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Abstract
The infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its

halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily

apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities,

velocity vectors and velocity dispersions of the flows to be determined. We discuss the evolution

of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is

presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results

are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of

its nearby caustic, and a prediction for the dispersions in its velocity components.

PACS numbers: 95.35.+d
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I. INTRODUCTION

Among the outstanding problems in science today is the identity of the dark matter of
the universe [1]. The existence of dark matter is implied by a large number of observations,
including the dynamics of galaxy clusters, the rotation curves of individual galaxies, the
abundances of light elements, gravitational lensing, and the anisotropies of the cosmic mi-
crowave background radiation. The energy fraction of the universe in dark matter is observed
to be 26% [2]. The dark matter must be non-baryonic, cold and collisionless. Non-baryonic
means that the dark matter is not made of ordinary atoms and molecules. Cold means that
the primordial velocity dispersion of the dark matter particles is sufficiently small, less than
of order 10−7 c today, so that it may be set equal to zero as far as the formation of large
scale structure and galactic halos is concerned. Collisionless means that the dark matter
particles have, in first approximation, only gravitational interactions. Particles with the re-
quired properties are referred to as ‘cold dark matter’ (CDM). The leading CDM candidates
are weakly interacting massive particles (WIMPs) with mass in the 100 GeV range, axions
with mass in the 10−5 eV range, and sterile neutrinos with mass in the keV range.

One approach to the identification of dark matter is to attempt to detect dark matter
particles in the laboratory. WIMP dark matter can be searched for on Earth by looking
for the recoil of nuclei that have been struck by a WIMP [3]. Axion dark matter can be
searched for by looking for the conversion of axions to photons in an electromagnetic cavity
permeated by a strong magnetic field [4, 5]. The spectrum of photons produced in the cavity
is directly related to the axion energy spectrum in the laboratory since energy is conserved
in the conversion process:

hν = Ea = mac
2 +

1

2
mav

2 (1.1)

where ν is the frequency of a photon produced by axion to photon conversion, Ea the energy
of the axion that converted into it, ma the axion mass and ~v the velocity of the axion in the
rest frame of the cavity. Since the velocity dispersion of halo axions is of order 10−3c, the
width of the axion signal is of order 10−6ν. If, for example, the axion signal occurs at 1 GHz,
its width is of order 1 kHz. On the other hand, the resolution with which the signal can
be spectrum analyzed is the inverse of the time over which it is observed [6]. If the signal
is observed for 100 seconds, for example, the achievable resolution is 0.01 Hz. Thus, under
the example given, the kinetic energy spectrum of halo axions is resolved into 105 bins. The
Earth’s rotation changes the velocities relative to the laboratory frame by amounts of order
1 m/s in 100 s, and therefore introduces Döppler shifts of order δDν ∼ (300 km/s)(1 m/s)
ν/c2 ≃ 0.3 · 10−11ν, which is 0.003 Hz in the example given. If the data taking runs are
much longer than 100 s, the resolution is limited by the Döppler shifts. However, for a given
velocity vector in the rest frame of the Galaxy, the Döppler shifts may be removed and in
that case the resolution can be much higher than 0.01 Hz.

Narrow peaks in the velocity spectrum of dark matter on Earth are expected because
a galactic halo grows continuously by accreting the dark matter that surrounds it. The
infalling dark matter produces a set of flows in the halo since the dark matter particles
oscillate back and forth many times in the galactic gravitational potential well before they
are thermalized by gravitational scattering off inhomogeneities in the galaxy [7]. The flows
are cold and collisionless and therefore produce caustics [8–11]. Caustics are surfaces in
physical space where the density is very high. At the location of a caustic, a flow “folds
back” in phase space. Each flow has a local density and velocity vector, and produces a peak
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with the corresponding properties in the energy spectrum of photons from axion conversion
in a cavity detector. All three components of a flow’s velocity vector can be determined by
observing the peak’s frequency and Döppler’s shift as a function of time of day and time of
year [12]. Thus an axion dark matter signal would be a rich source of information on the
formation history of the Milky Way halo. Moreover, the flows are relevant to the search
itself, before a signal is found, because in a high resolution analysis a narrow prominent
peak may have higher signal to noise than the full signal.

Motivated by these considerations, the self-similar infall model of galactic halo formation
[13] was used to predict the densities and velocity vectors of the Milky Way flows [14, 15]. The
original model was generalized to include angular momentum for the infalling particles. The
flow properties near Earth are sensitive to the dark matter angular momentum distribution
because the angular momentum distribution determines the structure and location of the
halo’s inner caustics [10]. If the dark matter particles fall in with net overall rotation, the
inner caustics are rings. The self-similar infall model predicts the radii of the caustic rings.
The caustic rings produce bumps in the galactic rotation curve at those radii. Mainly from
the study of galactic rotation curves, but also from other data, evidence was found for caustic
rings of dark matter at the locations predicted by the self-similar infall model. The evidence
is summarized in ref.[15]. The model of the Milky Way halo that results from fitting the
self-similar infall model to the data is called the “Caustic Ring Model”. It is a detailed
description of the full phase-space structure of the Milky Way halo [15].

