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Measuring the absolute scale of the neutrino masses is one of the most exciting opportunities

available with near-term cosmological datasets. Two quantities that are sensitive to neutrino mass,

scale-dependent halo bias b(k) and the linear growth parameter f(k) inferred from redshift-space

distortions, can be measured without cosmic variance. Unlike the amplitude of the matter power

spectrum, which always has a finite error, the error on b(k) and f(k) continues to decrease as the

number density of tracers increases. This paper presents forecasts for statistics of galaxy and lensing

fields that are sensitive to neutrino mass via b(k) and f(k). The constraints on neutrino mass from

the auto- and cross-power spectra of spectroscopic and photometric galaxy samples are weakened

by scale-dependent bias unless a very high density of tracers is available. In the high density limit,

using multiple tracers allows cosmic-variance to be beaten and the forecasted errors on neutrino

mass shrink dramatically. In practice, beating the cosmic variance errors on neutrino mass with

b(k) will be a challenge, but this signal is nevertheless a new probe of neutrino effects on structure

formation that is interesting in its own right.

PACS numbers:

I. INTRODUCTION

Cosmic neutrinos are the second most abundant particle in the Universe but their masses and their contribution to

the current cosmic energy budget are not known. The neutrino contribution to the early-Universe radiation density

has been detected at high significance and is consistent with three neutrinos each with number density n̄ν ≈ 112/cm3

and temperature slightly cooler than the cosmic microwave background (CMB), Tν ≈ 1.6 × 10−4eV[1]. Today, the

energy density of neutrinos is dominated by their rest mass, ρν ≈ ∑

mν n̄ν . Neutrino oscillation data specifies the

square of two mass splittings, ∆m2
12 = 7.54× 10−5eV, |∆m2

13| ≈ 2.4× 10−3eV [2], but not the individual masses. For

∆m13 > 0, we have mν1 ∼> 0eV, mν2 ∼> 0.0087eV, mν3 ∼> 0.049eV, the “normal hierarchy.” Whereas for ∆m13 < 0,

we have mν1 ∼> 0.049eV, mν2 ∼> 0.05eV, and mν3 ∼> 0eV, which is called the “inverted hierarchy.” If any one of the

neutrino mass states is ∼> 0.1eV , then the oscillation data require mν1 ≈ mν2 ≈ mν3, and the hierarchy is quasi-

degenerate. The oscillation data, in combination with the relic neutrino number density, therefore gives a gives a

lower limit on the neutrino contribution to the cosmic energy budget of Ων ≡ ρν/ρcritical ∼> 0.001. The current upper

limit on Mν ≡∑i mνi, and therefore Ων , is Mν ∼< 0.12− 0.5eV at 95% confidence depending on the dataset [1, 3, 4].

Future large-scale structure datasets such as the Dark Energy Spectroscopic Instrument (DESI) [5], Euclid [6], the

Large Synoptic Survey Telescope (LSST) [7], Wide-Field InfraRed Survey Telescope (WFIRST) [8], SPHEREx [9],

and lensing measurements from Advanced ACTPol [10], SPT-3G [11], and a Stage IV CMB experiment will have the

statistical power to detect neutrino mass at the 3−4σ level (see e.g. [12–15]), potentially ruling out the inverted mass

hierarchy.

For fixed background cosmology, increasing Mν increases the fraction of the matter density in massive neutrinos,

thereby suppressing the linear growth of matter perturbations with wavelength 2π/k < 2π/kfs where kfs is the

wavenumber corresponding to the neutrino free-streaming scale, kfs ∼ mνaH/Tν (for a review see [16]). The net

suppression in the matter power spectrum, probed through galaxy clustering, weak lensing shear, or CMB lensing, is

a classic cosmological test of neutrino mass [17]. The neutrino-induced changes to the growth of linear perturbations

can also be detected via changes to the amplitude of redshift-space distortions (RSD), quantified by f ≡ d ln δm/d lna,

and the scale-dependent of the linear halo bias b (see e.g. [18–20]). Unlike the matter power spectrum, b and f do

not depend on the particular realization of the density field and therefore are not subject to cosmic variance [21–23].

The focus of this paper is to study how these cosmic-variance free quantities can be leveraged to achieve a cosmic

variance-less measurement of the neutrino mass scale Mν .

