
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Violation of statistical isotropy and homogeneity in the 21-
cm power spectrum

Maresuke Shiraishi, Julian B. Muñoz, Marc Kamionkowski, and Alvise Raccanelli
Phys. Rev. D 93, 103506 — Published  9 May 2016

DOI: 10.1103/PhysRevD.93.103506

http://dx.doi.org/10.1103/PhysRevD.93.103506


Violation of statistical isotropy and homogeneity in the 21-cm power spectrum
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Most inflationary models predict primordial perturbations to be statistically isotropic and homoge-
neous. Cosmic-Microwave-Background (CMB) observations, however, indicate a possible departure
from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alter-
native models of inflation, beyond the simplest single-field slow-roll models, can generate a small
power asymmetry, consistent with these observations. Observations of clustering of quasars show,
however, agreement with statistical isotropy at much smaller angular scales. Here we propose to
use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the
dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a
future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our
results show that the 21-cm-line power spectrum will enable access to information at very small
scales and at different redshift slices, thus improving upon the current CMB constraints by ∼ 2
orders of magnitude for a dipolar asymmetry, and by ∼ 1−3 orders of magnitude for a quadrupolar
asymmetry case.

PACS numbers: 98.80.-k

I. INTRODUCTION

One of the key principles of cosmology is the notion of isotropy and homogeneity—there is no preferred location nor
preferred direction in the Universe. This, though, is violated by small primordial perturbations. Still, the prevailing
single-field slow-roll model for the origin of these perturbations predicts that isotropy and homogeneity should be
preserved in a statistical sense. A significant detection of a deviation from statistical isotropy or homogeneity would
falsify some of the simplest models of inflation, making it necessary to postulate new physics, such as non-scalar
degrees of freedom. Moreover, it would open a window into the physics of the early Universe, shedding light upon
the primordial degrees of freedom responsible for inflation. Departures from statistical isotropy and homogeneity can
take different forms. We will study the two main cases, a dipolar power asymmetry and a quadrupolar asymmetry.

A detection of dipolar power asymmetry, i.e. a different power spectrum in two opposite poles of the sky, was
reported analyzing the off-diagonal `1 = `2±1 components of angular correlations of the cosmic microwave background
(CMB) anisotropies, 〈a`1m1a`2m2〉, with the WMAP and Planck data at large scales [1–9], showing an amplitude 3σ
away from zero. This detection, however, contradicts observations at smaller scales, where the distribution of quasars
at later times was studied in Ref. [10], and shows no asymmetry. This power asymmetry in the two-dimensional CMB
sky is modeled as a spatial modulation of three-dimensional power. It thus represents, strictly speaking, a violation
of statistical homogeneity (SH), rather than statistical isotropy. Given, though, that that SH violation is manifest
as a two-dimensional power asymmetry, we refer to it here, for simplicity, as a dipolar power asymmetry, or dipolar
violation of rotational symmetry.

It is then interesting to understand which non-standard inflationary models could produce the required departure
from SH as observed in CMB maps, while keeping the quasar bound fixed. A variety of models have been investigated in
the past, including cosmological defects [11], tensor-mode contributions [12], a modulated scale-dependent isocurvature
contribution to the matter power spectrum or a modulation of the reionization optical depth, gravitational-wave
amplitude, or scalar spectral index [13]. In the last case, one would expect the dipolar asymmetry to cancel at
intermediate scales, while being present at very large and very small scales. It is interesting to note that some of
these scenarios will generate both dipolar power asymmetry and non-Gaussianity [14–16]. Some of these models also
predict a quadrupolar power asymmetry (see e.g. [17–22]).

Quadrupolar modulations in the power spectrum of primordial curvature and tensor perturbations can arise in
inflationary models where the inflaton field φ couples to a U(1) vector field Aµ. These modulations are created by
the directional dependence of the vacuum expectation value of Aµ. The amplitude and scaling of such modulations
are strongly model-dependent. In well-known models involving an inflaton-vector interaction, f(φ)F 2, the scale
dependence is determined by the time dependence of the coupling function f(φ) (see e.g. [17, 23–26]). In models that

include a pseudoscalar field, an axial coupling term like g(φ)FF̃ can amplify the quadrupolar modulation part of the
curvature power spectrum, via the enhancement of the mode function of the vector field [22, 27, 28]; a quadrupole
can also be generated by an inflating solid or elastic medium [18, 29]. These quadrupolar modulations create CMB
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angular power spectra in `1 = `2 ± 2, as well as in the diagonal `1 = `2 ones [27, 30–32]. Measurements of CMB
maps have not detected evidence of such off-diagonal signals, thus we only have upper limits on the magnitude of
the quadrupolar asymmetry [7, 8, 33]. Nonetheless, it is of paramount importance to constrain these quadrupolar
modulations, as they would necessarily imply a departure from the standard single-field inflation model.