The caustic ring model predicts that the local velocity distribution on Earth is dominated
by a single flow, dubbed the “Big Flow” [16]. The reason for this is our proximity to a cusp
in the 5th caustic ring in the Milky Way. Up to a two-fold ambiguity, the Big Flow has
a known velocity vector; see Section V. Its density on Earth is estimated to be of order
1.5 · 10−24 gr/cm3, i.e. a factor three larger than typical estimates (0.5 · 10−24 gr/cm3) found
in the litterature for the total dark matter density on Earth. The existence of the Big
Flow provides strong additional motivation for high resolution analysis of the output of the
cavity detector, since it produces a prominent narrow peak in the energy spectrum. It is
desirable to have an estimate of the width of that peak since this determines the signal to
noise ratio of a high resolution search for it. The width of the peak is the energy dispersion
of the Big Flow. One of our main goals is to place an upper limit on the energy dispersion
of the Big Flow from the observed sharpness of the 5th caustic ring. More generally we
want to study the evolution of velocity dispersion along cold collision flows, the relation
between velocity dispersion and the distance scale over which caustics are smoothed, and
the behavior of velocity dispersion very close to a caustic. Our results may be relevant to
other cold collisionless flows, in particular the streams of stars that result from the tidal
disruption of galactic sattelites, such as the Sagittarius Stream [17].

In Section II, we study the evolution of velocity dispersion along a cold collisionless flow
in one dimension. In Section III, we do the same for an axially symmetric flow in two
dimensions. In Section IV we present a technique for obtaining the leading behavior of
velocity dispersion near caustics. We apply it to fold caustics and cusp caustics. In Section
V, we use our results to derive an upper limit on the energy disperion of the Big Flow from
the sharpness of the 5th caustic ring and make a prediction for the relative dispersions of
its velocity components. Section VI provides a brief summary.
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II. A COLD FLOW IN ONE DIMENSION

In this section, we study how velocity dispersion changes along a cold collisionless flow
in one dimension. We consider a large number of particles moving in a time-independent
potential V (x) and forming a stationary flow. We first discuss the case where the velocity
dispersion vanishes and then the case where the velocity dispersion is small.

A. Zero velocity dispersion

In the case of zero velocity dispersion, all particles have the same energy

E =
m

2
v2 + V (x) . (2.1)

Hence their velocity at location x is

v(x) = ±
√

2

m
(E − V (x)) . (2.2)

For the sake of definiteness, we assume that the particles are bound to a minimum of V (x),
going back and forth between x1 and x2, defined by E = V (x1) = V (x2). For x1 < x < x2

there are two flows, one with v(x) > 0 and one with v(x) < 0. There are no flows at x < x1

or x > x2. Since the overall flow is stationary (∂n
∂t

= 0), the continuity equation

∂n

∂t
+

∂

∂x
(nv) = 0 , (2.3)

implies that the densities of both the left- and right-moving flows equal

n(x) =
J

√

2
m
(E − V (x))

, (2.4)

where J is a constant. J is the flux (number of particles per unit time) in the left- and the
right-moving flows.

There are two caustics, one at x1 and the other at x2. The caustics are simple fold (A2)
catastrophes. For x near x1

V (x) = E + (x− x1)
dV

dx
(x1) +O(x− x1)

2 (2.5)

with dV
dx
(x1) < 0. Hence

n(x) =
J

√

− 2
m

dV
dx
(x1)

1√
x− x1

(2.6)

as x approaches x1 from above. Likewise

n(x) =
J

√

+ 2
m

dV
dx
(x2)

1√
x2 − x

(2.7)

when x approaches x2 from below.
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B. Small velocity dispersion

Next we consider the same flow but with a small energy dispersion δE. We assume that
the energy distribution dN

dE
(E) is narrowly peaked about its average Ē. δE is defined as

usual by

δE =< (E − Ē)2 >
1

2 . (2.8)

Brackets indicate averaging over the energy distribution. At location x, the two flows have
average velocity

v̄(x) ≃ v(x, Ē) = ±
√

1

2m
(Ē − V (x)) (2.9)

and velocity dispersion

δv(x) =< (v(x, E)− v̄(x))2 >
1

2≃<

(

(E − Ē)
∂v

∂E
(x, Ē)

)2

>
1

2=
δE

m|v(x, Ē)| . (2.10)

We assumed that dN
dE

(E) goes to zero rapidly as |E − Ē| increases, as is the case e.g. for a
Gaussian distribution. Eq. (2.9) is exact then in the limit δE → 0. Also Eq. (2.10) is exact
in that limit provided that, in addition, ∂E

