook-Scheel Harmonic Coordinates

The NZ metric is calculated in the PN harmonic coor-
dinates, but to accurately describe gas dynamics close to
the event horizons, it is desirable to have the horizon pen-
etrating property. Therefore, the Cook-Scheel harmonic
(CS-H) coordinates [80] are ideal for the Kerr spacetime,
which describes the background IZ metric.

Here we change the notation used throughout the pa-
per slightly because this coordinate transformation is for
a single BH. Therefore, in this appendix only, we will
take M to be the mass of the individual Kerr BH, and
not the total mass.

The IZ metric presented in Ref. [59], however, is in the
ingoing Kerr (IK) coordinates. Noting the similarities
between the more familiar Boyer-Lindquist (BL) coordi-
nates, rIK = rBL and θIK = θBL, we can rewrite the co-
ordinate transformation from the IK (vIK, rIK, θIK, φIK)
coordinates to CS-H (tH, xH, yH, zH) coordinates 2:

tH = vIK − rIK + 2M ln

∣∣∣∣ 2M

rIK − r−

∣∣∣∣ ,
xH + i yH = (rIK −M + i a)ei φIK sin θIK ,

zH = (rIK −M) cos θIK . (B1)

It is noted that the following calculations are similar to
to the summary in the appendix of Ref. [59] for the co-
ordinate transformation between the IK and Kerr-Schild
coordinates. To calculate the Jacobian to transform ten-
sors, we rewrite the above relations as

xH = [(rIK −M) cosφIK − a sinφIK] sin θIK ,

yH = [(rIK −M) sinφIK + a cosφIK] sin θIK ,

zH = (rIK −M) cos θIK . (B2)

Here, we calculate the radial coordinate in the CS-H as

r2H = x2H + y2H + z2H

= r2IK − 2MrIK +M2 + a2 − a2 cos2 θIK . (B3)

When we solve the above equation with respect to rIK,
there are four solutions, and one of the solutions,

rIK =
1

2

[
2
√
r4H − 2a2r2H + a4 + 4a2z2H

+ 2r2H − 2a2
]1/2

+M , (B4)

gives the appropriate radial coordinate for large rH.
Therefore, the inverse transformation is summarized as

rIK =

√
r2H − a2 +W

2
+M ,

2 Here, the changed notation of the CS-H coordinates is one of
convenience. We add the subscript H so as not to confuse our-
selves.

θIK = arccos
zH

(rIK −M)
,

φIK = arctan
(rIK −M) yH − a xH
(rIK −M)xH + a yH

, (B5)

and

vIK = tH + rIK − 2M ln

∣∣∣∣ 2M

rIK − r−

∣∣∣∣ , (B6)

where

W =
√

(r2H − a2)2 + 4 a2 z2H . (B7)

We have the useful relations,

sin θIK =

√
x2H + y2H

(rIK −M)2 + a2
,

sinφIK =
(rIK −M) yH − a xH

[((rIK −M)2 + a2)(x2H + y2H)]1/2
,

cosφIK =
(rIK −M)xH + a yH

[((rIK −M)2 + a2)(x2H + y2H)]1/2
. (B8)

Using the above inverse transformation, the Jacobian
for this coordinate transformation, ∂xaIK/∂x

b
H is calcu-

lated as

∂vIK
∂tH

=1 ,

∂vIK
∂xH

=
xH

2 (rIK −M)

(
1 +

r2H − a2

W

)(
1 +

2M

rIK − r−

)
,

∂vIK
∂yH

=
yH

2 (rIK −M)

(
1 +

r2H − a2

W

)(
1 +

2M

rIK − r−

)
,

∂vIK
∂zH

=
zH

2 (rIK −M)

(
1 +

r2H + a2

W

)(
1 +

2M

rIK − r−

)
,

∂rIK
∂tH

=0 ,

∂rIK
∂xH

=
xH

2 (rIK −M)

(
1 +

r2H − a2

W

)
,

∂rIK
∂yH

=
yH

2 (rIK −M)

(
1 +

r2H − a2

W

)
,

∂rIK
∂zH

=
zH

2 (rIK −M)