In §II we review the effects of neutrino mass on halo bias and redshift-space distortions, discuss how these quantities

can be measured without cosmic variance, and provide estimates for survey requirements. In §III expressions for

the observables (the 3D power spectra and the angular galaxy and lensing spectra) are presented. The assumed
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FIG. 1: Left: Solid lines show the scale-dependent bias for the minimal mass normal (mν1 = 0eV, mν2 = 0.01eV, and

mν3 = 0.05eV) and inverted (mν1 = mν2 = 0.05eV, mν3 = 0eV) hierarchies, and two quasi-degenerate hierarchies (with

mνi = 0.1, 0.2 eV). For comparison, we have plotted constant biases that match b(k) at at small scales (dotted lines). Error

bars are the Cramer-Rao limits from Eq. (5), which assume δ̂m is measured in addition to δ̂g. The number density of galaxies

is n̄ = 1.14 × 10−2(h/Mpc)3 across a volume ∼ 0.8h−3Gpc3. Right: The ratio of the scale-dependent halo biases b2(k)/b1(k)

for two populations with biases b1 ∼ 0.7 and b2 ∼ 1.4. Error bars again assume a survey volume of ∼ 0.8h−3Gpc3 and that the

number densities of the two populations are n̄1 = 1.14 × 10−2(h/Mpc)3 and n̄2 = 7.0 × 10−4(h/Mpc)3. The number density

and bias factors are comparable to expectations for SPHEREx [9]. For fixed values of b1 and b2, the scale-dependent signals

plotted here do not vary significantly with redshift.

cosmological model, galaxy populations, and survey configurations used in the forecasts are discussed in §IV and the

resulting forecasted constraints are presented in §V. Conclusions and a discussion of the forecasts in the context of

near-term surveys are presented in §VI.

II. NEUTRINO EFFECTS BEYOND THE MATTER POWER SPECTRUM

A. Scale-dependent bias

Massive neutrinos introduce a scale dependent feature into the halo bias b. We define the halo bias by

δ̂h = bδ̂m (1)

where δ̂h = δ̂nh/nh is the spatial fluctuation in the number density of halos and δ̂m = δ̂ρm/ρ̄m is the fluctuation

in the total matter (baryon, cold dark matter, and neutrino) density, and we use ˆ to indicate random quantities.

Throughout we treat cold dark matter (CDM) and baryons as a single fluid with energy density ρcb = ρc + ρb so that

ρm = ρcb + ρν .

The feature introduced by massive neutrinos is a broad step around the neutrino free streaming scale and the

amplitude of the step depends strongly on the neutrino mass fraction (see Figure 1) [19]. The scale-dependence arises

from two effects (i) the scale-dependent growth of CDM density perturbations [19, 24, 25] and (ii) the fact that halos

trace CDM fluctuations rather than total (CDM + neutrino) matter density fluctuations [19, 26, 27]. The net scale

dependence of the halo bias is given by

b(k) ∼
{

b0 − q(b0 − 1)fν k ≪ kfs
b0 + b0fν k ≫ kfs

(2)

where q ≈ 0.6, b0 is the bias factor for the halos when mν = 0, fν = Ων/Ωm. For a fixed value of b0 the scale-

dependent bias is roughly constant with redshift. On the other hand, for a given population of galaxies b0 may vary
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FIG. 2: Direct tests of scale dependent bias from angular power spectra in cosmologies with Mν 6= 0. Plotted is Mν = 0, the

minimal mass inverted hierarchy (mν1 = mν2 = 0.05eV, mν3 = 0eV), and a quasi-degenerate hierarchy with mνi = 0.1eV.

Left: The galaxy convergence cross-power spectrum divided by the galaxy auto-power spectrum Cgκ
ℓ /Cgg

ℓ for galaxies in a

redshift bin of width ∆z = 0.2 at z̄gals = 0.5 and the convergence field from source galaxies also in a bin of width ∆z = 0.2

at z̄sources = 1.1. Right: The cross power spectrum between two galaxy populations with the same redshift distribution

(z̄gals = 0.5, ∆z = 0.2) and different bias factors. In both panels the error bars are taken to be the Cramer-Rao limit

σC12/C11 = ((C11

ℓ + s1)(C
22

ℓ + s2) − (C12

ℓ )2)/(C11

ℓ ((C12

ℓ )2 + (C11

ℓ + s1)(C
22

ℓ + s2)))/
√

fsky(2ℓ+ 1) where 1, 2 indicate either

galaxy population or convergence field and si = 1/n̄ for the galaxies and γ2/n̄ for the convergence field. The turnover at high

ℓ is due to si becoming larger than the auto-power spectra in the denominator in both panels. The number density of galaxies

and lensing sources is comparable to what is expected from LSST. In both panels the plotted quantities would not depend on

Mν at all if halo bias were constant.

with redshift causing the amplitude of the scale dependence to vary with redshift for that population. Note, this

calculation assumes that nonlinear clustering of neutrinos in the halos can be neglected, which should be a very good

approximation for mνi ∼< 0.1eV [28–30].

