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We derive a Hamiltonian for an extended spinning test-body in a curved background spacetime,
to quadratic order in the spin, in terms of three-dimensional position, momentum, and spin vari-
ables having canonical Poisson brackets. This requires a careful analysis of how changes of the spin
supplementary condition are related to shifts of the body’s representative worldline and transfor-
mations of the body’s multipole moments, and we employ bitensor calculus for a precise framing
of this analysis. We apply the result to the case of the Kerr spacetime and thereby compute an
explicit canonical Hamiltonian for the test-body limit of the spinning two-body problem in general
relativity, valid for generic orbits and spin orientations, to quadratic order in the test spin. This
fully relativistic Hamiltonian is then expanded in post-Newtonian orders and in powers of the Kerr
spin parameter, allowing comparisons with the test-mass limits of available post-Newtonian results.
Both the fully relativistic Hamiltonian and the results of its expansion can inform the construction
of waveform models, especially effective-one-body models, for the analysis of gravitational waves
from compact binaries.

I. INTRODUCTION

The advent of gravitational wave astronomy—which
has commenced with the first detection of a binary black
hole merger [1]—promises to shed light on many profound
questions in astrophysics and gravitational physics. The
first such questions within the reach of gravitational wave
observatories will concern the nature of gravity in the
strong-field regime and the properties of black holes and
neutron stars, as inspiraling and coalescing binary sys-
tems of such compact objects should be frequent sources,
both for the advanced generation of ground-based gravi-
tational wave detectors [2–4] and for future space-based
detectors [5], as well as for pulsar timing arrays [6]. Un-
derstanding in great detail the dynamics of such two-
body systems, expected to be governed by general rel-
ativity, is thus a cornerstone objective of gravitational
wave physics.
A sufficiently accurate and general solution to the rel-

ativistic two-body problem will require a synergy of re-
sults from both numerical and analytic computations.
On the analytic side, two complementary approximation
schemes are available: the post-Newtonian (PN) approx-
imation expands about the Newtonian limit but is valid
for arbitrary mass ratios [7, 8], while the extreme-mass-
ratio (EMR) approximation expands about the test-mass
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limit but is valid in the strong-field, relativistic regime.
A synergistic approach is the effective-one-body (EOB)
formalism [9, 10], which incorporates information from
the PN limit, the EMR limit, and numerical relativity in
an attempt to provide an accurate effective description
of two-body systems throughout the parameter space.

In the EMR approximation, the zeroth-order solution
is given by a (point) test mass moving along a geodesic
of a background black hole spacetime—the Schwarzschild
spacetime of a non-spinning black hole or the Kerr space-
time of a spinning black hole. Corrections to this solution
can proceed in two (intermingled) directions: Firstly, one
can compute the perturbation to the gravitational field
produced by the small body, its self-field, and the resul-
tant influence on its motion. This is the goal of the “self-
force” paradigm, as reviewed e.g. by Refs. [11–13]. Sec-
ondly, one can compute “finite-size effects” on the small
body’s motion, due to its spin and to intrinsic and tidally
induced deformations. Such finite-size effects in the EMR
limit (neglecting the self-field) are the focus of this paper.

The equations of motion of a spinning (pole-dipole)
test body in curved spacetime were first derived by
Mathisson [14, 15] and Papapetrou [16] and were later
extended to include the effects of higher multipoles by
Dixon [17]; see [18] for a review. The resultant dynamics
of a spinning test body (to pole-dipole order) serves as
the basis of the spinning EOB models of Refs. [19–23],
which employ the canonical Hamiltonian for a pole-dipole
particle derived in Ref. [24]. The conservative dynamics
of these EOB models is defined by the Hamiltonian of
an effective spinning test particle in an effective space-
time which is a deformation of the Kerr spacetime, in
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the same way that the original EOB model [9, 10] was
based on a nonspinning test particle in a deformation of
the Schwarzschild spacetime. In both cases, the defor-
mations encode finite-mass-ratio effects determined from
PN calculations and vanish as the mass ratio goes to zero,
so that exact (strong-field) results are recovered in the
test-particle limit. We should note that other successful
EOB models, including the original spinning EOB mod-
els [25, 26], and more recently, e.g., Refs. [27–29], do not
incorporate the exact spinning test-particle limit (but do
include the geodesic test-mass limit).

This paper extends the work of Ref. [24], which was
valid to linear order in the spin, or to dipolar order in
the body’s multipole expansion, to derive a canonical
Hamiltonian for an extended test body in a curved back-
ground which is valid to quadrupolar order. We treat
explicitly here spin-induced quadrupoles and all other
spin-squared effects. Our methods also provide signif-
icant simplifications of some of the dipole-order calcu-
lations of Ref. [24], as we employ crucial insights from
Ref. [30] on the handling of generic spin supplementary
conditions (SSCs) [conditions which fix a representative
center-of-mass worldline for the test body] at the level
of the action. We highlight how a change of the SSC,
corresponding to a shift of the center-of-mass worldline,
entails transformations of the body’s multipole moments
and corresponding modifications of the action and Hamil-
tonian. We use bitensor calculus [11, 31, 32] to provide a
precise and manifestly covariant treatment of the world-
line shift. We finally show, extending the linear-in-spin
result in Ref. [24], how use of the Newton-Wigner SSC
[33–35] allows one to construct a Hamiltonian in terms
of three-dimensional position, momentum, and spin vari-
ables with a canonical Poisson bracket structure. Beside
Ref. [24], a canonical formalism for spinning test-particles
in general relativity was obtained in [36] through a direct
construction of the symplectic structure and in [37] from
an ADM canonical formulation.

The result for the canonical Hamiltonian can be sum-
marized as follows. In a spacetime with coordinates
xµ = (t, xi) and an orthonormal frame (or tetrad)
ea

µ = (e0
µ, ei

µ), the (reduced) phase space for a spin-
ning test body consists of the spatial coordinates zi of
its representative worldline zµ, their canonically conju-
gate momenta P i, and the frame spatial components
Si =

1
2ǫijkSjk = 1

2ǫijkej
µek

νSµν of the spin tensor Sµν ,
given as functions of the time coordinate t and obeying
the canonical Poisson brackets (4.17). The Hamiltonian
H(z, P, S) is defined by

H = −Pt = N
√

µ2 + γijP iP j −N iP i, (1.1)

where Pµ = (Pt, P i) is the 4D canonical momentum
whose time component is the minus the Hamiltonian,
where N , N i, and γij are the lapse, shift, and inverse
spatial metric as in (4.18), and where the (canonical)

effective dynamical mass µ(z, P, S) is given by (5.17),

µ2 = −PµP
µ (1.2)

= m2 − P aωa
bcSbc +

1

4
ωa

bcωadeSbcSde

+
1

4
RabcdS

abScd − (C − 1)E
(P )
ab sasb +O(S3).

Here, ωabc = ea
µ(∇µeb

ν)ecν are the Ricci rotation coeffi-
cients, C is a constant response coefficient measuring the
test body’s spin-induced quadrupolar deformation with

C = 1 for test black holes, E
(P )
ab is the electric part of the

Weyl/vacuum-Riemann tensor with respect to P a (5.7),
sa is the Pauli-Lubanski spin vector (5.14), and the frame
components S0i are determined by the solution (4.9) of
the Newton-Wigner SSC. The constant mass m(S) is a
function of the likewise constant spin length S =

√
sasa

and encodes the moment of inertia [38].
Our derivation of the Hamiltonian (and the covari-

ant action principle which yields it) resolves some pre-
vious ambiguities concerning the adjustability of the co-
efficients of the curvature coupling terms in the last line
of (1.2), as we discuss in particular below (2.21) and be-
low (5.16).
By specializing to the case where the background

spacetime is Kerr, we arrive at a canonical Hamilto-
nian for the test-body limit of the relativistic spinning
two-body problem, valid to quadrupolar order in the
test body’s multipole expansion. Our results comple-
ment those of Refs. [39–42], which have also considered
spin-squared effects for test bodies in Kerr, with one no-
table new feature of our results being that they allow
for generic orbits and spin orientations. Of particular
interest in this respect are compact (covariant) expres-
sions for the Riemann tensor and its couplings to the
spin which are valid for generic orbits, obtained by ex-
ploiting the algebraic specialness of Riemann tensor in
Kerr. Other treatments of spinning test-particle motion
in algebraically special spacetimes can be found e.g. in
Refs. [43, 44].
While much of our analysis and many of our inter-

mediate results are fully covariant, our final result for
the canonical Hamiltonian in Kerr depends on a choice
of coordinates and a choice of tetrad. We find that a
comparison with PN results can be relatively easily ac-
complished by using Boyer-Lindquist coordinates and the
“quasi-isotropic” tetrad of [24], though we also trace the
relationship between this tetrad and the one used by
Carter [45, 46] which diagonalizes the electric and mag-
netic components of the Riemann tensor. Other choices
of coordinates and tetrads are likely to yield other use-
ful forms of the Hamiltonian, as in [47], which showed
that numerical evolution of the (linear-in-spin) Hamilto-
nian system is improved by using Kerr-Schild coordinates
and an associated tetrad. We provide here all results, in-
cluding the Ricci rotation coefficients and the Riemann
tensor components, to explicitly compute the Hamilto-
nian (1.1) in Kerr for the two tetrads of [24] and [45, 46].
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[We should note that explicitly expressing H requires al-
gebraically solving Eqs. (1.1) and (1.2), since µ depends
on Pt, but this is easily done working perturbatively in
the test spin; see (7.31).]

While our Hamiltonian is valid only to zeroth order
in the mass ratio and to spin-squared/quadrupolar order
in the test body’s multipole expansion, it is valid to all
PN orders and to all orders in the spin parameter of the
Kerr black hole. Expanding the Hamiltonian in powers
of the Kerr spin and in PN orders allows us to make
comparisons with the test-mass limits of the results of
high-order PN calculations, notably, those of Refs. [30,
48–52] for next-to-leading-order spin-squared couplings,
Refs. [37, 53–56] for next-to-next-to-leading-order spin-
orbit interactions, and Refs. [50, 57–60] for leading-order
couplings at third- and fourth-orders in the spins. We
find complete agreement with the test-mass limits of all
available (complete) PN results. We remark that the full
finite-mass-ratio PN results for the leading-PN-order spin
couplings for binary black holes, through fourth order in
the spins, can all be “deduced” from the results in the
test-mass limit.

While our final spinning test-body Hamiltonian is ex-
pressed in terms of canonical variables defined by the
Newton-Wigner SSC, we provide the explicit translation
into variables defined by other SSCs, and in particular
by the more physically motivated “covariant” or Tulczy-
jew SSC [17, 61, 62]. Future work in developing effective
Hamiltonians for the spinning two-body problem is likely
to benefit from a detailed analysis of how to expound
upon this translation—relating different definitions of po-
sition, momentum, spin, and quadrupole variables—with
explicit connections to the definitions used in other ap-
proaches to the spinning two-body problem, including (i)
the effective action approaches to spin effects in PN the-
ory (see e.g. [30, 58]), (ii) self-force calculations and their
uses in determining EOB potentials (see e.g. [63–65]),
and (iii) extracting appropriate measures of the mass,
spin, and other multipole moments of black holes and
fluid bodies in numerical relativity simulations (see e.g.
[66]).

We begin in Sec. II by discussing constrained action
principles for a spinning test body, summarizing how a
formulation in terms of generic-SSC variables is related
to one in terms of covariant-SSC variables. Section III
applies results from bitensor calculus to derive the trans-
formation properties summarized in Sec. II. We use the
Newton-Wigner SSC to achieve canonical variables in
Sec. IV. We specialize to a spin-induced quadrupole and
decompose the couplings to the Weyl/vacuum-Riemann
tensor in terms of its electric and magnetic parts in
Sec. V. We specialize to the Kerr spacetime and its al-
gebraically special Riemann tensor in Sec. VI, and we
collect the necessary results and perform the PN expan-
sion in Sec. VII. We conclude in Sec. VIII.