(
1 +

r2H + a2

W

)
,

∂θIK
∂tH

=0 ,

∂θIK
∂xH

=
xH zH

2 (rIK −M)2

(
1 +

r2H − a2

W

)
×
(
(rIK −M)2 − z2H

)−1/2
,

∂θIK
∂yH

=
yH zH

2 (rIK −M)2

(
1 +

r2H − a2

W

)
×
(
(rIK −M)2 − z2H

)−1/2
,

∂θIK
∂zH

=−
[
1− z2H

2 (rIK −M)2

(
1 +

r2H + a2

W

)]
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×
(
(rIK −M)2 − z2H

)−1/2
,

∂φIK
∂tH

=0 ,

∂φIK
∂xH

=− yH
x2H + y2H

+
a xH

2 (rIK −M)((rIK −M)2 + a2)

×
(

1 +
r2H − a2

W

)
,

∂φIK
∂yH

=
xH

x2H + y2H
+

a yH
2 (rIK −M)((rIK −M)2 + a2)

×
(

1 +
r2H − a2

W

)
, (B9)

∂φIK
∂zH

=
a zH

2 (rIK −M)((rIK −M)2 + a2)

×
(

1 +
r2H + a2

W

)
. (B10)

The right hand side of the above equations includes the
IK and CS-H coordinates because the expressions give a
compact form. Although there is a apparent divergent
behavior at rIK = M , this can be removed by using

rIK −M =

√
r2H − a2 +W

2
. (B11)

Finally, the perturbed metric in the IK coordinates is
transformed to the CS-H coordinates as

gHµν =
∂xµ

′

IK

∂xµH

∂xν
′

IK

∂xνH
gIKµ′ν′ . (B12)

This IZ metric in the CS-H coordinates will then be
matched to the NZ metric.

Appendix C: Details about the horizon and the
innermost stable circular orbit

In our analysis of the validity of the spacetime, it is
helpful to understand the location of the BH horizon and
the ISCO in the PNH coordinates. We discuss the coordi-
nate transformation from the BL to the CS-H coordinates
again, because various useful results have been derived in
the BL coordinates.

The coordinate transformation from the BL coor-
dinates (tBL, rBL, θBL, φBL) to the CS-H coordinates
(tH, xH, yH, zH) is given by

tH = tBL +
r2+ + a2

r+ − r−
ln

∣∣∣∣rBL − r+
rBL − r−

∣∣∣∣ ,
xH + i yH = (rBL −M + i a)ei ϕ sin θBL ,

ϕ = φBL +
a

r+ − r−
ln

∣∣∣∣rBL − r+
rBL − r−

∣∣∣∣ ,
zH = (rBL −M) cos θBL , (C1)

where r± = M±
√
M2 − a2 denote the event horizon (r+)

and Cauchy horizon (r−) in the BL coordinates, and ϕ
is same as φIK in Appendix B.

The following equations are useful to understand the
CS-H coordinates.

x2H + y2H = [(rBL −M)2 + a2] sin2 θBL

= [(rBL −M)2 + a2]

(
1− z2H

(rBL −M)2

)
,

r2H = (rBL −M)2 + a2 sin2 θBL ,

rH cos θH = zH = (rBL −M) cos θBL ,

φH = arctan
yH
xH

= φa + ϕ ;

φa = arctan
a

rBL −M
. (C2)

The event horizon (rBL = r+) is located at rH =√
M2 − a2 cos2 θBL in the CS-H coordinates from the

transformations above. We also will use this location in
the PNH coordinates as a rough estimation of the event
horizon because the transformation from the CS-H to the
PNH coordinates is treated perturbatively, so the loca-
tion of the horizon will not change much. On the equato-
rial plane (θBL = θH = π/2), we have the event horizon
at

rH = M , (C3)

which is independent of the spin parameter, a. It is noted
that there is a coordinate singularity at rBL = M , i.e.,
rH = |a| sin θBL (x2H + y2H ≤ a2) and zH = 0 [80].

