
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Towards robust gravitational wave detection with pulsar
timing arrays

Neil J. Cornish and Laura Sampson
Phys. Rev. D 93, 104047 — Published 25 May 2016

DOI: 10.1103/PhysRevD.93.104047

http://dx.doi.org/10.1103/PhysRevD.93.104047


Towards Robust Gravitational Wave Detection with Pulsar Timing Arrays

Neil J. Cornish1 and Laura Sampson1

1Department of Physics, Montana State University, Bozeman, MT 59717, USA.

Precision timing of highly stable milli-second pulsars is a promising technique for the detection
of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational
wave signal appears as an additional source of timing noise that can be absorbed by the noise model,
and so it is only by considering the coherent response across a network of pulsars that the signal can
be distinguished from other sources of noise. In the limit where there are many gravitational wave
sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation
pattern that depends only on the angular separation between each pulsar pair. It is this distinct
fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider
how the prospects for detection are diminished when the statistical isotropy of the timing array or
the gravitational wave signal is broken by having a finite number of pulsars and a finite number
of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild
impact on detectability compared to the isotropic limit. Only when there are very few sources
and very few pulsars does the standard analysis begin to fail. Having established that the tensor
correlations are a robust signature for detection, we study the use of “sky-scrambles” to break the
correlations as a way to increase confidence in a detection. This approach is analogous to the use
of “time-slides” in the analysis of data from ground based interferometric detectors.

PACS numbers: 04.30.-w, 04.30.Tv, 97.60.Lf

I. INTRODUCTION

With the steady addition of new pulsars to the arrays
and improvements in the timing sensitivity and analy-
ses, pulsar timing is advancing rapidly as a technique
for the detection of gravitational waves. Impressive new
upper limits on the amplitude of power-law stochastic
backgrounds are starting to challenge simple astrophys-
ical models that attribute the background to the gravi-
tational wave driven evolution of a population of super-
massive black hole binaries on quasi-circular orbits [1–3].
These limits are dominated by the timing residuals from
one or two very low noise pulsars that have been ob-
served for many years. A detection, on the other hand,
will come from combining the data of a very large number
of moderately sensitive pulsars [4].

The key to making a detection, as opposed to setting
an upper limit, is the unique correlation pattern that re-
sults when a gravitational wave signal passes through an
array of pulsars. In the limit where there are an infinite
number of isotropically distributed sources [5] (and at
least two pulsars) or an infinite number of pulsars (and at
least one source) [6], the correlation in the timing residu-
als of two pulsars a, b with an angular separation αab has
the form

Hab =
3 cab

2
ln cab −

cab
4

+
1

2
(1 + δ(αab)) , (1)

where cab = (1 − cosαab)/2. In any actual experiment,
neither condition required to arrive at (1) is met. There
will only be a finite number of sources contributing to
the signal, and a finite number of pulsars contributing to
the timing array. This means that the standard correla-
tion analysis will be sub-optimal [6]. Here we study the
impact that this has on the detectability of a stochastic

background. We do this by comparing the detectability
of the highly anisotropic signal formed from a finite num-
ber of black hole binaries to that of an idealized isotropic
signal with the same average power level. We investigate
this as a function of the number of black holes and the
number of pulsars. We find that the standard correlation
analysis is remarkably robust, and only results in a small
loss in detection efficiency for realistic signals and array
sizes. It is only in the limit of very few pulsars and very
few sources that a significant loss of effectiveness occurs.

Having established the detection of a tensor correlation
pattern as a robust signature of gravitational waves, we
investigate the use of “sky-scrambles” to purposely break
the signal correlations in the data as a test of the analysis
pipelines. If the evidence for a gravitational wave signal
is largest for the true pulsar sky locations, and much
smaller for any of the scrambled sky locations, then we
gain confidence in our models and analysis techniques.
Each sky scramble produces a distinct correlation pat-
tern, C ′ij , and we can define a measure of closeness based
on the similarity of the correlation patterns. As hoped,
we find that the evidence for a gravitational wave signal
is highest for the true pulsar locations, and lowest for
scrambles that are most dissimilar to the expected corre-
lation pattern. Based on our simple measure of closeness,
there are a limited number of independent sky scrambles,
which limits the statistical power of the test. But we ar-
gue against trying to use the test in a frequentist frame-
work. Rather, sky-scrambles help to validate the noise
and signal models used to compute the Bayesian evidence
of a signal that, like the cosmic microwave background,
we only get to see once.

