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For observers in curved spacetimes, elements of the dual space of the set of linearized Poincaré
transformations from an observer’s tangent space to itself can be naturally interpreted as local linear
and angular momenta. We present an operational procedure by which observers can measure such
quantities using only information about the spacetime curvature at their location. When applied by
observers near spacelike or null infinity in stationary, vacuum, asymptotically flat spacetimes, there is
a sense in which the procedure yields the well-defined linear and angular momenta of the spacetime.
We also describe a general method by which observers can transport local linear and angular

momenta from one point to another, which improves previous prescriptions. This transport is not
path independent in general, but becomes path independent for the measured momenta in the
same limiting regime. The transport prescription is defined in terms of differential equations, but
it can also be interpreted as parallel transport in a particular direct-sum vector bundle. Using the
curvature of the connection on this bundle, we compute and discuss the holonomy of the transport
law. We anticipate that these measurement and transport definitions may ultimately prove useful
for clarifying the physical interpretation of the Bondi-Metzner-Sachs charges of asymptotically flat
spacetimes.

I. INTRODUCTION

Asymptotically flat spacetimes in general relativity have
an infinite-dimensional group of asymptotic symmetries,
rather than the ten translations, rotations, and boosts of
flat Minkowski spacetime (see [1] for a review of asymp-
totically flat spacetimes). This larger symmetry group,
the Bondi-Metzner-Sachs (BMS) group [2–4], differs from
the Poincaré group of flat spacetime because the BMS
group contains an infinite family of “angle-dependent
translations” called the supertranslations, rather than the
four spacetime translations of the Poincaré group. The
quotient of the BMS group by the supertranslations is
isomorphic to the Lorentz group, just as the quotient
of the Poincaré group by the translations is the Lorentz
group.
Associated with each BMS symmetry generator ~ξ is

a corresponding Noether-like charge Q(~ξ), which is not
conserved, but whose change between different times (or
more precisely, cuts of null infinity) is determined by a
flux formula [5–7]. These charges can be computed in
terms of integrals of the spacetime curvature over cuts
of null infinity. They can in principle be measured by
families of observers near null infinity who measure the
spacetime geometry in their vicinities and who commu-
nicate their results to one another so as to evaluate the
charge integrals. On the other hand, observers who at-
tempt to measure Poincaré-covariant asymptotic charges
will in general recover the BMS charges associated with
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some observer-dependent Poincaré subgroup of the BMS
group. The purpose of this paper is to explore in more
detail how such measurements can be made and to un-
derstand their observer dependence. One motivation for
this exploration is to try to understand more deeply the
physical interpretation of the BMS charges themselves.

Consider an observer at an event P ∈M in the space-
time manifold M. The mathematical space of a linear
and angular momentum as measured by that observer is
G∗P , the space dual to linearized Poincaré transformations
(affine transformations) from the tangent space TPM to
itself. This space can be naturally parameterized in terms
of pairs of tensors (P a, Jab) at P, with J (ab) = 0, which
represent the linear and angular momentum about the
observer’s location [8]. How can such local linear and
angular momenta be defined and measured?

One approach to such definitions is the following: Sup-
pose that a Poincaré subgroup of the BMS group has
been specified; for example, it could be the subgroup
associated with a stationary region of future null infinity
(I +). Let g be the corresponding algebra of generators ~ξ,
where g ⊂ bms is a subalgebra of the BMS algebra, and
g ' iso(3, 1) is isomorphic to the Poincaré algebra. Sup-
pose also that one has a prescription for extending BMS
generators ~ξ (which are vector fields defined on I +) into
the interior of the spacetime. An example of such a pre-
scription associated with the retarded Bondi coordinate
conditions is given in Ref. [9]; many other prescriptions
exist. We now define tensors P a, Jab at P by

Q(~ξ) = P aξa(P) + 1
2J

ab∇[aξb](P) (1.1)

for any ~ξ in g. Here the left-hand side is the BMS charge,
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which is a linear function of ~ξ. On the right-hand side,
we can identify the Poincaré algebra g with the space of
values of ξa and∇[aξb] at P , and thereby determine the co-
efficients P a and Jab. The definition (1.1) clearly depends
on the choice of prescription for extending generators into
the interior of the spacetime, but one would expect the
leading-order terms in an expansion of the prescription in
powers of 1/r, as r →∞, would be independent of this
choice.