In this paper, we set out to constrain rotational invariance of the universe using a different probe, the power spectrum
of 21-cm fluctuations during the dark ages.1 The dark ages are the cosmic era following primordial recombination,
and ending when the first luminous objects are formed. CMB photons with a rest wavelength of 21 cm during
this era can get resonantly absorbed by neutral hydrogen gas. This process imprints the fluctuations present in the
hydrogen density into the observed temperature anisotropies [43, 44]. In this case one can then reach angular scales
far beyond those available to CMB measurements, as the theoretical limit is given by the Jeans scale, at ` ∼ 106−7

[45]. It has recently been proposed to use this cosmological observable to study a variety of physical phenomena,
such as primordial non-Gaussianities [46–51], lensing [52], the late ISW effect [53], and interactions between baryons
and dark matter [54, 55]. Here we are interested in measuring rotational asymmetries; being able to access small
angular scales gives the opportunity to distinguish the dipolar asymmetry generated by a variable spectral index,
surpassing the intermediate scales at which it would vanish. We here compute the angular power spectrum of 21-cm
fluctuations sourced by the dipolar and quadrupolar asymmetries, including several non-trivial scale dependencies
motivated by theories and observations as mentioned above. By the simple application of an estimator for CMB
rotational asymmetry [31, 56], we forecast how well different 21-cm surveys can constrain departures from rotational
invariance.

We structure this paper as follows. In Section II we introduce the 21-cm line observable and its power spectrum.
Then, in Section III, we present theoretical models for breaking rotational invariance, and show their predictions. In
Section IV we show our results, and we conclude in Section V.

II. 21-CM COSMOLOGY

The nuclear spin of the hydrogen atom makes its triplet ground state have a slightly higher energy than its singlet
counterpart, giving rise to a transition with characteristic wavelength λ ≈ 21 cm, in the radio spectrum. Its very-long
wavelength makes it a good probe of the early universe, being easily identifiable. We will start by reviewing the
physics of the 21-cm line during the dark ages, and its angular power spectrum.

A. Global signal

The ratio of the populations of the triplet and singlet hydrogen states defines a temperature, which we denote as
spin temperature Ts. During the dark ages CMB photons stimulate radiative transitions between the singlet and the
triplet hydrogen states [43]. Collisions between different hydrogen atoms will also create upwards and downwards
transitions. The timescale of both these effects is much smaller than the evolution of the universe [45], so we can use
the quasi-steady-state approximation,

n0(C01 +R01) = n1(C10 +R10), (1)

where n1 and n0 are the densities of triplet- and singlet-state hydrogen atoms, Cij are the collisional transition rates,
and Rij are the rates of radiative transition due to the CMB blackbody photons. This allows us to define the spin
temperature, which we can approximate very well by

Ts = Tγ +
C10

C10 +A10
TH

T∗

(TH − Tγ), (2)

where TH is the temperature of the neutral hydrogen, Tγ that of the CMB, T∗ = 0.068 K = 5.9µeV is the characteristic
temperature of the 21-cm transition, and A10 is the Einstein spontaneous-emission coefficient of the 21-cm transition.

During the redshift period of interest collisions dominate over radiative transitions, which couples the spin tempera-
ture to that of the hydrogen. This enables hydrogen atoms to resonantly absorb CMB photons with a rest wavelength
of 21 cm, which from Earth results in a decrease in the brightness temperature of the CMB at the corresponding

1 See e.g., Refs. [10, 34–42] for studies on other observables of statistical anisotropy or inhomogeneity.
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redshifted wavelength. We ignore here low-redshift effects, such as the Wouthuysen-Field effect [57–59], heating of
the hydrogen gas due to miniquasars [60, 61], or early stellar formation [62, 63].

Let us define the 21-cm line temperature for small optical depths τ as

T21 =
Ts − Tγ
1 + z

τ, (3)

corresponding to the contrast with the CMB temperature redshifted to today. The optical depth is given by

τ =
3

32π

T∗
Ts
nHλ

3
∗

A10

H(z) + (1 + z)∂rvr
, (4)

where λ∗ ≈ 21 cm, nH is the number density of neutral hydrogen, and ∂rvr is the proper gradient of the peculiar
velocity along the line of sight.

B. Fluctuations

The optical depth and the spin temperature of a hydrogen clump depend on its density and velocity divergence.
The small anisotropies in these two quantities create fluctuations on the 21-cm temperature T21. Let us define
δv ≡ −(1 + z)(∂rvr)/H(z). Then, at linear order, the 21-cm fluctuations can be expressed as [50, 64]

δT21(x) = α(z)δb(x) + T̄21(z)δv(x), (5)

with T̄21(z) being the spatially-averaged 21-cm brightness temperature, and α(z) = dTb/dδb, including gas-
temperature fluctuations as in Ref. [50]. The observed fluctuation of this quantity in a direction n̂ of the sky
and at a certain frequency ν is given by