Halo bias is particularly interesting because it is a quantity that is not subject to cosmic variance. Heuristically this

can be understood as follows. A deterministic halo bias like that in Eq. (1) maps one random field (the fluctuation in

the matter density δ̂m(x)) to another (the fluctuation in the halo number density δ̂h(x)). The fluctuation amplitudes

δ̂h, δ̂m themselves are random quantities so the cosmological information is extracted from measurements of their

power spectra (or real space correlation functions). The halo-halo and matter-matter autopower spectra are

P̂hh(k) =
1

Nk

∑

ki∈k

∣

∣

∣
δ̂h(ki)

∣

∣

∣

2

, P̂mm(k) =
1

Nk

∑

ki∈k

∣

∣

∣
δ̂m(ki)

∣

∣

∣

2

, (3)

where k is a bin with Nk Fourier modes. For a survey with volume V , Nk = V (4π)/(2π)3∆ ln kk3. There is a

fundamental limit on the precision of power spectra measurements coming from cosmic variance

σP̂hh
=

√

2

Nk
(Phh + sh) σP̂mm

=

√

2

Nk
Pmm (4)

where sh is the stochasticity in the halo field and even if sh → 0, the errors remain finite due to cosmic variance. On

the other hand, the bias factor bh in Eq. (1) is not random and can be measured even with a single Fourier mode

bh ∼ δ̂h(k)/δ̂m(k). The Cramer-Rao bound on the bias from measurements of the halo and matter fields is

σ2
bh(k)

=
sh

NkPmm(k)
(5)

where from Eq. (5) it is clear that as sh → 0, σbh(k) → 0 for any number of Fourier modes Nk.
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FIG. 3: Left: The derivative of the linear growth factor for the minimal mass normal (mν1 = 0eV, mν2 = 0.01eV, and

mν3 = 0.05eV) and inverted (mν1 = mν2 = 0.05eV, mν3 = 0eV) hierarchies, and two quasi-degenerate hierarchies (with

mνi = 0.1, 0.2 eV). To guide the eye, we have plotted constant values of f that match the f(k) at at small scales (dotted lines).

Error bars are the Cramer-Rao limits from IIB which assume δ̂m is measured in addition to δ̂g . The number density of galaxies

is n̄ = 1.14 × 10−2(h/Mpc)3 across a volume ∼ 0.8h−3Gpc3. Right: The derivative of the linear growth factor as determined

by two tracer populations with biases b1 ∼ 0.7 and b2 ∼ 1.4. Error bars again assume a survey volume of ∼ 0.8h−3Gpc3 and

that the number densities of the two populations are n̄1 = 1.14 × 10−2(h/Mpc)3 and n̄2 = 7.0 × 10−4(h/Mpc)3. The number

density and bias factors are comparable to expectations for SPHEREx [9].

Throughout this paper we will make the standard assumption that the stochasticity term in the halo field with

respect to the linear density field is Poisson shot noise sh = 1/n̄h, where n̄h is the number density of halos, and that

there is no stochasticity between halo populations with different biases. The true stochasticity between the halo and

galaxy fields may well be more complicated (see e.g. [31]) but s = 1/n̄ is a reasonable estimate and for fixed values of

the halo bias b the functional dependence of our forecasts s can be obtained by replacing 1/n̄ with s anyway. On large

scales, there are upper limits on the stochasticity between different galaxy populations and the level of stochasticity

may depend on how galaxies are selected [32, 33]. Modifying the analysis here to account for stochasticity between

populations is straightforward [23], but this is certainly an area worthy of future study.

If instead one has two galaxy populations 1 and 2 with linear bias factors b1, b2 and stochasticities s1, s2 the ratio

of the two bias factors b2/b1can be measured without sample variance,

σ2
b2/b1(k)

=
s1s2 + P11

(

s1(b2/b1)
2 + s2

)

P 2
11Nk

. (6)

The scale-dependent bias b(k) and the scale-dependent ratio of the biases of two different populations with the error

bars quoted in Eq. (5) and Eq. (6) are shown in Fig. (1). The scale-dependent bias can also be detected through its

effects on angular power spectra of the galaxy and lensing fields (discussed further in §III) and this is shown in Fig.

2.