Our work builds on several earlier studies [7–11], where
various statistics are developed to detect gravitational
wave signals in pulsar timing data. Of particular rele-
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vance is the ‘optimal statistic’ [9, 12] for the detection of
the stochastic background, which is essentially a measure
of how important the cross-correlations between pulsars
are for describing the signal. Both our method and these
frequentist analyses investigate the detection of the ten-
sor correlation pattern between pulsars, which we again
emphasize is necessary for the unambiguous detection of
gravitational waves.

II. THE SIMULATED ASTROPHYSICAL
SIGNAL

Electromagnetic observations of massive galaxies and
galaxy mergers across cosmic history, combined with
population synthesis models, suggest that the dominant
source of gravitational waves in the pulsar timing band
(10−9 Hz → 10−6 Hz) will be slowly evolving supermas-
sive black hole binaries with masses in the range 108M· →
109M· [13–15]. It was initially assumed that the superpo-
sition of the signals from many thousands of such systems
would produce a background that is effectively stochastic
and statistically isotropic, and thus amenable to detec-
tion using the cross-correlation technique developed by
Hellings and Downs [5]. Recent studies of the signals
produced by simulated black hole populations, though,
have shown that relatively nearby and massive outliers
play an important role, and can lead to significant de-
partures from stochasticity and isotropy [16, 17].

To illustrate the importance of outliers in these popula-
tions, we simulate the gravitational wave signals from a
population model provided by A. Sesana that assumes
quasi-circular, gravitational wave driven orbital evolu-
tion. The gravitational waves from each binary are co-
added and used to compute the signal power as a function
of sky position, h2

ss(θ, φ) = h2
+(θ, φ) + h2

×(θ, φ), summed
over frequency. Figure 1 shows the distribution of the
gravitational wave power across the sky for one realiza-
tion of the black hole population, as well as for a sta-
tistically isotropic stochastic background with the same
average power spectrum. The difference is striking. The
intensity variations for the black hole population are over
one hundred times larger than for the isotropic model.
The lower two panels of Figure 1 show the pulsar re-
sponse to the signals as a function of pulsar sky location.
(Only the Earth-term contribution is shown here. Includ-
ing the pulsar terms simply adds “noise” to the maps.)
Note that the pulsar response has a similar angular power
distribution for both the isotropic and black hole skies,
even though the underlying signals are vastly different.
The explanation can be found in Figure 2, which shows
the detected power in pulsars at different sky locations for
a single black hole binary. The broad antenna response
of the pulsars effectively blurs the underlying power dis-
tribution. Note, however, that this does not imply that
pulsar timing arrays are unable to resolve small scale fea-
tures - the information to reconstruct the spatial distri-
bution resides in the cross-spectra, and this information

can be used to accurately map the background [18–21].

Our procedure for testing the tensor correlation analy-
sis on realistic black hole populations and pulsar tim-
ing arrays is to compare the evidence for detections
between simulated black hole populations and statisti-
cally isotropic signals with the same average power level.
To do this we first simulate the response to a partic-
ular realization of the black hole population model for
an array of pulsars, and from this compute the aver-
age power spectrum (averaged over the pulsars), Sh(f).
We then simulate a statistically isotropic, unpolarized
Gaussian stochastic background with this same power
spectrum. For reference, we also consider the standard
power law spectrum for quasi-circular binaries whose evo-
lution is gravitationally wave driven, which have char-
acteristic strain hc(f) = A(f/fy)−2/3 and Sh(f) =

A2(f/fy)−4/3/(12π2f3) where fy = 1/year. Figure 3
shows examples of the average power spectrum for the
three models for a 20 pulsar array. The power law model
is generated with A = 10−15. The slight differences in the
black hole spectrum and the equivalent isotropic spec-
trum are due to the fact that this is a single realization
of the stochastic power spectrum, averaged over the ar-
ray.

The reference astrophysical model we are using - based
on a quasi-circular, gravitational wave driven merger
model - likely overestimates the degree of isotropy we
can expect in reality. Environmental effects, such as stel-
lar scattering and gas driven mergers, along with orbital
eccentricity will act to reduce the number of binary sys-
tems in each frequency bin [22, 23]. As a crude proxy
for these effects, we also produce simulated backgrounds
that randomly down-sample the full black hole popula-
tion by factors of 10 and 100, and, as an extreme case,
produce backgrounds that include only the 10 brightest
sources from the full simulation (in contrast, the full pop-
ulation model includes over 22,000 sources in the observa-
tion band). In addition to considering different numbers
of sources in the signal, we also investigate the impact of
including different numbers of pulsars in the array. We
investigate simulated arrays with 5 equally sensitive pul-
sars, 20 equally sensitive pulsars, and the 36 pulsars of
varying sensitivity taken from the first International Pul-
sar Timing Array (IPTA) mock data challenge. The sim-
ulated data sets include white noise at a range of levels,
but no simulated red noise or residuals from the quadratic
spin-down model. The effects of red noise and timing er-
rors are, however, included in the analysis.