δT21(n̂, ν) =

∫ ∞
0

dxWν(x)δT21(x) , (6)

where Wν(x) is the window function selecting the information at a certain frequency band centered in ν. In Fourier
space the primordial curvature perturbation ζk is related to the baryonic anisotropies by δb(k, z) = Mζ(k, z)ζk, and

δv(k, z) = µ2δb(k, z), with µ = (k̂ · n̂). We can, therefore, define the transfer function of the 21-cm temperature
fluctuations as,

T`(k, ν) =

∫ ∞
0

dxWν(x)Mζ [k, z(x)]
[
T̄21(z)J`(kx) + α(z)j`(kx)

]
, (7)

where j` is the spherical Bessel function with index `, and we have defined J`(kx) ≡ −∂2j`(kx)/(∂kx)2, which can
be written in terms of j`, and j`±2 [44]. Given this, we can easily compute the 21-cm line angular power spectrum at
a certain frequency ν as

C` =
2

π

∫ ∞
0

k2dkP0(k)T 2
` (k, ν) , (8)

where P0(k) is the (isotropic) primordial curvature power spectrum, given in
〈
ζ iso
k ζ iso

k′

〉
= (2π)3P0(k)δ(3) (k + k′), with

ζ iso
k being the isotropic part of the curvature perturbations.

Finally, we can define the mode-coupling matrix as

G`1`2 =
2

π

∫ ∞
0

k2dkP0(k)f(k)T`1(k, ν)T`2(k, ν), (9)

where the additional factor f(k) is 1 in the usual case, and will have different values for alternative inflationary
models. This is the standard general way to express the angular correlations; in the following section we will compute
the angular power spectra for different models describing rotational asymmetries.

For computational efficiency we will employ the flat-sky approximation [65, 66] for ` ≥ 103 for a bandwidth of ∆ν =
1.0 MHz and ` ≥ 104 for a bandwidth of 0.1 MHz. In that approximation it is easy to check that G`1`1+∆` = G`1`1 ,
up to O(fsky) factors that we ignore (see Appendix A).



4

C. Instrumental Noise

In the cosmic-variance limit (CVL) the only source of noise is the variance given by having a finite number of
measurements of the power spectrum C` itself. If one considers, however, an interferometer looking at the dark ages
at a certain frequency ν, there is an additional noise power spectrum given by [67–70]

`2CN` =
(2π)3T 2

sys(ν)

∆ν tof2
cover

(
`

`cover(ν)

)2

, (10)

where ∆ν is the bandwidth of the survey, to is the total time of observation, `cover(ν) ≡ 2πDbase/λ is the maximum
multipole observable, with Dbase being the largest baseline of the interferometer. The amplitude of this noise is given
by the system temperature Tsys, which we take to be the synchrotron temperature of the observed sky

Tsys(ν) = 180
( ν

180 MHz

)−2.6

K, (11)

found from extrapolating to lower frequencies the results in Ref. [71].
In this paper we will consider three different noise levels. First, we will use specifications consistent with those of the

Square Kilometre Array [72], currently under construction in South Africa and Australia (note that there has recently
been a “re-baselining” of the planned instrument, and exact specifications and survey strategies are still somewhat
in development; we perform our calculations by assuming instrument specifications specified below) . We will then
assume a Futuristic Radio Array (FRA), as an example for a futuristic, but still Earth-based, experiment. Finally,
we will show results for the cosmic-variance-limited (CVL) case, where CN` = 0, to show, as a proof of principle, the
theoretical limits that can be obtained by using this probe.

For the SKA case we take a baseline of 6 km, a coverage fraction of fcover = 0.02, and a time of data collection of
5 whole years. In the FRA case we consider an increased baseline of Dbase = 100 km, a coverage fraction of 0.2, and
10 whole years of observations. The baseline of this FRA case would be large enough to reach ` & 104 at redshift
z . 50, enabling us to prove the small-scale anisotropies predicted by some models [13].

III. ROTATIONAL ASYMMETRIES

The CMB measurements indicate that the microwave sky is almost perfectly rotationally-symmetric, while there
are a few observed anomalies that require explaining, the most important being the dipolar asymmetry. Data analyses
of the CMB fluctuations [1–9] and the density of quasars at lower redshifts [10] indicate the existence of the dipolar
asymmetry at very large scales and its decaying behavior up to k ∼ 1 Mpc−1. There are also upper bounds on the
quadrupolar asymmetry [7, 8, 33], which can be generated by a wide range of inflation models involving anisotropic
sources, such as vector fields. The signatures of these anomalies may be discovered in observables other than CMB.

In this section we investigate the angular power spectrum of the 21-cm fluctuations, 〈a`1m1
a`2m2

〉, generated by
such anomalies. We then show that nonvanishing off-diagonal components satisfying |`1− `2| = 1 and 2 appear in the
dipolar and quadrupolar asymmetry case, respectively, as unique signatures of statistical homogeneity and isotropy
violation. We begin with the dipolar asymmetry.

