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We exploit the near-horizon conformal symmetry of rapidly spinning black holes to determine
universal properties of their magnetospheres. Analytic expressions are derived for the limiting form
of the magnetosphere in the near-horizon region. The symmetry is shown to imply that the black
hole Meissner effect holds for free Maxwell fields but is generically violated for force-free fields. We
further show that in the extremal limit, near-horizon plasma particles are infinitely boosted relative
to accretion flow. Active galactic nuclei powered by rapidly spinning black holes are therefore natural
sites for high energy particle collisions.

Emergent conformal symmetries near critical points
play a profound role in modern condensed matter physics
and particle physics. A maximally spinning black hole
can be viewed as a critical point of the Kerr family where
the surface gravity and Hawking temperature vanish.
Reference [1] identified a corresponding global conformal
symmetry, in the sense that the enhanced near-horizon
isometry group contains the conformal group SO(2, 1).
The near-horizon isometries were later found in Ref. [2]
to be part of an even larger emergent infinite-dimensional
local conformal symmetry. This suggests that physics
near rapidly spinning black holes should be constrained
by conformal symmetry in much the same way as many
near-critical condensed matter systems are governed by
conformal field theories. Indeed, the conformal symme-
tries have already proven to be powerful tools for near-
horizon physics and astrophysics [3–9].

In this paper, we realize and explore a set of near-
horizon symmetry constraints of potential astrophysical
relevance. We observe that the scaling used to define
the near-horizon metric imposes scaling relations on any
other physical fields present as well. We show that tensor
fields become self-similar in the limit, and that outside of
special cases they also become null, in the sense that all
scalar invariants vanish. We can then apply field equa-
tions on these simpler fields in the simpler near-horizon
metric and learn nontrivial properties of the fields on the
extreme Kerr background from which they descend.

As an example, we consider stationary, axisymmetric
electromagnetic fields sourced by charge-current exterior
to the extreme Kerr horizon. The generic limiting field
is incompatible with Maxwell’s equations, implying that
the limit must vanish. A subleading limit vanishes as
well, provided there is no net charge. Back in terms of
fields on extreme Kerr, these results imply that the tan-
gential components of the Maxwell field vanish on the
horizon. This is a covariant formulation and generaliza-
tion of the “black hole Meissner effect” [10], which states
that maximally spinning black holes expel magnetic flux.
Thus, the Meissner effect may be viewed as a direct con-
sequence of the conformal symmetry.

We next consider a black hole surrounded by a diffuse
(force-free) plasma magnetosphere. This configuration is
generally believed to be the engine behind active galac-

tic nuclei (AGN), since the plasma can efficiently extract
energy from the black hole in steady state [11]. We then
take a near-horizon limit and demand regularity on the
future (but not the past) horizon. The resulting force-free
field configuration is parametrized by a free function of
the polar angle θ and generically symmetric/self-similar
under only two of the three SO(2, 1) conformal symme-
tries of the near-horizon metric. In stark contrast to the
vacuum case discussed above, the near-horizon limit au-
tomatically satisfies the force-free equations. Thus, the
symmetry imposes no constraints on force-free fields in
extreme Kerr. This provides further evidence that there
is no black hole Meissner effect for plasma [12] and that
energy extraction can occur all the way to extremality.

The solution discussed above is singular on the past
horizon, which is acceptable because astrophysical black
holes do not have past horizons. It is also interesting to
consider what happens if we demand regularity on both
the future and the past horizon. This condition turns out
to be very strong and completely fixes the θ-dependence
of the scaling solution, which then preserves all three of
the SO(2, 1) conformal symmetries. Hence, every smooth
solution of the force-free equations on extreme Kerr re-
duces (up to an overall constant) to the same form in the
near-horizon limit. The solution is electrically dominated
(F 2 < 0). In flat Minkowski space, electrically dominated
solutions are unstable to acceleration of charged particles.
The strong gravitational fields in the near-horizon region
could potentially eliminate the instability. Further work
is required to settle the issue.