II. EQUATIONS OF MOTION AND ACTION
PRINCIPLES

The motion of an extended test body in curved
spacetime is described, in a multipolar approximation,
by the Mathisson-Papapetrou-Dixon (MPD) equations
[14, 16, 17], which are given to quadrupolar order by

Dpµ

ds
= −1

2
Rµ

ναβ ż
νSαβ − 1

6
∇µRνραβJ

νραβ , (2.1)

DSµν

ds
= 2p[µżν] +

4

3
R[µ

ραβJ
ν]ραβ , (2.2)

where pµ is the linear momentum vector, Sµν is the an-
tisymmetric angular momentum (or spin) tensor, and
Jµναβ is the quadrupole tensor, all of which are tensors
defined along a representative worldline zµ(s) with tan-
gent żµ = dzµ/ds, where s is an arbitrary parameter.
Our sign convention for the Riemann tensor is given by
2∇[a∇b]Vc = Rabc

dVd, and we use the (−,+,+,+) met-

ric signature. The quadrupole Jµναβ may depend on cer-
tain internal degrees of freedom of the body, or (as in the
case of a spin-induced quadrupole, or an adiabatic tidally
induced quadrupole) it may be determined by only pµ,
Sµν , and the local geometry along zµ. In the latter case,
Eqs. (2.1) and (2.2) completely determine the evolution
of pµ and Sµν along a given worldline zµ; however, they
do not single out a choice of worldline.
A fully determined system for evolving pµ, Sµν , and zµ

can be obtained by enforcing a spin supplementary con-
dition (SSC), of the form Sµνf

ν = 0. This corresponds to
demanding that the body have a vanishing mass dipole
about zµ in the local Lorentz frame defined by a time-
like vector field fµ. The worldline zµ follows the body’s
center of mass as measured in the frame of fµ.
The most common and physically sensible choice for

the SSC is to use the body’s rest frame, i.e. fµ = pµ,
yielding the “covariant” (or Tulczyjew [17, 61, 62]) SSC:

S̃µν p̃
ν = 0, (2.3)

where we denote quantities defined by the covariant SSC
with a tilde. We also later insert tildes on indices for the
tangent space space at the point z̃, as in S̃µ̃ν̃ p̃

ν̃ = 0, to
distinguish them from unadorned indices for the tangent
space at the point z, but we avoid the clutter of tilded
indices unless it is necessary. Another useful choice, due
to its utility in achieving 3D canonical variables, is the
class of Newton-Wigner SSCs [33–35], defined in terms
of an arbitrary unit timelike vector field e0

µ by

Sµν

(

pν
√

−p2
+ e0

ν

)

= 0. (2.4)

We discuss first in Sec. II A an explicit action principle
for the quadrupolar MPD equations which enforces the
covariant SSC. In Sec. II B, we discuss how to generalize
to an action which enforces a generic SSC, and we follow
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the change of variables that relates quantities defined by
the covariant SSC to those defined by a generic SSC.
In Secs. II-III, we use unadorned symbols for quantities
defined by a generic SSC, and these become those defined
by a Newton-Wigner SSC in Sec. IV, with tildes denoting
covariant-SSC quantities throughout.

A. Action for the covariant SSC

An explicit action functional which yields the
quadrupolar MPD equations (2.1, 2.2) while enforcing
the covariant SSC is given by [38, 67]

S[p̃, S̃, z̃, Λ̃] =
∫

ds

[

p̃µ ˙̃z
µ +

1

2
S̃µνΩ̃

µν − H̃D

]

. (2.5)

The independent degrees of freedom to be varied here
are the momentum p̃µ, the spin S̃µν , the worldline z̃µ,
and a “body-fixed” orthonormal tetrad Λ̃A

µ along the
worldline, satisfying ηABΛ̃A

µΛ̃B
ν = gµν , from which the

(antisymmetric) angular velocity tensor Ω̃µν is defined as

Ω̃µν = Λ̃A
µDΛ̃Aν

ds
. (2.6)

The “Dirac Hamiltonian” H̃D consists only of constraints
(not involving derivatives) with Lagrange multipliers,
and the action (2.5) is thus reparametrization-invariant:

H̃D = 2χ̃µS̃µν
p̃ν

√

−p̃2
+
λ

2

[

p̃2 + M̃2(p̃, S̃, z̃)
]

. (2.7)

The Lagrange multiplier χ̃µ enforces the covariant SSC,
S̃µν p̃

ν = 0, while the Lagrange multiplier λ enforces the

“mass-shell constraint”, p̃2 = −M̃2. The “dynamical
mass” function M̃(p̃, S̃, z̃) includes, in addition to rest-
mass or other internal energy contributions, couplings
between the body’s multipoles and the background space-
time curvature. Taking M̃ to depend on z̃ only through
the metric and the Riemann tensor evaluated at z̃ leads
to the quadrupolar MPD equations (2.1, 2.2), with the
quadrupole given by

J̃µναβ =
3p̃ρ ˙̃z

ρ

p̃2
∂M̃2

∂Rµναβ
. (2.8)

We will return in Sec. V to discuss the specific form of
M̃ which corresponds to a spin-induced quadrupole, but
for now we leave it as a general function of p̃, S̃, and the
metric and the Riemann tensor at z̃.
That the variation of the action (2.5) yields the MPD

equations (2.1, 2.2) with (2.8) is shown in Appendix A.
The MPD equations and the covariant SSC can then be
used to solve for the relationship between the tangent
˙̃zµ and the momentum p̃µ, thus yielding complete evo-
lution equations for p̃µ, S̃µν , and z̃µ [39, 58, 68]. One
finds, however, that the Lagrange multiplier χ̃µ cannot

be eliminated from the equation of motion for Λ̃A
µ. This

corresponds to a residual freedom to choose the timelike
component Λ̃0

µ of the tetrad [69]. A consistent and phys-

ically sensible choice is Λ̃0
µ = p̃µ/

√

−p̃2; see also [70].

B. Action for a generic SSC

Having in hand the action (2.5) which yields the MPD
equations while enforcing the covariant SSC, we now turn
to generalizing this action to accommodate an arbitrary
SSC. We will find, following Refs. [30, 69], that this can
be accomplished by a judicious change of variables in
the action (2.5). We arrive at a new action which yields
the same form (2.1, 2.2) of the MPD equations for mo-
ments p and S along the worldline z defined by a generic
SSC, but which entails additional curvature couplings not
present/relevant for the case of the covariant SSC, which
modify the relationship between the quadrupole J (or the
effective dynamical mass M) and p, S and z.
For the first step of the change of variables, follow-

ing [30], we transform the covariant-SSC tetrad Λ̃A
µ into

a new (intermediate) tetrad Λ̄A
µ by applying a local

Lorentz transformation Lµ
ν which boosts the direction

of the momentum p̃µ into an arbitrary unit timelike vec-
tor vµ:

Λ̄A
µ = Lµ

ν Λ̃A
ν , Lµ

ν = δµν − 2vµp̃ν
√

−p̃2
+
√

−p̃2 ω
µων

−p̃ρωρ
,

(2.9)

where ωµ = p̃µ/
√

−p̃2 + vµ. As shown in [30], if this is
accompanied by the following transformation of the spin
tensor,

S̄µν = S̃µν + 2p̃[µξ̃ν], ξ̃µ = − S̃µνvν
−p̃ρωρ

=
S̄µν p̃ν
−p̃2 (2.10)

then the rotational kinematic term in the action trans-
forms according to

1

2
S̃µνΩ̃

µν =
1

2
S̄µνΩ̄

µν − ξ̃µ
Dp̃µ
ds

, (2.11)

where Ω̄µν = Λ̄A
µDΛ̄Aν

ds
. From its definition (2.10), and

from S̃µν p̃
ν = 0, the new spin tensor S̄µν satisfies the new

SSC S̄µνω
ν = 0. If the original tetrad satisfied Λ̃0

µ =

p̃µ/
√

−p̃2, then the new tetrad will have Λ̄0
µ = vµ, and

the new SSC will read

S̄µν

(

p̃ν
√

−p̃2
+ Λ̄0

ν

)

≡ Cµ = 0. (2.12)

This is the “spin gauge constraint” discussed by [69],
in which the timelike component Λ̄0

µ of the body-fixed
tetrad plays the role of a gauge field parametrizing a
generic choice of SSC defined by Cµ = 0. We obtain the
“spin gauge invariant” action functional presented in [69]
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by using (2.10) and (2.11) in (2.5) and modifying the χ
constraint to match (2.12):

S[p̃, S̄, z̃, Λ̄] =
∫

ds

[

p̃µ ˙̃z
µ +

1

2
S̄µνΩ̄

µν − S̄µν p̃ν
−p̃2

Dp̃µ
ds

− H̄D

]

,

H̄D = χ̄µCµ +
λ

2
(p̃2 + M̃2), (2.13)

where the original covariant-SSC dynamical mass M̃,
given as a function of the original spin S̃µν , is expressed
in terms of the new spin S̄µν via S̃µν = P̃µ

αP̃ν
β S̄

αβ, which

follows from (2.10), where P̃µ
α = δµα− p̃µp̃α/p̃2 is the pro-

jector orthogonal to p̃µ. The action (2.13) can also be
obtained by a “minimal coupling to gravity” of the one
derived in the context of special relativity in [69].
In the case of flat spacetime, Ref. [69] demonstrated

that Cµ is a first class constraint, and thus a genera-
tor of infinitesimal gauge transformations, and that the
action (2.13) is invariant under these “spin gauge trans-
formations”. These transformations induce infinitesimal
Lorentz transformations of the tetrad Λ̄0

µ and corre-
sponding shifts, S̄µν → S̄µν +2p̃[µξ̃ν], of the spin, similar
to (2.9) and (2.10), while leaving the momentum p̃µ and
the worldline z̃µ invariant. It is important to note that
the worldline z̃µ here corresponds to the worldline defined
by the covariant SSC, S̃µν p̃

ν = 0, and by the MPD equa-

tions for p̃µ and S̃µν . It is not the worldline defined by

the generic SSC Cµ = S̄µν(p̃
ν/
√

−p̃2 + Λ̄0
ν) = 0 and the

MPD equations for p̃µ and S̄µν ; the equations of motion
for p̃µ and S̄µν resulting from the action (2.13) are in fact
not the MPD equations. The action (2.13) would yield
the MPD equations if the Dp̃µ/ds term were removed.
We can transform the action (2.13) into a form which

does yield the MPD equations by making further changes
of variables, including a shift of the worldline to that
defined by the new generic SSC. We will see that the
necessary worldline shift, from z̃(s) to a new worldline
z(s), to quadratic order in the spin, is given by moving
a unit interval along the affinely parametrized geodesic
whose initial tangent is the vector ξ̃ at z̃ given by (2.10).

In other words, z is the “exponential map” of ξ̃ at z̃,

z = expz̃ ξ̃, ξ̃µ̃ =
S̄µ̃ν̃ p̃ν̃
−p̃2 , (2.14)

and ξ̃µ̃ is the “deviation vector” at z̃ pointing to z. Here,
we have inserted tildes on indices for the tangent space
at z̃ to distinguish them from unadorned indices for the
tangent space at z. We can then define a new tetrad ΛA

µ

and spin Sµν at z by parallel transporting Λ̄A
µ̃ and S̄µ̃ν̃

along the geodesic from z̃:

ΛA
µ = gµµ̃Λ̄A

µ̃ = gµµ̃L
µ̃
ν̃Λ̃A

ν̃ , (2.15)

Sµν = gµµ̃g
ν
ν̃ S̄

µ̃ν̃ = gµµ̃g
ν
ν̃

(

S̃µ̃ν̃ + 2p̃[µ̃ξ̃ν̃]
)

, (2.16)

where gµµ̃(z, z̃) is the parallel propagator [11, 32] along
the geodesic from z̃ to z, and where the second equalities

have used (2.9) and (2.10) to relate back to covariant-SSC
quantities. Finally, in order to obtain a canonical form
for the action (and one which yields the MPD equations),
we will find that we must transform to a new momentum
pµ at z according to

pµ = gµµ̃

(

p̃µ̃ − 1

2
Rµ̃

ν̃α̃β̃S̄
α̃β̃ ξ̃ν̃ +

1

2
Rµ̃

α̃ν̃β̃ p̃
ν̃ ξ̃α̃ξ̃β̃

)

= gµµ̃

(

p̃µ̃ − 1

2
Rµ̃

ν̃α̃β̃S̃
α̃β̃ ξ̃ν̃ − 1

2
Rµ̃

α̃ν̃β̃ p̃
ν̃ ξ̃α̃ξ̃β̃

)

.

(2.17)

With these transformations, as shown in the following
section, the action (2.13) becomes

S[p, S, z,Λ] = (2.18)
∫

ds

[

pµż
µ +

1

2
SµνΩ

µν −HD +O(S3)

]

,

HD = χµSµν

(

pν
√

−p2
+ Λ0

ν

)

+
λ

2
(p2 +M2),

M2 = M̃2 −Rµναβp
µξν(Sαβ + pαξβ), (2.19)

where Ωµν = ΛA
µDΛAν

ds
and

ξµ = −S
µνpν
−p2 , (2.20)

which is the deviation vector at z pointing to z̃, at least
to quadratic order in spin, as ξµ = −gµµ̃ξ̃

µ̃ + O(S3).

The original dynamical mass M̃ is expressed in terms
of the new variables, to O(S2) accuracy, by using the

same functional form of M̃ as for the original covariant-
SSC variables but with the spin replaced by its projection
Pµ
αPν

βS
αβ orthogonal to pµ, where Pµ

ν = δµν − pµpν/p
2.