III. ANALYSIS

We apply Bayesian inference and model selection to
analyze the simulated data sets. The analysis procedure
is very similar to that described in Ref. [24]. The likeli-
hood of observing data d for a given model set of model
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FIG. 1: The upper two maps show the distribution of the gravitational wave power across the sky, scaled by the all-sky average
for two signal model. The map on the upper left is for a simulated black hole population, smoothed with a two degree Gaussian
blur and clipped at a contrast of 100 to enhance weaker features. The peak intensity in the un-clipped map exceeds 800. The
map on the upper right is for a statistically isotropic signal with the same power spectrum as the black hole simulation. The
map has been smoothed with a two degree Gaussian blur. Clearly, the power distribution from a realistic black hole population
is far from isotropic. The lower two panels show the detected power in the Earth-term for pulsars at different sky locations,
in other words, the raw signals convolved with the antenna patterns, summed and squared. Despite the large differences in
the underlying power distribution, the response to the anisotropic BH background (lower left) is qualitatively identical to the
response to the statistically isotropic signal (lower right).

parameters ~λ is

p(d|~λ) =
exp

(
− 1

2

∑
ab

∑
ij raiC

−1
(ai)(bj)rbj

)
√

(2π)M detC
, (2)

where C is the covariance matrix, which depends on both
the noise in the individual pulsars and on the GW back-
ground, and r = d − t denotes the timing residuals af-
ter the subtraction of the (deterministic) timing model
t from the data d. The indices a and b label individ-
ual pulsars, and run from 1 to the number of pulsars,
Np. The indices i and j label the data samples, i.e.
individual frequency bins. Since our simulated data is
stationary, the correlation matrix is diagonal in i, j and
C(ai)(bj) → Cab(fi)δij . The simulated data set consists
of N = 512 samples per pulsar, evenly spaced in time at
weekly intervals, giving a total data set of size M = N Np
spanning just under T = 10 years. The analysis is carried
out in the Fourier domain, where the quadratic timing

model for pulsar a has the form

ta(fk) =
αa
f2
k

+
iβa
fk

, (3)

where fk = k/T for integer k (see [24], Sec. III for de-
tails.) The covariance matrix is given by

Cab(f) = Sh(f)Hab + δab {Sna
+ Sra(f/fy)ra} , (4)

where Sh(f) is the PSD of the GW background, Sna

is the PSD of the white noise, Sra is the amplitude of
the PSD of the red noise, and ra is the spectral slope
of the red noise (which should not be confused with the
ra from Eq. (2), which represents the residuals in pul-
sar a!). In the sky-scramble analysis the tensor cor-
relation matrix, Hab, is replaced by a scrambled ver-
sion that is derived by randomly choosing false sky lo-
cations for each pulsar. We consider two models for
Sh(f), a simple power law Sh(f) = Sg(f/fy)γ , and a
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FIG. 2: The detected power for pulsars at different sky loca-
tions for a single BH located at the center of the “petals”. The
orientation of the petals rotates depending on the polarization
of the signal. The broad spread in the power distribution for
PTAs explains why the response to isotropic and anisotropic
signals is so similar.
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FIG. 3: The average power spectrum in a 20 pulsar array
for a black hole population (in red), a stochastic, isotropic
model with the same average power level as the black hole
population (in blue), and a power law, stochastic, isotropic
model with amplitude A = 10−15.

more general bin-by-bin model Sh(fk) = Pk, where Pk
is the power spectral density in the kth frequency bin.
There are N/2 of these Pk parameters, given an ob-
servation time of T and a Nyquist frequency of 0.5/dt,
so Nbin = 0.5 ∗ T/dt = N/2. The full parameter vec-

tor ~λ for the timing plus noise model has the 5Np pa-

rameters ~λ → {αa, βa, Sna
, Sra , ra}, while the power-

law gravitational wave model has the 2 + 5Np param-

eters ~λ→ {Sg, γ, αa, βa, Sna
, Sra , ra}, and the bin-by-bin

gravitational wave model has the N/2 + 5Np parameters
~λ → {Pk, αa, βa, Sna

, Sra , ra}. The priors p(~λ) on the
power spectral density parameters {Sg, Pk, Sna

, Sra} are
taken to be uniform in the logarithm across the range
[10−35Hz−1, 10−4Hz−1]. The priors on the spectral slope
parameters {γ, ra} are taken to be uniform in the range
[−2,−6], and the priors on the timing model parame-

ters {αaT 2, βaT} are taken to be uniform in the range
[−0.8, 0.8].