The inverse transformation is obtained as

rBL =
1√
2

[r2H − a2 + ((r2H − a2)2 + 4 a2 z2H)1/2]1/2 +M

=RH +M ,

tBL =tH −
(M +

√
M2 − a2)2 + a2

2
√
M2 − a2

× ln

∣∣∣∣∣RH −
√
M2 − a2

RH +
√
M2 − a2

∣∣∣∣∣ ,
θBL = arccos

zH
rBL −M

= arccos
zH
RH

,

φBL =φH − φa −
a

r+ − r−
ln

∣∣∣∣rBL − r+
rBL − r−

∣∣∣∣
= arctan

yH
xH
− arctan

a

RH

− a

2
√
M2 − a2

ln

∣∣∣∣∣RH −
√
M2 − a2

RH +
√
M2 − a2

∣∣∣∣∣ .
(C4)

Note here that rH and RH are different. The Taylor ex-
pansion with respect to small a and M of the above
relation gives the same equations as in Ref. [88]. But
in Ref. [88], we find the time coordinate transformation
as tH = tBL because the harmonic coordinates are not
unique. The other transformations remain unchanged
from the above equations.
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For the evaluation of the ISCO, we turn to Ref. [89] and
have the last stable circular orbit (sometimes referred to
as the marginally stable orbit) at

rms,BL =M{3 + Z2 ∓ [(3− Z1)(3 + Z1 + 2Z2)]1/2} ;

Z1 ≡1 + (1− a2/M2)1/3

× [(1 + a/M)1/3 + (1− a/M)1/3] ,

Z2 ≡(3a2/M2 + Z2
1 )1/2 ,

(C5)

for the BL radial coordinate. Plugging this radius into
the transformation for the CS-H coordinates, we obtain
Table II.

TABLE II. Radius of the marginally stable orbit for various
spins in harmonic coordinates.

a/M rms,H/M
0.9 1.59836
0.6 2.89200
0.3 3.98982
0.0 5.00000

Appendix D: Computationally effective IZ metric

The metric perturbation in the IZ metric is described
under the ingoing radiation gauge, hIZµν`

ν = 0 and hIZµµ =
0. Here, `ν is the Kinnersley null tetrad [59]. We can use
these five gauge conditions to reduce the computational
cost for the calculation of the IZ metric. It is noted that
all conditions are not independent and the existence of
the gauge condition has been discussed in Ref. [90].

In practice, when we calculate hIZ22, hIZ23, hIZ24, hIZ33 and
hIZ34, the other metric perturbations are derived as

hIZ11 =
1

4

(
r2 − a2 + 2 a2 cos2 θ

) (
r2 − 2Mr + a2

)2
hIZ22

(r2 + a2) (r2 + a2 cos2 θ)
2 +

a
(
r2 − 2Mr + a2

)
hIZ24

(r2 + a2) (r2 + a2 cos2 θ)
− a2 sin2 θhIZ33

(r2 + a2 cos2 θ)
2 ,

hIZ12 =− 1

2

(
r2 − 2Mr + a2

)
hIZ22

r2 + a2
− ahIZ24
r2 + a2

, hIZ13 = −1

2

(
r2 − 2Mr + a2

)
hIZ23

r2 + a2
− ahIZ34
r2 + a2

,

hIZ14 =− 1

4

sin4 θa3
(
r2 + a2 − 2Mr

)2
hIZ22

(r2 + a2) (r2 + a2 cos2 θ)
2 − 1

2

(
r2 − a2 cos2 θ + 2 a2

) (
r2 + a2 − 2Mr

)
hIZ24

(r2 + a2 cos2 θ) (r2 + a2)
+
a sin2 θ

(
r2 + a2

)
hIZ33

(r2 + a2 cos2 θ)
2 ,

hIZ44 =
a sin2 θ

(
r2 − 2Mr + a2

)
hIZ24

r2 + a2 cos2 θ
− 1

4

a2 sin4 θ
(
r2 − 2Mr + a2

)2
hIZ22

(r2 + a2 cos2 θ)
2 −

sin2 θ
(
r2 + a2

)2
hIZ33

(r2 + a2 cos2 θ)
2 . (D1)
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[23] T. Bode, T. Bogdanović, R. Haas, J. Healy, P. La-
guna, and D. Shoemaker, Astrophys. J. 744, 45 (2012),
arXiv:1101.4684 [gr-qc].

[24] M. Pahari and S. Pal, Mon. Not. Roy. Astron. Soc. 409,
903 (2010).

[25] B. D. Farris, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D
81, 084008 (2010), arXiv:0912.2096 [astro-ph.HE].