As shown in Appendix A, the equations of motion result-
ing from the action (2.18) are the MPD equations (2.1,
2.2) [+O(S3)] with the quadrupole given by

Jµναβ =
3pρż

ρ

p2
∂M2

∂Rµναβ
(2.21)

= gµµ̃g
ν
ν̃g

α
α̃g

β
β̃ J̃

µ̃ν̃α̃β̃

− 3pρż
ρ

p2

(

p[µξν]p[αξβ] + p[µjν]αβ + p[αjβ]µν
)

+O(S3),

jναβ =
1

2

(

ξνSαβ − ξ[νSαβ]
)

.

The contributions involving ξµ arise from the shift (2.19)
of the effective dynamical mass, which introduces new
curvature couplings arising from the use of a generic SSC
rather than the covariant SSC. These couplings vanish
(on the constraint surface) for the case of the covariant
SSC, and one can see that the generic action (2.18) re-
duces to the covariant-SSC action (2.5) when the gauge

field Λ0
µ is taken to be pµ/

√

−p2. These results (un-
like those in Sec. V) are valid for both vacuum and non-
vacuum spacetimes.
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The new curvature couplings in (2.19) arise here from
the transformations (2.16) and (2.17) of pµ and Sµν , and
these arise, as shown in the following section, from de-
manding that the transformation from the covariant-SSC
action (2.5) to the generic-SSC action (2.18) preserves
the canonical forms of the kinematic terms (the terms
with s-derivatives). This coincides with ensuring that the
generic action (2.18) also yields the MPD equations (2.1,
2.2), as is shown in Appendix A, which provides a physi-
cal justification of the action (2.18) via the derivation of
the MPD equations from stress-energy conservation [17].
For further insights into the transformation laws (2.16)

and (2.17), we can note: the final expressions of (2.16)
and (2.17) for pµ and Sµν are the results of solving the
MPD equations along the geodesic connecting z̃ to z,
with p̃µ̃ and S̃µ̃ν̃ as initial data at z̃, through O(S2).
We can also note: the holonomy of the MPD equations
around a loop of size S/p is the identity map through
O(S2); see Eq. (4.14) of Ref. [71] with κ = 1/2. In both
of these statements, the quadrupole terms in the MPD
equations do not contribute at the stated orders. It seems
clear that the transformations (2.16) and (2.17) of pµ and
Sµν under a shift of the worldline should follow from their
definitions in terms of the body’s stress-energy tensor
given by Dixon [17], and likewise for the transformation
(2.21) of Jµναβ . While making this connection explicit
would require a careful analysis of the role of the surfaces
of integration in Dixon’s definitions, our analysis of the
effective action here avoids this complication.
We will use the generic action (2.18) as our starting

point in Sec. IV, where we specialize to the Newton-
Wigner SSC. First, in Sec. III, we provide a derivation of
how the covariant-SSC action (2.5) is transformed into
the generic-SSC action (2.18) via the transformations
(2.17), (2.16), (2.14), and (2.15) of p, S, z, and Λ, whose
inverses are (3.14), (3.15), (3.1, 3.13), and (3.16) below.

III. COVARIANT SHIFT OF THE WORLDLINE

We now show how to consider the shift of the worldline
and the transformations of quantities defined along the
worldline, in a manifestly covariant manner, using the
language of bitensors [11, 17, 32, 72, 73]. An alternative
derivation is presented in Appendix B.
It will be convenient to start with the worldline z(s)

defined by a generic SSC and shift to the worldline z̃(s)
defined by the covariant SSC. In general, a new worldline
z̃(s) can be specified by a deviation vector field ξµ(s)
along an old worldline z(s), according to

z̃ = expz ξ ⇔ ξµ = −∇µσ(z, z̃), (3.1)

where σ(z, z̃) is Synge’s world function [11, 32], giving
half the squared proper interval along the geodesic con-
necting z to z̃. The point z̃ is reached by traveling a unit
interval along the affinely parametrized geodesic starting
at z with tangent ξµ, as in Fig. 1.

FIG. 1. Along the worldline z(s) defined by a generic SSC,
with tangent żµ(s), we have the deviation vector field ξµ(s),
which points (via the exponential map) to the worldline z̃(s)
defined by the covariant SSC, with tangent ˙̃zµ̃(s).

Differentiating the second relation in (3.1),

Dξµ

ds
= −żν∇ν∇µσ − ˙̃zµ̃∇µ̃∇µσ, (3.2)

and solving for the tangent to z̃(s) yields

˙̃zµ̃ = K µ̃
µż

µ +H µ̃
µ
Dξµ

ds
, (3.3)

where

H µ̃
µ = − (∇µ̃∇µσ)

−1
= gµ̃µ +O(ξ2), (3.4)

K µ̃
µ = H µ̃

ν∇µ∇νσ = gµ̃ν

[

δνµ − 1

2
Rν

αµβξ
αξβ +O(ξ3)

]

are the “Jacobi propagators” [17, 72–74], with the sec-
ond equalities giving their expansions in powers of the
deviation vector [73]. Thus,

˙̃zµ̃ = gµ̃µ

(

żµ +
Dξµ

ds
− 1

2
Rµ

ανβ ż
νξαξβ +O(ξ3)

)

,

(3.5)
which gives the tangent to the covariant-SSC worldline
z̃(s) in terms of the generic-SSC worldline z(s) and the
deviation vector ξµ(s) along z(s).
Let us take the momentum p̃µ̃ at z̃ to be related to the

new momentum pµ at z by

p̃µ̃ = gµ̃
µ (pµ + δpµ) , (3.6)

where δpµ is an O(S2) correction to be determined, an-
ticipating that ξ = O(S). Then,

Dp̃µ̃
ds

= gµ̃
µDpµ
ds

+
(

żν∇νgµ̃
µ + ˙̃zν̃∇ν̃gµ̃

µ
)

pµ +O(S2)

= gµ̃
µ

(

Dpµ
ds

−Rµ
α
νβpαż

νξβ +O(S2)

)

, (3.7)

where we have used (3.5) and the expansions of the
derivatives of the parallel propagator [11],

∇νgµ̃
α = −1

2
gµ̃

µRµ
α
νβξ

β +O(ξ2), (3.8)

∇ν̃gµ̃
α = −1

2
gµ̃

µgν̃
νRµ

α
νβξ

β +O(ξ2). (3.9)
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Similarly, taking the intermediate body-fixed tetrad Λ̄A
µ̃

of (2.9) at z̃ to be related to the new tetrad at z by
parallel transport, Λ̄A

µ̃ = gµ̃µΛA
µ, we have

DΛ̄A
µ̃

ds
= gµ̃µ

(

DΛA
µ

ds
−Rµ

ανβΛA
αżνξβ +O(S2)

)

,

(3.10)
and thus,

Ω̄µ̃ν̃ = gµ̃µg
ν̃
ν

(

Ωµν +Rµν
αβ ż

αξβ +O(S2)
)

, (3.11)

with Ωµν and Ω̄µ̃ν̃ as defined in (2.6) and below (2.11).
Finally, the intermediate spin S̄µ̃ν̃ of (2.10) at z̃ is parallel
transported into the new spin Sµν at z, as in (2.16).

Putting everything together, we find that the kine-
matic terms of the action (2.5) transform according to

p̃µ̃ ˙̃z
µ̃ +

1

2
S̃µ̃ν̃Ω̃

µ̃ν̃ = p̃µ̃ ˙̃z
µ̃ +

1

2
S̄µ̃ν̃Ω̄

µ̃ν̃ − S̄µ̃ν̃ p̃ν̃
−p̃2

Dp̃µ̃
ds

=

(

pµ + δpµ +
1

2
Rµν

αβSαβξ
ν − 1

2
Rµα

ν
βpνξ

αξβ −Rµα
ν
βpνξ

αS
βγpγ
−p2

)

żµ

+
1

2
SµνΩ

µν −
(

ξµ +
Sµνpν
−p2

)

Dpµ
ds

+
D

ds
(pµξ

µ) +O(S3). (3.12)

We see that we can remove the last two terms by choosing
the deviation vector to be

ξµ = −S
µνpν
−p2 . (3.13)

We then see that pµ will be (covariantly) conjugate to zµ

if we choose

gµ
µ̃p̃µ̃ = pµ + δpµ (3.14)

= pµ − 1

2
Rµν

αβSαβξ
ν − 1

2
Rµα

ν
βpνξ

αξβ ,

which is the inverse of (2.17). The complete transfor-
mation from generic- to covariant-SSC variables is then
given by (3.14) and

S̃µ̃ν̃ = gµ̃µg
ν̃
ν(S

µν + 2p[µξν]), (3.15)

Λ̃A
µ̃ = Lν̃

µ̃gν̃ νΛA
ν , (3.16)

along with the worldline shift defined by (3.1) and (3.13).
In the end, (3.12) has become

p̃µ̃ ˙̃z
µ̃ +

1

2
S̃µ̃ν̃Ω̃

µ̃ν̃ = pµż
µ +

1

2
SµνΩ

µν +O(S3), (3.17)

and inserting this into the covariant-SSC action (2.5)
yields the generic-SSC action (2.18), with appropriately
modified Lagrange multiplier terms. The expression
(2.19) for the effective squared dynamical mass M2 =
−p2 follows from the transformation (3.14) of pµ and

from M̃2 = −p̃2.

IV. CANONICAL HAMILTONIAN

We now take the final form (2.18) of the action for a
generic SSC and specialize to the Newton-Wigner SSC

(2.4), in order to obtain a Hamiltonian formulation in
terms of 3D dynamical variables with canonical Poisson
brackets.
This involves a choice of an arbitrary fixed orthonor-

mal frame or tetrad ea
µ on the background spacetime,

satisfying ea
µebµ = ηab, where ηab is the Minkowski

metric and is used to raise and lower the frame in-
dices. We write ea

µ = (e0
µ, ei

µ), where the frame in-
dices a, b, c, . . . take values 0 for the temporal compo-
nent and i, j, k, . . . = 1, 2, 3 for the spatial components.
We also use A = (0, i) for the body-fixed frame indices
on ΛA

µ. We continue using Greek letters µ, ν, α, β, . . .
for coordinate-basis indices (though they could also have
been interpreted as abstract indices up to now). The
Greek coordinate-basis indices take values t for the time
coordinate and i, j, k, . . . (= r, θ, φ, say) for the spatial
coordinates, with the unitalicized font distinguishing the
latter from spatial frame indices i, j, k. We use frame
components of tensors such as pa = (p0, pi) = ea

µpµ, to
be distinguished from the coordinate-basis components
pµ = (pt, pi).
With this notation in order, we consider the generic-

SSC action (2.18):

S =

∫

ds

[

pµż
µ +

1

2
SµνΩ

µν −HD

]

, (4.1)

HD = χaCa +
λ

2

(

p2 +M2(p, S, z)
)

.

As discussed in [69], the spin gauge constraint,

Ca = Sab

(

pb
√

−p2
+ Λ0

b

)

= 0, (4.2)

is not itself a SSC, but it becomes a specific SSC with
a specific choice of the “gauge field” Λ0

a. The following
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choices for the gauge field Λ0
a turn (4.2) into various

familiar SSCs:

Λ0
a =

pa
√

−p2
⇒ Sabp

b = 0, (4.3)

Λ0
a =

2p0δa0 − pa
√

−p2
⇒ Sa0 = 0, (4.4)

Λ0
a = δa0 ⇒ Sab(p

b +
√

−p2δb0) = 0. (4.5)

The first choice represents the covariant Tulczyjew SSC
[61, 62] and the second yields the Corinaldesi-Papapetrou
SSC [34, 75, 76]. The third condition (4.5), leading to the
Newton-Wigner (NW) SSC [33–35], will be the one used
here. The NW SSC allows one to formulate a canonical
phase space algebra for the reduced degrees of freedom
on the constraint surface, as we shall see below. In gen-
eral relativity, this SSC saw a widespread use only more
recently. It was employed for post-Newtonian calcula-
tions in [30, 77–79], where [30, 78] apply it in the Feyn-
man rules, in the ADM canonical formulation of spin
[79, 80], for the test-spin Hamiltonian in [24], and at
the level of the MPD equations in [81]. However, while
Refs. [24, 77, 78] use the condition on the spin in (4.5),
their condition on Λ0

a differs from (4.5).
It is useful to write the rotational kinematic term in

the action in the local frame,

SµνΩ
µν = SµνΛA

aea
µD(ΛAbeb

ν)

ds

= Sab

(

ΛA
aΛ̇Ab + ωµ

abżµ
)

, (4.6)

where dots denote the ordinary derivative d/ds, and

ωµ
ab = ebν∇µe

aν (4.7)

are the Ricci rotation coefficients. Choosing the NW SSC
(4.5) removes all temporal components from the SΛΛ̇
term (notice that also ΛA

0 = δ0A), leaving only spatial
components:

SabΛA
aΛ̇Ab = SijΛ

kiΛ̇kj , (4.8)

where we understand that the first index of Λki refers
to the body-fixed frame and the second one to the lo-
cal frame. Thus, the RHS of (4.8) provides a canonical
kinematic term for the physical degrees of freedom Λij

and Sij , and the dependent degrees of freedom Λ0
µ and

S0i have no kinematic terms. The latter are fixed by the
gauge choice Λ0

a = δa0 and the resultant NW SSC (4.5),
which can be solved to yield

S0i =
Sijp

j

p0 +M , (4.9)

having used p2 = −M2. These arguments allow us to
avoid the Dirac brackets for handling the constraints,
which would be considerably more complicated [24].