In the analyses that follow we are less interested in the

posterior distributions for the model parameters, p(~λ|d),

than we are in the model evidence p(d) =
∫
p(d|~λ)p(~λ)d~λ

for the various models. In particular, we compute the
Bayes factor for a detection as the evidence ratio be-
tween the signal model and the noise model. The evi-
dence is computed using the thermodynamic integration
technique [25], which returns the evidence as a natural
by-product of the parallel tempered Markov Chain Monte
Carlo scheme [26] that we use to map the posterior dis-
tributions. The implementation of the MCMC algorithm
is as described in Ref. [24], with two additional features:
an additional move that proposes to transfer power be-
tween the signal and red noise models, and an adaptive
scheme for the temperature ladder.

The adaptive scheme is as follows: we begin with 50
chains equally spaced between in log temperature be-
tween 1 and 106, and perform an MCMC run with this
spacing while keeping track of the acceptance rate for
parallel tempering moves between all adjacent pairs of
chains. If one of these acceptance rates falls below 1%, we
stop the run and insert 3 chains with temperatures evenly
spaced between the two chains that lost contact. We con-
tinue this process until the MCMC runs for 106 iterations
without adding any chains. We then use this final tem-
perature ladder (usually including ∼ 90− 100 chains) to
perform the evidence calculation, using an MCMC run
of 1.5 million iterations.

As indicated, the new move we have implemented shifts
power between the GW signal and the independent red
noise in each pulsar. To do this, we calculate the average
level of red noise in all of the pulsars, S̄r =

∑
i S

i
r/NP ,

and propose that the GW amplitude takes this value by
proposing from a Gaussian centered at this value with a
width of σ1 = 0.5. We simultaneously propose that the
red noise level in each pulsar be drawn from a Gaussian
centered at the current red noise level, with a width of
σ2 = σ1/

√
NP . We find that this proposal greatly aids

the mixing between models. A nearly identical proposal
can be used to move power between the red noise in the
individual pulsars and the common red noise level, if such
a term is present in the model.

IV. DETECTING ANISOTROPIC
BACKGROUNDS

Several methods have been proposed for detecting
and mapping anisotropic gravitational wave backgrounds
with pulsar timing arrays [6, 18, 19, 21, 27], but it re-
mains to be seen if these methods are more effective at
making a first detection than the standard tensor correla-
tion analysis. In the case of the cosmic microwave back-
ground radiation, the uniform glow was detected long
before the first anisotropies were seen, but in that case
the anisotropies are tiny compared to the overall power.
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The much larger anisotropy of the nanoHertz gravita-
tional wave sky may mean that a model that allows for
anisotropy will improve the prospects for detection. But
it is not obvious that this will be true, because while
the data might be better fit by an anisotropic model,
such models are necessarily more complicated than the
isotropic model, and this added complexity comes at a
price. We defer the comparison of the efficacy of isotropic
and anisotropic models for future study, and instead con-
sider the simpler question of how effective the standard
isotropic analysis is when applied to realistic anisotropic
signals using realistic numbers of pulsars in the array.
We accomplish this by comparing the detectability of
anisotropic signals from a population of black holes to
the detectability of a statistically isotropic background
with an identical power spectrum.

We consider two measures of detectability, the first
being the Bayes factor, or evidence ratio, between the
signal and noise models. Recall that the noise model
includes individual red and white noise components for
each pulsar, which are uncorrelated between pulsars, and
the signal model includes a common stochastic compo-
nent with a red power spectrum, with the characteristic
Hellings-Downs correlation pattern between pulsars. Un-
fortunately, as we show in section §V, this signal-to-noise
model Bayes factor will imply the detection of signals
that do not have the correct tensor correlation pattern.
(Though with lower significance than similarly bright sig-
nals that do.) Because the tensor correlation pattern is
key to any claim of a gravitational wave detection with
pulsar timing, we go on to consider a second measure
of detectability - this measure compares the evidence for
the tensor correlation model to a model with a diagonal
correlation matrix. This diagonal model corresponds to
a common level of red noise present in all pulsars.
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FIG. 4: The detectability of the full simulated black hole
population (red) and a statistically isotropic stochastic sig-
nal with the same power spectrum (blue) as a function of the
white timing noise level in a simulated pulsar timing array
with 20 equally sensitive pulsars, as measured by the signal-
model to noise-model Bayes factor. The spread in the Bayes
factors is computed by considering 10 realizations of each sig-
nal type. The shaded bands covers a one standard deviation
spread about the mean.