We also analyze the behavior of particle worldlines in
the near-horizon limit. Worldlines that plunge into the
extreme Kerr horizon are infinitely boosted by the scal-
ing and become null plunge trajectories in in the near-
horizon metric, while worldlines that remain outside the
extreme Kerr horizon have no near-horizon limit at all.
More interestingly, we may consider particles that are
parametrically close to the extreme Kerr horizon, repre-
sented by a family of worldlines approaching the hori-
zon generators. Taking the near-horizon limit of such a
family yields a timelike trajectory. Intersections between
these two classes of near-horizon trajectories describe the
particle collisions of arbitrarily high energy considered in
Refs. [13, 14]. We may view the existence of such col-
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lisions as a consequence of the existence of a nontrivial
near-horizon limit.

We conclude by generalizing some of these observa-
tions to near-extreme black holes and applying them to
the Blandford-Znajek model of an AGN. We point out
that in the extremal limit, matter on the innermost sta-
ble circular orbit (ISCO) is at infinite relative boost to
matter in the surrounding diffuse plasma. This suggests
that AGN with rapidly spinning black holes may natu-
rally realize the high energy collisions of Refs. [13, 14].

While we have focused on two cases (Maxwell fields
and point particles) in this paper, we note that the tech-
nique is quite general. All smooth tensor fields pick up
additional symmetry in the limit, allowing simpler com-
putations that can reveal universal properties. The con-
formal symmetry provides an effective organizing prin-
ciple for the near-horizon dynamics of rapidly spinning
black holes.

In Sec. I, we review the near-horizon limit of the ex-
treme Kerr metric and explain how other fields behave
under the limit. In Sec. II, we consider Maxwell fields
and in Sec. III we discuss high energy particle collisions.
Finally, in Sec. IV, we generalize our discussion to in-
clude near-extreme black holes and note the possibility
of high energy collisions in AGN. Our metric has sig-
nature (−,+,+,+) and we use Heaviside-Lorentz units
with G = c = 1.

I. NEAR-HORIZON LIMITS

The Kerr metric for a black hole of mass M and an-
gular momentum aM is given in Boyer-Lindquist (BL)
coordinates t, r, θ, φ by

ds2 =− ∆

Σ

(
dt− a sin2 θ dφ

)2
+

Σ

∆
dr2 + Σ dθ2

+
sin2 θ

Σ

[(
r2 + a2

)
dφ− adt

]2
, (1)

where ∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ. Con-
sider the extreme case a = M and introduce the “scaling
coordinates”

T =
λt

2M
, R =

r −M
λM

, Φ = φ− t

2M
. (2)

For small λ, these new coordinates cover only the re-
gion r → M near the horizon. In the λ → 0 limit with
T,R, θ,Φ held fixed, one obtains the metric of the so-
called NHEK (Near-Horizon Extreme Kerr) region:

ds2 = 2M2Γ

[
−R2 dT 2 +

dR2

R2
+ dθ2 +Λ2(dΦ +R dT )

2

]
,

(3)

where we have introduced Γ(θ) =
(
1 + cos2 θ

)
/2 and

Λ(θ) = 2 sin θ/
(
1 + cos2 θ

)
. This metric has two addi-

tional Killing fields relative to Kerr, making its isometry

group SO(2, 1) × U(1). The important Killing field for
our analysis is the dilation,

H0 = T ∂T −R∂R, (4)

whose finite form, R → cR and T → T/c for some
constant c, is manifest in the metric (3).1 The coordi-
nates in Eq. (3) cover the “Poincaré patch” R > 0 of
NHEK (region within the triangle in Fig. 1). The por-
tions R→ 0, T → ±∞ are null surfaces called the future
(+) and past (−) horizons. The maximal analytic exten-
sion can be reached (e.g.) by the coordinate transforma-
tion (3.15) of Ref. [7].

Consider a tensor field W defined on extreme Kerr.
One may determine its near-horizon behavior by chang-
ing to scaling coordinates (2) and expanding for small λ.
We will assume an expansion of the form

W = λ−h
(
W̄ + λW̄ (1) +

1

2
λ2W̄ (2) + . . .