B. Redshift space distortions

With a spectroscopic survey one may measure the 3D galaxy distribution. In the presence of redshift-space distor-

tions, the observed halo field is

δ̂h(x, z̄) = δ̂h(x, z̄)−
1 + z̄

H(z̄)

∂v̂||

∂x||
(x, z̄) (7)
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where v|| is the velocity along line of sight and x|| is the line of sight distance. The continuity equation allows us to

write v in terms of ∂δ̂m/∂t so that the observed Fourier space galaxy fluctuations are given by

δ̂h(k, z̄) =

(

bh(k, z̄) + f(k, z̄)
k2||

k2

)

δ̂m(k, z̄) . (8)

where we’ve defined

f(k, z) = −(1 + z̄)
d ln Tm(k, z̄)

dz
(9)

where Tm(k, z) is the matter transfer function and k|| the line-of-sight wavenumber. Note that we have used the deriva-

tive of the k-dependent matter transfer function d lnTm(k, z)/dz (rather than the linear growth factor d lnD(z)/dz)

because the linear growth is k-dependent in a cosmology with massive neutrinos. For k ≪ kfs, f(k, z) ≈ Ω
6/11
m (z)

and for k ≫ kfs, f(k, z) ≈ (1− 3
5fν)Ω

6/11
m (z) [34, 35].

As with the halo bias discussed in §II A, the factor f(k, z) in the redshift space distortion term is not a random

quantity and is also not fundamentally limited by cosmic variance, but by the stochasticity of galaxies with respect

to the density field [22]. The Cramer-Rao bound on f(k, z) measured from δ̂h and δ̂m and marginalizing over b(k), is

σ2
f(k) =

s
Nk

2 Pmm(k, z)(
∫

dµµ4 − (
∫

dµµ2)2/
∫

dµ)
(10)

where k|| = µk and we’ve continued to use Nk = V (4π)/(2π)3∆ ln kk3. Note that the redshift space distortion

factor introduces anisotropy into the power spectrum that allows f(k) to be determined from the anisotropic power

spectrum of a single tracer (as opposed to the auto and cross-power spectra of multiple tracers or a single tracer and

the underlying matter field). The Cramer-Rao bound on f(k) measured from a single tracer is

σf(k),single tracer =
1

√

Nk/2
∫

dµ µ4(b+fµ2)2

((b+fµ2)2+s/Pmm)2

(11)

which is finite (but independent of Pmm(k)) even in the s → 0 limit. The parameter f(k, z) for different neutrino mass

hierarchies along with the error bars given in Eq. (10) is plotted in Fig. 3. Also plotted is f(k, z) with the Cramer-Rao

limit error bars assuming that f(k, z) is determined from measuring the auto and cross-power spectra of two galaxy

populations. The expression for the Cramer-Rao bound on f(k, z) from two galaxy populations is easy to calculate,

but sufficiently complicated that we have not reproduced it here. Of course, in the limit that one population is very

densely sampled (1/(n̄1P11) → 0) it is just given by Eq. (10).

C. Estimates of Survey Requirements

Before proceeding it is useful to do an order of magnitude estimate of the number density of sources n̄ and the

number of Fourier modes needed to resolve the neutrino effects. We emphasize that while the amplitude of the halo

bias b0 also contains information about neutrino mass because halo bias is sensitive to σ(M), it can not be treated

as signal without a robust model of galaxy bias. Instead, b0 is treated as an nuisance parameter in cosmological

analyses (e.g. [36]). The existence of a scale-dependent feature in the halo bias, however, allows for the possibility

that cosmological information can be learned from the feature alone.

With estimates of both the mass density and the galaxy field one can attempt to measure the galaxy bias b(k). In

this case the magnitude of the neutrino feature we would like to resolve is

∆b(k) = b(ksmall)− b(klarge) ∼ b0fν

(

1 + q
b0 − 1

b0

)

(12)

where ksmall > kfs and klarge < kfs. Note that the amplitude of the bias at high k is generically measured more

precisely than at low k (e.g. for equal binning in ln k, Nksmall
≫ Nklarge

) so the error on ∆b(k) is dominated by
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σb(klarge). From Eq. (5) the signal-to-noise on the neutrino feature is then

S

N
∼ fν

(

1 + q
b0 − 1

b0

)

√

n̄Phh(klarge)Nklarge
(13)

∼ 0.1b0

(

Mν

0.2eV

)(

1 + q
b0 − 1

b0

)

√

n̄hPhh(klarge)
Vsurvey

(h−1Gpc)3

(

klarge
0.01h/Mpc

)3

(14)

where klarge is chosen to be just smaller than the neutrino free streaming scale kfs.