A. Primordial dipolar asymmetry

Let us consider a curvature perturbation with a position-dependent dipolar modulation, written as

ζk(x) = ζ iso
k

[
1 +

∑
M

A1Mf(k)Y1M (n̂)

]
, (12)

where x ≡ xn̂ with x ≡ |x|. A constant f(k) = 1 was originally introduced to explain a ∼ 3σ evidence of dipolar
asymmetry in the CMB sky at very large scales (` . 60) [5–9]. This asymmetry can be expressed as an amplitude
A ∼ 0.07 in T (n̂) = T iso(n̂)(1 + An̂ · p̂), with p̂ denoting the preferred direction of the modulation, and T iso being
the usual temperature fluctuation. On the other hand, several detailed analyses of the CMB maps have also shown
that such dipolar modulation is highly damped for ` & 60 [5–9]. This scaling seems to be consistent with a different
constraint obtained by quasar abundances, leading to a vanishing dipolar asymmetry at k ∼ 1 Mpc−1 [10]. We
implement a heuristic model for such observationally-motivated scale dependence as a function, f(k) = (1 − k/kA)n
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with kA ≡ 1 Mpc−1, for n = 1 and 2, in our parametrization of Eq. (12). There are also theoretical motivations for
this f(k) shape, such a spatially-varying spectral index ns [13], where the asymmetry would cancel at some scale kA.

Let us compute the spherical harmonic coefficient a`m of the 21-cm fluctuations, from δT21(n̂, ν) =
∑
`m a`m(ν)Y`m(n̂).

We can separate a`m, due to Eq. (12), in an isotropic and dipolar part as

a`m(ν) = aiso
`m(ν) + adip

`m(ν) , (13)

where the isotropic part is formulated in a usual way, reading

aiso
`m(ν) = 4πi`

∫
d3k

(2π)3
Y ∗`m(k̂)ζ iso

k T`(k, ν) , (14)

and the part due to the dipolar asymmetry is

adip
`m(ν) =

∑
LM

4πiL
∫

d3k

(2π)3
Y ∗LM (k̂)ζ iso

k f(k)TL(k, ν)× (−1)mh`L1

∑
M ′

A1M ′

(
` L 1
−m M M ′

)
, (15)

where

hl1l2l3 ≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
. (16)

Assuming a small dipolar-asymmetry amplitude, i.e., |A1Mf(k)| � 1, we can treat it perturbatively, thus obtaining
the angular correlations of a`m as

〈a`1m1a`2m2〉 '
〈
aiso
`1m1

aiso
`2m2

〉
+
〈
aiso
`1m1

adip
`2m2

〉
+
〈
adip
`1m1

aiso
`2m2

〉
= C`1(−1)m1δ`1,`2δm1,−m2 + (−1)m2C`1m1,`2−m2 , (17)

where C` is the same as Eq. (8) and we have defined

C`1m1,`2m2
= (G`1`1 +G`2`2) (−1)m1h`1`21

∑
M

A1M

(
`1 `2 1
−m1 m2 M

)
, (18)

using the mode-coupling matrix G`1`2 , defined in Eq. (9). Note that, due to parity conservation, and the triangular
inequalities of h`1`21, the only nonzero signals of C`1m1,`2m2

occur at `1 = `2± 1. This has the identical function form
to the correlation of CMB fluctuations [31].

While the precise scale dependence is different for different models [11, 13–16], we choose the following 2 shapes as
proxies

f(k) = 1− k

kA
,

(
1− k

kA

)2

. (19)

These reconstruct the observed decaying shapes for k < kA(≡ 1 Mpc−1).2 On the other hand, on unobserved small
scales as k > kA, these grow larger, and with opposite signs.

Figure 1 plots the correlations G`,` + G`+1,`+1 for the 2 different models for the function f(k), taking z = 30
and ∆ν = 1.0 MHz. We can confirm there that a dip is located at ` ∼ `A ≡ kAx(z = 30) ' 1.3 × 104, with
x(z = 30) ' 13 Gpc denoting the conformal distance to z = 30, as expected. The difference between these 2 models
show up for ` & `A because of the difference of the signs and the different power-law exponent. We also notice that
G`,` + G`+1,`+1 is substantially enhanced compared with the isotropic power spectrum C`, which we also show in
Fig. 1 for reference, for ` & `A, as expected from Eq. (19). This results in a sharp rise in the signal-to-noise ratio for
` & `A, as we will show. Notice also, that the angular behavior of G`1`2 is heavily dependent on f(k), which could
help to disentangle the information about asymmetries in the data analysis of the 21-cm power spectrum.