)
, (5)

where h is some real number called the weight of the field.
The leading piece W̄ may be expressed as

W̄ = lim
λ→0

λhW, (6)

with the limit at fixed scaling coordinates (2). Since fur-
ther rescalings λ→ cλ do not change the limit, W̄ must
scale like W̄ → c−hW̄ under T → T/c and R→ cR, i.e.,2

LH0
W̄ = hW̄ . (7)

Force-free solutions in NHEK obeying this condition were
previously studied in Refs. [6–9]; here, we show how it
necessarily arises from the limit of smooth fields in Kerr.

The weight h depends on the field being studied. A
field which is smooth on the future horizon of extreme
Kerr can have weight no larger than its rank, since the
Jacobian matrix (A1) relating the scaling coordinates (2)
to ingoing Kerr coordinates is O

(
λ−1

)
. Additional prop-

erties can reduce the maximum weight. For example, the
details of Eq. (A1) show that two-forms (antisymmetric
rank-2 tensors) have a maximum weight of 1 rather than
2. The extreme Kerr metric has h = 0, which is equiva-
lent to the statement that the NHEK metric is dilation-
invariant. All NHEK fields that descend from regular
Kerr fields in this way will be regular on the NHEK fu-
ture horizon.

1 The other new Killing field is H− =
(
T 2 + 1/R2

)
∂T −2TR∂R−

2/R∂Φ. Together with H+ = ∂T , the set {H0, H±} gener-
ates the conformal group SO(2, 1), with commutation relations
[H0, H±] = ∓H± and [H+, H−] = 2H0.

2 More generally, if φσ is a one-parameter group of diffeomor-
phisms with generating vector field V [15] and T is a smooth
tensor field, then the limit T̄ = limσ→∞ e−nσφ∗−σT (if it exists)

satisfies LV T̄ = nT̄ . (That is, repeated application of a transfor-
mation promotes it to a symmetry.) The diffeomorphism family
(2) has generator (4) and group parameter σ = − log λ.
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Fields with positive weight become null in the limit
(6). For example, consider a vector field V of weight 1,

V = λ−1V̄ +O
(
λ0
)
. (8)

Since the metric has weight zero, the norm V 2 satisfies

V 2 = λ−2V̄ 2 +O
(
λ−1

)
, (9)

where V̄ 2 is constructed with the NHEK metric. How-
ever, since V 2 is a regular scalar, its maximum weight is
zero. It then follows from Eq. (9) that V̄ 2 = 0. Similarly,
any scalar invariant of any h > 0 field must vanish in the
near-horizon limit.

Thus, smooth tensor fields W on extreme Kerr have
highly constrained near-horizon limits W̄ : following
Eq. (7), they must be self-similar with some weight h,
and if h > 0, then they must also be null in the sense
that all their scalar invariants vanish. For perturbative
calculations, it is useful to consider families W (λ). We
define the weight and near-horizon limit in the same way
as in Eq. (6), but in general, there is no symmetry en-
hancement or tendency to become null.

The reader familiar with the study of critical phenom-
ena in condensed matter systems or quantum field the-
ory will recognize this discussion as the classification of
infrared fixed points in terms of operator scaling dimen-
sions. In the present astrophysical context, the infrared
limit arises geometrically from the fact that we are scal-
ing to a region of infinite redshift near the horizon.

II. MAXWELL FIELDS

Consider a stationary, axisymmetric Maxwell field F
on extreme Kerr that is regular on the future horizon
but not necessarily on the past horizon (or bifurcation
two-sphere). Generically, such a field has weight 1,

F = λ−1F̄ +O
(
λ0
)
. (10)

The limiting field F̄ must be stationary, axisymmetric,
null, weight-1 self-similar

(
LH0

F̄ = F̄
)
, regular on the

future horizon of NHEK, and closed
(
dF̄ = 0

)
.3 These

properties are highly constraining and reduce F̄ to the
form4

F̄ = A(θ) d(T − 1/R) ∧ dθ. (11)

The one-form d(T − 1/R) is tangent to the ingoing prin-
cipal null congruence of NHEK (after raising the index).

3 We regard the vector potential as fundamental, so dF̄ = 0 is just
a consistency condition.

4 An alternative derivation is to begin with the components of F
on the future horizon of extreme Kerr in a regular coordinate
system and then take the near-horizon limit.