For comparison, a similar estimate for the signal-to-noise for the scale-dependent bias due to primordial non-

Gaussianity [23, 37, 38], ∆b(k) = 2fNL(b0 − 1)δcrit/α(k) where α(k) = 2k2T (k)D(z)/(3ΩmH2
0 ), is

S

N
∼ 0.05fNL(b0 − 1)

(

0.001h/Mpc

klarge

)2
√

n̄hPhh(klarge)
Vsurvey

(h−1Gpc)3

(

klarge
0.001h/Mpc

)3

. (15)

So, detecting the neutrino scale-dependent bias with Mν ∼ 0.1eV is comparable to detecting the non-Gaussian scale

dependent bias with fNL ∼ 1.

The signal-to-noise on the neutrino feature in the ratio of the bias factors for two tracers with biases b1, b2 and

number densities n̄1, n̄2 is

S

N
∼ qfν

b2
b1

(

b1 − 1

b1
− b2 − 1

b2

)

√

√

√

√

P11(klarge)Nklarge

1
n̄1

b2
2

b2
1

+ 1
n̄2

+ 1
n̄1n̄2P11

(16)

∼ 0.1
b2
b1

(

Mν

0.2eV

)(

b1 − 1

b1
− b2 − 1

b2

)

√

√

√

√

√

n̄1P11(klarge)
Vsurvey

(h−1Gpc)3

(

klarge

0.01h/Mpc

)3

n̄1

n̄2

+
b2
2

b2
1

+ 1
n̄2P11

(17)

where P11 is the auto power spectrum of galaxy population 1.

On the other hand, the signal-to-noise on the fν dependence of f(k), the derivative of the linear growth, is

S

N
∼ 3

5
fνΩ

6/11
m (z)

√

4

45
n̄Phh(k)Nk (18)

∼ 0.6

(

Mν

0.2eV

)

Ω6/11
m (z)

√

n̄hPhh(klarge)
Vsurvey

(h−1Gpc)3

(

kmax

0.1h/Mpc

)3

. (19)

In contrast to the scale-dependent bias, we have allowed information about Mν from the amplitude of f(k, z) alone

(as opposed to just the scale dependence) so the signal-to-noise is dominated by information coming from the smallest

scales (where Nk is largest) and is therefore much larger.

In summary, detecting the scale-dependent bias due to neutrino mass at the ∼ 0.1eV level is comparable detecting

the scale-dependent bias due to fNL ∼ O(1). The different scale-dependencies of the two signals, however, cause the

S/N to be dominated by different k. The optimal survey configurations for these signals are therefore likely different

and the systematics limiting the two signals will be different as well. In particular, at large scales the non-Gaussian

signal scales as 1/k2 so the signal-to-noise continues to increase with decreasing klarge. On the other hand, the

neutrino feature is smooth change in amplitude between k ≪ kfs and k ≫ kfs so (with this estimate that assumes

high k are measured more precisely than low k) the S/N is dominated by intermediate scales near kfs even if the

minimum k measured is smaller.

III. DATASETS

A. 3D galaxy Power Spectrum from a Spectroscopic Survey

The 3D power spectrum for sources with bias bg(k, z) is given by,

Pgg(k⊥, k||, z) =

(

bg(k, z) + f(k, z)
k2||
k2

)2

Pmm(k) . (20)
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We treat different redshift bins as uncorrelated and model the covariance matrix of the 3D power spectra as

Cij(k, µ, z̄) =
√

Pgi(k, µ, z̄)Pgj(k, µ, z̄) +
δij
n̄i

(21)

where gi and gj refer to different galaxy samples with bias factors bgi, bgj and number densities n̄i, n̄j. The Fisher

matrix for the 3D power spectra is given by

FOO′ =
1

2

∑

z̄

V (z̄)

∫ kmax

kmin

∫ 1

−1

k2dkdµ

(2π)2
Tr

(

∂C

∂OC−1 ∂C

∂O′
C−1

)

(22)

where z̄ is the mean redshift, V (z̄) is the volume, and we take kmin = 0.001h/Mpc and kmax = 0.1h/Mpc [9, 39, 40].

We have checked that including a prescription for bulk flows in Eq. (20) as in [9] does not significantly alter our

results.