A different approach to defining local linear and angular
momenta at a point P was explored by two of the authors
in Ref. [8] (henceforth Paper I) and will be extended and
refined in this paper. They defined a procedure by which
an observer could measure quantities (P a, Jab) from the
spacetime geometry at her location. By contrast, the
definitions of P a and Jab in terms of BMS charges are
nonlocal functionals of the spacetime geometry. The pro-
cedure was designed to recover the correct momentum
and angular momentum of a linearized, vacuum, asymp-
totically flat stationary spacetime when used near future
null infinity, up to corrections of order M/r, where M is
the mass of the spacetime, and r is the distance to the
source as measured by the asymptotic observer.
Paper I also defined a prescription for transporting

elements of G∗P along paths in spacetime. This definition
was based on a rule for transporting vectors along curves
by a generalization of parallel transport which was called
“affine transport.” The angular-momentum transport law
can also be defined explicitly in the following way, as
shown in Appendix A of Paper I: given a curve with
tangent ka, the pair (P a, Jab) is transported along the
curve using the differential equations1

ka∇aP b = 0 , (1.2a)
ka∇aJbc = 2P [bkc] . (1.2b)

This transport law allows two observers at different space-
time locations to compare values of angular momentum
that they measure, albeit in a curve-dependent fashion.
In addition, changes with time of angular momentum
can be compared by transporting the angular momentum
about a closed curve in spacetime composed of the two
observers’ worldlines and two spacelike curves connect-
ing their locations. This process amounts to computing
a holonomy of the affine transport law. In Paper I, it
was shown that such holonomies contain two parts: the
normal holonomy associated with parallel transport of
tensors (denoted Λab), and an inhomogeneous part ∆ξa
related to a “displacement vector” that depends upon the
curve. This displacement vector satisfies ka∇a∆ξb = ka

with initial condition ∆ξa = 0. The momentum and an-
gular momentum transform under this holonomy by the

1 Equation (1.2) corrects a sign error in Appendix A of the pub-
lished version of Paper I.

following laws:

P a → ΛabP b , (1.3a)
Jab → ΛacΛbd(Jcd − 2∆ξ[cP d]) . (1.3b)

When the map Λab reduces to the identity and ∆ξa is
zero (to leading order in M/r, for example), then the
asymptotic observers agree on the momentum and angular
momentum of the spacetime. However, a nontrivial Λab
or ∆ξa indicates that spacetime curvature produces an
obstacle to observers arriving at a consistent definition of
a linear and angular momentum of the spacetime.
One of the primary goals of Paper I was to use the

local measurement procedure for angular momentum and
the holonomy of the affine transport equation to under-
stand the physics behind what is often called the “super-
translation ambiguity” of angular momentum in general
relativity. The ambiguity refers to the fact that while
there is a four-parameter translation subgroup of the su-
pertranslations, there is, in general, no preferred Poincaré
subgroup of the BMS group. As a result, the charges in
general relativity associated with the six-parameter factor
group of the BMS group depend, in general, on a smooth
function on the 2-sphere rather than a four-parameter
origin. Stationary spacetimes are an exception in this
regard: they possess a preferred Poincaré subgroup of the
BMS group with associated Poincaré charges.
When the measurement and transport procedures are

applied to “sandwich-wave” spacetimes (in which a burst
of linearized gravitational waves of finite duration with
memory pass through Minkowski space), the results of
the measurements are observer dependent. Furthermore,
Paper I showed that this observer dependence is related
to the supertranslation that relates the shear-free cuts
in the Minkowski space before the burst to those after
the burst (which is, in essence, just the memory effect;
see, e.g., [10]). More specifically, the generalized holon-
omy contains a nontrivial inhomogeneous part which is
a function of the aforementioned supertranslation evalu-
ated at the observers’ locations and of the separation of
the observers. In this context, the measurement proce-
dure gives the linear momentum of the spacetime and an
observer-dependent angular momentum of the spacetime
that depends on a four-parameter choice of origin of the
spacetime. The holonomy gave—in the form of a Poincaré
transformation—information about the BMS supertrans-
lation (at the location of the two observers), which creates
an obstruction to defining a consistent notion of angular
momentum that depends upon a four-parameter origin.

There are two closely related limitations of the measure-
ment and transport procedure of Paper I outside of the
context of the sandwich wave spacetimes described above.
First, in the measurement procedure, the angular momen-
tum is only defined to a fractional accuracy of order M/r
which, because the angular momentum about the point
scales as Mr, implies that there are errors in the angular
momentum of order M2. These errors, however, are of
the same size as the observer dependence arising from
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the memory effect that is of physical interest. Second, a
nontrivial holonomy does not necessarily imply the exis-
tence of ambiguities related to BMS transformations. For
example, for certain spacelike closed curves in the asymp-
totic region of a Schwarzschild black hole, the generalized
holonomy is nontrivial, even though stationary spacetimes
have a preferred Poincaré subgroup of the BMS group
(and hence a well-defined angular momentum).

In this paper, we refine the definitions of Paper I of
both the local measurement of angular momentum and the
transport procedure, in order that the measurement be
sufficiently accurate to capture supertranslation/memory
effects, and in order that nontrivial asymptotic holonomies
only arise because of BMS-type observer dependence. The
refined definitions are sufficiently accurate that in vacuum,
stationary, asymptotically flat spacetimes, observers near
I + will agree upon their measured linear and angular
momentum (this includes the location of the source’s
center of mass, which is now measured with an accuracy
∼M2/r).