The charge-current vector J̄ is proportional to the null
congruence,

J̄ = − ∂θ [Λ(θ)A(θ)]

2M2Γ(θ)Λ(θ)
d(T − 1/R). (12)

(Here we give the lowered-index version as a one-form.)
Suppose instead that F is weight zero, i.e., A(θ) = 0.
Then

F = F̂ +O(λ). (13)

Again, F̂ satisfies a long list of constraints: it must
be stationary, axisymmetric, scale invariant (LH0

F = 0),
regular on the future horizon, and closed. This again
fixes the form up to a free function of the polar angle θ,

F̂ = B(θ) dT ∧ dR+B′(θ)(R dT + dΦ) ∧ dθ. (14)

Note that this two-form is invariant under the full
SO(2, 1)×U(1) isometry group. The one-form R dT+ dΦ
is proportional to the axial Killing field (after lower-
ing the index), ∂Φ = 2M2Γ(θ)Λ(θ)2(R dT + dΦ). The
charge-current is also proportional to the axial Killing
field,

Ĵ =
B′(θ)Λ′(θ)−B′′(θ)Λ(θ)−B(θ)Λ(θ)3

[2M2Γ(θ)]
2

Λ(θ)3

∂

∂Φ
. (15)

In some contexts, one may also wish to demand regularity
on the past as well as the future horizon. It is easy to
see that the h = 1 fields in Eq. (11) all blow up on the
past horizon.5 Allowed fields are all of the h = 0 ones
as given in Eq. (14). Smoothness of these fields follows
immediately from their full SO(2, 1)×U(1) invariance and
the fact that the SO(2, 1) generator H+ = ∂T moves the
location of the horizon.

The constraints of this section are purely kinemati-
cal. In the next section, we impose further dynamical
constraints in the two interesting cases of vacuum and
force-free electrodynamics.

A. Vacuum: black hole Meissner effect

Suppose the original two-form F in extreme Kerr was
generated by charge-current sources exterior to the black
hole and not extending to the horizon. Then the lead-
ing piece in the near-horizon limit must be a vacuum
solution. Setting the current (12) to zero, we see that
A(θ) = 0 and hence, F̄ = 0 entirely. So instead, we have
Eq. (13), i.e., h = 0. Setting the current (15) equal to
zero gives an ordinary differential equation, whose gen-
eral solution is

B(θ) = −QE cosG(θ) +QM sinG(θ), (16)

5 This does not preclude their relevance to astrophysical black
holes, which do not have a past horizon.
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where

cosG(θ) =
Γ(θ)Λ(θ)2

2
=

1− cos2 θ

1 + cos2 θ
. (17)

The constants QE and QM are the electric and magnetic
charge associated with the solution (defined by the inte-
gral form of Gauss’ law). If these are nonzero, we would
say that there is charge within the black hole, so we de-
mand QE = QM = 0, implying F̂ = 0 entirely. Thus, we
have shown that the leading piece is O(λ), i.e., that in
scaling coordinates, we have

F = O(λ). (18)

In terms of ingoing coordinates v, r̃, θ, φ̃ on Kerr (see
App. A), this means that

Fvφ̃ = Fvθ = Fθφ̃ = 0, (19)

Fr̃φ̃ = 2MFvr̃, ∂r̃Fvφ̃ = 0, ∂r̃Fθφ̃ = 2M ∂r̃Fvθ,

(20)

where everything is evaluated on the future horizon at
r̃ = M . The first line is the statement that the pullback
of F to the future horizon vanishes, which we write as

F
∣∣
H = 0. (21)

This is a covariant statement of the expulsion of magnetic
flux. In the classic derivation [10] of the Meissner effect,
one explicitly solves the vacuum Maxwell equation in the
Kerr spacetime (at great effort) and finds that Fθφ = 0.
Here, we readily obtain a more general result by working
with highly constrained fields in a much simpler metric.
See Refs. [16–18] for other near-horizon analyses of the
Meissner effect.