B. 2D Galaxy and Lensing Spectra from a Broad-band Photometric Survey

Now suppose we have a set of photometric measurements of the galaxy overdensity in direction specified by θ and

in redshift bins defined by window function W (z, zs),

δ̂g(θ, zs) =

∫

dzW (z, zs)δ̂g(χ(z)θ) (23)

where χ(z) is the comoving distance to redshift z. Further, suppose that we have a measurement of the lensing

convergence from sources in each redshift bin,

κ̂(θ, zs) =

∫

dχ′g(χ′, χs)χ
′∇2

⊥Φ̂(χ
′
θ, z′) (24)

where

g(χ, χs) ≡
∫ ∞

z

dz′
χ′ − χ

χ′
W (z′, zs) (25)

where χs is the comoving distance to zs and χ′ the comoving distance to z′ and ∇2
⊥Φ̂ is the Laplacian of the peculiar

gravitational potential in the direction transverse to the line of sight.

The angular power spectrum or cross-power spectrum for two populations galaxies in the same redshift bin is then

C
gigj
ℓ (zg) =

(4π)2

(2π)3

∫

k2dkPgigj(k, zg)

∫

dzW (z, zg)jℓ(kχ)

∫

dz′W (z′, zg)jℓ(kχ
′)

≈
∫

dz W 2(z, zg)
H(z)

χ2
bgibgjPmm

(

ℓ+ 1/2

χ
, z

)

+ δijsi (26)

where in the second line we have used the Limber approximation [41]. The second term si is the shot noise, e.g.

si =

∫

dzW (z, zg)
H(z)

χ2

1

n̄i
. (27)

The galaxy-convergence cross-power spectrum is given by

Cgκ
ℓ (zg, zs) ≈

3

2
H2

0Ωm

∫

dχ g(χ, χs)W (z, zg)
H(z)

χ
bgPmm

(

ℓ+ 1/2

χ
, z

)

(1 + z) , (28)

and the cross-power spectrum of the convergence field from sources at z1 and z2 is

Cκκ
ℓ (zs1, zs2) ≈

(

3

2
ΩmH2

0

)2 ∫

dχ′g(χ′, χs1)g(χ
′, χs2)(1 + z′)2Pmm

(

ℓ+ 1/2

χ′
, z′
)

+ ǫκ (29)
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where ǫκ is the noise in the measurement of κ (from e.g. shape noise) and in both Eq. (28) and Eq. (29) we have used

the Limber approximation.

We will consider constraints from (i) the angular power spectrum of a single population of galaxies (ii) the angular

auto and cross power spectra of two populations of galaxies with different bias factors and (iii) the angular auto and

cross power spectra of a single population of galaxies and the lensing convergence. The Fisher matrix for the angular

power spectra is

FOO′ =
fsky
2

∑

ℓ

(2ℓ+ 1)Cov−1 dCov

dO Cov−1 dCov

dO′
(30)

where Cov is the full covariance matrix of all of the angular auto and cross power spectra of the observables under

consideration (e.g. the galaxy distribution and lensing convergence from each redshift bin).

IV. FORECASTS

The expressions for the Fisher matrix in Eq. (22) and Eq. (30) can be used to study forecasted constraints on

neutrino mass from the power spectra in Eqs. (20), (26), (28), (29). A central goal is to study the effects of scale-

dependent halo bias b(k) in Eq. (2) on the forecasted constraints on Mν =
∑

imνi. A constant halo bias is, in

principle, sensitive to neutrino mass through the dependence of the bias on the variance of mass fluctuations σ2(M),

which is suppressed in cosmologies with massive neutrinos but only if one has an accurate model of halo bias in the

first place. We will therefore consider the overall amplitude of the bias b0 to be a free parameter without cosmological

information and marginalize over it. To illustrate how the forecasted errors on Mν depend on the bias b0 and the

number density n̄ we will sometimes treat them as independent parameters. In the real universe the bias and number

density are not independent, and to estimate b0(n̄) we use the mass function and bias expressions from [42] with the

simplifying assumption that ngalaxy = nhalo. The galaxy population with the largest number density of tracers is

assumed to have b0 = 0.8 which is reasonable for a high density faint sample. The bias of the second population of

tracers is allowed to vary but see [43] for measurements of the bias factors for different galaxy populations.

Since we are primarily interested in the improvement in constraints relative to the constant-bias case we keep all

cosmological parameters aside from
∑

mν and As fixed. We assume a cosmology with Hubble parameter h = 0.67,

total (CDM + neutrino + baryon) matter density Ωmh2 = 0.1419, baryon density Ωbh
2 = 0.022, primordial amplitude

of scalar perturbations As = 2.215 × 10−9(k/kp)
ns , with kp = 0.05/Mpc and ns = 0.96. Forecasts are performed

around a quasi-degenerate neutrino mass hierarchy with mνi = 0.1eV, σ8 = 0.82 and when RSD information is

included we marginalize over log10 As. The publicly available CAMB code is used for all calculations of the transfer

functions and power spectra [44]. Throughout we restrict our forecast to large scales so that we may use the linear

power spectra to calculate the observables in Eqs. (20), (26), (28), (29).