The paper is organized as follows. In Sec. II, we define
the new transport equation for tensors P a and Jab, and
we describe specific path-independent solutions of this
transport equation. In Sec. III, we define a prescription
for measuring local linear and angular momentum from
spacetime curvature and show that it gives the expected
answer in appropriate limiting regimes. In Sec. IV, we
describe how our transport equation can be understood
as a connection on a certain bundle, and we compute the
curvature of this bundle (and therefore, also the holonomy
of an infinitesimal loop). We conclude in Sec. V. We
use throughout geometric units (G = c = 1) and the
conventions of Wald [11].

II. TRANSPORT EQUATIONS FOR ANGULAR
MOMENTUM

As a generalization of (1.2), we will consider transport
equations along curves with tangent ka of the form

ka∇aP b = − κRbacdJcdka , (2.1a)
ka∇aJbc = 2P [bkc] , (2.1b)

where κ is a real constant. From the point of view of the
theory of differential equations, these transport equations
have nice properties. For all values of κ, these equations
are linear in P a and Jab and reparameterization invariant
under changes in the tangent ka. Solutions of the equa-
tions yield a linear map between the spaces of tensors
(P a, Jab) at the initial point and at the final point of the
curve. When κ = 0, this linear map reduces to the stan-
dard action of a Poincaré transformation on (P a, Jab), as
discussed in Paper I. For nonzero values of κ, however,
the corresponding map has a more involved form.
Transport equations of the form (2.1) arise in several

different contexts in the field of general relativity:

(i) The case κ = 0 is the simplest version of an angular
momentum transport law consistent with the prop-
erties of angular momentum in special relativity. Its
properties were studied in Paper I.

(ii) The κ = 1/2 transport equations have the same
form as the Mathisson-Papapetrou equations [12, 13],
when P a and Jab are taken to be the linear and
angular momentum of a particle (rather than of the
spacetime) and the curve is the particle’s worldline.

(iii) The κ = 1/2 transport equations are also dual to the
Killing transport equations, in the following sense:
Suppose that Aa and Bab = B[ab] are tensors which
satisfy the Killing transport equations along the
curve (as would be the case if there were a Killing
vector field ξa on the spacetime and Aa and Bab
were defined by Aa = ξa and Bab = ∇aξb = ∇[aξb]).
In addition, suppose that P a and Jab satisfy the
transport equations (2.1) with κ = 1/2. Then the
generalized momentum P aAa + JabBab/2 is con-
served along the curve [14].

(iv) In this paper, we will use the κ = −1/4 transport
equations to define a prescription for transporting
angular momentum. We will also show that ob-
servers who use this prescription will arrive at a
mutually consistent definition of angular momen-
tum, near future null infinity in stationary, vacuum,
asymptotically flat spacetimes.

While most of this paper focuses on the case κ = −1/4,
our calculations in Sec. IV below are valid for all values of
κ, and might prove useful in some of these other contexts.
In this paper, we will be most interested in situations

where the transport equations admit solutions that are
independent of the path used to transport the tensors
P a and Jab throughout the asymptotically flat region
of a stationary, vacuum spacetime. If they admit such
path-independent solutions, then there will be a linear
and angular momentum of the spacetime that different
observers can measure and transport consistently. A
sufficient condition for such curve-independent solutions
to exist is if there are solutions to the partial differential
equations

∇aP b = − κRbacdJcd , (2.2a)
∇aJbc = 2P [bδc]a (2.2b)

throughout the region of interest.
In the next two subsections, we will show that solutions

to the equations (2.2) do exist. First, in Sec. IIA, we
show that there is an exact solution in the Kerr spacetime
when κ = −1/4, which is defined throughout the entire
spacetime. Next, in Sec. II B we show that approximate
solutions exist in general, asymptotically flat, stationary
spacetimes near future null infinity (or equivalently, in this
case, spacelike infinity), again only when κ = −1/4. The
existence of those approximate solutions is sufficient to
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allow asymptotically consistent measurements of angular
momentum, as we discuss in more detail in Sec. III B
below.

A. Global solution in the Kerr spacetime

The global solution to (2.2) in the Kerr spacetime is
a consequence of the relationships between the Killing-
Yano (KY) tensor and the timelike Killing field that this
spacetime admits. Many of the properties that we use here
are well known, and can be found in Floyd’s thesis [15]
or in more recent review papers [16]. We begin by noting
that a second-rank KY tensor is an antisymmetric tensor
fab that satisfies the differential equation

∇(afb)c = 0 . (2.3)

As a consequence of (2.3), a KY tensor also satisfies the
integrability condition

∇a∇bfcd = −3
2R

e
a[bcfd]e . (2.4)

The dual of the KY tensor will be denoted by

∗fab = 1
2ε
abcdfcd . (2.5)

In the Kerr spacetime, the divergence of the dual of the
KY tensor is related to the timelike Killing field by