∂v
|x = mv(x, Ē) does not vanish, i.e. that one is

not close to a caustic.
The density of each of the flows is given by Eq. (2.4), with E replaced by Ē. The

phase-space density of the flow is therefore

N =
n(x)

mδv(x)
≃ J

δE
. (2.11)

It is independent of x, as required by Liouville’s theorem.
Velocity dispersion smoothes the caustics. Indeed, when δE 6= 0, the caustics are spread

over a thickness (j = 1, 2)

δxj =
δE

∣

∣

∣

dV
dx
(xj)

∣

∣

∣

. (2.12)

The density reaches at the caustics a maximum value

nmax,j ∼
√

m

2
∣

∣

∣

dV
dx
(xj)

∣

∣

∣

J
√

δxj

=

√

m

2δE
J . (2.13)

Also the velocity dispersion reaches a maximum value

δvmax,j ∼
√

δE

2m
. (2.14)

It is interesting that nmax and δvmax are the same at one caustic as at the other. Eq. (2.14)
follows from Eq. (2.13) and Liouville’s theorem. It also follows from the fact that v̄ = 0 at
the caustics, so that δE ∼ m

2
(δvmax)

2 there.
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III. AN AXISYMMETRIC COLD FLOW IN TWO DIMENSIONS

In this section we study a stationary, axisymmetric, cold, collisionless flow of particles
moving in two dimensions in an axisymmetric time-independent potential V (r). Again, we
discuss first the flow with vanishing velocity dispersion, and then the flow with a small
velocity dispersion.

A. Zero velocity dispersion

Consider a flow of particles moving in a plane, under the influence of a potential V (r).
(r, φ) are polar coordinates in the plane. All particles have the same energy E and the same
angular momentum L. Hence the velocity field

~v(r, φ) = vr(r)r̂ + vφ(r)φ̂ (3.1)

with

vφ(r) =
L

mr
and vr(r) = ±

√

2

m
(E − Veff(r)) (3.2)

where

Veff = V (r) +
L2

2mr2
. (3.3)

Provided L 6= 0 the particles have a non-zero distance of closest approach a: E = Veff(a).
Let us assume they also have a turnaround radius R, with E = Veff(R) and R > a. There
are two flows for a < r < R. We call them the ”in” (vr < 0) and ”out” (vr > 0) flows. There
are no flows for r < a or r > R.

Since the flow is stationary and axisymmetric, the continuity equation implies that the
density of particles of both the in and out flows is

n(r) =
J

r|vr(r)|
(3.4)

where J is a constant. J is the number of particles per unit time and per radian. There are
simple fold caustics at r = a and r = R. When r approaches a from above

n(r) =
J

a
√

− 2
m

dVeff

dr
(a)

1√
r − a

, (3.5)

whereas

n(r) =
J

R
√

+ 2
m

dVeff

dr
(R)

1√
R− r

(3.6)

when r approaches R from below.

B. Small velocity dispersion

We now consider the same flow as in the previous subsection but with a Gaussian distri-
bution of energy and angular momentum of the form

d2N

dEdL
=

N

2πσEσL

e
− 1

2
(E−Ē

σE
)2− 1

2
(L−L̄

σL
)2

. (3.7)
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For this distribution δE = σE , δL = σL, and

< (E − Ē)(L− L̄) > = 0 . (3.8)

The most general Gaussian would allow < (E− Ē)(L− L̄) > 6= 0. However our main interest
is the evolution of the velocity dispersion of flows of cold dark matter particles falling onto a
galactic halo and sloshing back and forth thereafter. We now argue that Eq. (3.8) is a good
approximation for that case.

The primordial velocity dispersion δvp of a flow of cold dark matter particles is negligibly
small. By primordial velocity dispersion, we mean the velocity dispersion that the particles
have in the absence of structure formation. δvp ∼ 10−17 is typical of axions, δvp ∼ 10−12

for WIMPs, and δvp ∼ 10−8 for sterile neutrinos. The main contributions to the velocity
dispersion of a flow of cold dark matter particles falling onto a galaxy are instead from
gravitational scattering off inhomogeneities in the galaxy (such as globular clusters and
molecular clouds) and from the growth by gravitational instability of small scale density
perturbations in the flow itself. When a process produces a velocity dispersion δv, the
associated energy dispersion is of order δE ∼ mvδv where v is the velocity of the flow in
the galactic reference frame when the process occurs, and the associated angular momentum
dispersion is of order δL ∼ mDδv where D is the distance from the galactic center where
the process occurs. So, δE and δL are not independent quantities but related by

δL = δE
Dav

vav
(3.9)

where vav is an average flow velocity, say 300 km/s for our Milky Way galaxy, and Dav is an
average distance from the galactic center where the flow acquired velocity dispersion. We
may only give a rough guess for the order of magnitude of Dav, perhaps 100 kpc for our
galaxy. In view of Eq. (3.9) we define an overall flow velocity dispersion σv: δL = mDavσv

and δE = mvavσv.
Furthermore, in the limit where the galaxy has no angular momentum (L̄ = 0), there is

no preference for the many events that produce velocity dispersion to increase or decrease
< (E−Ē)(L−L̄) > since this quantity is odd under L → −L. Therefore < (E−Ē)(L−L̄) >
is proportional to L̄. Disk galaxies have angular momentum but, relative to their size and
typical velocities, that angular momentum is small. Indeed all dimensionless measures of
galactic angular momentum have values much less than one. One such measure is the
galactic spin parameter [18]