2 Strictly speaking, the CMB constraints obtained from 100 . ` . 1000 [5–9] favor a bit more rapidly decaying behaviors than Eq. (19),
for 0.01 Mpc−1 . k . 0.1 Mpc−1.
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FIG. 1. G`,` +G`+1,`+1 for A1M (left panel) and G`,`+2 for g2M (right panel). Solid (dashed) lines describe positive (negative)
values. We here adopt z = 30 and ∆ν = 1.0 MHz. For the pivot scales, we choose kA = 1 Mpc−1 in the left panel and
kg = 0.05 Mpc−1 in the right panel, corresponding to `A ≡ kAx(z = 30) ' 1.3×104 and `g ≡ kgx(z = 30) ' 650 in ` space. For

comparison, we also show the isotropic power spectrum C` = G
f(k)=1
`` (purple), which acts as a cosmic variance in the Fisher

matrix computation.

B. Primordial quadrupolar asymmetry

When including a quadrupolar asymmetry, we can write the curvature power spectrum as

〈ζk1ζk2〉 = (2π)3P0(k1)

[
1 +

∑
M

g2Mf(k1)Y2M (k̂1)

]
δ(3)(k1 + k2) . (20)

A non-vanishing g2M arises in inflation models where the inflaton couples to a vector field with a non-zero vacuum
expectation value, via L = − 1

4I
2(φ)F 2 [17, 22–28]. In these cases, the time dependence of the coupling function I(φ)

determines the scale dependence of f(k). The nearly scale-invariant spectrum, i.e., f(k) = 1, is realized by choosing
I(φ) ∝ a−2, with a denoting the scale factor [17, 22, 26]. A nearly scale-invariant f(k) is also generated in the
solid inflation models [18, 29]. Most other models predict a scale dependence for f(k). The magnitude of g2M relies
strongly on the model parameters. For vector-field models, g2M is proportional to the ratio of the energy density of
the vector field to that of the scalar field, ρA/ρφ, [17, 26]. If the inflaton is identified to the pseudoscalar field, the
coupling strength between the pseudoscalar and the vector field also affects g2M . [22, 27, 28]. The data analysis with
the Planck map gives upper bounds for the scale-invariant case f(k) = 1 of |g2M | . 10−2 [7, 8, 33], leading to several
constraints on the model parameters, e.g. ρA/ρφ . 10−9 [22].

The angular correlations generated from Eq. (20) then become:

〈a`1m1
a`2m2

〉 = C`1(−1)m1δ`1,`2δm1,−m2
+ (−1)m2C`1m1,`2−m2

(21)

where C` is given by Eq. (8) and

C`1m1,`2m2
= i`1−`2G`1`2(−1)m1h`1`22

∑
M

g2M

(
`1 `2 2
−m1 m2 M

)
. (22)

Likewise to the dipolar case, due to the triangular inequalities of h`1`22 and parity, C`1m1,`2m2
vanishes except for

|`1 − `2| = 0, 2. An identical functional form is seen in CMB off-diagonal correlations [31].
In what follows, we discuss the detectability of g2M in a general model-independent way, and do not translate the

results into any specific model parameters. To do so, we assume 5 different power-law shapes for f(k),

f(k) = 1 ,

(
k

kg

)±1

,

(
k

kg

)±2

, (23)

with kg = 0.05 Mpc−1 being the pivot scale adopted in the Planck collaboration [7, 8].
The right panel of Fig. 1 plots the off-diagonal correlations G`,`+2 generated from the 5 different models in Eq. (23),

for z = 30 and ∆ν = 1.0 MHz. It is obvious in this figure that all the lines intersect each other at the multipole
corresponding to the pivot scale, `g ≡ kgx(z = 30) ' 650, and they are tilted depending on their spectral indices,
respectively. We can also observe sign changes at ` ∼ 100.
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IV. RESULTS

Here we forecast measurements of rotational asymmetries with the 21-cm power spectrum. We compute G`1`2 for
the 7 different models of the function f(k) (2 for the dipolar and 5 for the quadrupolar asymmetry), and then calculate
the forecasted detectability of the coefficients A1M and g2M via a Fisher-matrix analysis, including the three different
instrumental noise spectra of Section II: CN` = 0 (CVL), CN` in SKA and CN` in a Futuristic Radio Array.

Since the functional forms of C`1m1`2m2 for 21-cm and CMB fluctuations are the same, we will employ an optimal
CMB estimator for the asymmetric parameters hLM ∈ (A1M , g2M ) [31, 56, 73, 74] in our 21-cm analysis, expressed as

ĥLM =
1

2

∑
L′M ′

F−1
LM,L′M ′

∑
`1m1`2m2

ā∗`1m1

∂C`1m1`2m2

∂h∗L′M ′
ā`2m2

, (24)

where ā`m are the harmonic coefficients weighted with the inverse of the covariance matrix, and the Fisher matrix is
given as

FLM,L′M ′ =
1

4

∑
`1m1`2m2

`′1m
′
1`
′
2m
′
2

∂C`1m1`2m2

∂h∗LM

∂C∗`′1m′1`′2m′2
∂hL′M ′

(〈
ā∗`1m1

ā`2m2
ā`′1m′1 ā

∗
`′2m

′
2

〉
−
〈
ā∗`1m1

ā`2m2

〉 〈
ā`′1m′1 ā

∗
`′2m

′
2

〉)
. (25)