ξb = 1
3∇a

∗fab . (2.6)

Using Eqs. (2.3)–(2.6), we can show after some calculation
that the gradients of the fields ξa and ∗fab satisfy the set
of equations

∇aξb = −1
4R

b
acd
∗f cd , (2.7a)

∇a∗f bc = −2ξ[bδc]a . (2.7b)

We immediately see that the identification (P a, Jab) =
(ξa,−∗fab) exactly solves the transport equations (2.2)
with κ = −1/4. However, this exact solution does not
have the physical interpretation we seek. In the limit
r →∞, the tensor −∗fab has two pieces, one which acts
like an intrinsic angular momentum, and one like an
orbital angular momentum about the spacetime point.
The relative sign of these two pieces is the opposite of
what it should be for −∗fab to be the asymptotic angular
momentum, as noted by Floyd [15]. Thus, this exact
solution is not directly relevant for our purposes.

B. Asymptotic approximate solutions in stationary
asymptotically flat spacetimes

We now show that arbitrary stationary, asymptotically
flat spacetimes admit approximate asymptotic solutions
to the partial differential equations (2.2) with κ = −1/4.

We adopt Bondi coordinates (u, r, θA), in which the
coordinate u foliates I + by shear-free cuts, r is an affine
parameter along null rays, and θA are arbitrary coordi-
nates on the unit 2-sphere. We specialize to a center-of-
momentum Bondi coordinate system. It follows (see, e.g.,
[17]) that the spacetime metric can be written in the form

ds2 =−
(

1− 2M
r
− 2M

r2

)
du2 − 2dudr

+ r2hABdθ
AdθB + 4

3NAdθ
Adu+ . . . . (2.8)

Here M is a constant, the ellipsis denotes higher-order
terms in a series in r−1, hAB is a metric on the unit
2-sphere, and DA will denote a covariant derivative
on the 2-sphere. Also NA(θA) is a function satisfying
(DBD

B + 1)NA = 0 (i.e., it is composed of ` = 1 spheri-
cal harmonics), andM satisfies 6M = −DANA, which
follows from Einstein’s equations.

Next, we make the following two ansatzes for the form
of the solution. First we assume that the Lie derivative of
P a and Jab with respect to ∂u vanishes. This is a natural
requirement since ∂u is a Killing vector. Second, we
assume the following large-r expansions of the solutions:

P µ̂ = P µ̂(0)(θ
A) + M

r
P µ̂(1)(θ

A) +O

(
M2

r2

)
, (2.9a)

J µ̂ν̂ = r

M
J µ̂ν̂(0)(θ

A) + J µ̂ν̂(1)(θ
A) +O

(
M

r

)
, (2.9b)

where the hatted indices refer to components of the tensors
on the basis ~eµ̂ given by

~eû = ∂u, ~er̂ = ∂r, ~eÂ = 1
r
∂A. (2.10)

Now substituting the ansatz (2.9) into the differential
equations (2.2) and matching order by order in powers
of 1/r, we immediately find several constraints on Pµ(0),
Jµν(0), P

µ
(1), and J

µν
(1). These constraints are that κ = −1/4,

Pµ(1) = 0, Jur(0) = MPu(0), P r(0) = 0, JAB(0) = 0, and JrA(0) =
−JuA(0) = 0. With these conditions imposed, the equations
further simplify, and it is then easy to show that PA(0) = 0,
that ∂µPu(0) = 0, and ∇(0)

ρ Jµν(1) = 0, where ∇(0)
ρ is the

covariant derivative operator of Minkowski spacetime in
the coordinates (u, r, θA). It therefore follows that Pu(0) is a
constant (which need not coincide with the Bondi massM
of the spacetime though). Because Jµν(1) is antisymmetric
and satisfies the same equation as a covariantly constant
tensor in Minkowski spacetime, it can be parameterized
by six constants.
We have shown, therefore, that for the specific value

κ = −1/4, there exist asymptotic solutions to the equa-
tions (2.2) in a stationary spacetime and that their ex-
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pansion in Bondi coordinates has the form

Pµ∂µ = Pu(0)∂u + . . . , (2.11a)
Jµν∂µ ⊗ ∂ν = rPu(0) [∂u ⊗ ∂r − ∂r ⊗ ∂u]

+ Jµν(1)∂µ ⊗ ∂ν + . . . , (2.11b)

where Pu(0) is a constant and Jµν(1) is parameterized by
six constants. Thus, there is in fact a seven-parameter
family of solutions2 (P a, Jab) that can be transported
by Eq. (2.1) with κ = −1/4 in an asymptotically path-
independent manner in the region of the spacetime de-
scribed by the metric (2.8).
In the next section, we will discuss a prescription for

how observers can measure quantities (P a, Jab) at their
locations, and we will argue that the existence of the
approximate solutions (2.11) can be used to demonstrate
consistency of such measurements made by different ob-
servers.