λ =
L|E| 12
GM 5

2

(3.10)

where L is the angular momentum of the galaxy, E its net mechanical (kinetic plus gravi-
tational) energy and M its mass. G is Newton’s gravitational constant. A typical value is
λ ∼ 0.05. Another dimensionless measure of galactic angular momentum is the ratio a/R
of caustic ring radius a to turnaround radius R for the flows of dark matter particles in the
halo. A typical value is a/R ∼ 0.1 [15]. Finally, the dimensionless number that controls the
amount of galactic angular momentum in the Caustic Ring Model is jmax. A typical value is
jmax ∼ 0.2. Since < (E − Ē)(L− L̄) > is proportional to galactic angular momentum, and
galactic angular momentum is of order 0.1 in dimensionless units, < (E − Ē)(L − L̄) > is
suppressed relative to δE δL by a similar factor of order 0.1. To simplify our calculations,
we set < (E − Ē)(L− L̄) > = 0 as a first approximation.

7



Provided δE and δL are sufficiently small, we may within the support of the d2N
dEdL

distribu-
tion express small deviations dE = E−Ē and dL = L−L̄ of the particle energy and angular
momentum from its average values as linear functions of small deviations dvr = vr − v̄r and
dvφ = vφ− v̄φ of the velocity components from their average values at a given position (r, φ).
Henceforth we set m = 1 to avoid cluttering the equations unnecessarily. Eqs. (3.2) imply

dE = vrdvr + vφdvφ and dL = rdvφ . (3.11)

Therefore the exponent in Eq. (3.7) may be rewritten using

(dE dL)

(

1
σ2

E

0

0 1
σ2

L

)

(

dE
dL

)

= (dvr dvφ)





v2r
σ2

E

vrvφ
σ2

E

vrvφ

σ2

E

v2
φ

σ2

E

+ r2

σ2

L





(

dvr
dvφ

)

. (3.12)

We rotate
(

dvr
dvφ

)

=

(

cos θ sin θ
− sin θ cos θ

)(

dv1
dv2

)

(3.13)

so as to diagonalize the 2x2 matrix on the RHS of Eq. (3.12). Provided

tan 2θ =
2vrvφ

v2φ +
(

σE

σL
r
)2

− v2r

(3.14)

we have
(

dE

σE

)2

+

(

dL

σL

)2

=

(

dv1
σ1

)2

+

(

dv2
σ2

)2

(3.15)

where

1

(σ 1

2

)2
=

1

2

(

v2r + v2φ
σ2
E

+
r2

σ2
L

)

∓

√

1

4

(

v2r + v2φ
σ2
E

+
r2

σ2
L

)2

− r2v2r
σ2
Eσ

2
L

. (3.16)

This implies

σ1 σ2 =
σE σL

r|vr(r)|
. (3.17)

At a given location, the velocity distribution is

d2N

dvrdvφ
=

d2N

dEdL
| det

(

∂(E,L)

∂(vr, vφ)

)

| = r|vr(r)|
d2N

dEdL
. (3.18)

We have

(δvr)
2 = cos2 θ(σ1)

2 + sin2 θ(σ2)
2

(δvφ)
2 = sin2 θ(σ1)

2 + cos2 θ(σ2)
2

< dvr dvφ > = (σ2
2 − σ2

1) sin θ cos θ . (3.19)

Liouville’s theorem is satisfied since the phase space density

N =
n(r)

σ1σ2
=

n(r)r|vr(r)|
σEσL

=
J

σEσL

(3.20)
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does not depend on r.
At the caustics, θ → 0 since vr → 0. σ2 becomes δvφ and remains finite:

σ2 →
1

√

(

L
rcσE

)2

+
(

rc
σL

)2
≡ δvφ(rc) (3.21)

with rc = a or R. σ1 becomes δvr and is large. According to Eqs. (3.16) and (3.4), δvr and
n(r) become infinite. However, those equations cannot be used right at the caustics since
they neglect second order terms in Eqs. (3.11), and this is inaccurate when vr → 0.