Using (4.6) and (4.8) in (4.1), we see that the action
in the NW SSC has the form

S =

∫

ds

[

Pµż
µ +

1

2
SijΛ

kiΛ̇kj −HD

]

, (4.10)

where we have defined a new momentum,

Pµ = pµ +
1

2
ωµ

abSab, (4.11)

whose coordinate-basis components Pµ = (Pt, P i) are
canonically conjugate to the worldline coordinates zµ =
(t, z i). We refer to Pµ as the canonical momentum and to
pµ as the covariant momentum, and we work with both
below.
The form (4.10) of the action still has unphysical de-

grees of freedom associated with reparametrization in-
variance. We can fix these by choosing the worldline pa-
rameter to be the time coordinate, s = t, so that ṫ = 1,
and thus,

Pµż
µ = Pt + P i ż

i. (4.12)

We can then solve the mass-shell constraint p2 = −M2

for Pt, using (4.11). This is most easily accomplished
order by order in the spin, and we will discuss the so-
lution to linear order in the following subsection and to
quadratic order in Sec. VII.
Having solved both constraints, HD vanishes, and we

obtain from (4.10) and (4.12) the final canonical form of
the action,

S =

∫

ds

[

P i ż
i +

1

2
SijΛ

kiΛ̇kj −H

]

, (4.13)

where

H(zi, P i , Sij) = −Pt. (4.14)

A variation of the action with respect to the dynamical
variables zi, P i, Λ

ij , and Sij leads to the equations of
motion

żi =
∂H

∂P i
, Ṗ i = −∂H

∂zi
, Ṡi = ǫijk

∂H

∂Sj
Sk, (4.15)

where

Si =
1

2
ǫijkSjk. (4.16)

These have the form of Hamilton’s canonical equations
with H being the Hamiltonian. The canonical Poisson
brackets for the dynamical variables zi, P i, and Sij can
be “read off” from these equations of motion as

{zi, P j} = δij, {Si, Sj} = ǫijkSk, (4.17)

with all others vanishing.



9

A. Hamiltonian to linear order in spin

We can find the explicit Hamiltonian H = −Pt to lin-
ear order in the spin by solving the mass shell constraint
p2 = −M2 for Pt in terms of zi, P i, and Sij , using
Pµ = pµ + 1

2ωµ
abSab as in (4.11), and using the solution

for S0i given by (4.9). Defining the lapse N , shift N i, and
inverse spatial metric γij of the background spacetime,

N =
1

√

−gtt
,

N i = N2gti = − gti

gtt
, (4.18)

γij = gij +
N iN j

N2
= gij − gtigtj

gtt
,

we find

H = −Pt(z
i, P i , Sij) (4.19)

= HNS − N

Q
P̂µ

(

ωµij

2
+
ωµ0iP̂ j

P̂ 0 +m

)

Sij +O(S2),

where

HNS = NQ−N iP i , (4.20)

Q =
√

m2 + γijP iP j ,

P̂µ = (−HNS, P i),

P̂ a = eaµP̂µ = (P̂ 0, P̂ i) = (e0µP̂µ, e
iµP̂µ),

and where we have taken M2 = m2 + O(S2) with m
being a constant.
The Hamiltonian becomes somewhat simpler if we

adopt the “time gauge” [82], i.e. if we specialize the local
Lorentz frame ea

µ so that its timelike vector points along
the direction of the time coordinate, so that e0µ = Nδtµ
and also ea

t = δ0a/N . We will refer to this choice as a
time-aligned tetrad from now on. This choice also im-
plies that P 0 = NP t and thus, from (4.18) and (4.20),

that P̂ 0 = Q. It also implies that P̂ i = eijP j = P i = Pi,
which is then independent of Pt. We can then write the
Hamiltonian (4.19) as

H = HNS−
N

Q
P̂ a

(

ωaij

2
− ωa0iPj

Q+m

)

Sij+O(S2), (4.21)

where P̂ a = (Q,P i), with HNS and Q still given by
(4.20). This agrees with Eqs. (4.41-45) of [24] if we note
ωµab = 2Eµab and mind some raised and lowered indices
and changes of bases.

V. CURVATURE COUPLINGS AT QUADRATIC
ORDER IN SPIN

At quadratic order in the spin, the action is still given
by (4.13), with the Hamiltonian H = −Pt determined

by solving the mass-shall constraint p2 = −M2, where
Pµ = pµ + 1

2ωµ
abSab as in (4.11). But we must now

also take into account the spin-squared contributions to
the effective dynamical mass M, which arise both from
intrinsic couplings in the covariant-SSC dynamical mass
M̃ and from what one might call the kinematic couplings
of (2.19),

M2 = M̃2 −Rabcdp
aξb(Scd + pcξd) +O(S3), (5.1)

where

ξa = −S
abpb
−p2 . (5.2)

The form of the covariant-SSC dynamical mass M̃ which
encodes a spin-induced quadrupole moment is given by
[38, 48, 80]

M̃2 = m2 + CRãb̃c̃d̃

p̃ãp̃c̃

−p̃2 S̃
b̃ẽS̃d̃

ẽ +O(S3) (5.3)

= m2 + CRabcd
papc

−p2 S̃
beS̃d

e +O(S3), (5.4)

where m and C are constants, and

S̃ab = Pa
cPb

dS
cd = Sab + 2p[aξb] (5.5)

is the projection of the spin tensor orthogonal to the mo-
mentum (which coincides with the covariant-SSC spin

tensor S̃ãb̃, up to parallel transport, at the considered or-
der). The constant C measures the body’s spin-induced
quadrupolar deformation response. It is equal to 1 when
the body is a black hole [48, 83], and we will see that
special simplifications occur in this case. For material
bodies such as neutron stars, C depends on the equation
of state [83, 84]. The constant mass m(S) is a function

of the likewise constant spin length S = 1
2

√

S̃abS̃ab and
encodes the moment of inertia [38]. Notice that the spin-
length is defined with the projected spin tensor (or with
the covariant-SSC spin tensor).
The couplings to the Riemann tensor—–the kine-

matic couplings of (5.1) and the intrinsic spin-induced
quadrupole coupling of (5.3)—–can be better understood
by using the electric/magnetic decomposition of the Weyl
tensor. This goes hand-in-hand with the decomposition
of the spin tensor Sab in terms of a Pauli-Lubanski spin

vector sa (5.14) and the vector
√

−p2ξa which encodes
the mass dipole.
We restrict attention to vacuum spacetimes in four di-

mensions. Then the Riemann tensor equals the Weyl ten-
sor, and it can be decomposed into contributions from an

electric part E
(p)
ab and a magnetic part B

(p)
µν with respect

to a time-like vector pµ [85–87]. In a compact complex
notation this reads

E
(p)
ab + iB

(p)
ab =

1

2
Gac

efRefbd
pcpd

−p2 (5.6)

= (Racbd + i ∗Racbd)
pcpd

−p2 , (5.7)
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where

Gabcd = gacgbd − gadgbc + iηabcd (5.8)

is the tensor which projects a 2-form onto (four times)
its anti-self-dual part, where the volume form is ηµναβ =√−gǫµναβ or ηabcd = ǫabcd with ǫ0123 = 1, and where
∗Racbd = 1

2ηac
efRefbd is the dual of the Riemann ten-

sor. The tensors E
(p)
ab and B

(p)
ab are orthogonal to pa,

and thus effectively three-dimensional, and are symmet-
ric and trace-free, making them easier to handle than
Rabcd. The following useful relations hold,

Gab
efGefcd = 4Gabcd, (5.9)

Gabg
eGcd

gf pepf
−p2 = −Gabcd, (5.10)

Rabcd + i ∗Rabcd =
1

2
Gab

efRefcd

=
1

2
RabghGcd

gh

=
1

8
Gab

efRefghGcd
gh. (5.11)

Note that a proof of (5.10) can require using η[abcdpe] = 0.
In (5.11), the equality of the left and right duals of the
Riemann tensor was used. From these relations together
with (5.6), the Riemann tensor can be recovered as the
real part of

Rabcd + i ∗Rabcd = Gab
efGcd

gh pepg
−p2

(

E
(p)
fh + iB

(p)
fh

)

.

(5.12)
Using (5.7) along with (5.5) allows us to express the

curvature couplings in (5.1) and (5.3) as

Rabcdp
apcS̃b

eS̃
de = p2E

(p)
ab s

asb, (5.13)

Rabcdp
aξbpcξd = −p2E(p)

ab ξ
aξb,

Rabcdp
aξbScd = 2

√

−p2B(p)
ab s

aξb + 2p2E
(p)
ab ξ

aξb,

where the Pauli-Lubanski spin vector sa is defined as

sa = −1

2
ηabcd

pb
√

−p2
S̃cd

= −1

2
ηabcd

pb
√

−p2
Scd. (5.14)

One further useful identity, which follows from (5.12), is

1

4
RabcdS

abScd (5.15)

= −E(p)
ab s

asb − 2
√

−p2B(p)
ab s

aξb − p2E
(p)
ab ξ

aξb.

By combining (5.1), (5.3), (5.13), and (5.15), we can ex-
press the total effective dynamical mass as

M2 = m2 − CE
(p)
ab s

asb − 2
√

−p2B(p)
ab s

aξb − p2E
(p)
ab ξ

aξb

= m2 +
1

4
RabcdS

abScd − (C − 1)E
(p)
ab s

asb. (5.16)

The RabcdS
abScd coupling was also considered e.g. in

[88, 89], but therein the prefactor is an arbitrary con-
stant, analogous to C here. However, the present deriva-
tion shows that this prefactor is actually fixed (by kine-
matics). As was argued in [30], the only nonminimal cou-
plings which carry arbitrary coefficients should be con-
structed from the projected spin S̃ab (or the vector sa).
The coupling terms agree with [48] in the case of the
covariant SSC.
Using (5.16), and using Pa = pa+

1
2ωa

bcSbc as in (4.11),

we can rewrite the mass-shell constraint p2 = −M2 as

µ2 ≡ −P 2 (5.17)

= m2 − P aωa
bcSbc +

1

4
ωa

bcωadeSbcSde

+
1

4
RabcdS

abScd − (C − 1)E
(p)
ab s

asb +O(S3).

We can then give a formal solution for the Hamiltonian
as

H = −Pt = N
√

µ2 + γijP iP j −N iP i. (5.18)

This is only a formal solution because µ2 depends on Pt.
But because this dependence starts only at O(S), this
equation can be relatively easily solved for Pt order by
order in the spin. We saw the fully expanded solution
to linear order in spin, for the general case in (4.19),
and with a time-aligned tetrad, e0µ = Nδtµ, in (4.21).
We give the solution to quadratic order, in the case of a
time-aligned tetrad, in (7.31).
We conclude this section with a remark on the con-

served spin length. The action (4.1) has a symmetry un-
der spatial rotations of the body-fixed frame. The corre-
sponding Noether conserved quantity is the spatial spin
in the body-fixed frame Λi

aΛj
bSab. Contracting this ten-

sor with itself, we obtain the conserved scalar

S̃µν S̃
µν = 2sasa ≡ 2S2, (5.19)

where S is the conserved spin length. It should be noted
that the scalar SabS

ab is in general not conserved. The
constant mass m(S) is actually a function of S and en-
codes the moment of inertia [38].

VI. THE KERR SPACETIME AND ITS
RIEMANN TENSOR

We now specialize to the case where the background is
the Kerr geometry, giving the vacuum spacetime around
a spinning black hole with mass M and angular mo-
mentumMa. The metric in Boyer-Lindquist coordinates
(t, r, θ, φ) reads

ds2 = −
(

1− 2Mr

Σ

)

dt2 +
Σ

∆
dr2 +Σ dθ2

+
Λ

Σ
sin2 θ dφ2 − 4Mar

Σ
sin2 θ dt dφ,

(6.1)
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where

Σ = r2 + a2 cos2 θ,

∆ = ̟2 − 2Mr,

Λ = ̟4 −∆ a2 sin2 θ,

̟2 = r2 + a2.