III. PROCEDURE FOR MEASURING
ANGULAR MOMENTUM

In this section, we define a prescription for how an
observer at an event P can measure an element of G∗P , the
space dual to linearized Poincaré transformations on the
tangent space TPM. That element can be parameterized
as a pair of tensors (P a, Jab) at P , as discussed in Paper I,
which can be interpreted as approximate versions of the
linear and angular momentum of the spacetime about the
observer’s location. The prescription requires several as-
sumptions about the geometry near P and, consequently,
is applicable only in certain situations. The definition of
the prescription is given in in Sec. III A, and some of its
properties are discussed in Sec. III B.

A. Prescription for measuring angular momentum

The steps of the prescription are as follows:

(i) Measure all the components of the Riemann tensor
Rabcd and of its gradient ∇aRbcde at the event P.

(ii) Compute the curvature invariants

K1 ≡ RabcdRabcd, (3.1a)
K1 ≡ ∇aRbcde∇aRbcde , (3.1b)

2 The family of solutions contains seven parameters rather than the
ten parameters associated with the Poincaré group, because the
equations (2.2) require the solution P a to be asymptotically pro-
portional to the Bondi 4-momentum of the spacetime, eliminating
the boost freedom.

which we assume to satisfy K1 > 0 and K1 > 0.
Then compute quantities M and r using (cf. Foot-
note 8 of Paper I)

M = 15
√

5(K1)2

4K3/2
1

(
1− 15

√
3K3/2

1
4K1

)
, (3.2a)

r =
√

15K1
K1

(
1− 5

√
3K3/2

1
4K1

)
. (3.2b)

(iii) Repeat steps (i) and (ii) at nearby spacetime points,
so as to measure the gradient ∇ar of the quantity r.

(iv) Assuming that the vector ∇ar is spacelike, de-
fine the unit vector na in the direction of ∇ar by
na = (N1)−1∇ar, where N1 =

√
(∇ar)(∇ar). Next,

compute the quantity

ya = −(r +M)na , (3.3)

which the observer interprets as a perpendicular
displacement vector from her location to the position
of the center-of-mass worldline of the source.

(v) Construct the symmetric tensor Hab from

Hab = Racbdn
cnd . (3.4)

Compute the eigenvectors ζa and eigenvalues λ of
Hab from Habζ

b = λζa. From the definition (3.4),
one of the eigendirections will be ζa = na with
corresponding eigenvalue λ = 0. We will assume
that at least one eigenvector has a strictly positive
eigenvalue, and we denote the eigendirection corre-
sponding to the largest eigenvalue by ta. It follows
that this vector is orthogonal to na (i.e., tana = 0).

(vi) Assuming that the vector ta is timelike, next define
a unit, future-directed timelike vector va by va =
(N2)−1ta. The normalization (N2)−1 is defined from
(N2)2 = −tata and the sign of N2 is chosen so that
va is future directed.

(vii) Compute the magnetic part of the Weyl tensor along
va

Bae = −1
2εabcdC

cd
efv

bvf . (3.5)

From this construct a spin vector Sa by

Sa = r4

2 B
a
bn
b − 2r4

3 (Bbcnbnc)na , (3.6)

and a 4-velocity vector ua by

ua =
(

1 + M

r

)
va + 1

Mr
εabcdv

bScnd . (3.7)
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(viii) Define the angular momentum and linear momentum
to be

P a = Mua , (3.8a)
Jab = εabcdu

cSd + 2y[aP b] . (3.8b)

Finally from (P a, Jab) compute an element of G∗P
using the definition (2.1) of Paper I specialized to
~x0 = 0.

B. Motivation for and properties of the
prescription

We now discuss the motivations for the measurement
prescription and some of its properties.

First, we note that the prescription refines the prescrip-
tion given in Paper I, at subleading order in M/r, in a
number of ways. First, the expressions (3.2) for M and r
contain higher-order correction terms constructed from
the curvature invariants (3.1). Second, the spin in (3.6)
is constructed using the magnetic part of the Weyl ten-
sor rather than the symmetric tensor Hab of Eq. (3.4)
and a pseudoscalar curvature invariant. Finally, the four-
velocity of the source is given by Eq. (3.7) rather than
being proportional to ta.
We next discuss some of the motivations for these re-

finements. Consider the following three properties of
algorithms to produce tensor fields P a and Jab from the
local spacetime geometry:

(i) In the context of linearized gravity, the algorithm
reproduces the expected answers for stationary, vac-
uum spacetimes near future null infinity, in the limit
r →∞.

(ii) The specification of the algorithm does not require
any preferred lengthscale or a choice of spacetime
orientation.

(iii) Consider the tensor fields P a and Jab obtained by
applying the algorithm to a stationary, vacuum re-
gion of an asymptotically flat spacetime near future
null infinity. When these tensor fields are expanded
in powers of 1/r, the leading and subleading terms
yield a solution of the transport equations (2.2) with
κ = −1/4 to the accuracy discussed in Sec. II B. In
other words, they yield a specific element of the seven
parameter family (2.11) of approximate asymptotic
solutions.