We may use Eq. (3.20) to estimate the maximum density and velocity dispersion at the
caustics since that equation follows directly from Liouville’s theorem. The divergence at
the caustics is cut off by the fact that vr ∼ δvr there. Through Eqs. (3.17) and (3.4), this
implies

δvr,max|rc ∼
√

σEσL

rcδvφ(rc)
(3.22)

and

nmax|rc ∼ J

√

δvφ(rc)

rcσEσL

. (3.23)

At the inner caustic

δvφ(a) =
1

√

(

L
aσE

)2

+
(

a
σL

)2
=

1
√

(

vφ(a)

vavσv

)2

+
(

a
Davσv

)2
≃ σv

vav
vφ(a)

(3.24)

in the limit of small angular momentum (a << R) since vφ(a) =
L
a
is of order vav whereas

Dav is of order R and therefore much larger than a. Hence

δvr,max|a ∼
√

1

a
Davvφ(a)σv =

1

a

√

LσL (3.25)

and

nmax|a ∼
J√
LσL

. (3.26)

Eqs. (3.25) and (3.26) show that the properties of the inner caustic are controlled by the
angular momentum distribution in the small angular momentum limit.

In contrast, at the outer caustic,

δvφ(R) =
1

√

(

L
RσE

)2

+
(

R
σL

)2
=

1
√

(

avφ(a)

Rvavσv

)2

+
(

R
Davσv

)2
≃ σv

Dav

R
(3.27)

since a << R in the limit of small angular momentum. Hence

δvr,max|R ∼ √
vavσv =

√
δE (3.28)

and

nmax ∼
J

R
√
δE

. (3.29)

The properties of the outer caustic are controlled by the energy distribution in the small
angular momentum limit.
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IV. VELOCITY DISPERSION NEAR A CAUSTIC

The local velocity dispersion becomes large when a caustic is approached since the phys-
ical space density becomes large but the phase-space density remains constant. In this
section we present a technique for deriving the leading behavior of the velocity dispersion
near caustics. We apply it to the case of fold caustics and of cusp caustics.

A. Velocity dispersion near a fold caustic

The fold caustic is described by the simplest (A2) of catastrophes. It is the only caustic
possible in one dimension. In one dimension it occurs at a point. In two dimensions it occurs
on a line, and in three dimensions it occurs on a surface, with the dimensions parallel to the
line or surface playing spectator roles only.

Consider a flow of particles moving in one dimension in the potential V (x) = gx where
g is a constant acceleration. We set the mass of the particles equal to one, as in the
previous section. We assume the flow to be stationary for simplicity. This is not an essential
assumption. In the limit of zero velocity dispersion, the flow at a given time is described by
the map

x(τ) = x0 −
1

2
gτ 2 (4.1)

which gives the position of the particles as a function of their age. We define the age τ of a
particle as minus the time at which it passes through its maximum x value. The velocity is

v(τ) =
∂x

∂τ
= −gτ . (4.2)

At position y there are two flows if y < x0, and no flow if y > x0. For y < x0, the particles

at position y have ages τ = ±
√

2
g
(x0 − y). The density of each of the two flows is

n(y) ≡ dN

dy
(y) =

dN

dτ
|dτ
dy

| = dN

dτ

1
√

2g(x0 − y)
. (4.3)

N is number of particles, as before. The fold caustic is located at y = x0.
We now allow the particles to have a distribution dN

dx0
of x0 values, with average x̄0 and

a small dispersion δx0. Since the particles at a given location y have a distribution of x0

values, they also have a distribution of ages. Small deviations dx0 and dτ from the average
x0 and the average age at a given location are related by

0 = dx = dx0 − gτdτ . (4.4)

Hence the dispersion in ages at a given location is

δτ =
√

< (dτ)2 > =

√

<

(

dx0

gτ

)2

> =
1

g|τ |δx0 . (4.5)

Brackets indicate averages over the distribution dN
dx0

. Small deviations in velocity are related
to small deviations in age by dv = −gdτ . Hence the velocity dispersion at position y is

δv(y) = gδτ =
δx0

|τ | = δx0

√

g

2(x0 − y)
. (4.6)
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The phase space density N = n/δv has no singularity at the caustic, in accordance with
Liouville’s theorem. Although everything we found here was already obtained in Section II,
the present approach is more efficient is obtaining the characteristic behaviour of the velocity
dispersion right at the caustic. The technique can be readily applied to more complicated
cases, such as the cusp caustic which we discuss next.

B. Velocity dispersion near a cusp caustic

The cusp caustic is described by the A3 catastrophe, the next simplest after the fold
catastrophe. It can only exist in two dimensions or higher. In two dimensions, it occurs at
a point. In three dimensions, it occurs along a line with the dimension parallel to the line
playing a spectator role only.