B. Force-free

If the magnetosphere is filled with tenuous plasma,
then we want to impose the force-free equations, F̄ ·J̄ = 0.
First, consider the generic case h = 1. Dotting Eq. (12)
into Eq. (11) and recalling that d(T −1/R) is null, we see
that the leading two-form F̄ is automatically force-free.
This general type of null solution was studied in detail
in Refs. [19–21] and the NHEK solution (11) was found
explicitly in Ref. [8]. Here, we reveal that solution to be
the universal near-horizon limit for force-free plasma.

Stationary, axisymmetric degenerate fields are nor-
mally represented by the flux function ψ, the field an-
gular velocity ΩF , and the polar current I (we use the
conventions of Ref. [22]). Taking the near-horizon limit
of the general form for F (Eq. (65) of Ref. [22]) and using
the regularity condition (Eq. (104) of Ref. [22]) recovers
the field in Eq. (11) and shows that the free function A(θ)
is given by

A(θ) = 2M [ ∂θψ(ΩF − ΩH)]
∣∣
r=M

. (22)

The values of these functions depend on the source of
the external magnetic field. Approximate analytic ex-
pressions for various field geometries (radial, parabolic,
hyperbolic) are given in Ref. [23].

If A(θ) vanishes, then instead we have Eq. (15), i.e.,

h = 0. Dotting Eq. (15) into Eq. (14), we see that F̂ is
force-free when B′(θ) = 0, in which case it reduces to the
simple form

F̂ = − 2

π
QE dT ∧ dR. (23)

This field has all the symmetries of NHEK and is electri-
cally dominated, F̂ 2 < 0. In flat Minkowski space, elec-
trically dominated solutions are unstable to electric ac-
celeration of charges, as seen by working in a local frame
where the magnetic field vanishes. However, this must
be reconsidered in the presence of gravitational fields,
in particular the strong fields of the NHEK geometry.
In principle, the charged particles in the plasma can be
stabilized at points where the gravitational and electri-
cal accelerations cancel. Electrically dominated force-
free electrodynamics also suffers from having nonhyper-
bolic field equations [24, 25]. While this presents difficul-
ties for making dynamical predictions, we see no reason
why highly symmetric force-free fields such as the one in
Eq. (23) could not appear as special solutions of a more
general, dynamically well-posed theory. Indeed, we have
just seen that every solution that is smooth and nonvan-
ishing on all horizons must, in the near-horizon limit (6),
reduce to the electrically dominated solution (23).

To explore this further, the Maxwell-Vlasov equations
[26] provide a physically reasonable kinetic description of
the plasma and therefore seem likely to be suitably well-
posed (see Ref. [27] for an existence result). One could
imagine finding a self-consistent particle distribution to
accompany the electromagnetic field in Eq. (23) and then
checking stability using the Maxwell-Vlasov equations.
We hope to tackle this problem in the future.

If one imposes QE = 0, or otherwise discards the max-
imally symmetric solution, then F has weight h = −1
instead. This case was studied numerically in Ref. [6].

III. PARTICLE MOTION

Let xµ(τ) be a timelike worldline on extreme Kerr and
denote the four-velocity dxµ/dτ by uµ. If the worldline
remains outside the horizon for all time, then it has no
near-horizon limit, since R → ∞ as λ → 0 at any fixed
r. The limit exists if the particle enters the black hole,
but the worldline becomes null (and always a member of
the ingoing principal null congruence). To show this, we
write u in terms of its ingoing Kerr coordinates, change
to the scaling coordinates (2), and expand. This yields

u = λ−1ū+O
(
λ0
)
, ū = 2MΓ(θ)

(
u
∣∣
H
· n
)

d(T − 1/R),

(24)
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(a) Near-horizon Penrose diagram (b) Spatial diagram

FIG. 1. High-energy collisions near maximally spinning black holes. The relative boost factor between tightly-bound orbits
(dotted) and generic orbits (solid) can be arbitrarily large. From a far-field point of view (right), the bound orbit is nearly null,
while the plunging orbit is timelike. In the near-horizon limit (left), the roles are reversed: the plunging orbit becomes null,
while the bound orbit stays timelike.

where u|H is the four-velocity evaluated on the extreme
Kerr horizon and n = dr̃ is the horizon normal. The
leading piece ū is proportional6 to d(T − 1/R), which
we already noted points along the ingoing principal null
congruence of NHEK. This means that the worldline ap-
proaches the principal null congruence.7