For our broadband photometric survey we assume that the redshift distribution of all sources is given by

dN

dz
=

βzα

Γ((α+ 1)/β)zα+1
0

e−(z/z0)
β

(31)

with z0 = 0.57, β = 1.05, and α = 1.26 [45]. We assume that the galaxy population can be divided into two samples

with different linear bias amplitudes given by b1(z) = 0.8D(z = 0)/D(z) where b2(z) = 1.3D(z = 0)/D(z) where D(z)

is the linear growth factor.

The total angular density of sources across all redshifts is treated as a free parameter but we keep the ratio of the

two populations fixed to n̄1 = 4n̄2. In forecasts that include lensing information, the effective number of sources for

lensing is fixed to n̄eff = n̄1/2 [45].

The sources are further divided into redshift bins with ranges zmin to zmax defined by a window function

W (z|zmin, zmax) ∝
dN

dz

(

erfc

(

zmin − z√
2σ(zmin)

)

− erfc

(

zmax − z√
2σ(zmax)

))

(32)

with σ(z) = 0.01(1 + z). In the following, we take six redshift bins of width ∆z ≈ 0.2 defined by zmin values

[0.05, 0.2, 0.4, 0.6, 0.8, 1.0] and corresponding zmax values [0.2, 0.4, 0.6, 0.8, 1.0, 1.2].

In forecasts using only measurements of the galaxy distribution (as opposed to those that include lensing informa-

tion) we do not include σ8 or As because these parameters can not be measured separately. We treat the amplitude of
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FIG. 4: Illustrations of the impact of using multiple tracers on the forecasted errors on Mν . Forecasts are for a measurement

of the 3D auto and cross power spectra of two galaxy populations in a single redshift bin. The left panel does not include

information from redshift space distortions in the forecast the right panel includes information from the anisotropic power

spectra including redshift space distortions and a 0.1% prior on log
10

As. The number density of tracers of galaxy population

1 is assumed to saturate the cosmic variance limit for the assumed k-range (from kmin = 10−3h/Mpc to kmax = 0.1h/Mpc),

the number density of population 2 is on the x-axis. The bias parameters b1 and b2/b1 are marginalized over. The red curves

with b(n) use the mass functions and bias factors of [42] with the simplifying assumption ngalaxy = nhalo. Scale-dependent bias

makes constraints on Mν weaker, but if multiple tracers are used some of the information is recovered, and with a sufficient

number of tracers the final constraints on Mν are even stronger. Redshift space distortions considerably improve the constraints

on Mν and lessen the impact of scale-dependent bias on the final constraints until one reaches very large n2.

the halo bias for each galaxy population and redshift bin as a free parameter and marginalize over it. Specifically we

allow Npopulations ×Nredshifts independent halo biases, one for each redshift and galaxy population. In cases where

we make a comparison to constraints from Pmm(k), we have marginalized over the amplitude of Pmm(k). Forecasts

including information from the lensing convergence κ marginalize over the amplitude As.

V. RESULTS

The forecasted errors onMν from a single redshift bin, neglecting the redshift space distortion term f(k, z)k2||/k
2, are

shown in the left panel of Figure 4. We have chosen to plot z = 0.1 because the largest number of tracers is available

at low redshift. Increasing the number of redshift bins decreases the value of σ(Mν) but does not change the trends

with n̄2 or the relative positions of the curves on that graph. If constraints come from the autopower spectrum of a

single population of galaxies, the scale dependent bias b(k) degrades the constraints relative to forecasts (incorrectly)

assuming a constant bias factor. This is to be expected since scale-dependent bias introduces a degeneracy between b0
and Mν . Furthermore, for sources with b0 > 1, scale-dependent bias lessens the neutrino-induced suppression in Pg1g1

relative to Pmm. On the other hand, if multiple tracers of the density field are used then additional information about

neutrino masses can be gained from the scale-dependence of the ratio of the bias factors shown in Fig. 1. Beating

cosmic variance, however, requires a huge number density of tracers and/or multiple tracers with very different bias

factors. For example, one needs n̄ ∼> 0.01(h/Mpc)3 for sources with b0,2/b0,1 = 1.25 (see Fig. 4 and §II C for a

quantitative presentation of the dependence of the errors on b0,1, b0,2 and n̄). On the other hand, if the redshift space

information is included as in right panel of Fig. 4, constraints on neutrino mass are always much stronger, the impact

of scale-dependent bias is much weaker, and beating the cosmic variance limit does not require such a high density of

sources. For instance, for the same example of b0,2/b1,0 = 1.25 beating cosmic variance places a weaker requirement

n̄ ∼> 0.001(h/Mpc)3.