(6.2)

The Riemann tensor of the Kerr spacetime is alge-
braically special, of Petrov type D, meaning that it has
two repeated principal null directions (PNDs) [90, 91].
As follows from the decomposition of the Weyl tensor in
terms of the Weyl spinor, the Riemann/Weyl tensor of
any vacuum type D spacetime can be written, along with
its dual, in the compact complex form

Racbd + i ∗Racbd = −ψ
[

Gacbd +
3

4
(Gτ)ac(Gτ)bd

]

. (6.3)

Here, ψ is a coordinate-invariant complex scalar ampli-
tude, Gacbd is as in (5.8), and

(Gτ)ab = Gab
cdτcd = 2(τab + iχab), (6.4)

where τab is the real simple bivector/2-form spanned by
the two PNDs (with τabτ

ab = 2, with the sign of τab being
inconsequential), and χab =

∗τab =
1
2ηab

cdτcd is its dual.
It is convenient to use the orthonormal tetrad ea

µ on
Kerr introduced by Carter [45, 46], for which the two
PNDs are the directions of e0

µ ± e1
µ, given by

(ea
µ) =























̟2

√
∆Σ

0 0
a√
∆Σ

0

√

∆

Σ
0 0

0 0
1√
Σ

0

a sin θ√
Σ

0 0
1√

Σsin θ























, (6.5)

with a = (0, i) = (0, 1, 2, 3) running down and µ = (t, i) =
(t, r, θ, φ) running across. We will refer to the tetrad ea

µ

as the curvature-aligned frame. The components of the
2-forms τab and χab are given in this frame by

τab = 2δ0[aδ
1
b], χab = −ǫ01ab. (6.6)

The complex amplitude ψ for Kerr is given by

ψ ≡ E − iB =
M

(r + ia cos θ)3
, (6.7)

where we have defined the real scalars E and B, with
signs chosen to make them both positive in the region of
interest.
Using (6.3), the electric and magnetic parts of the Rie-

mann tensor (5.7) with respect to pa are compactly and
covariantly expressed as

E
(p)
ab + iB

(p)
ab = (Racbd + i ∗Racbd)

pcpd

−p2 (6.8)

= (E − iB)
[

− gabgcd + gadgbc

− 3(τac + iχac)(τbd + iχbd)
]pcpd

−p2 .

If we take the electric/magnetic decomposition with re-
spect to the timelike component of the curvature-aligned
frame e0

a, instead of pa, then the components of Eab

and Bab in the curvature-aligned frame are purely spa-
tial, symmetric, trace-free, diagonal tensors given by

E
(e0)
ab = −Eδiaδjb(3ninj − δij), (6.9)

B
(e0)
ab = Bδiaδ

j
b(3ninj − δij), (6.10)

where ni = δ1i .
These results allow us to easily generate explicit ex-

pressions for the curvature couplings (5.16) in Kerr, us-
ing either the fully covariant expressions (6.3) and (6.8)
for the Riemann tensor and its electric and magnetic
parts, or the particularly simple components (6.9) in the
curvature-aligned frame. We will carry this to fruition
for two cases of interest. First, in Sec. VIA, we calculate
the curvature couplings in the curvature-aligned frame
ea

µ, restricting attention to the case C = 1. Then, in
Sec. VIB, we consider general values of C and general
tetrads, and we introduce a second tetrad fa

µ, given by
a boost of ea

µ, which satisfies the time-aligning condition
discussed above (4.21).

A. Curvature couplings for a test black hole in the
curvature-aligned frame

Here we write out the C = 1 curvature couplings in the
dynamical mass (5.16) in terms of the curvature-aligned-
frame components of the spin tensor Sab. We can exploit
an identity analogous to (5.15), using the decomposition
(5.12) but with pa → e0

a, to express the dynamical mass
(5.16) with C = 1 as

M2 = m2 +
1

4
RabcdS

abScd (6.11)

= m2 − E
(e0)
ab ŝaŝb − 2B

(e0)
ab ŝaξ̂b + E

(e0)
ab ξ̂aξ̂b,

where we have defined vectors ŝa and ξ̂a analogous to
(5.2) and (5.14) but with pa → e0

a,

ŝa = −1

2
ηabcde0bScd =

1

2
δai ǫijkSjk = δai Si, (6.12)

ξ̂a = −Sabe0b = δai S0i, (6.13)

whose frame components are purely spatial and are given
directly by the frame components of the spin tensor Sab.
Using (6.11) with (6.9) then gives the remarkably simple
result

M2 = m2 + (3ninj − δij)
[

E(SiSj − S0iS0j)− 2BSiS0j

]

,

(6.14)
in the curvature-aligned frame with C = 1.
Recall that the temporal components S0i of the spin

tensor are determined by solving the SSC, which gives
them in terms of the spatial components Si =

1
2ǫijkSjk
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and the momentum pa = (p0, pi) with p2 = −M2. For
the NW SSC, as in (4.9), we have

S0i =
ǫijkpjSk

p0 +M . (6.15)

For the covariant SSC, S̃abp̃
b = 0, we would have

S̃0i =
ǫijk p̃jS̃k

p̃0
. (6.16)

B. Curvature couplings for general test bodies

1. In a general frame

Using (6.8), and noting that pas
a = paξ

a = saξ
a = 0,

the curvature couplings in the dynamical mass (5.16) can
be expressed as

−CE(p)
ab s

asb = −C
[

E(sas
a − 3τ2s + 3χ2

s)− 6Bτsχs

]

,

−2MB
(p)
ab s

aξb = 6E(τsχξ + τξχs)− 6B(τsτξ − χsχξ),

M2E
(p)
ab ξ

aξb = E(M2ξaξ
a − 3τ2ξ + 3χ2

ξ)− 6Bτξχξ,

(6.17)

where

τs = τab
pa

Msb, χs = χab
pa

Msb, (6.18)

τξ = τab
pa

MMξb, χξ = χab
pa

MMξb.

The components of the Pauli-Lubanski spin vector and
the mass dipole vector,

sa = −1

2
ηabcd

pb
MScd, Mξa = −Sab pb

M , (6.19)

are given in a general orthonormal frame by

Ms0 = piSi, Msi = p0Si + ǫijkpjS0k,

M2ξ0 = piS0i, M2ξi = p0S0i − ǫijkpjSk, (6.20)

with Si =
1
2ǫijkSjk and with S0i determined by the SSC,

as in (6.15) or (6.16).
The only further ingredients needed for an explicit ex-

pression of the curvature couplings are the components
of the 2-forms τab and χab in a given orthonormal frame.
These are given by (6.6) above in the curvature-aligned
frame ea

µ, and by (6.25) below in a new time-aligned
frame fa

µ, which we now describe.

2. In the time-aligned frame with the Newton-Wigner SSC

Consider the tetrad fa
µ which is obtained by boosting

the curvature-aligned tetrad ea
µ of (6.5) to achieve the

time-aligning conditions f0
µ = Nδtµ and fa

t = δ0a/N ,
given by

fa
µ = λa

beb
µ, (6.21)

where

(

λa
b
)

=







γ 0 0 −vγ
0 1 0 0
0 0 1 0

−γv 0 0 γ






(6.22)

with

v =
a
√
∆sin θ

̟2
, γ =

1√
1− v2

=
̟2

√
Λ
, (6.23)

resulting in

(fa
µ) =

























√

Λ

∆Σ
0 0

2Mar√
∆ΣΛ

0

√

∆

Σ
0 0

0 0
1√
Σ

0

0 0 0

√
Σ√

Λ sin θ

























. (6.24)

This coincides with the “spheroidal” tetrad used in [24].
The components of the 2-forms τab and χab in this frame
are then obtained from (6.6) and (6.21) as

τab = 2γ(δ0[a − v[a)δ
1
b], χab =

1

2
ǫab

cdτcd, (6.25)

where

va = δiavi, vi = vδ3i . (6.26)

It is convenient now to introduce a 3-vector notation
for the spatial frame components of vectors, as in ~p = (pi)

and ~S = (Si) with ~p · ~S = piSi and ~p × ~S = (ǫijkpjSk).
Defining the (radial) unit vector ~n = (ni) = (δ1i ) and a
vector ~a = (ai) representing the spin of the Kerr black
hole,

~n =





1
0
0



 , ~a = a





cos θ
− sin θ

0



 , (6.27)

the boost velocity vector ~v = (vi) from (6.23) and (6.26)
is given by

~v = −
√
∆

̟2
~n× ~a. (6.28)

Then, from (6.25) and (6.20), using the solution (6.15)
to the NW SSC, the scalars (6.18) entering the curvature
couplings (6.17) can be written as

τs =
γ

M
[

p0~n · ~̂S + (~n× ~v) · (~p× ~S)
]

,

χs =
γ

M
[

−~n · ~p× ~S + p0~n · ~v × ~̂
S
]

,

τξ = γ
[

p0~n · ~ξ + (~n× ~v) · (~p× ~ξ)
]

,

χξ = γ
[

−~n · ~p× ~ξ + p0~n · ~v × ~ξ
]

, (6.29)
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where

~̂
S = ~S − ~p(~p · ~S)

p0(p0 +M)
, ~ξ =

−~p× ~S

M(p0 +M)
, (6.30)

with
~̂
S being an auxiliary spin vector and with ~ξ = (ξi) as

in (6.20). We thus have fully explicit 3-vector expressions
for the curvature couplings (6.17), if we also note that

sas
a = ~S 2 and ξaξ

a = ~ξ 2, and that E, B, v, and γ can
be expressed in terms of M , r, a, and ~n · ~a = a cos θ via
(6.2), (6.7) and (6.23).

VII. EXPLICIT CANONICAL HAMILTONIAN
IN THE TIME-ALIGNED FRAME(S) AND ITS

POST-NEWTONIAN EXPANSION

Having found useful expressions for the curvature cou-
plings, the last major step in evaluating the Hamilto-
nian defined by (5.17) and (5.18) in Kerr is to evalu-
ate the Ricci rotation coefficients for a given choice of
tetrad. We address this in Sec. VII A, giving results for
the (spherical) time-aligned frame fa

µ, and introducing
a new (Cartesian) time-aligned frame ga

µ which is ob-
tained from a spatial rotation of fa

µ. We find that the
PN expansion is most easily accomplished by using the
rotation coefficients of the g-frame expressed in the f -

frame. We also present the rotation coefficients of the
curvature-aligned frame ea

µ in Appendix C.
In Sec. VII B, we take the fully relativistic Hamilto-

nian defined by the g-frame (expressed in the f -frame)
and generate its PN expansion. We are able to recover
the test-mass limits of all (fully) known PN spin cou-
plings in the center-of-mass frame through 4PN order.
Some further results (including next-to-next-to-leading-
order spin-squared couplings at 4PN and next-to-leading-
order spin-cubed couplings at 4.5PN) are available upon
request.

A. Rotation coefficients for the spherical and
Cartesian time-aligned frames

Given an orthonormal frame fa
µ = (f0

µ, fi
µ), its Ricci

rotation coefficients,

ω
(f)
abc = fa

µ(∇µfb
ν)fcν , (7.1)

with ω
(f)
abc = −ω(f)

acb, are conveniently encoded in the two
4×3 matrices

ω
(f)
a∗i ≡

1

2
ǫijkω

(f)
ajk, ω

(f)
a0i. (7.2)

For the spherical time-aligned tetrad fa
µ (6.24), one finds

(

ω
(f)
a∗i

)

=
1

Σ3/2Λ













−2Ma3r
√
∆cos θ sin2 θ −Ma sin θ(2r2Σ+̟2ρ2) 0

0 0 Λa2 cos θ sin θ

0 0 Λr
√
∆

cot θ(∆Σ2 + 2Mr̟4) −
√
∆(rΣ2 −Ma2ρ2 sin θ) 0













, (7.3)

(

ω
(f)
a0i

)

=
1

Σ3/2Λ













M(̟4ρ2 − 4Ma2r3 sin2 θ)/
√
∆ −2Ma2r̟2 cos θ sin θ 0

0 0 −Ma sin θ(2r2Σ +̟2ρ2)

0 0 2Ma3r
√
∆cos θ sin2 θ

−Ma sin θ(2r2Σ+̟2ρ2) 2Ma3r
√
∆cos θ sin2 θ 0













, (7.4)

where

ρ2 = r2 − a2 cos2 θ. (7.5)

The same matrices for the curvature-aligned e-frame
are given in Appendix C. They have the same pattern
of nonzero components, but the expressions for the e-
frame components are somewhat less lengthy than the
f -frame results given here, allowing us to easily write the
exact e-frame coefficients in a 3-vector notation (which
we do not do for the exact f -frame coefficients). The
advantage of the f -frame over the e-frame comes in the
post-Newtonian expansion, as we can see that several

components of ω
(f)
abc are shifted to higher orders in M/r

and a/r relative to those in ω
(e)
abc.