Even within one class of signals there is considerable
variation in detectability from realization to realization.
To account for this we consider multiple realizations for
each signal type and aggregate the results. Figure 4 com-
pares the detectability of the signal from a full black hole
population to that of a statistically isotropic stochastic
signal with the same power spectrum, as a function of
the white timing noise level in a simulated pulsar timing
array with 20 equally sensitive pulsars. (In this figure we
define detectability in terms of the evidence ratio between
the signal and noise models). Remarkably, we see that
there is no discernible difference between the detectabil-
ity of the two types of signal, even though the black hole
signal is far from isotropic and the array is comprised of
relatively few pulsars.

The signal model used here, and in all other figures, is
that of a pure power law. The bin-by-bin model has many
more parameters than the power-law model, and is there-
fore less effective at detecting a power-law signal, but it
has added flexibility that can better capture the non–
power-law spectra that arise for the very sparse black
hole population models. We calculated the evidence for
both types of signal model for many of the simulations
discussed in this section, and consistently found that the
pure power-law model is preferred. In this analysis, the
added complexity of the bin-by-bin model overwhelmed
the benefit of a better fit to the spectral shape. Figure
3 illustrates why this is the case - the difference between
the simulated spectrum and a pure power law is quite
small. The simulated non-power-law signals are better
recovered with a power-law model than with the highly
flexible bin-by-bin model. There will be spectra that are
so poorly described by a power law that the bin-by-bin
is preferred, but we did not encounter any examples of
this type in our analysis.

Figure 5 shows similar results as Figure 4, but for
smaller black hole populations (i.e., more anisotropic
skies). Once again the anisotropic signals are almost
as detectable as their isotropic equivalents. Differences
only become apparent for exceedingly sparse black hole
populations with only a handful of sources. One may
be concerned that the simulations that use only the ten
brightest black holes to generate the background may
not be well described by a power law. Examining the
power spectra for these cases, though, shows that they
can indeed be fit by power laws, although typically with
slopes that are steeper than for the full population. We
additionally investigate how the size of the array affects
the results by considering a smaller array made up of 5
equally sensitive pulsars. The upper panel in Figure 6
shows the detectability of the full black hole population
and its isotropic equivalent, while the lower panel in Fig-
ure 6 shows a more extreme case, with just 10 black hole
binaries and 5 pulsars in the array. In this case the cor-
relation analysis does perform worse on the black hole
population than on the isotropic equivalent, but the dif-
ference is still within the uncertainty from realization to
realization.
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FIG. 5: The detectability of down sampled black hole popula-
tions (red) and a statistically isotropic stochastic signal with
the same power spectrum (blue) as a function of the white
timing noise level in a simulated pulsar timing array with 20
equally sensitive pulsars, as measured by the signal-model to
noise-model Bayes factor. The upper panel is for the full pop-
ulation down sampled by a factor of ten, the middle panel is
down sampled by one-hundred, and the lower panel is for the
ten brightest binaries. The spread in the Bayes factors is com-
puted by considering 10 realizations of each signal type. The
shaded bands covers a one standard deviation spread about
the mean.

Finally, we explore the effect of anisotropy on the de-
tection of a stochastic GW background using the pulsars
from the IPTA. Instead of injecting a particular noise
level into all of the pulsars in the array, we scale the ac-
tual noise level for each of the pulsars by the same factor.
One might expect that this array would behave much like
the 20 pulsar array explored previously in this section. It
turns out, though, that there are a few pulsars in the ar-
ray that are much better-timed than the others, and so
dominate detection. Figure 7 shows the results from this
study, presented in the same format as previous results in
this section. The results are much more like the 5 pulsar
array than the 20 pulsar case.