The near-horizon limit is less constrained when one
considers a family of trajectories on extreme Kerr. For
example, consider circular orbits in extreme Kerr, which
have four-velocity

u =
1

e− Ω`
(∂t + Ω ∂φ), (25)

where Ω denotes the orbital frequency, while e = −u · ∂t
and ` = u · ∂φ are the energy and angular momentum
per unit mass. Formulae for these quantities may be
found in Ref. [28]. Work near (but outside) the horizon,
r = M(1 + δ) for δ > 0. But as δ → 0, we have e → Ω`
and the four-velocity blows up,

u =
1

δ

4√
3

(
∂t +

1

2M
∂φ

)
+

1

6
√

3

(
4 ∂t −

7

M
∂φ

)
+O(δ).

(26)

The blowup occurs because the family of timelike cir-
cular orbits of radius r > M approaches a null circular
orbit (the horizon generator) as r → M . We can work
with a finite object by taking the near-horizon limit as
follows. Let δ = λR so that r = M(1 + λR), consistent

6 Since the horizon is a null surface and u is timelike, u|H · n is
guaranteed to be nonzero for this plunging particle.

7 If we parametrize the worldline by τ/λ instead of proper time τ ,
then the tangent vector smoothly approaches the null vector ū.

with Eq. (2). Then change to scaling coordinates (2) and
expand in λ. The result follows from Eqs. (B1) and (26),

u = ū+O(λ), ū =
1

2M

4√
3R

(
∂T −

3

4
R∂Φ

)
. (27)

This is the four-velocity of a circular orbit of radius R in
NHEK [3].

This connects to the fascinating observation that the
center-of-mass energy of two finite-energy colliding par-
ticles in extreme Kerr can, for special initial conditions,
be arbitrarily large [13, 14]. The center-of-mass en-
ergy of two particles with four-momenta p1 and p2 is√
−(p1 + p2)2. Suppose that one particle is dropped in

from infinity while the other particle orbits on a circular
orbit of radius r = M(1+ δ). Then from Eq. (26), we see
that the collision energy will scale as 1/δ in the limit as
δ → 0, thereby growing arbitrarily large as the orbiting
particle is tuned toward the horizon.

The effect may be understood from either a far-field
or a near-horizon point of view (Fig. 1). From the far-
field point of view, the infinite center-of-mass energy is
blamed on the orbiting particle, which approaches a null
orbit (the horizon) despite being massive. On the other
hand, in the near-horizon point of view, it is the infalling
particle that approaches a null geodesic (the principal
null congruence of NHEK given in Eq. (24)), while the
orbiting particle occupies the harmless timelike circular
orbit given in Eq. (27). Neither picture is “the correct
one”, but the existence of the near-horizon limit seems in-
timately tied to the existence of the collisions in the first
place. One could have expected this behavior by reason-
ing that, since NHEK is a smooth spacetime at infinite
boost relative to the Kerr exterior, it should be possi-
ble to have particles at infinite boost relative to particles
from the exterior region.
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(a) ISCO region Penrose diagram (b) Spatial diagram of an AGN

FIG. 2. In the BZ model of an AGN, dense matter from the disc falls in near the equator (dotted lines), while tenuous plasma
flows in along field lines in the bulk (dashed lines). The boost factor between these two flows is infinite in the extremal limit,
suggesting the possibility of high energy collisions.

IV. NEAR-EXTREMAL MAGNETOSPHERE

Thus far, we have considered the near-horizon region of
a precisely extremal black hole. The near-horizon region
of a near-extreme black hole is qualitatively different (de-
scribed by the so-called near-NHEK metric [29]), but the
region near the ISCO is described by the NHEK metric
(3) (see Refs. [4, 30] and below). This makes our con-
clusions generalize to the ISCO region of near-extreme
black holes as follows.