The prescription of Paper I satisfies properties (i) and
(ii), while the refined algorithm of this paper is designed
to additionally satisfy property (iii). This requirement ne-
cessitates improving the accuracy of the algorithm, from
leading order in M/r to subleading order in M/r. More
precisely, when applied to an arbitrary vacuum, station-
ary, asymptotically flat spacetime, the definitions (3.2)
of M and r yield respectively the Bondi mass and the

radial coordinate of the Bondi system (2.8) specialized
to the center-of-mass frame condition DAN

A = 0, up to
fractional errors of order ∼M2/r2 and ∼ S2M−2r−2 in
both quantities. In particular, when applied to the Kerr
spacetime, the algorithm reproduces the ADM mass and
the Boyer-Lindquist radial coordinate to an equivalent
accuracy. The 4-momentum P a and angular momentum
Jab of the new algorithm have fractional errors3 of the
same order. This implies that components of P a and
Jab in an orthonormal basis have errors that scale as
∼M3/r2 and ∼M3/r, respectively, as compared to the
errors ∼M2/r and ∼M2 in Paper I. Orthonormal-basis
components of the displacement vector ya to the center of
mass have errors of order ∼M2/r, rather than the ∼M
errors of Paper I.
Consider now the tensor fields P a and Jab produced

by the algorithm in the stationary, vacuum region of an
asymptotically flat spacetime near future null infinity.
Since property (iii) is satisfied, when (P a, Jab) are trans-
ported by the transport equations (2.1) with κ = −1/4,
these tensors will be transported in a path-independent
way to the above accuracy—the same accuracy with which
they are measured. It therefore follows that observers will
find consistency between their measured values of linear
and angular momentum in the limit r →∞.

Next, we discuss the extent to which the measurement
algorithm is unique. As discussed in Paper I, imposing the
requirements (i) and (ii) does not determine a unique al-
gorithm in linearized gravity, since the information about
the asymptotic charges is encoded redundantly in the
values of the Riemann tensor and its first two derivatives
at a point. Nevertheless, in Paper I, the leading-order
pieces of P a and Jab were uniquely determined by the
requirement (i).

Similarly, here, imposing the requirements (i), (ii), and
(iii) does not yield a unique algorithm, because of redun-
dancy in how information is encoded in the Riemann
tensor and its gradients at a point.4 Nevertheless, the
leading and subleading pieces of P a and Jab are uniquely
determined. In other words, all algorithms which satisfy
the three properties yield the same solution out of the
seven-parameter family of approximate solutions discussed
in Sec. II B. This is because the seven free parameters
in the solutions (2.11) are fixed by imposing that the
algorithm satisfy the requirements (i) and (ii). We note

3 Here when we refer to the fractional error in the tensor fields we
do not mean to imply the existence of “correct” versions to which
our prescription can be compared. Instead, we mean that the
leading and subleading pieces of P a and Jab have been carefully
specified, but higher-order pieces have not.

4 For example, one could have chosen the version of the ex-
pansion (3.2b) appropriate for the radial coordinate r′ =√

x2 + y2 + z2 of harmonic, quasi-Cartesian, Cook-Scheel co-
ordinates [18] instead of the Boyer-Lindquist radial coordinate.
This would require subleading modifications to the prescription
for measuring the vectors ya, Sa, and ua in order to satisfy
property (iii).
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that if the requirement (ii) is dropped, ambiguities in
the algorithm do arise at subleading order, of the form
ya → ya + λεabcdubJcd/M , where λ is a positive dimen-
sionless constant and ya ≡ −JabPb/M2.

IV. TRANSPORT EQUATIONS AS PARALLEL
TRANSPORT IN A FIBER BUNDLE

We now turn to studying the transport equation (2.1)
from a different point of view. A mathematically equiva-
lent but conceptually different perspective on the trans-
port equation can come from considering a direct-sum
(Whitney-sum) bundle over the manifoldM. Specifically
we will consider the bundle B ≡ TM⊕ Λ2TM, of which
the pair (P a, J [ab]) is a section. We will take derivatives
of sections of this bundle, which will require us to discuss
a number of connections on B and other bundles.
The Levi-Civita connection ∇ extends from TM and

T ∗M to all tensor-product bundles via the usual defini-
tion [11]. We will continue to use the same symbol ∇ for
all of the distinct connections acting on different bundles.
We can also extend ∇ to a connection on B in the sim-
plest possible way, by letting ∇ act diagonally on each
summand in B.
Now recall that the space of connections is an affine

space; thus, if ∇ is a connection, then so is ∇̃ = ∇+ Γ,
where Γ is a one-form taking values in the space of linear
maps. Starting from the transport equations (2.1), we
can define a new connection on B via