Further such simplifications for the PN expansion
can be achieved by using a third “Cartesian time-
aligned” tetrad ga

µ, which coincides with the “quasi-
isotropic” tetrad of [19]. It is obtained from fa

µ by a
spatial rotation—the rotation that takes the spherical-
coordinate triad (er, eθ, eφ) into the Cartesian triad
(ex, ey, ez) in flat space—,

ga
µ = Ra

bfb
µ, (7.6)
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with

(

Ra
b
)

=







1 0 0 0
0 sin θ cosφ cos θ cosφ − sinφ
0 sin θ sinφ cos θ sinφ cosφ
0 cos θ − sin θ 0






. (7.7)

We will find it most convenient to use the rotation coeffi-
cients ω

(g)
abc of the g-frame, but expressed in the f -frame:

ωabc ≡ Rd
aRe

bRf
c ω

(g)
def

= ω
(f)
abc − fa

µRdc∇µRd
b (7.8)

where the second line follows from fa
µ = Rb

agb
µ, (7.1),

and (7.1) with f → g. We find that the components of
our hybrid rotation coefficients ωabc are given by

ωa∗i =
1

2
ǫijkωajk = ω

(f)
a∗i +∆ωa∗i, (7.9)

ωa0i = ω
(f)
a0i, (7.10)

where

(∆ωa∗i) =

(

−1

2
ǫijkfa

µRbk∇µRb
j

)

(7.11)

=























−2Mar cos θ√
∆ΣΛ

2Mar sin θ√
∆ΣΛ

0

0 0 0

0 0 − 1√
Σ

− cot θ

√

Σ

Λ

√

Σ

Λ
0























.

B. Post-Newtonian expansion of the Hamiltonian

The above results for the rotation coefficients ωabc com-
plete the list of ingredients needed for an explicit ex-
pression of the canonical Hamiltonian defined by (5.17)
and (5.18). We recall that the Hamiltonian is given by
H = −Pt, where Pµ = (Pt, Pi) are the coordinate-basis
components of the canonical momentum Pa, which is re-
lated to the covariant momentum pa by

Pa − pa =
1

2
ωabcS

bc ≡ ha. (7.12)

The Hamiltonian H = −Pt is found by solving the mass
shell constraint (5.17), p2 = −M2 ⇒

µ2 = −P 2 (7.13)

= m2 − 2P aha + haha

+
1

4
RabcdS

abScd − (C − 1)E
(p)
ab s

asb +O(S3),

for Pt. A formal solution is given by (5.18) above, and
the solution explicitly expanded to quadratic order in the
test spin is given by (7.31) below.

The following subsections collect results for the Kerr-
spin and PN expansions of the rotation coefficients, the
spatial triad, and the metric coefficients, and for the test-
spin expansion of the Hamiltonian. The results of the PN
expansion are then presented and discussed in Sec. VIIC.

1. Expansion of the rotation coefficients

The components of the rotation coefficients are con-
veniently encoded in the vector ha of (7.12), which is
expressed via (7.9) as

ha =
1

2
ωabcS

bc = ωa∗iSi − ωa0iS0i. (7.14)

The results can be given in a 3-vector notation by ex-

pressing the components h0 and ~h = (hi) in terms of
~S = (Si) and ~S0 = (S0i). The only other 3-vectors that
will appear in these expressions are the radial unit vec-
tor ~n and the Kerr spin vector ~a of (6.27), and the only
other quantities involved are the Kerr mass M and the
Boyer-Lindquist radial coordinate r. We present the re-
sults here as an expansion in the Kerr spin a:

h0 = ha
0

0 + ha
1

0 + ha
2

0 + ha
3

0 +O(a4), (7.15)

~h = ~ha
0

+ ~ha
1

+ ~ha
2

+ ~ha
3

+O(a4). (7.16)

At O(a0) and O(a1), keeping all powers ofM/r, we have

ha
0

0 = − M

r2
√
w
~n · ~S0, (7.17)

~ha
0

=
1−√

w

r
~n× ~S, (7.18)

ha
1

0 =
M

r3

[

−3~n · ~a ~n · ~S +

(

3− 2√
w

)

~a · ~S
]

, (7.19)

~ha
1

= −3M

r3

[

~n · ~S0 ~n× ~a+ (~n · ~a× ~S0)~n
]

, (7.20)

where

w = 1− 2M

r
. (7.21)

At O(a2) and O(a3), expanding in M/r, we have

ha
2

0 = hLOa2

0 + hNLOa2

0 +O
(

M3a2S0

r6

)

, (7.22)

~ha
2

= ~hPLOa2

+ ~hLOa2

+ ~hNLOa2

+O
(

M3a2S

r6

)

,

with

~hPLOa2

=
1

2r3

[

~n · ~a ~a× ~S + ~n · ~a× ~S
(

~a− 4~n · ~a ~n
)]

,

hLOa2

0 =
M

2r4

[

− 4~n · ~a ~a · ~S0 (7.23)

+
(

−~a 2 + 11(~n · ~a)2
)

~n · ~S0

]

,
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~hLOa2

=
M

2r4

[

−
(

~a 2 + 3(~n · ~a)2
)

~n× ~S

+ 2
(

~a · ~S − 4~n · ~a ~n · ~S
)

~n× ~a
]

,

hNLOa2

0 =
M2

2r5

(

13~a 2 − 5(~n · ~a)2
)

~n · ~S0,

~hNLOa2

=
M2

4r5

[

− 3
(

~a 2 + (~n · ~a)2
)

~n× ~S

+ 14
(

− ~a · ~S + ~n · ~a ~n · ~S
)

~n× ~a
]

,

and

ha
3

0 = hLOa3

0 +O
(

M2a3S

r6

)

, (7.24)

~ha
3

= O
(

Ma3S0

r5

)

,

with

hLOa3

0 =
M

2r5
(~n · ~a)2

(

17~n · ~a ~n · ~S − 9~a · ~S
)

. (7.25)

2. Expansion of the spatial triad; coordinate-basis versus
frame components of the canonical momentum

While our expressions for the spin coupling terms
in (7.13) involve the spatial components Pi = P i of
the f -frame components P a = (P 0, P i) of the canon-
ical momentum, our true canonical variables are the
spatial components P i of the coordinate-basis com-
ponents Pµ = (Pt, P i) of the canonical momentum.
The two are related by Pi = fi

jPj, where fi
j =

diag
(

√

∆/Σ, 1/
√
Σ,

√
Σ/(

√
Λsin θ)

)

, from (6.24). Writ-

ing these two sets of components in 3-vector notation,
with (eflat)i

i =
(

diag(1, 1/r, 1/r sin θ)
)

i
i,

~P(f) = (Pi), ~P =
(

(eflat)i
iP i

)

(7.26)

(which are in two distinct spherical-like orthonor-
mal bases [(er, eθ, eφ)] which will now be identified
component-wise), the explicit relationship Pi = fi

jPj, ex-
panded in the Kerr spin but not in PN orders, is given
by

~P(f) = ~P − (1−
√
w)~n · ~P ~n (7.27)

+
1

2r2

[(

~a 2

√
w

+ (1 −
√
w)(~n · ~a)2

)

~n · ~P ~n

− (~n · ~a)2 ~P + (2− w)(~n · ~P × ~a)~n× ~a

]

+O(a4).

The translation needed to connect with the curvature
coupling results of Sec. VIB, where we denoted the spa-
tial f -frame components of the covariant momentum as

the 3-vector ~p = (pi), is simply ~p = ~P(f) + O(S), from
(7.12).

3. Expansion of the metric coefficients

The lapse N , shift N i, and inverse spatial metric γij of
(4.18) are given by

N =

√

∆Σ

Λ
=

√
w +

M

r3

(√
w(~n · ~a)2 + 2M~a 2

r
√
w

)

(7.28)

− M

r5
(~n · ~a)4 +O

(

M2a4

r6

)

+O(a6),

~N =
(

(eflat)
i
iN

i
)

= −2Mar2 sin θ

Λ
(δi3) (7.29)

=
2M

r2
~n× ~a

(

1− w(~n · ~a)2 + (2− w)~a 2

r2

)

+O(a5),

and

γijP iP j = PiPi = ~P(f) · ~P(f) (7.30)

= ~P · diag
(

∆/Σ, r2/Σ, r2Σ/Λ
)

· ~P

= ~P 2 − 2M

r
(~n · ~P )2

+
1

r2

(

~a 2(~n · ~P )2 − (~n · ~a)2 ~P 2 − (~n · ~P × ~a)2
)

+
2M

r3

(

(~n · ~a)2(~n · ~P )2 − (~n · ~P × ~a)2
)

+
1

r4

[

(~n · ~a)2
(

(~n · ~a)2 ~P 2 − ~a 2(~n · ~P )2
)

+
(

~a 2 + (~n · ~a)2
)

(~n · ~P × ~a)2
]

+O
(

Ma4

r5

)

+O(a6).

4. Expansion in powers of the test spin

The explicit expression of the Hamiltonian H = −Pt,
expanded to quadratic order in the test spin—in a gen-
eral spacetime, using the frame components of a gen-
eral tetrad obeying the time-aligning conditions—can be
found by perturbatively solving equation (7.13) for Pt,
using (7.12), (4.9), and (4.18). One finds

H = NQ−N iP i +
N

Q

[

− P̂ aĥa +
ĥaĥa
2

− (P̂ aĥa)
2

2Q2

+
ĥ0
Q
P̂ aĥa −

P̂ aωa0iS
ij

Q+m

(

ĥj −
PjP

kĥk
Q(Q+m)

)

+
1

8
RabcdS

abScd − C − 1

2
E

(P )
ab sasb

]

+O(S3),

(7.31)

where

P̂ a = (Q,P i), Q =
√

m2 + γijP iP j, (7.32)
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and where

ĥa = ωa∗iSi − ωa0iŜ0i, Ŝ0i =
ǫijkPjSk

Q+m
(7.33)

are the solutions for ha and S0i to linear order in the test
spin.

C. Results of the post-Newtonian expansion

Taking the results of Sec. VIB for the curvature cou-
plings in the f -frame, and the results of Secs. VII B 1-
VII B 3 for the expanded f -g-hybrid-frame rotation co-
efficients and spatial triad and the metric, and substi-
tuting them into (7.31) yields the explicit expression of

the Hamiltonian H(~z, ~P , ~S), where ~z = r~n, ~n = (δ1i ),
~P =

(

(eflat)i
iP i

)

, and ~S = (Si). It is in a form which
can be easily expanded in powers of the Kerr spin a and
then further expanded in PN orders, measured by the PN
parameter

ǫ ∼ M

r
∼ P 2

m2
∼ v2. (7.34)

Details of this procedure are provided in accompanying
Mathematica notebooks using the xTensor package [92],
available upon request.
We summarize the results in the following subsections,

going order by order in the Kerr spin SKerr = Ma and
the test spin S,

H = Hp.p. +Ha +HS (7.35)

+Ha2 +HaS +HS2

+Ha3 +Ha2S +HaS2 + {HS3}
+Ha4 +Ha3S +Ha2S2 + (HaS3) + (HS4)

+O(a, S)5.

For the first two lines, through spin-squared order, we
give explicit results for H to all powers in the PN pa-
rameter ǫ in Appendix D. Instead of giving explicit re-
sults for our H at third and fourth orders in the spin, we
give PN expanded results for a Hamiltonian H̄ which is
obtained from a canonical transformation of our H via a
generating function G(~z, ~P , ~S) according to

H̄ = H + {G, H}+ 1

2
{G, {G, H}}+ . . . (7.36)

The canonical transformation brings our Hamiltonian
into accord with the test-mass limits of PN results ob-
tained in harmonic coordinates, as detailed below.
Our test-spin-squared Hamiltonian does not allow us

to compute the contributions HS3 , HaS3 , and HS4 . How-
ever, one finds from the PN calculation of [57] that, at the
leading PN order (LO), for binary black holes (C = 1),

H̄LOaS3 = H̄LOa3S(M~a↔ ~S), (7.37)

H̄LOS4 = H̄LOa4(M~a↔ ~S), (7.38)

so that these results as well can be “deduced” from
our test-spin-squared Hamiltonian. (Note the correspon-
dence here with the EOB prescription of replacing the
Kerr spin with the sum of the two individual spins [19].)
At the leading PN orders, the true (finite-mass-ratio)
Hamiltonians at second and fourth orders in spin are
equal to their test-body limits, so that all of these con-
tributions for finite mass ratios (for binary black holes)
can be deduced from our Hamiltonian. The situation
for HS3 is different because, even at leading PN order,
the spin-cubed terms (like the linear-in-spin terms) have
contributions at zeroth and first orders in the mass ra-
tio m/M , only one set of which can be deduced from
our Hamiltonian by exchanging the bodies. However,
the complete finite-mass-ratio leading-PN-order results
at first and third orders in spin (with a restriction to
binary black holes for the third-order terms) can still
be deduced from the test-body limit, exploiting a body-
exchange symmetry (given an extension of the test-body
results to cubic order in the test-spin).

We now present the PN-expanded results for the test-

body Hamiltonian in a form in which the quantities ~P ,
~S, H̄ and G have each absorbed one factor of 1/m, which
removes all factors of m from the equations (i.e., we set
m = 1).