A cusp caustic appears in the map

z = z0 + bατ

x = x0 − cτ − 1

2
sα2 (4.7)

giving the positions (x, z) of particles in a flow from right to left with the particles on the
right and top moving downwards and the particles on the right and bottom moving upwards.
See Fig. 1. For simplicity, we take the flow to be stationary, and the acceleration to vanish
everywhere. The particles are labeled by (α, τ) where τ is an age parameter, defined as
minus the time a particle crosses the z = z0 axis. α labels the different trajectories. The
velocities are

vz =
∂z

∂τ
= bα

vx =
∂x

∂τ
= −c . (4.8)

The density of the flow is

d(x, z) ≡ d2N

dxdz
=

d2N

dαdτ

1

|D(α, τ)| (4.9)

where

D(α, τ) = det

(

∂(x, z)

∂(α, τ)

)

= b(−sα2 + cτ) . (4.10)

Caustics occur where D(α, τ) = 0, i.e. where the map is singular. The equation D(α, τ) = 0
defines the curve

x = x0 −
3

2

(

sc2

b2

)
1

3

|z − z0|
2

3 , (4.11)

shown by the solid line in Fig. 1. There are three flows at every location to the left of the
curve whereas there is only one flow in the region to its right. The number of flows at a
location (x, z) is the number of (α, τ) values that solve Eqs. (4.7). The curve is the location
of a fold caustic. The cusp caustic is the special point (x0, z0). When the curve is traversed
starting on the side with three flows, two of the flows disappear. At any point other than
(x0, z0), the density and the velocity dispersion of those two flows behave as described in
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the previous subsection, i.e. the density diverges as 1√
h
where h is the distance to the curve

and the dispersion in the velocity component perpendicular to the curve also diverges as 1√
h
.

The dispersion in the velocity component parallel to the curve remains finite.
In this subsection, we are interested in the behavior of the density and velocity dispersion

at the cusp. A complete answer can be given by obtaining the inverse of the map in
Eqs. (4.7). This involves solving a third order polynomial equation, and inserting the
resulting functions α(x, z) and τ(x, z) into the RHS of Eqs. (4.10) and (4.9). Here we
content ourselves with the behavior of the density and the velocity dispersion ellipse when
the cusp is approached from particular directions. If the cusp is approached along the z = z0
axis from the right (x > x0), the single flow there has α = 0 and τ = −(x − x0)/c. The
density of that flow is

d(x, z0) =
d2N

dαdτ

1

b|x− x0|
. (4.12)

If the cusp is approached along the x = x0 axis, from the top or from the bottom, the single
flow there has τ = − s

2c
α2 and z − z0 = − bs

2c
α3. The density is

d(x0, z) =
d2N

dαdτ

1

3

(

2

bsc2

)
1

3 1

|z − z0|
2

3

. (4.13)

If the cusp is approached along the z = z0 axis from the left (x < x0) there are three

flows: i) α = 0 and τ = (x0 − x)/c, ii) τ = 0 and α =
√

2
s
(x0 − x), and iii) τ = 0 and

α = −
√

2
s
(x0 − x). Flow i) has the same density as given in Eq. (4.12) whereas flows ii) and

iii) each have half the density given in Eq. (4.12).
To obtain the velocity dispersions we consider a set of maps, as in Eq. (4.7), but with a

distribution d5N
dz0 db dx0 dc ds

of the constants z0, b, x0, c and s that appear there. We assume
that the distribution is narrowly peaked around average values of these constants. We
consider small deviations dz0 ... ds of the constants from their average values plus small
deviations dα and dτ in the flow parameters such that

dz = dz0 + dbατ + bdατ + bαdτ = 0

dx = dx0 − dcτ − cdτ − 1

2
dsα2 − sαdα = 0 . (4.14)

Eqs. (4.14) imply that, at a given physical point, the deviations in the flow parameters are
given in terms of the deviations in the constants by

(

bτ bα
sα c

)(

dα
dτ

)

=

(

−dz0 − ατdb
dx0 − τdc− 1

2
α2ds

)

. (4.15)

When approaching the cusp, α → 0 and τ → 0, the RHS of Eq. (4.15) goes to
(

−dz0
dx0

)

, and

therefore
(

dα
dτ

)

=
1

b(cτ − sα2)

(

c − bα
−sα bτ

)(

−dz0
dx0

)

. (4.16)

Likewise, when approaching the cusp, the deviations in the velocity components are

dvz = bdα = − cdz0
cτ − sα2

dvx = −dc . (4.17)
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Hence

δvz =
√

< (dvz)2 > =
cδz0

|cτ − sα2| , δvx = δc . (4.18)

If dz0 and dc are correlated

< dvz dvx >=
c

cτ − sα2
< dz0 dc > . (4.19)

For each of the flows at the cusp, the dispersion in the velocity component parallel to the
axis (x̂) of the cusp remains finite whereas the dispersion in the component of velocity in
the direction perpendicular (ẑ) to the axis of the cusp diverges. This might have been
expected since the flow folds in the direction perpendicular to the axis of the cusp. The
phase space density remains finite since the divergence of the physical density is canceled
by the divergence of the velocity dispersion.