∇̃a
(
P b

Jbc

)
≡ ∇a

(
P b

Jbc

)
+
(
κRbacdJ

cd

−2P [bδc]a

)
. (4.1)

Because the second term on the right is linear in the vector
(P a, Jab), there is clearly a corresponding linear-map-
valued one-form, Γ. Let us introduce an index notation
for tensors in the different bundles: specifically, we will use
lower-case Latin indices for TM and T ∗M, and capital
Latin indices for B and B∗. A capital index will thus range
over the collection of lower-case indices, e.g. B = (b, [bc]).
In this notation, we may denote the pair as

XB ≡
(
P b

Jbc

)
B=b

B=[bc]
, (4.2)

and we can rewrite Eq. (4.1) in the form

∇̃aXB = ∇aXB + ΓaBDXD . (4.3)

Now we would like to read off the form of ΓaBD from
Eq. (2.1). By inserting a Kronecker delta and permuting
indices, we find

ΓaBD = B=b

B=[bc]

D=d D=[de](
0 κRbade

2δ[b
a δ

c]
d 0

)
. (4.4)

We can then think of the transport equation (2.1) as
simply parallel transport under this new connection ∇̃ in

the direct-sum bundle,

∇̃aXB = 0 . (4.5)

In this bundle viewpoint, the questions related to the
existence of solutions to the transport equations (2.1) can
be cast in terms of conditions on the curvature of the
connection. We thus compute this curvature in the next
part, and we give a necessary condition for the existence
of solutions in the part thereafter.

A. Curvature of the connection and holonomy of
the transport equation

Any connection D on a vector bundle has an associated
curvature tensor, by virtue of the linearity of the map

(DuDv −DvDu −D[u,v])X = R(D)(u, v)X , (4.6)

where u, v are two arbitrary tangent vectors on the base
manifold (they are not related to the vectors ua and va of
Sec. IIIA), and R(D)(−,−) is a two-form taking values
in linear transformations on the fiber space. If we work
in indices and in a holonomic frame then we can write

(DaDb −DbDa)XC = R
(D)
ab

C
EX

E . (4.7)

Let us start by presenting the curvature of the connec-
tion ∇ on B. This can be derived by working with the
basic connection ∇ on TM that acts diagonally on the
two summands of B. As a shorthand we will simply write
Rab

C
E in place of R(∇)

ab
C
E . In our index notation, we

find

Rab
C
E = C=c

C=[cd]

E=e E=[ef](
Rab

c
e 0

0 2R [c
ab [eδ

d]
f ]

)
. (4.8)

Now we may compute the curvature, R̃, of our new
connection, ∇̃. We will make use of the difference between
the two connections, ∇̃aXB = ∇aXB + ΓaBDXD. From
the connection coefficients, we can find R̃ in terms of R.
A straightforward calculation gives (again in a holonomic
frame),

R̃ab
C
E = Rab

C
E +∇aΓbCE −∇bΓaCE

+ ΓaCGΓbGE − ΓbCGΓaGE . (4.9)

Now we will combine Eq. (4.4) and Eq. (4.8) to compute
the coefficients of R̃ in indices. First, “squaring” the
matrix in Eq. (4.4) gives

ΓaCGΓbGE = C=c

C=[cd]

E=e E=[ef](
2κRcabe 0

0 2κδ[c
aR

d]
bef

)
. (4.10)
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patch of MP

Q

R

S

π−1(P)

ua

−vb

FIG. 1. (Color online) Transport about a coordinate rectangle
PQRS in a small patch of the base manifold M. The coordi-
nate rectangle is defined by the vector ua, which points from
P to Q, and vb, which points from P to S. Over each point
p ∈ M is a 10-dimensional fiber π−1(p) (depicted in blue) in
the bundle B. Transport around PQRS on the base manifold
(depicted in black) with the new connection ∇̃ gives transport
through B (depicted in red, dashed). This induces a linear
transformation acting on π−1(P), as expressed in Eq. (4.13).

Combining Eq. (4.8), Eq. (4.10), taking the gradient of
Eq. (4.4), antisymmetrizing, and using Bianchi identities,
we find

R̃ab
C
E =

C=c

C=[cd]

E=e E=[ef](
(1− 2κ)Rabce κ∇cRabef

0 2R [c
ab [eδ

d]
f ] + 4κδ[c

[aR
d]
b]ef

)
.

(4.11)

From this calculation, we can directly read off the
holonomy that the vector XE = (P e, J [ef ]) acquires when
transported (via the new connection ∇̃) around a “coor-
dinate rectangle.” We construct such a rectangle based
at point P , first going in direction ua, then vb, then back
along −ua, and finally back along −vb (see Fig. 1). Start-
ing with vector XE , after the transport we will have the
new vector

XE 	uv−−−→ XE + δXE , (4.12)

where the deviation vector is given by

δXC = −uavbR̃abCEXE . (4.13)

Combining Eqs. (4.11) and (4.13), we find(
δP c

δJcd

)
=
(
−uavb

[
(1− 2κ)RabceP e + κ∇cRabefJef

]
−uavb

(
2R [c

ab [eδ
d]
f ] + 4κδ[c

[aR
d]
b]ef

)
Jef

)
.