1. No spin

The Hamiltonian to zeroth order in a and S, the point-
particle Hamiltonian, is given to all PN orders by (D1).
Its expansion through 2PN, transformed with the contri-
bution

G1PN = −M~n · ~P (7.39)

to the generating function in (7.36), with no G2PN needed,
yields

H̄p.p. =
~P 2

2
− M

r
(7.40)

−
~P 4

8
− 3M ~P 2

2r
+
M2

2r2

+
~P 6

16
+

5M ~P 4

8r
+

5M2 ~P 2

2r2
− M3

4r3
+O(ǫ4),

which matches the test-body limit of Eqs. (4.23-4.25) of
Ref. [56] (and the original calculation in this gauge of
Eq. (63) of Ref. [93], after a Legendre transformation).
The 0PN terms in the first line get no mass-ratio correc-
tions in the true Hamiltonian, the 1PN terms in the sec-
ond line get corrections at linear order in the mass ratio,
the 2PN terms in the third line get corrections through
second order in the mass ratio, and so on.
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FIG. 2. Orders (relative to Newtonian order) of the PN-spin expansion through 4.5PN, counting ǫ ∼ v2 ∼ M/r ∼ a/r ∼ S/r
(ignoring the scalings with the mass ratio) for rapidly rotating bodies.

2. Linear in spin

The Hamiltonians at linear order in the spins are given
to all PN orders by (D3) and (D4). Their expansions
through next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO), subjected to the canonical
transformation (7.36) with

GNNLOS = −3M2

r2
~n · ~P ~n · ~P × ~S (7.41)

as the only new contribution (being added to G1PN), yield

H̄a =
M

r2
~n · ~P × ~a

[

2− 6M

r
+

12M2

r2
+O(ǫ3)

]

(7.42)

and

H̄S =
M

r2
~n · ~P × ~S

[

3

2
− 5 ~P 2

8
− 5M

r
(7.43)

+
7 ~P 4

16
+

21M ~P 2

8r
+

3M(~n · ~P )2
r

+
45M2

4r2
+O(ǫ3)

]

,

which match (e.g.) the test-body limits of Eqs. (4.26-
4.28) of Ref. [56]. The LO terms get corrections at linear
order in the mass ratio which can be deduced from the
test-body results via exchange of the bodies. The NLO
terms get corrections through second order in the mass
ratio, the NNLO terms get contributions through third
order in the mass ratio, and so on.

3. Quadratic in spin

The Hamiltonians at quadratic order in the spins are
given to all PN orders by (D5), (D6), and (D7). At the
leading PN order, with

GLOa2 =
1

2r
(~n× ~a) · (~P × ~a), (7.44)

and no other G’s, we have

H̄LOa2 =
M

2r3

(

3(~n · ~a)2 − ~a 2
)

, (7.45)

H̄LOaS =
M

r3

(

3 ~n · ~a ~n · ~S − ~a · ~S
)

, (7.46)

H̄LOS2 =
CM

2r3

(

3(~n · ~S)2 − ~S 2
)

, (7.47)

which match Eqs. (4.29, 31) of Ref. [56] with no mass
ratio corrections.
At the next-to-leading PN order, with

GNLOa2 =
M

4r2

[

~n · ~P
(

~a 2 + (~n · ~a)2
)

− 2~n · ~a ~P · ~a
]

,

GNLOaS =
M

r2

(

~P · ~a ~n · ~S − ~n · ~P ~a · ~S
)

,

GNLOS2 = −CM
r2

~n · ~S ~P · ~S, (7.48)

we find
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H̄NLOa2 =
M

r3

[(

−3 ~P 2

4
+

5M

2r

)

~a 2 +

(

9 ~P 2

4
− 9M

2r

)

(~n · ~a)2
]

, (7.49)

H̄NLOaS =
M

r3

[(

−5 ~P 2

2
+ 6(~n · ~P )2 + 7M

r

)

~a · ~S +

(

3 ~P 2

2
− 13M

r

)

~n · ~a ~n · ~S (7.50)

+
5

2
~P · ~a ~P · ~S − 3

2
~n · ~P

(

~n · ~a ~P · ~S + 4 ~P · ~a ~n · ~S
)

]

,

H̄NLOS2 =
M

r3

[

(

5

4
(1 − C)~P 2 +

3

8
(4C − 3)(~n · ~P )2 + (2C + 1)

M

r

)

~S 2 (7.51)

+

(

3

8
(6C − 7)~P 2 − (1 + 5C)

M

r

)

(~n · ~S)2 + 1

4
(2C − 5)(~P · ~S)2 + 3

4
(5 − 2C)~n · ~P ~n · ~S ~P · ~S

]

,

which match the test-body limits of Eqs. (4.30) and
(4.32) of Ref. [56].
At next-to-next-to-leading order, results for HNNLOaS

are available in Ref. [94], and we have found agreement
with the test-body limits of those results. These were
based on simultaneous calculations using different meth-
ods [95, 96]. However, those results are presented in a
different gauge from the other results presented here. De-
tails are available upon request. Results for HNNLOa2

and HNNLOS2 are available in principle from Ref. [97],
but those results are not yet sufficiently reduced to al-
low a comparison. The expressions of our untransformed
NNLO-spin-squared Hamiltonians are available upon re-
quest.

4. Cubic in spin

At third order in the spins, at leading PN order, with

GPLOa2S =
1

2r2
~n · ~a ~n · ~a× ~S, (7.52)

GLOa2S =
M

2r3
~n · ~a ~n · ~a× ~S, (7.53)

GLOaS2 = −3CM

r3
~n · ~S ~n · ~a× ~S, (7.54)

we find

H̄LOa3 =
M

r4

(

~a 2 − 5(~n · ~a)2
)

~n · ~P × ~a, (7.55)

H̄LOa2S =
9M

4r4

[(

~a 2 − 5(~n · ~a)2
)

~n · ~P × ~S − 2 ~n · ~a ~P · ~a× ~S
]

, (7.56)

H̄LOaS2 =
3CM

r4

[(

~S 2 − 5(~n · ~S)2
)

~n · ~P × ~a+ 2 ~n · ~S ~P · ~a× ~S
]

, (7.57)

+
3M

r4

[(

5 ~n · ~a ~n · ~S − ~a · ~S
)

~n · ~P × ~S + ~n · ~S ~P · ~a× ~S
]

,

which match the test-body limit of Eq. (3.10) of Ref. [57].
These, together with HLOS3 , receive corrections at lin-
ear order in the mass ratio. For binary black holes, all
but one term of these can be deduced from our Hamil-
tonian via body exchanges, with the final term requir-
ing a treatment of test-spin-cubed effects to be derived
from the test-body limit. Expressions for our untrans-
formed NLO-spin-cubed Hamiltonians are available upon

request.
5. Quartic in spin

At fourth order in the spins, at leading PN order, with

GLOa4 = − M

4r3
(~n · ~a)2 (~n× ~a) · (~P × ~a), (7.58)

and no other G’s, we find
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H̄LOa4 =
M

8r5
[

−3~a 4 + 30~a 2(~n · ~a)2 − 35(~n · ~a)4
]

, (7.59)

H̄LOa3S =
M

2r5

[

−3~a 2~a · ~S + 15(~n · ~a)2 ~a · ~S + 15~a 2 ~n · ~a ~n · ~S − 35(~n · ~a)3 ~n · ~S
]

, (7.60)

H̄LOa2S2 =
3CM

4r5

[

−~a 2~S 2 − 2(~a · ~S)2 + 5(~n · ~a)2~S 2 + 5~a 2(~n · ~S)2 + 20 ~n · ~a ~n · ~S ~a · ~S − 35(~n · ~a)2(~n · ~S)2
]

, (7.61)

which match the test-body limit of Eq. (4.4) of Ref. [57].
These, along with HLOaS3 and HLOS4 , receive no mass
ratio corrections, and the latter can be deduced from our
Hamiltonian via (7.37) and (7.38) for binary black holes.

VIII. DISCUSSION

In this paper, we derived a canonical Hamiltonian for
an extended test body in a curved background which is
valid to quadrupolar order in the multipole expansion
and includes spin-induced quadrupoles as well as all other
spin-squared effects. We employed a new approach that
avoids the Dirac brackets used in previous work and in-
stead enables working with an arbitrary spin supplemen-
tary condition at the level of a constrained action prin-
ciple. This method provides substantial simplifications
of previous calculations at the dipolar order and yields
novel results at quadrupolar order. We highlighted how a
change of the SSC, corresponding to a shift of the center-
of-mass worldline, which we treated in a manifestly co-
variant manner using bitensor calculus, entails transfor-
mations of the body’s multipole moments, and exhib-
ited the resulting modifications of the action. While our
analysis focused primarily on variables determined by the
Newton-Wigner SSC, we provided the explicit translation
into variables defined by other SSCs.

We constructed a general Hamiltonian in terms of
three-dimensional position, momentum, and spin vari-
ables with a canonical Poisson bracket structure to
quadratic order in the spin, given in Eqs. (1.1) and (1.2),
or (5.17) and (5.18). By specializing the above general re-
sults to the case where the background spacetime is Kerr,
we arrived at an explicit expression for the canonical
Hamiltonian of the relativistic spinning two-body prob-
lem in the test-body limit, valid to quadrupolar order in
the test body’s multipole expansion, given in Eq. (7.31)
for a general choice of tetrad whose timelike vector is
along the direction of the time coordinate.

Our results for the dynamics allow for fully generic
orbits and spin orientations, both of which have not been
considered before. We provided compact expressions for
curvature couplings valid for generic orbits in Eqs. (6.17-
6.20) in a general frame and provided explicit results for
two different choices of frame.

Expanding the Hamiltonian in powers of the Kerr spin
and in PN orders allowed us to make comparisons with

the test-body limits of the results of high-order PN cal-
culations. We found complete agreement with the test-
body limits of all available PN results and can obtain new
test-body results at higher PN orders. We also pointed
out how the complete finite-mass-ratio PN results for the
leading-PN-order spin couplings for binary black holes,
through fourth order in the spins, can all be inferred from
the results in the test-mass limit through an EOB-like
identification of variables.
While much of our analysis and many of our inter-

mediate results are fully covariant, our final result for
the Hamiltonian in Kerr depends on a choice of coordi-
nates and a choice of tetrad. We showed that expansion
of the Hamiltonian and comparison with PN results can
be relatively easily accomplished using Boyer-Lindquist
coordinates and the “quasi-isotropic” tetrad, though we
also explicitly related this tetrad to the tetrad used by
Carter which diagonalizes the electric and magnetic com-
ponents of the Weyl tensor. Other choices of coordinates
and tetrads are likely to yield other useful forms of the
Hamiltonian and can readily be used in the general ex-
pressions we provide for the Hamiltonian.
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Appendix A: Variation of the action

Here we show that the variation of the action (2.18)
for a generic SSC, S =

∫

ds L, with

L = pµż
µ +

1

2
SµνΩ

µν − χµSµν

(

pν
√

−p2
+ Λ0

ν

)

(A1)

− λ

2

(

p2 +M2(p, S, z)
)

,
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leads to the quadrupolar MPD equations (2.1, 2.2). This
also shows that the covariant-SSC action (2.5) yields the
MPD equations, as (2.5) is a special case of (2.18), when

the gauge field Λ0
µ is taken to be pµ/

√

−p2. See also
[58] for a related derivation.
The independent variables to be varied are pµ, Sµν ,

zµ, and ΛA
µ (along with the Lagrange multipliers λ and

χµ). The variations with respect to p and S are straight-
forward. Under pµ → pµ + δpµ and Sµν → Sµν + δSµν ,
the linear variations of the Lagrangian are

δpL =

[

żµ − λpµ − χαSαν
Pµν

√

−p2
− λ

2

∂M2

∂pµ

]

δpµ,

(A2)

δSL =
1

2

[

Ωµν − 2χ[µ

(

pν]
√

−p2
+ Λ0

ν]

)

− λ
∂M2

∂Sµν

]

δSµν .