V. APPLICATIONS TO THE BIG FLOW

In the Caustic Ring Model of the Milky Way halo, the dark matter density on Earth is
dominated by a single cold flow, dubbed the ‘Big Flow’, because of our proximity to a cusp
in the 5th caustic ring in our galaxy. In the Caustic Ring Model, there are two flows on
Earth associated with the 5th caustic ring. Their velocity vectors are [16] [15]

~v5± ≃ (505 φ̂± 120 r̂) km/s (5.1)

where φ̂ is the unit vector in the direction of Galactic rotation and r̂ the unit vector in the
radially outward direction. The density of the Big Flow on Earth is estimated to be 1.5·10−24

gr/cm3. The density of the other flow associated with the 5th caustic ring, hereafter called
the ‘Little Flow’, is estimated to be 0.15 · 10−24 gr/cm3. It is not known whether the Big
Flow has velocity ~v5− and the Little Flow has velocity ~v5+, or vice-versa. The existence of
the Big Flow provides strong additional motivation for high resolution analysis of the output
of a cavity detector of dark matter axions, since it produces a prominent narrow peak in
the energy spectrum. The width of the peak determines the signal to noise ratio of a high
resolution search for it. The width of the peak is the energy dispersion of the Big Flow.
Here we place an upper limit on the energy dispersion of the Big Flow from the observed
sharpness of the 5th caustic ring. The same upper limit applies to the Little Flow.

The best lower limit on the sharpness of the 5th caustic ring is obtained by consider-
ing a triangular feature in the Infrared Astronomical Sattelite (IRAS) map of the Galactic
plane [16]. The feature is in a direction tangent to the 5th caustic ring. The gravita-
tional fields of caustic rings of dark matter leave imprints upon the spatial distribution
of ordinary matter. Looking tangentially to a caustic ring, from a vantage point in the
plane of the ring, one may have the good fortune of recognizing the tricusp shape [9] of
the cross-section of a caustic ring. The IRAS map of the Galactic plane in the direction
tangent to the 5th caustic ring shows such a feature. The relevant IRAS maps are posted
at http://www.phys.ufl.edu/∼sikivie/triangle. The triangular feature is correctly oriented
with respect to the galactic plane and the galactic center. Its position is consistent within
measurement errors with the position of the sharp rise in the Galactic rotation curve due
to the 5th caustic ring. If the velocity dispersion of the flow forming the 5th caustic ring
were large, the triangular feature in the IRAS map would be blurred. The sharpness of
the triangular feature in the IRAS map implies that the 5th caustic ring is spread over a
distance less than approximately 10 pc.
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A. Upper limit on the Big Flow energy dispersion

The particles forming a caustic ring fall in and out of the galaxy near the galactic plane.
Let E and L be respectively the energy and angular momentum of the particles that form
the 5th caustic ring and are in the galactic plane. We have

E =
1

2
vr(r)

2 +
L2

2r2
+ V (r) (5.2)

where vr(r) is the radial velocity of the particles at galactocentric radius r and V (r) is the
gravitational potential in which they move. We will use

V (r) = v2rot ln(r) (5.3)

consistent with a flat galactic rotation curve, with rotation velocity vrot. For the Milky Way,
vrot ≃ 220 km/s. The inner radius a of a caustic ring is the distance of closest approach to
the galactic center of the particles in the galactic plane. Therefore

E =
L2

2a2
+ V (a) . (5.4)

Small deviations dE, dL and da from the average values of E, L and a are related by

dE =
LdL

a2
− L2

a3
da+

dV

dr
(a)da . (5.5)

In view of Eq. (5.3) this may be rewritten

da =
a

v2rot − vφ(a)2
(dE − LdL

a2
) (5.6)

where vφ(r) = L/r is the velocity in the direction of galactic rotation of the particles that
are in the galactic plane. The spread δa in caustic ring radius is therefore given by

(δa)2 ≡< (da)2 >=
a2

(v2rot − vφ(a)2)2
[(δE)2 +

L2

a4
(δL)2 − 2

L

a2
< dE dL >] (5.7)

where, as in Section III, brackets indicate averaging over the d2N
dEdL

distribution of the dark

matter particles, δE ≡
√

< (dE)2 > and δL ≡
√

< (dL)2 >. The second term in the square
brackets on the RHS of Eq. (5.7) dominates over the first term since

a2δE

LδL
=

avav
vφ(a)Dav

(5.8)

and vav is of order vφ(a) whereas Dav is much larger than a, as was discussed in Section III.
The second term also dominates over the third term since

< dE dL > ∼ δE δL
a

R
<< δE δL . (5.9)

Hence

δa ≃ σv

vφ(a)Dav

v2φ(a)− v2rot
≃ σv

426 km/s
Dav (5.10)
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where we used vφ(a) = 520 km/s [15]. It remains to estimate Dav, the average distance from
the galactic center where the processes took place by which the flow presently constituting
the 5th caustic ring acquired velocity dispersion. Of course it is hard to give a precise value.
The present turnaround radius of the flow constituting the 5th caustic ring is R5 = 121 kpc
[15]. As a rough estimate, we set Dav ∼ R5/2. With δa . 10 pc, this yields

σv . 71 m/s . (5.11)

In ref. [16], an upper limit on σv was estimated using δa ∼ R
v
σv with R the turnaround

radius and v the velocity of the flow at the caustic. This yielded σv . 53 m/s. Although far
more work went into justifying Eqs. (5.10) and (5.11), the two estimates are qualitatively
consistent since Dav ∼ R and v = vφ(a). The difference between the two estimates may be
taken as a measure of the uncertainty on the bound. At any rate, the bound on σv from the
sharpness of caustic rings is extraordinarily severe in view of the commonly made assertion
that the dark matter falling onto a galaxy is in clumps with velocity dispersion of order 10
km/s.