For simplicity, let us work with the diagonal approximation of the inverse of the covariance matrix. Moreover, we shall
disregard any non-Gaussian contributions in the covariance matrix, although late-time gravitational collapse, as well
as the non-linearity of the 21-cm line as a tracer, may slightly change these results [50]. We then have ā`m = a`m/C`
and the Fisher matrices for A1M and g2M can be reduced to:

F
(A)
1M,1M ′ =

δM,M ′

6

`max∑
`1,`2=`min

h2
`1`21

(G`1`1 +G`2`2)
2

C`1C`2
, (26)

F
(g)
2M,2M ′ =

δM,M ′

10

`max∑
`1,`2=`min

h2
`1`22

G2
`1`2

C`1C`2
. (27)

In the following discussions, we analyze the expected 1σ errors on A1M and g2M , computing σ(A1M ) = (F
(A)
1M,1M )−1/2

and σ(g2M ) = (F
(g)
2M,2M )−1/2. The minimum multipole is taken to be `min = 2 in this paper, while contaminations

of low-` data due to residual galactic synchrotron emission could raise `min in realistic data analyses. This could
diminish the sensitivities, however, the cases with blue-tilted f(k) could be relatively less affected.

Figure 2 shows the `max dependence of σ(A1M ) and σ(g2M ) for z = 30 and ∆ν = 0.1 MHz. As seen in this figure,
the sensitivities to A1M and g2M for the FRA get better as `max increases up to `max ∼ 104, after which the sensitivity
plateaus, due to the noise becoming dominant. In fact, the sensitivities for the FRA and CVL cases are comparable
for `max . 103. The FRA sensitivities exceed the SKA ones by ∼ 4− 5 orders of magnitude since the error bars scale
like t−1

o f−2
coverD

−2
base; thus, highly accurate measurements are possible with FRA, being the constraints comparable to,

or better than, Planck 2015 [7, 8, 33]. The outperformance of FRA is simply due to big improvements of fcover and
Dbase. We here assume that contaminations due to foregrounds are completely subtracted and find the best results,
while residual components could get the sensitivities somewhat worse in real experiments. In the 2 top panels for
σ(A1M ), we notice that the sensitivities in the CVL cases drastically increase beyond the pivot scale `A ' 1.3× 104

as expected from Fig. 1. Likewise, in the blue-tilted cases for σ(g2M ) (f(k) ∝ k1,2) the error bars decline drastically
at around `g ' 650, corresponding with the crossing point in Fig. 1, as seen in the two bottom panels.

For the CVL cases, the scalings of σ(A1M ) and σ(g2M ) can be estimated analytically in the same manner as Ref. [31].
For the dipolar-asymmetry case with f(k) = (1− k/kA){1,2} we can approximate G`,` +G`±1,`±1 ' 2C` (see Fig. 1),
which is valid for ` . `A. Since the selection rule restricts the range of

∑
`2

to `2 = `1 ± 1, the diagonal elements of

the Fisher matrix (26) are reduced to

F
(A)
1M,1M '

2

3
h2
`min,`min+1,1 +

2

3

`max−1∑
`1=`min+1

(
h2
`1,`1−1,1 + h2

`1,`1+1,1

)
+

2

3
h2
`max,`max−1,1 . (28)

For `max � `min, this yields σ(A1M ) '
√

2π/`max, matching up with the purple lines of the top two panels in Fig. 2
for ` < `A. Likewise, for f(k) = 1, using the high-` approximation G`,` ' G`,`±2 ' C`, and the selection rules of
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FIG. 2. Expected 1σ errors on A1M and g2M for a single redshift slice at z = 30 and ∆ν = 0.1 MHz with `min = 2. We show
the results for f(k) = (1− k/kA)1,2 for the dipolar case, and for f(k) = (k/kg)0,1,2 for the quadrupolar case. For comparison,
we draw the 1σ errors obtained from the Planck 2015 bounds, i.e., σ(A1M ) ∼ σ(g2M ) ∼ 0.01 [7, 8, 33]. We here truncate larger
` modes than the baseline sizes: `cover = 5791 for SKA and 96516 for FRA.
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FIG. 3. Expected 1σ errors on A1M and g2M for a single redshift slice adding up all modes up to `max = Min[105, `cover], as
a function of redshift z. We here take ∆ν = 1.0 MHz and `min = 2. For comparison, we also show the expected errors we
obtain by analyzing CMB temperature and E-mode polarization jointly (T+E) in a noiseless (CVL) CMB measurement up to
` = 2000.
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h`1`22, we can simplify the Fisher matrix for g2M (27) to

F
(g)
2M,2M '

1

10

(
h2
`min`min2 + h2

`min,`min+2,2 + h2
`min+1,`min+1,2 + h2

`min+1,`min+3,2

)
+

1

10

`max−2∑
`1=`min+2

(
h2
`1,`1−2,2 + h2

`1,`1,2 + h2
`1,`1+2,2

)
+

1

10

(
h2
`max−1,`max−3,2 + h2

`max−1,`max−1,2 + h2
`max,`max−2,2 + h2

`max`max2

)
, (29)

leading to σ(g2M ) '
√

8π/`max for `max � `min. This also recovers the purple line of the center panel in Fig. 2 for high
`max, validating our numerical treatments. The identical estimates are obtained in a CMB CVL-level measurement
[31], however, the 21-cm analysis can, in principle, go to higher `max and further reduce both σ(A1M ) and σ(g2M ). If
taking into account an instrumental noise or the scale dependence of f(k), the scaling of the error bars deviates from
∝ `−1

max, as seen in Fig. 2.