(4.14)

Using the geometric bitensor approach in [19] reproduces
this more algebraic calculation [20].

B. Existence of solutions in an extended region

From the calculation of R̃abCE , we can now state a nec-
essary condition for the existence of solutions to Eq. (4.5)
in an extended region. Suppose a solution XC exists
in an extended region that includes the point P, and it
takes the value XC(P). Then, a necessary condition for
the solution’s existence is that under transport about an
arbitrary coordinate rectangle determined by ua, vb, the
value XC(P) returns to itself (i.e., there is a vanishing
deviation vector δXC = 0). From Eq. (4.13), we have

uavbR̃ab
C
EXE = 0 ∀u, v (4.15)

∴ R̃ab
C
EXE = 0 . (4.16)

To interpret this condition, let us treat R̃abCE as a linear
map R̃ : B → Λ2T ∗M×B. Then, this necessary condition
is that the map R̃ has a nontrivial kernel.
We have checked through an explicit coordinate-

component calculation in the Kerr spacetime, in Boyer-
Lindquist coordinates, that R̃ with κ = −1/4 has a
one-dimensional kernel. Thus, the space of solutions
to Eq. (4.5) is a one-dimensional linear space. This is
equivalent to the timelike Killing field and dual KY tensor
of Sec. II being unique solutions to (2.1) up to an overall
multiplicative constant.
It is important to note, though, that this condition is

only a necessary condition, and not a sufficient condition,
for the existence of solutions in an extended region. It
is easy to see why this is true by looking at the case
κ = 1/2 in Eq. (4.11). We see that the 4-dimensional
subspace TM⊂ B is automatically within the kernel of R̃
for κ = 1/2. In fact, we have verified in Kerr that this is
the entirety of the kernel. However, the system (4.5) with
κ = 1/2 does not have solutions in an extended region.
If one starts at a point P with data XC(P) = (P c, 0)
with P c 6= 0, then at some nearby point Q 6= P, the
transported data will have rotated out of the kernel, such
that J [cd](Q) 6= 0.
A stronger condition is required for sufficiency. This

condition comes from Frobenius’ theorem for a tangent
distribution to be integrable into a submanifold (i.e., for
the distribution to be involutive). We leave an investiga-
tion of this sufficient condition for future work.

V. CONCLUSIONS

In this paper, we have introduced a method for ob-
servers to measure a kind of linear and angular momen-
tum at a spacetime point from the Riemann tensor and
its derivatives, and we also proposed a method to trans-
port these momenta. These measurement and transport
procedures are in the same spirit as those of Paper I,
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but they also contain some important refinements. The
refinements are designed so that observers who use both
these procedures in stationary, vacuum regions of asymp-
totically flat spacetimes will find that their measurements
are consistent with one another, asymptotically as r →∞.
Thus, the procedures give a simple operational meaning
to the linear and angular momentum of the spacetime in
stationary regions of I +.
In this paper, the transport and measurement proce-

dures are much more closely coupled to one another than
they were in Paper I. We introduced a one-parameter
family of transport equations, and we found that for a
unique value of this parameter (κ = −1/4), there is a
seven-parameter family of approximate solutions that can
be transported independently of path in the r →∞ limit
for stationary, vacuum spacetimes. Our measurement pro-
cedure was designed to reproduce one of these solutions
in the appropriate limit.

We also explained how the transport equation for linear
and angular momentum could be understood as parallel
transport for a specific connection on a certain direct-sum
vector bundle. We computed the curvature of this connec-
tion and used it to find the holonomy for an infinitesimal
quadrilateral loop. From the curvature, we could also
formulate a necessary (though not sufficient) condition
for the existence of global sections of the bundle.
A similar procedure is not possible, we conjecture, at

higher order in powers of 1/r, in a general stationary,
asymptotically-flat, vacuum spacetime. That is, the order
to which we have worked in this article is the highest

possible order where a procedure of path-independent
transport is possible for (P a, Jab). This is because to the
present order, all stationary, asymptotically-flat, vacuum
spacetimes can be matched with an expansion of the Kerr
spacetime. However, if we were to specialize to the Kerr
spacetime and to continue to expand to higher orders
in 1/r, we conjecture that the transport equations (2.2)
would constrain Jµν(1), J

µν
(2), . . . to have the form of the dual

to the Killing-Yano tensor, expanded to the appropriate
order. We leave investigation of this conjecture to future
work.

Other possible future directions include an exploration
of sufficient conditions for global sections to exist using
Frobenius’ theorem and an exploration of BMS-type ambi-
guities in angular momentum in intermittently stationary
spacetimes by the measurement and transport procedures
developed here.
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