To obtain an upper limit on the energy dispersion δE = mvavσv of the flow forming the
5th caustic ring we set vav ∼ 300 km/s. This yields

δE

m
. 2.4 · 10−10 . (5.12)

If the axion frequency is 1 GHz, as in the example given in the Introduction, the upper limit
on the widths of the peaks associated with the Big Flow and the Little Flow in the cavity
detector of dark matter axions is of order 0.24 Hz. Let us emphasize that there is nothing
to suggest that the upper bound is saturated.

B. Velocity dispersion ellipse of the Big Flow

In the Caustic Ring Model of the Milky Way halo, the Big Flow has a large density on
Earth as a result of our proximity to a cusp in the 5th caustic ring of dark matter. The
inner radius of the 5th caustic ring, derived from a rise in the Milky Way rotation curve
and from the triangular feature in the IRAS map of the Galactic plane, is a = 8.31 kpc
whereas its outer radius is a+ p = 8.44 kpc [16]. See Fig. 2. These values assume that our
own distance to the Galactic center, which sets the scale, is 8.5 kpc. Note that the values
of the inner and outer radii are at the tangent point of our line of sight to the 5th caustic
ring. If axial symmetry is assumed, as in the Caustic Ring Model, we are just outside the
tricusp cross-section of the 5th caustic ring, near the cusp at the outer radius, which we call
henceforth the ‘outer cusp’. In that case there are two flows on Earth associated with the
5th caustic ring, the Big Flow and the Little Flow. The uncertainty on the density of the
Big Flow is large since it is sensitive to our distance to the outer cusp. It should be noted
that although axial symmetry may be a very good approximation for the overall structure
of the Milky Way halo, it may not be a good approximation in predicting the position
of the Sun relative to the nearby caustic ring. This is because caustic rings should not be
expected to be exactly circular nor exactly centered on the galactic coordinate system. Axial
symmetry could be sufficiently broken that we are located inside the tricusp instead of just
outside. If we are located inside the tricusp, there are four flows on Earth associated with
the 5th caustic ring. If we are inside the tricusp and near the outer cusp three of the flows
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are Big Flows and the fourth is the Little Flow. The Little Flow is the same as before.
It does not participate in the outer cusp singularity. The Big Flows do participate in the
outer cusp singularity. The densities, velocities and velocity dispersions of the Big Flows are
given by the equations in Section IV as a function of position relative to the cusp. The Big
Flows all have comparatively large dispersions in the component of velocity perpendicular
to the symmetry axis of the cusp, i.e. their velocity ellipses are elongated in the direction
perpendicular to the Galactic plane.

VI. SUMMARY

Motivated by the prospect that dark matter may some day be detected on Earth, we
set out to predict properties of the velocity dispersion ellipsoid of the Big Flow. The Big
Flow dominates the local dark matter distribution in the Caustic Ring Model of the Milky
Way halo due to our proximity to the 5th caustic ring of dark matter in our galaxy. We
analyzed a cold collisionless stationary flow in one dimension and derived how the velocity
dispersion changes along such a flow. In one dimension the problem is simple because
energy conservation and Liouville’s theorem control the outcome. To make headway in two
dimensions we assumed that the potential in which the particles fall is axially symmetric as
well as time-independent so that both energy and angular momentum are conserved. We
derive the evolution of the velocity dispersion ellipse along a stationary axially symmetric
flow under those assumptions. The local velocity dispersion always becomes large when
approaching a caustic because the density becomes large but the phase space density is
constant. We introduced a technique for obtaining the leading behavior of the velocity
dispersion near caustics, and applied the technique to fold and cusp caustics. Finally we
used our results to obtain an upper limit on the energy dispersion of the Big Flow from the
observed sharpness of the 5th caustic ring and a prediction for the dispersion in its velocity
components.
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FIG. 1: The curve with the cusp is the location of the fold caustic in the flow described by Eqs. (4.7).

The arrows indicate local velocity vectors. There is one flow at every point to the right of the curve,

and three flows at every point to its left.
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FIG. 2: Relative position of the Sun and the 5th caustic ring in the Caustic Ring Model of the

Milky Way halo. The Sun’s position is indicated by the dot. The x-axis is parallel to the Galactic

plane. The tricusp shape is the cross-section of the 5th caustic ring. The model assumes axial

symmetry. Because of axial symmetry breaking, the size of the tricusp and the position of the Sun

relative to it may differ from what the figure shows.
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