While our analysis indicates that the standard correla-
tion analysis is almost as effective at detecting anisotropic
signals as it is at detecting the isotropic signals it was
designed for, it is unclear if the signal model is pick-
ing up the full tensor correlation pattern (1), or merely
a common red component in the timing residuals - i.e.
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FIG. 6: The detectability of signals from a population of black
holes (red) and a statistically isotropic stochastic signal with
the same power spectrum (blue) for a small pulsar timing
array made up of 5 equally sensitive pulsars, as measured
by the signal-model to noise-model Bayes factor. The upper
panel is for the full black hole population, while the lower
panel is for the brightest 10 black holes. The spread in the
Bayes factors is computed by considering 10 realizations of
each signal type. The shaded bands covers a one standard
deviation spread about the mean.
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FIG. 7: The detectability of signals from a population of black
holes (red) and a statistically isotropic stochastic signal with
the same power spectrum (blue) for the IPTA pulsar array,
again for the full spectrum in the upper panel and the bright-
est 10 black holes in the lower panel. The horizontal axis
shows the percentage of the actual timing noise in each pul-
sar that is included in the injected data. The results are more
similar to the 5 pulsar array than the 20 pulsar case, despite
the fact that there are 36 pulsars in the IPTA. This is because
a few of the pulsars are much better timed than the others.
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just the diagonal terms in (1). While the gravitational
wave signal model includes a diagonal component, there
could conceivably be correlated power on the diagonal
due to some common red noise process. For example,
there may be some physical process that is shared by all
neutron stars that produces a characteristic spectrum of
red timing noise [28]. To be sure that it is a gravitational
wave signal that has been detected we need clear evidence
that the off-diagonal, cross-correlation terms follow the
Hellings-Downs curve. One approach is to try and in-
fer the correlation pattern directly from the data, using
techniques such as a cubic spline fit to the correlation pat-
tern [29], or by directly inferring the correlation of each
pulsar pair [30] and comparing this to the Hellings-Downs
curve. Another approach is to apply Bayesian model se-
lection between a model with the full tensor correlation
curve Hab and a model with a common red noise term,
given by the diagonal correlation model H ′ab = δab. We
opt to follow the later approach, which was first described
in Ref. [31]. The common red noise term can either be
considered in addition to the gravitational wave model
as an extra term in the noise model, or by comparing
“signal” models with correlation matrices given by Hab

and H ′ab. We settle on the latter approach, as including
an extra common red noise model made it very difficult
to compute reliable estimates for the evidence. This is
because the large correlations between the common red
noise model, the per-pulsar red noise model, and the sig-
nal model impeded mixing of the Markov chains, and led
to a series of steep transitions in the thermodynamic inte-
gration integrand. Moreover, even with reliable evidence
estimates produced by using vast numbers of steps in the
temperature ladder, the results are highly dependent on
the choice of the priors on the various parameters in each
model, which is always an issue when comparing models
of different dimension. Comparing the full and diagonal
correlation models is much easier, and the choice of priors
has much less of an effect, as the two models share the
same parameters, effectively canceling the prior depen-
dence in the evidence ratios. In the language of Ref. [31],
we are comparing the evidence of models Mgw and Mcorr,
whereas our earlier results compared the gravitational
wave model Mgw to the noise model Mnull. We demand
that the evidence for Mgw exceeds the evidence for both
Mnull and Mcorr to claim a detection. Figure 8 shows the
Bayes factors between the full tensor correlation model
Mgw and the noise model Mnull, and the Bayes factors be-
tween the diagonal correlation model Mcorr and the noise
model Mnull for a simulated pulsar timing array with 20
equally sensitive pulsars. Each panel shows the results
for an increasingly anisotropic signal from a population
of black holes, with the spread in Bayes factors computed
by considering multiple (10) realizations of each popula-
tion to account for cosmic variance. (We chose 10 re-
alizations because of the computational cost involved in
running each simulation. The resulting spread in Bayes
factors is perhaps a conservative estimate, but the gen-
eral trends should be robust.)
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FIG. 8: The detectability of simulated black hole populations
as a function of the noise level for a simulated pulsar timing
array with 20 equally sensitive pulsars. The red bands show
the spread in log Bayes factors for the full tensor correlation
model computed from multiple realizations of a black hole
population model. The green bands show the spread in log
Bayes factors for the diagonal correlation model applied to the
same set of simulated signals. The gravitational wave signal
model is favored when the log Bayes factor for the tensor
correlation model versus the noise model is positive and that it
exceeds the log Bayes factor for the diagonal correlation model
versus the noise model. From top to bottom the simulations
are for the full black hole background, the populations down-
sampled by ten then one hundred, and finally for just the ten
brightest systems.

Figure 9 shows the log Bayes factors between the full
tensor correlation model Mgw and the diagonal common
noise model Mcorr, for both anisotropic black hole pop-
ulations and their isotropic equivalents, with the spread
showing the cosmic variance derived by considering mul-
tiple realizations. Values greater than zero indicate that
the Hellings-Downs correlation curve has been detected
in the data. As expected, the evidence ratio for the full
and diagonal models tends to unity as the noise level
increases, because these models have the same prior vol-
ume. We see that the results for isotropic and anisotropic
signals are essentially indistinguishable for the relatively
non-downsampled cases, which implies that not only is
a common red noise component being detected in both
cases, but so is the tensor correlation pattern. For the
highly downsampled cases (the lower panels of this fig-
ure), the detectability of the Hellings-Downs pattern is
much more realization-dependent for the black hole pop-
ulations than for the isotropic backgrounds. This indi-
cates a greater difficulty in differentiating between a GW
signal and a different correlated noise source (i.e. clock
noise) for these highly anisotropic signals.