Consider the Kerr metric in Boyer-Lindquist coordi-
nates (1) and let

a = M
√

1− (κλ)2. (28)

Here, κ > 0 measures the black hole’s deviation from
extremality, and is held fixed as λ → 0. We introduce
new scaling coordinates (compare with Eq. (2))

T =
λ2/3t

2M
, R =

r − r+

λ2/3r+
, Φ = φ− t

2M
. (29)

Letting λ → 0 produces the NHEK metric (3). While
any choice λp in (29) for 0 < p < 1 would produce the
NHEK metric, the power of 2/3 in Eq. (29) is designed
so that the ISCO achieves a finite limit, approaching a
timelike circular geodesic [4, 30]. This means that the
edge of an accretion disk terminating at the ISCO will
similarly survive the limit (29) and penetrate the NHEK
region (Fig. 2(a)). Particles that spiral off the disk and
fall into the black hole will also follow timelike orbits
in NHEK before they exit the ISCO region by falling
through R = 0.

All of the analysis of Sec. I goes through using Eqs. (28)
and (29) instead of a = M and Eq. (2). More precisely,

we consider smooth families of tensor fields, parametrized
by the black hole spin a ≤ M , each member of which is
regular on the future horizon at r = r+ = M+

√
M2 − a2.

(The ingoing coordinate components must be smooth

functions of v, r̃, θ, φ̃, and a.) We then replace λ by λ2/3

in Eqs. (5) and (6), take the ISCO limit using Eqs. (28)
and (29), and conclude that the limiting fields are self-
similar (Eq. (7) still applies) and/or null according to
their weight h. Similarly, smooth families of timelike
worldlines either become null or have no limit. The ISCO
itself is an example of a nonsmooth family (the a → M
member is null) that tends to a timelike trajectory in the
NHEK limit (29).

The Blandford-Znajek model of an AGN features a
magnetized accretion disk surrounded by a diffuse plasma
(Fig. 2(b)). Near the equator, neutral matter from the
disk falls into the black hole on geodesics that are slightly
perturbed from the ISCO. In the bulk region, charged
particles move on magnetic field lines and continuously
flow into the black hole [31]. As previously mentioned,
the infalling neutral matter is tuned to the ISCO region
and follows a timelike trajectory in the NHEK limit ob-
tained from Eq. (29). On the other hand, the plasma par-
ticles are not tuned and limit to null trajectories. Thus,
the equatorial and bulk flows are at infinite relative boost
in the extremal limit. They are therefore at large rela-
tive boost near the ISCO of a near-extreme black hole,
so any process that kicks a particle off of one flow and
into the region of the other can potentially realize a high
energy collision. Hence, AGN may naturally realize such
collisions!
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Appendix A: Regularity

Ingoing Kerr coordinates v, r̃, θ, φ̃ are related to Boyer-
Lindquist coordinates by v = t+r∗, φ̃ = t+r], and r̃ = r
where for extreme Kerr dr∗/dr = (r2 +a2)/(r−M)2 and
dr]/dr = a/(r − M)2. The Jacobian relating ingoing
coordinates to scaling coordinates (2) is given by

dv = 2M

[
λ−1 d

(
T − 1

R

)
+

dR

R
+
λ

2
dR

]
(A1a)

dr̃ = λM dR (A1b)

dφ̃ = λ−1 d

(
T − 1

R

)
+ dΦ. (A1c)

Thus, the Jacobian matrix and its inverse are both
O
(
λ−1

)
, and transforming a rank-N tensor from regu-

lar coordinates to scaling coordinates (2) can introduce
at most N factors of λ−1.

Appendix B: Energy and angular momentum

Near-horizon notions of energy and angular momen-
tum become “mixed up” in a nontrivial way relative to
far-field notions. Here, we give a detailed treatment of
this issue; see Ref. [9] for a compatible treatment.

From Eq. (2), we have

∂φ = ∂Φ, k = ∂t +
1

2M
∂φ =

λ

2M
∂T , (B1)

where we introduce the horizon-generating Killing field k.
Near and far notions of angular momentum will therefore
agree, while the near energy (conjugate to H+ = ∂T ) is
in effect a renormalized corotating energy, infinitely de-
boosted to compensate for the fact that a true corotating
observer would be moving at the speed of light. The fact
that this infinite deboost gives a good limit is intimately
tied with the possibility of collisions of arbitrarily high
energy when arbitrarily close to the horizon (Sec. III).