One of the advantages of using the 21-cm line is being able to use tomography, i.e. to co-add information from
different redshift slices. Given a certain frequency range (from ν1 to ν2) we can add all bandwidths ∆ν within that
range. More precisely, we can do so if the information in each redshift slice is uncorrelated. The correlation length
depends on z and `, and it is at most ∼ 0.5 MHz for 20 ≤ z ≤ 50 and ` ≥ `min = 2 [50]. In our tomographic analysis,
we take only the larger bandwidth ∆ν = 1.0 MHz to keep uncorrelated slices. In this case we can write the final
Fisher matrix as a sum over all central frequencies νi and approximate that by an integral over redshifts as

∑
νi

F (νi) ≈
∫ ν2

ν1

dν

∆ν
F (ν) =

∫ z1

z2

dz

(1 + z)2

ν0

∆ν
F (z), (30)

where ν0 = 1420 MHz is the rest frequency of the 21-cm transition and F (z) is the Fisher matrix at redshift z. The
redshift evolution of σ(A1M ) and σ(g2M ) at `max = Min[105, `cover] for ∆ν = 1.0 MHz is described in Fig. 3, showing
a weak dependence on z for all CVL constraints, and an increase of noise at higher redshifts. We find there that
the single-slice FRA sensitivities are comparable to the sensitivities in a noiseless CVL-level measurement of CMB
temperature and E-mode polarization (T+E) anisotropies.

The results obtained by integrating all redshift slices between z = 20 and z = 50 are summarized in Tables I (A1M )
and II (g2M ). There we find that, owing to tomography, the sensitivities to both A1M and g2M are improved by a
factor of ∼ 5 compared to single-slice results. Due to this, the FRA sensitivities can surpass the sensitivities achieved
in a noiseless CMB measurement, even in a red-tilted f(k) ∝ k−1 case of g2M . A noiseless CVL 21-cm measurement
leads to more drastic improvements of sensitivity, surpassing the CVL CMB constraints (except for the f(k) ∝ k−2

case of g2M ), due to the great quantity of available ` modes and multi-z information added by tomography.

f(k) CVL 21cm SKA FRA CVL CMB T CVL CMB T+E

1− k/kA 8.0× 10−7 (5.1× 10−6) 13 (62) 6.4× 10−4 (3.3× 10−3) 1.3× 10−3 9.3× 10−4

(1− k/kA)2 1.4× 10−7 (8.7× 10−7) 14 (64) 6.9× 10−4 (3.6× 10−3) 1.5× 10−3 1.0× 10−3

TABLE I. Expected 1σ errors σ(A1M ) summing from `min = 2 to `max = Min[105, `cover], integrating all redshift slices between
z = 20 and z = 50, with ∆ν = 1.0 MHz and kA = 1 Mpc−1. For comparison, we show the values with a single slice at z = 30
in parentheses. The first 3 columns present the results obtained in the measurements of 21-cm fluctuations, while the last 2
columns show the results we obtain for a noiseless CVL-level CMB measurement up to ` = 2000, by analyzing temperature
anisotropy only (T) and temperature and E-mode polarization jointly (T+E).

f(k) CVL 21cm SKA FRA CVL CMB T CVL CMB T+E

(k/kg)2 5.0× 10−10 (3.2× 10−9) 4.2 (22) 1.4× 10−5 (6.6× 10−5) 5.5× 10−4 3.2× 10−4

(k/kg)1 6.7× 10−8 (4.3× 10−7) 20 (95) 3.6× 10−4 (1.7× 10−3) 1.5× 10−3 8.3× 10−4

1 7.9× 10−6 (5.0× 10−5) 33 (150) 1.3× 10−3 (6.3× 10−3) 3.4× 10−3 1.9× 10−3

(k/kg)−1 3.8× 10−4 (2.4× 10−3) 17 (78) 1.3× 10−3 (7.2× 10−3) 4.3× 10−3 2.1× 10−3

(k/kg)−2 3.2× 10−4 (2.0× 10−3) 3.4 (16) 4.2× 10−4 (2.4× 10−3) 6.1× 10−5 3.7× 10−5

TABLE II. Expected 1σ errors σ(g2M ) with kg = 0.05 Mpc−1 but otherwise the same parameters as Table I.
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V. CONCLUSIONS

In this paper we studied the constraining power of 21-cm fluctuations for detecting primordial rotational asymme-
tries, in particular the dipolar and quadrupolar asymmetries. In principle, 21-cm fluctuations contain information on
density fluctuations up to very small scales, far beyond scales accessible to the CMB. Moreover, these fluctuations
allow for multi-redshift analyses, enhancing sensitivity compared to the CMB, which is a single 2D screen and is
damped at much lower `.