V. SKY SCRAMBLES

We have found the tensor correlation pattern to be a
remarkably robust signature for detecting gravitational
waves with pulsar timing arrays. As the existing pulsar
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FIG. 9: The log Bayes factors between the full and diagonal
correlation model. Values greater than zero indicate that the
Hellings-Downs correlation pattern has been detected. The
red bands are for simulated black hole populations, and the
blue bands are for the isotropic equivalents. For the highly
downsampled cases (lower panels), the detectability of the
Hellings-Downs pattern is much more realization-dependent
for the black hole populations than for the isotropic back-
grounds, indicating a greater difficulty in differentiating be-
tween a GW signal and a different correlated noise source.

timing arrays continue to collect data at improved sen-
sitivity, and as more pulsars are added to the arrays, we
should start to see the first hints of correlated gravita-
tional wave power in the timing residuals [4]. The evi-
dence for a signal will then grow steadily with time, until
eventually the evidence becomes overwhelming. How-
ever, the evidence we compute is between our model for
the signal and our model for the noise, and deficiencies
in either of these models could lead to false positives or
false negatives. Assuming that general relativity provides
a faithful description of gravity in the regime probed by
pulsar timing, our model for the signals and how they
perturb the timing residuals should be reliable, but the
many potential sources of noise are less well understood.
Ideally, we would like to be able to study the noise prop-
erties in data that is free of gravitational waves, but there
is no way to shield our detector from gravitational wave
signals.

The same challenge occurs in the analysis of data from
the ground-based LIGO/Virgo interferometers [32, 33],
where studies have shown the noise to be both non-
stationary and non-Gaussian [34–36], with frequent loud
transient features, or glitches [37]. While it is not possi-
ble to remove gravitational wave signals from the data,
it is possible to destroy signal coherence across the de-
tector network by introducing artificial time delays be-
tween the detectors during the analysis [38]. Because
the noise in each detector is assumed to be uncorrelated
to begin with, the ‘time slides’ preserve the statistical
properties of the noise. The groups that analyze the
data from ground based detectors approach the detection
problem in a frequentist framework, using some detection
statistic to identify candidate events. The distribution of

triggers from the time slides are used to compute false
alarm rates, and any triggers in the zero-lag data that
exceed a pre-ordained false alarm rate (such as one per
millennium) are deemed detection candidates. To estab-
lish a false alarm threshold of one per millennium for
a year long data set requires thousands of independent
time slides. This can be achieved for the ground-based
detectors, as the correlation time of typical signals in the
ground based interferometer band are generally less that
a second.
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FIG. 10: Histograms of the full match M (in blue), and the
off-diagonal match M for randomly drawn sky-scrambles of
an equal-sensitivity 20 pulsar timing array

In the case of pulsar timing, though, the correlation
time of the gravitational wave signals is expected to be
comparable to the duration of the available data sets,
making it impossible to generate independent time-slides.
Instead, we can break the spatial correlations by artifi-
cially scrambling the pulsar positions used in the grav-
itational wave analyses (the true positions still have to
be used in the timing model). We can define the match
between two sets of correlation matrices Hab and H ′ab as

M =

∑
a,bHabH

′
ab(∑

a,bHabHab

∑
a,bH

′
abH

′
ab

)1/2
(5)

Because the correlation matrices are dominated by their
diagonal terms, the match M will always be greater than
zero. Since what we are really interested in are the cross-
correlation terms, we can define a modified match that
excludes the diagonal contributions:

M =

∑
a 6=bHabH

′
ab(∑

a6=bHabHab

∑
a6=bH

′
abH

′
ab

)1/2
(6)

For realistic networks in which the noise varies between
pulsars and with frequency, the sums in the above ex-
pression should be replaced by noise-weighted sums of
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the form ∑
a,b

HabH
′
ab →

∑
a,b

∫
HabH

′
ab

Sa(f)Sb(f)
df , (7)

where Sa(f) is the sensitivity curve for pulsar a. The
sensitivity curve is derived by convolving the noise spec-
trum with the gravitational wave response and the tim-
ing model. Figure 10 shows a histogram of M and M for
randomly drawn sky locations for an equal-sensitivity 20
pulsar network. The width of the distributions scale in-
versely with the effective number of pulsars in the array,
which we define as

Neff =

∑Np

a=1

∫
Sa(f)−1df

S−1
max

, (8)

where S−1
max = max1≤a≤Np

∫
Sa(f)−1df . For an equally

sensitivity network Neff = Np, while for a heterogeneous
network Neff < Np. For example, the Np = 36 pulsar
network used in the first IPTA mock data challenge has
Neff = 4.35, which nicely explains the result from the
previous section that shows that the IPTA array behaves
more like an array with Np = 5 than with Np = 20.
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FIG. 11: Log Bayes factors in favor of a detection as a function
of the match M for an equal-sensitivity 20 pulsar timing array.
The green points compare the full signal model to the noise
model, while the purple points compare the full signal model
to a signal model with a diagonal correlation matrix.