To maintain its orthonormality, the body-fixed tetrad
ΛA

µ must be varied according to ΛA
µ → (δµν +δθν

µ)ΛA
ν ,

where δθµν is antisymmetric (giving an infinitesimal
Lorentz transformation). We find the linear variation

δΛL =

[

−1

2

DSµν

ds
+ Sρ[µΩν]

ρ + Λ0[µSν]ρχ
ρ

]

δθµν

+
D

ds

(

Sµνδθ
µν

2

)

. (A3)

Finally, one can vary with respect to the worldline by
letting z move to a nearby point z̃ specified by a devi-
ation vector ξµ at z, just as in Sec. III, while parallel-
transporting p, S, and Λ (and χ) along. The result for
the linear variation, using (3.5) and (3.11), is

δzL =

[

−Dpµ
ds

− 1

2
Rµναβ ż

νSαβ − λ

2

DM2

Dzµ
]

ξµ

+
D

ds
(pµξ

µ) , (A4)

where the derivative
D

Dzµ covariantly differentiates with

respect to z while parallel transporting p and S. It is
the “horizontal covariant derivative” of [17] (where it is
denoted ∇µ∗), and the covariant variation ∆ of DeWitt

[38, 98] (see the following appendix) is ∆ = ξµ
D

Dzµ . If

M2 depends on z only through the metric and the Rie-
mann tensor at z, then

DM2

Dzµ =
∂M2

∂Rνραβ
∇µRνραβ . (A5)

Stationarity of the action requires that all four quan-
tities in square brackets in (A2-A4) vanish. Using the
first three, one can eliminate Ωµν and χµ (needing only
to solve for the projection of Sµνχ

ν orthogonal to pµ),
finding

DSµν

ds
= 2p[µżν] − λ

(

p[µ
∂M2

∂pν]
+ 2S[µ

α
∂M2

∂Sν]α

)

, (A6)

and then (A4) and (A5) yield

Dpµ
ds

=
1

2
Rµναβ ż

νSαβ − λ

2

∂M2

∂Rνραβ
∇µRνραβ . (A7)

Contracting the δpL equation with pµ yields

λ =
pµż

µ

p2
. (A8)

We have assumed here that M2 depends on pµ
only through its direction pµ/

√

−p2, implying that
pµ∂M2/∂pµ = 0, which is true for (5.16). If we do not
assume this, it introducesO(S2) corrections in (A8). The
fact that M2 is a scalar implies that

p[µ
∂M2

∂pν]
+ 2S[µ

α
∂M2

∂Sν]α
+ 4R[µ

ραβ
∂M2

∂Rν]ραβ
= 0. (A9)

Finally, with the identification

Jµναβ =
3pρż

ρ

p2
∂M2

∂Rµναβ
, (A10)

which is as in (2.21), we see that (A6-A10) yield the
quadrupolar MPD equations (2.1, 2.2).
One may also refer to the derivation in Ref. [38], where

a rather generic action for spinning bodies is considered.
In order to meet the requirements from [38], one must
rewrite the Lagrange multipliers in the corotating frame
as ξµ = ξAλA

µ. Then [38] shows that (A1) leads to the
MPD equations.

Appendix B: Worldline shift from a covariant
variation

It is important to formulate a shift of the position in
a manifestly covariant manner, e.g., using bitensors as in
Sec. III. As a check, we rederive this shift using a mani-
festly covariant variation symbol ∆, defined in the previ-
ous section, which was used in Refs. [38, 98] for obtaining
the equations of motion. It reads explicitly

∆ = δ + Γµ
ναξ

αGν
µ, (B1)

where Gν
µ is a linear operator which rearranges space-

time indices such that the covariant derivative ∇α can
we written in the abstract form ∇α := ∂α+Γµ

ναG
ν
µ. It

holds

δzµ ≡ ξµ, (B2)

which makes it manifest that δzµ it a tangent vector and
not a coordinate difference. This is important when one
considers finite worldline shifts.
We require the particle’s properties to be parallel

transported along the geodesic connecting the two world-
lines by setting

∆ξµ = 0, ∆pµ = 0, (B3)
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∆Sµν = 0, ∆ΛA
µ = 0. (B4)

This implies that the component values of the worldline
quantities are actually transformed. However, since ge-
ometrically this is just a parallel transport, we refrain
from denoting this change by a tilde on the indices in
this section. Notice that ∆ξµ = 0 is just a restatement
of the geodesic equation for the worldline shift ξµ.
Since the action is a scalar, the ordinary variation δ

and the covariant one ∆ can be used interchangeably,

S[zµ] =
∑

n

δnS
n!

=
∑

n

∆nS
n!

≡ e∆S, (B5)

where on the right hand side S is given by (2.13). Only
the functional form of S is important here, so that we
ignore the bars and tildes on the variables for now. For
the present paper the series stops at second order in ξµ.
Useful formulas for the variation can be found in [38], for
instance

∆uµ =
Dξµ

dσ
, (B6)

[∆, D] = Rµ
ναβξ

αdzβGν
µ, (B7)

∆Ωµν = Rµν
αβu

αξβ . (B8)

An application to the terms in (2.13) leads to

∆(pµż
µ) = −Dpµ

ds
ξµ +

D(pµξ
µ)

ds
, (B9)

∆2 (pµż
µ) = −Rγ

µβαż
βpγξ

αξµ, (B10)

∆

(

1

2
SµνΩ

µν

)

=
1

2
SµνR

µν
βαξ

αżβ, (B11)

∆

(

Sµνpν
p2

Dpµ
dσ

)

= Rγ
νβαż

βpγ
Sνµpµ
p2

ξα. (B12)

After this shift was performed, one can again redefine
the linear momentum pµ → pµ + δpµ. This reproduces
(3.12), which completes the check of the worldline shift.
It should be stressed again that this shift represents just a
simultaneous transformation of all dynamical variables,
understood as components, at the level of the action.
However, interpreted in geometric terms, the change of
components is just a parallel transport and the dynamical
variables as geometric objects remain invariant.

Appendix C: Rotation coefficients for the
curvature-aligned frame

The components of the Ricci rotation coefficients for
the curvature-aligned tetrad ea

µ (6.5), as in (7.1) and
(7.2) with f → e, are given by

(

ω
(e)
a∗i

)

=

√
∆

Σ3/2







ā1 ā2 0
0 0 −ā1ā2/r
0 0 r
w3r −r 0






, (C1)

(C2)

(

ω
(e)
a0i

)

=

√
∆

Σ3/2







w0r − ā22/r ā1ā2/r 0
0 0 ā2
0 0 ā1
ā2 −ā1 0






, (C3)

where we have defined

w0 =
M

r∆

(

r2 − a2 cos2 θ
)

,

w3 =
̟2

r
√
∆

cot θ,

ā1 = a cos θ,

ā2 = − r√
∆
a sin θ.

We can express these in a 3-vector notation by forming
the 4-vector

h(e)a = ω
(e)
a∗iSi − ω

(e)
a0iS0i, (C4)

as in (7.14), and defining the 3-vectors

~̄a =





ā1
ā2
0



 , ~r = r~n =





r
0
0



 , ~w =





0
0
w3



 ,

(C5)

along with ~S = (Si) and ~S0 = (S0i), in the e-frame. We
find

h
(e)
0 =

√
∆

Σ3/2

[

−w0 ~r · ~S0 + ~̄a · ~S − 1

r
(~n× ~̄a) · (~̄a× ~S0)

]

,

~h(e) =

√
∆

Σ3/2

[

− ~r × ~S + ~r · ~S ~w + ~̄a× ~S0 (C6)

+ 2(~̄a · ~n× ~S0)~n+
1

r
~n · ~̄a (~̄a · ~n× ~S)~n

]

,

from which, via (C4), we can read off the components of
the rotation coefficients.

Appendix D: Hamiltonians through quadratic order
in the spins to all PN orders

We present here the (untransformed) Hamiltonians
through quadratic order in the test spin S and the Kerr
spin SKerr = Ma, obtained as described at the begin-
ning of Sec. VIIC, to all orders in the PN parameter
ǫ ∼ P 2/m2 ∼M/r. We retain here all factors of m.
At zeroth order in both spins, the point-particle Hamil-

tonian is given by

Hp.p. =
√
wQ̂, (D1)

where w = 1− 2M/r as in (7.21), and

Q̂ =

√

m2 + ~P 2 − 2M

r
(~n · ~P )2, (D2)
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which is the Q of (7.32) with a→ 0.

The linear-in-spin Hamiltonians are

Ha =
2M

r2
~n · ~P × ~a, (D3)

and

HS =

(

M

r2(Q̂ +m)
+

√
w − w

rQ̂

)

~n · ~P × ~S. (D4)

At quadratic order in the spins, we have

Ha2 =
1

√
wQ̂r2

{

~a 2

[

−
~P 2

2

(

1− 8M2

r2

)

+
(~n · ~P )2

2

(

w(3 − w)− 8M3

r3

)

+
2m2M2

r2

]

(D5)

+ (~n · ~a)2wM
r

[

m2 + 2 ~P 2 + w(~n · ~P )2
]

+

[

1

2
(~P · ~a)2 − ~n · ~P ~n · ~a ~P · ~a

](

1− 4M2

r2

)}

,

HaS =
M

r3

{

~a · ~S
[

2− 3
√
w

(

1 +
~P 2 − (1 + w)(~n · ~P )2

Q̂(Q̂ +m)

)]

(D6)

+ 3
√
w ~n · ~a ~n · ~S

[

1 +
~P 2 +

√
w(1−√

w)(~n · ~P )2
Q̂(Q̂+m)

]

+
3
√
w

Q̂(Q̂+m)

[

~P · ~a ~P · ~S − ~n · ~P ~n · ~a ~P · ~S − (1 +
√
w)~n · ~P ~P · ~a ~n · ~S

]

}

,

and

HS2 =

√
wM

2Q̂r3

[

~S 2k1(~z, ~P ) + (~n · ~S)2k2(~z, ~P ) +
(~P · ~S)2
m2

k3(~z, ~P ) +
~n · ~P ~n · ~S ~P · ~S

m2
k4(~z, ~P )

]

, (D7)

where

k1 = −C +
~P 2

m2

(

3(1− C)− 2m2

(Q̂+m)2

)

+
(~n · ~P )2
(Q̂+m)2

(

3C − 1 + w + 3(C − 1)
Q̂(Q̂ + 2m)

m2

)

, (D8)

k2 =
3CQ̂2

m2
+

3 ~P 2

m2

(

C +
~P 2 − Q̂(3Q̂+ 4m)

(Q̂+m)2

)

+ 3(1−
√
w)2(1 + 2

√
w + Cw)

(~n · ~P )4

m2(Q̂+m)2

+
(~n · ~P )2

(Q̂ +m)2

(

−(1−
√
w)2 + 6(w − 1)

~P 2

m2
+ 6(1−

√
w)(1 + C

√
w)
Q̂(Q̂ +m)

m2

)

,

k3 = 3(C − 1)

(

1 + w
(~n · ~P )2

(Q̂ +m)2

)

+
2m2

(Q̂+m)2
,

k4 = 6(1− C)
(1 +

√
w)Q̂2 + (2 +

√
w)mQ̂

(Q̂+m)2
− 2(3C − 1 +

√
w)

m2

(Q̂ +m)2
+ 6(1− C)(1 −

√
w)w

(~n · ~P )2

(Q̂+m)2
.
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ringdown waveforms of spinning, precessing black-hole
binaries in the effective-one-body formalism,” Physical
Review D 89, 084006 (2014).

[24] Enrico Barausse, Étienne Racine, and Alessandra
Buonanno, “Hamiltonian of a spinning test-particle in
curved spacetime,” Phys. Rev. D 80, 104025 (2009),
arXiv:0907.4745 [gr-qc].

[25] T. Damour, “Coalescence of two spinning black holes: An
effective one-body approach,” Phys. Rev. D 64, 124013
(2001), gr-qc/0103018.

[26] T. Damour, P. Jaranowski, and G. Schäfer, “Effective
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[44] Oldřich Semerák, “Spinning particles in vacuum space-
times of different curvature types: Natural reference
tetrads, and massless particles,” Phys. Rev. D92, 124036
(2015), arXiv:1512.06253 [gr-qc].

[45] Brandon Carter, “Global structure of the kerr family of
gravitational fields,” Phys. Rev. 174, 1559–1571 (1968).

[46] R. L. Znajek, “Black hole electrodynamics and the Carter
tetrad,” Mon. Not. R. Astron. Soc. 179, 457–472 (1977).
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[71] É. É. Flanagan, D. A. Nichols, L. C. Stein, and J. Vines,
“Prescriptions for measuring and transporting local an-
gular momenta in general relativity,” ArXiv e-prints
(2016), arXiv:1602.01847 [gr-qc].

[72] Ian Bailey and Werner Israel, “Relativistic dynamics of
extended bodies and polarized media: An eccentric ap-
proach,” Ann. Phys. (N.Y.) 130, 188–214 (1980).

[73] J. Vines, “Geodesic deviation at higher orders via covari-
ant bitensors,” General Relativity and Gravitation 47,
59 (2015), arXiv:1407.6992 [gr-qc].

[74] R Schattner and M Trumper, “World vectors, jacobi vec-
tors and jacobi one-forms on a manifold with a linear
symmetric connection,” Journal of Physics A: Mathemat-
ical and General 14, 2345 (1981).

[75] Ernesto Corinaldesi and Achille Papapetrou, “Spinning
test-particles in general relativity. II,” Proc. R. Soc. A
209, 259–268 (1951).

[76] C. Møller, “Sur la dynamique des systèmes ayant un
moment angulaire interne,” Ann. Inst. H. Poincaré 11,
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