[26] B. D. Farris, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D
84, 024024 (2011), arXiv:1105.2821 [astro-ph.HE].

[27] B. D. Farris, R. Gold, V. Paschalidis, Z. B. Etienne,
and S. L. Shapiro, Phys. Rev. Lett. 109, 221102 (2012),
arXiv:1207.3354 [astro-ph.HE].

[28] B. D. Farris, P. Duffell, A. I. MacFadyen, and Z. Haiman,
Astrophys. J. 783, 134 (2014), arXiv:1310.0492 [astro-
ph.HE].

[29] B. D. Farris, P. Duffell, A. I. MacFadyen, and
Z. Haiman, Mon. Not. Roy. Astron. Soc. 447, L80 (2015),
arXiv:1409.5124 [astro-ph.HE].

[30] B. Giacomazzo, J. G. Baker, M. C. Miller, C. S.
Reynolds, and J. R. van Meter, Astrophys. J. 752, L15
(2012), arXiv:1203.6108 [astro-ph.HE].

[31] R. Gold, B. Farris, V. Paschalidis, Z. Etienne, and
S. Shapiro, in APS April Meeting Abstracts (2013) p.
H8002.

[32] R. Gold, V. Paschalidis, M. Ruiz, S. L. Shapiro, Z. B.

Etienne, and H. P. Pfeiffer, Phys. Rev. D 90, 104030
(2014), arXiv:1410.1543.

[33] S. C. Noble, B. C. Mundim, H. Nakano, J. H. Krolik,
M. Campanelli, Y. Zlochower, and N. Yunes, Astrophys.
J. 755, 51 (2012), arXiv:1204.1073 [astro-ph.HE].

[34] B. C. Mundim, H. Nakano, N. Yunes, M. Campanelli,
S. C. Noble, and Y. Zlochower, Phys. Rev. D89, 084008
(2014), arXiv:1312.6731 [gr-qc].

[35] M. Zilhao, S. C. Noble, M. Campanelli, and Y. Zlo-
chower, Phys. Rev. D91, 024034 (2015), arXiv:1409.4787
[gr-qc].

[36] M. Zilhão and S. C. Noble, Class. Quant. Grav. 31,
065013 (2014), arXiv:1309.2960 [gr-qc].

[37] L. Blanchet, Living Rev. Rel. 17, 2 (2014),
arXiv:1310.1528 [gr-qc].

[38] N. Yunes, W. Tichy, B. J. Owen, and B. Bruegmann,
Phys. Rev. D74, 104011 (2006), arXiv:gr-qc/0503011 [gr-
qc].

[39] N. Yunes and W. Tichy, Phys. Rev. D74, 064013 (2006),
arXiv:gr-qc/0601046 [gr-qc].

[40] N. K. Johnson-McDaniel, N. Yunes, W. Tichy, and B. J.
Owen, Phys. Rev. D80, 124039 (2009), arXiv:0907.0891
[gr-qc].

[41] T. Bogdanovic, C. S. Reynolds, and M. C. Miller, As-
trophys. J. 661, L147 (2007), arXiv:astro-ph/0703054
[astro-ph].

[42] M. C. Miller and J. H. Krolik, Astrophys. J. 774, 43
(2013), arXiv:1307.6569 [astro-ph.HE].

[43] K. A. Sorathia, J. H. Krolik, and J. F. Hawley, Astro-
phys. J. 777, 21 (2013), arXiv:1309.0290 [astro-ph.HE].

[44] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D74, 041501 (2006), arXiv:gr-qc/0604012 [gr-qc].

[45] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 74, 084023 (2006), astro-ph/0608275.

[46] C. O. Lousto and J. Healy, (2015), arXiv:1506.04768 [gr-
qc].

[47] M. Campanelli, C. O. Lousto, Y. Zlochower, and
D. Merritt, Phys. Rev. Lett. 98, 231102 (2007), arXiv:gr-
qc/0702133 [gr-qc].

[48] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Mer-
ritt, Astrophys. J. 659, L5 (2007), arXiv:gr-qc/0701164
[gr-qc].

[49] M. Koppitz, D. Pollney, C. Reisswig, L. Rezzolla,
J. Thornburg, P. Diener, and E. Schnetter, Physical Re-
view Letters 99, 041102 (2007), gr-qc/0701163.
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