We expect to see a correlation between the match, M ,
and the Bayes factor between the signal and noise model.
Figure 11 shows a roughly linear relationship between M
and ln(BF). The simulations were for an equal-sensitivity
20 pulsar network for two noise levels using one realiza-
tion of the full black hole population mode. Because ran-
dom scrambles rarely produce matches above M = 0.2
for a 20 pulsar network, the high match examples were
found by applying small random perturbations to the
true pulsar locations. We see that even scrambles with
M < 0 can produce Bayes factors in favor of the sig-
nal model, as the diagonal components of H ′ab pick up
power from both the Earth-term and the Pulsar-term.
Another way of saying this is that the full match, M ,

which is greater than zero for all scrambles, is the rele-
vant quantity when comparing the signal model to the
standard noise model described by (4). As described in
the previous section, we can focus the analysis on the off-
diagonal, cross-correlation pattern by adding a common
red “noise” term as a diagonal component of Cab to the
standard noise model - we call this the diagonal model.
This results in the Bayesian equivalent of the frequentist
optimal statistic defined in Ref. [9, 12].
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FIG. 12: A histogram of the log Bayes factors between the
full correlation model and a diagonal correlation model for
the 18 independent sky-scrambles for an equal-sensitivity 20
pulsar timing array. Here independent is defined as matches
with the true correlation pattern and each other of M < 0.
For reference, the analysis with un-scrambled sky locations
gave a log Bayes factor of 12.

In the LIGO/Virgo context, thousands of independent
time-slides are used to establish the false alarm rate. In
the pulsar timing case we are unable to generate nearly
so many independent sky-scrambles, at least when using
M as the sole measure of independence. For example,
if we define two correlation patterns Hab to be indepen-
dent if their match M < 0, then the number of indepen-
dent scrambles is roughly equal to Neff . This number is
derived from numerical experiments in which successive
skies were generated randomly and added to the group
of independent skies if they were independent of all the
other skies in the group. If the criteria for independence
is relaxed to, say, M < 0.1, then the number of inde-
pendent skies grows by an order of magnitude. Figure
12 shows the distribution of log Bayes factors between
the full and diagonal signal models for 18 mutually inde-
pendent scrambles (defined as having M < 0), using the
same data set as Figure 11. Notice that none of the anal-
yses with scrambled sky locations give a Bayes factor in
favor of a gravitational wave signal with a tensor corre-
lation pattern being present, while the analysis using the
correct sky locations gave overwhelming evidence for such
a signal. With just 10 or 20 independent scrambles it is
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not possible to make very interesting statements about
“false alarm rates”, which in any case are rather mean-
ingless in the context of measuring a single realization of
a signal. Rather, the sky scrambles, along with analy-
ses of simulated signals, can be used as a way of testing
the models being used in the Bayesian analysis. It may
also be that using the match to define independence sig-
nificantly underestimate the number of independent sky
scrambles. For example, there are many scrambles that
give the same match value M to the original array, but
have very different collections of pulsar pairs in the pos-
itive and negative sectors of the Hellings-Downs curve.

VI. SUMMARY

The detection of a stochastic gravitational wave back-
ground with PTAs requires the detection of cross-
correlations between the timing residuals in multiple pul-
sars. When either the gravitational wave signal or the
pulsar array is spatially isotropic, the values of these
cross-correlations are uniquely determined by the ten-
sor nature of the radiation via the Hellings-Downs curve.
Standard pipelines for analyzing the stochastic back-
ground in PTA data assume an isotropic background
when searching for these cross-correlations. We have
shown that, despite the fact that realistic gravitational

wave skies can contain a large degree of anisotropy, the
isotropic search is remarkably robust, and only leads to
loss of detection efficiency in extreme cases. This robust-
ness being established, we have shown that we can break
the expected correlations by scrambling the location of
the pulsars in the sky, and that these sky scrambles result
in a lower evidence for the signal model. Thus we can
build confidence in the detection of a stochastic back-
ground of gravitational waves be establishing that the
evidence for such a detection shrinks as the correlation
matrix for the pulsars in the array is made more and
more dissimilar to the Hellings-Downs values.
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