The precise relationship between near and far notions
of energy and angular momentum depends on the weight
of the field under consideration. Denote the stress ten-
sor associated with the field W by Tαβ [W ], which we
suppose to be homogeneous and quadratic, Tαβ [λW ] =
λ2Tαβ [W ]. For stationary, axisymmetric solutions, the
energy and angular momentum per unit time flowing out

of the black hole are given by

Ė = −
∫
T rt[W ]

(
r2 + a2 cos2 θ

)
sin θ dθ dφ, (B2)

L̇ =

∫
T rφ[W ]

(
r2 + a2 cos2 θ

)
sin θ dθ dφ, (B3)

evaluated at any radius r. We define the near-horizon
energy and angular momentum to be conjugate to ∂T
and ∂Φ, respectively. For stationary, axisymmetric fields,
the fluxes relative to near-horizon time T are then given
by

ĖN = −4M4

∫
TRT [W̄ ]Γ(θ) sin θ dθ dΦ, (B4)

L̇N = 4M4

∫
TRΦ[W̄ ]Γ(θ) sin θ dθ dΦ, (B5)

again at any radius R. If W has weight h (i.e., Eq. (6)
holds), then these are related by

L̇ = ΩH L̇Nλ1−2h [1 +O(λ)] , (B6)

Ė − ΩH L̇ = Ω2
H ĖNλ2−2h [1 +O(λ)] , (B7)

recalling that ΩH = 1/(2M). Note that Ė denotes the

energy flux per unit time t, while ĖN denotes the energy
flux per unit near-horizon time T (and likewise for the
angular momentum fluxes). The left-hand-sides of these
equations are numbers independent of λ, so we may take
the λ → 0 limit on the right-hand-sides. In particular,
the first equation shows that L̇ = 0 if h < 1/2, whereas if

h = 1/2, then L̇ = L̇N . If h > 1/2, then L̇N must vanish

and L̇ is not computable from the near-horizon limit of
the field, requiring subleading corrections. An analogous
story holds for the “corotating energy” flux Ė − ΩH L̇
at h = 1. In summary, the fluxes computable from the
near-horizon limit of the field in each case are

h < 1/2 : L̇ = Ė = 0, (B8)

h = 1/2 : Ė = ΩH L̇ = ΩH L̇N , (B9)

1/2 < h < 1 : Ė − ΩH L̇ = 0, (B10)

h = 1 : Ė − ΩH L̇ = Ω2
H ĖN ≤ 0, (B11)

h > 1 : nothing. (B12)

In the second-to-last line we have noted that Ė −ΩH L̇ ≤
0, assuming the null energy condition (or equivalently,
the first and second laws of thermodynamics).

In the text, we considered Maxwell fields with h = 1
and h = 0. In the generic case h = 1, the NHEK an-
gular momentum flux always vanishes and the NHEK
energy flux corresponds to the corotating flux Ė − ΩH L̇
via Eq. (B11). The individual Kerr fluxes Ė and L̇ are
not computable from the near-horizon limit. In the sub-
leading case h = 0, both fluxes vanish.

We now consider particles. Let the four-velocity u have
weight H, i.e., u = λ−H ū [1 +O(λ)]. Then to leading
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order in λ, the energy and angular momentum are given
by

` = λ−H`N , e− ΩH` =
λ−H+1

2M
eN , (B13)

where `N = ū · ∂Φ and eN = −ū · ∂T (using the NHEK
metric to contract) are the near-horizon angular momen-
tum and energy, respectively. Two interesting cases are

H = 0 : ` = `N , e = ΩH`, (B14)

H = 1 : e− ΩH` = eN/(2M), `N = 0. (B15)

We note that there is an entirely different way of asso-
ciating NHEK solutions with Kerr solutions, which is to
apply a diffeomorphism relating NHEK to near-NHEK
[29] and then interpret the fields as residing in the near-
horizon region of a near-extreme black hole [4–6, 8]. In
this case, the relationships between near and far notions
of energy and angular momentum are quite different.
This approach is less suitable for stationary solutions
because the diffeomorphism involved does not preserve
stationarity.
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