In Fig. 5 the forecasted constraints on Mν from measurements of the angular galaxy and lensing power spectra are
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FIG. 5: Forecasted constraints on Mν from the angular auto and cross-power spectra of galaxies and the lensing convergence.

The first population of galaxies has n̄1 = 4n̄2, the number of sources for lensing convergence is taken to be n̄eff = n̄1/2 and we

assume shape noise γ = 0.16 (see, e.g. [46]). The left panel shows the unmarginalized constraints on Mν , while the right panel

marginalizes over bias parameters for each sample in each redshift bin. Scale-dependent bias causes a degeneracy between the

bias parameters and the neutrino mass, significantly weakening constraints on Mν in comparison with an incorrect model with

b = const.. Using multiple tracers with different biases can bring dramatic improvements in σ(Mν), ultimately beating the

cosmic variance limit on Mν from the autopower spectrum of a single population of galaxies.

shown. For these forecasts, we assume a survey that covers fsky = 0.75 and use the expression in Eq. (30) summing

from ℓmin = 4 to ℓmax = 500. The forecasted constraints, marginalizing over six independent bias parameters for

each redshift bin, are shown in Fig. 5. For a single population of galaxies the forecasted errors on Mν decrease with

increasing n̄ and then reach a plateau at the cosmic variance limit. When the cross power spectrum from either an

additional sample of galaxies or the lensing convergence is included the errors continue to drop with increasing n̄

eventually falling below the forecasted constraints for the b = const. assumption.

VI. CONCLUSIONS

In this paper, we have shown that the scale dependence of the halo bias b(k), or the scale-dependent ratio of the

bias factors of two different populations b1(k)/b2(k), provides a novel probe of the neutrino mass hierarchy. The

linear bias, along with the logarithmic derivative of the linear growth function f(k), can be measured without cosmic

variance. That is, the fundamental limit on the precision of these observables is not cosmic variance, but the number

of tracers or the stochasticity between mass and galaxies.

In practice, beating cosmic variance will be a challenge. The main limiting factor is the need for extremely high

number densities of sources with different bias factors (see Fig. 4, Fig. 5 and II C). Achieving such dense samples

of galaxies is challenging. Additionally, the bias and number density are not independent parameters and the bias

factors for very dense populations are generally not too different from 1, but the amplitude of the neutrino feature

in the ratio of the biases scales as b0 − 1. As a reference point, the densest spectroscopic sample of the planned

DESI mission is expected to reach n̄ ∼ 0.005(h/Mpc)3 [5] while the highest density sample of the proposed SPHEREx

mission is expected to reach n̄ ∼ 0.01(h/Mpc)3 [9].

Another important result is that unless one has such extremely high density samples, including the scale dependence

of the bias in forecasts weakens constraints onMν from galaxy clustering because of the degeneracy between b0 andMν .

While this is true for both angular power spectrum measurements (see Fig. 5) and 3D power spectrum measurements

(see Fig. 4) the consequences of scale-dependent bias are much less severe for the 3D power spectra when information

from redshift-space distortions is used. Scale-dependent bias, of course, has no impact on measurements of Mν from
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lensing alone.

While scale-dependent bias may not currently provide competitive constraints on neutrino mass it is worth empha-

sizing that it is still a new observable that we should try to measure (see Figures 1 and 2). In particular, the ratios

of cross-power spectra to auto-power spectra plotted in Fig. 2 are quantities that, without b(k) would not depend

on neutrino mass at all. Measuring these observables would provide a new confirmation of scale-dependent growth

of perturbations in the νCDM universe. In this paper we have restricted analysis to the large-scale linear bias factor

and ignored possible complications due to nonlinear biasing or scale-dependent bias from other sources (see e.g. [47]).

The presence of other sources of scale-dependence would make it more difficult to interpret the signals in Fig. 1 and

Fig. 2. On the other hand, it may be possible to use the known shape and scaling of these signals with b0 to extract

information about Mν . It is also worth emphasizing that the neutrino feature in b(k) is on the same physical scales

as the neutrino suppression in the matter power spectrum, so systematic effects changing the shape of b(k) on the

scales of interest will already be systematics to measurements of Mν from galaxy clustering.
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