We confirmed that dipolar and quadrupolar rotational asymmetries create non-vanishing off-diagonal correlations in
the angular power spectrum of 21-cm fluctuations. By means of a Fisher-matrix analysis, we estimated the minimum
value of the magnitude of those asymmetries detectable, for several types of scale dependencies. We considered three
different experimental setups to forecast these constraints. The planned SKA radio survey and a somewhat futuristic
radio array, which we denoted as FRA. Finally, in order to understand what will be in principle possible to measure
with 21-cm experiments, we also investigated constraints coming from a cosmic-variance-limited (CVL) 21-cm survey.

A comprehensive analysis demonstrated that, owing to the large number of ` modes available, both the FRA
and CVL surveys could improve upon CMB constraints [7, 8, 33] on a wide range of the dipolar and quadrupolar
asymmetries. The possibility to have tomographic analyses using several redshift slices provides additional information,
helping achieve a sensitivity better than an ideal cosmic-variance limited CMB survey for these asymmetry parameters.
We found that the SKA could provide some constraining power for asymmetry parameters, even if not competitive
with current limits coming from CMB maps; 21-cm measurements would in any case be a useful check, as they will
have different systematics and come from an entirely different observable. As for a futuristic radio array, we found
that the minimum amplitude of dipolar modulation measurable was A1M . 10−3 for FRA, and A1M . 10−6 for CVL,
compared to ∼ 10−3 for an ideal CMB experiment. As for quadrupolar models, our results show that the FRA could
also constrain the amplitude g2M to be . 10−3 − 10−5 (depending on the model), which could be further improved
to . 10−4 − 10−10 by a CVL survey, compared to . 10−3 − 10−5 obtainable with an ideal T+E CMB measurement.

Moreover, 21-cm surveys provide an independent probe of broken rotational invariance, and as such would help
disentangle potential biases present in previous CMB experiments.

In this work we focused on auto-correlations of the 21-cm fluctuations; however, it is expected that cross-correlations
between 21-cm fluctuations and other observables, such as CMB anisotropies or galaxy number counts, could provide
additional information on cosmological rotational asymmetries. Moreover, there may be nontrivial rotationally-
asymmetric signatures (violating the usual triangular conditions in harmonic space) on higher-order correlations
(such as the bispectrum and the trispectrum) of 21-cm fluctuations as well as of the CMB [75, 76]. These prospects
are left to be studied in a future work.
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Appendix A: Flat-sky limit

In the flat-sky approximation the temperature fluctuations in Fourier space are given by

δT (`) =

∫
d3k

(2π)3
eirk||W̃ (k||)δT (k)(2π)2δ̃

(2)
D (rk⊥ − `), (A1)

where W̃ (k||) is the window function transformed to Fourier space, and we have defined

δ̃
(2)
D (`) ≡ 1

(2π)2

∫
A

d2x

r2
eix·`/r, (A2)

which has a value of δ̃
(2)
D (0) = fsky/π at the origin, its convolution with itself returns the same function, and has a

characteristic width δ` ∼ 1/
√
fsky. For us to find the covariance matrix we would need to correlate

〈δT (`1)δT (`2)〉 =

∫
d2k⊥
(2π)2

(2π)2δ̃
(2)
D (rk⊥ − `1)(2π)2δ̃

(2)
D (−rk⊥ − `2)f(k⊥), (A3)
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with f(k⊥) =
∫
dk||/(2π)|W̃ (k||)|2PδT (k). We can take f(k⊥) ≈ f(`1/r), so then

G`1,`1+∆` = G`1,`1
π

fsky
×
∫

d2x

(2π)2r2
eix·∆`/r, (A4)

where r is the distance to the surface of observation, R is the radius of the piece of sky observed and then fsky =
R2/(4r2).

We can calculate the integral in Eq. (A4) to be∫
d2x

(2π)2r2
eix·∆`/r =

1

(2π)2r2

∫ R

0

dxx(2π)J0(x∆`/r) =
R

(2π)r

J1(∆`R/r)

∆`
, (A5)

this quantity is, to second order in ∆`, given by∫
d2x

(2π)2r2
eix·∆`/r =

fsky

π

[
1− fsky

2
(∆`)2

]
, (A6)

so finally

G`1,`1+∆` = G`1,`1 ×
[
1− fsky

2
(∆`)2

]
, (A7)

so, in the flat-sky limit (fsky � 1), we can just take G`1,`1+∆` = G`1,`1 .
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