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In this work we present some new results which we have obtained in a study of the phase diagram
of charged compact boson stars in the theory involving massive complex scalar fields coupled to
the U(1) gauge field and gravity in a conical potential in the presence of a cosmological constant Λ
which we treat as a free parameter taking positive and negative values and thereby allowing us to
study the theory in the de Sitter and Anti de Sitter spaces respectively. In our studies, we obtain
four bifurcation points (possibility of more bifurcation points being not ruled out) in the de Sitter
region. We present a detailed discussion of the various regions in our phase diagram with respect to
four bifurcation points. Our theory is seen to have rich physics in a particular domain for positive
values of Λ which is consistent with the accelerated expansion of the universe.

Introduced long ago [1–3], boson stars represent local-
ized self-gravitating solutions studied vary widely in the
literature [4–23]. Such theories are being considered in
the presence of positive [14–16] as well as negative [17–
20] values of the cosmological constant Λ. The theories
with positive values of Λ (corresponding to the de Sit-
ter (dS) space) are relevant from observational point of
view as they describe a more realistic description of the
compact stars in the universe since all the observations
seem to indicate the existence of a positive cosmological
constant. Such theories are also being used to model the
dark energy of the universe. However, the theories with
negative values of Λ (corresponding to the Anti de Sitter
(AdS) space) are meaningful in the context of AdS/CFT
correspondence [24–26].
In fact, cosmological constant, the value of the energy

density of the vacuum of space is the simplest form of
dark energy and it provides a good fit to many cosmo-
logical observations. A positive vacuum energy density
resulting from a positive cosmological constant (imply-
ing a negative) pressure gives an accelerated expansion
of the universe consistent with the observations. Our
theory is seen to have rich physics in a particular domain
for positive values of Λ.
In a recent paper [15], we have studied the boson stars

and boson shells in a theory of complex scalar field cou-
pled to U(1) gauge field Aµ and the gravity in the pres-
ence of a fixed positive cosmological constant Λ (i.e. in
the de Sitter space). In the present work we study this
theory of complex scalar field coupled to U(1) gauge
field Aµ and the gravity in the presence of a potential:
V (|Φ|) := (m2|φ|2+λ|φ|) (with m and λ are constant pa-
rameters) and a cosmological constant Λ which we treat
as a free parameter and which takes positive as well as
negative values and thereby allowing us to study the the-
ory in the dS as well as in the AdS space. We investigate
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the properties of the solutions of this theory and deter-
mine their domains of existence for some specific values
of the parameters of the theory. Similar solutions have
also been obtained by Kleihaus, Kunz, Laemmerzahl and
List, in a V-shaped scalar potential.
We construct the boson star solutions of this theory nu-

merically and we study their properties. In our studies
we investigate in details the phase diagram of the theory
for the scalar and the vector fields. In our studies we
obtain four bifurcation points (possibility of more bifur-
cation points being not ruled out) in the dS region. We
present a detailed discussion of the various regions in our
phase diagram with respect to three bifurcation points.
We study the theory defined by the action:

S =

∫
[

R− 2Λ

16πG
+ LM

]√−g d4 x

LM = −1

4
FµνFµν − (DµΦ)

∗ (DµΦ)− V (|Φ|)
DµΦ = (∂µΦ+ ieAµΦ) , Fµν = (∂µAν − ∂νAµ) (1)

Here R is the Ricci curvature scalar, G is Newton’s Grav-
itational constant and Λ is cosmological constant. Also,
g = det(gµν) where gµν is the metric tensor and the aster-
isk in the above equation denotes complex conjugation.
Using the variational principle, equations of motion are
obtained as:

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν − Λgµν

∂µ
(√−gFµν

)

= −i e
√−g [Φ∗(DνΦ)− Φ(DνΦ)∗]

Dµ

(√−gDµΦ
)

= 2m2
√−gΦ+

λ

2

√−g
Φ

|Φ|
[

Dµ

(√−gDµΦ
)]∗

= 2m2
√−gΦ∗ +

λ

2

√−g
Φ∗

|Φ| (2)

The energy-momentum tensor Tµν is given by ,

Tµν =

[

(FµαFνβ gαβ − 1

4
gµνFαβF

αβ)

+(DµΦ)
∗(DνΦ) + (DµΦ)(DνΦ)

∗

−gµν ((DαΦ)
∗(DβΦ)) g

αβ − gµν V (|Φ|)
]

(3)
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To construct spherically symmetric solutions we
adopt the static spherically symmetric metric with
Schwarzschild like coordinates:

ds2 =

[

−A2Ndt2+N−1dr2+r2(dθ2+sin2 θ dφ2)

]

(4)

This leads to the components of Einstein tensor (Gµν)

Gt
t =

[− [r (1−N)]
′

r2

]

, Gr
r =

[

2rA′N −A [r (1−N)]
′

A r2

]

Gθ
θ =

[

2r [rA′ N ]
′
+
[

A r2N ′
]′

2A r2

]

= Gϕ
ϕ (5)

Here the arguments of the functions A(r) and N(r)
have been suppressed. For solutions with vanishing mag-
netic field, the Ansätze for the matter fields have the
form:

Φ(xµ) = φ(r)eiωt , Aµ(x
µ)dxµ = At(r)dt (6)

We redefine φ(r) and At(r) as:

h(r) = (
√
2 e φ(r))/m , b(r) = (ω + eAt(r))/m (7)

We introduce new dimensionless constant parameters:

α =
4πGm2

e2
, λ̃ =

λ e√
2 m3

, Λ̃ =
Λ

m2
(8)

Introducing a dimensionless coordinate r̂ defined by r̂ =
mr (implying d

dr
= m d

dr̂
), Eq. (7) reads as:

h(r̂) = (
√
2 e φ(r̂))/m , b(r̂) = (ω + eAt(r̂))/m (9)

Equations of motion in terms of h(r̂) and b(r̂) (where
the primes denote differentiation with respect to r̂ and
sign(h) denotes the usual signature function) read:

(

ANr̂2h′
)′

=
r̂2

AN

[

A2N(h+ λ̃ sign(h))− b2h
]

(10)

[(

r̂2 b′
)

/A
]′
=

[(

r̂2h2b
)

/(A N)
]

(11)

We obtain:

h′′ =

[

α r̂h′

A2N

(

A2h2 + 2A2hλ̃+ b′2
)

−
h′

(

1 +N − Λ̃r̂2
)

r̂N
+

A2Nh+A2Nλ̃ sign(h)− b2h

A2N2

]

(12a)

b′′ =

[

α

A2N2
r̂b′

(

A2N2h′2 + b2h2
)

− 2b′

r̂
+

bh2

N

]

, A′ =

[

αr̂

AN2

(

A2N2h′2 + b2h2
)

]

(12b)

N ′ =

[

1−N − Λ̃r̂2

r̂
− αr̂

A2N

(

A2N2h′2 +Nb′2 + b2h2 +A2Nh2 + 2A2Nhλ̃

)]

(12c)

For the metric function A(r̂) we choose the boundary
condition A(r̂o) = 1 where r̂o is the outer radius of the
star. For constructing globally regular ball-like boson
star solutions, we choose:

N(0) = 1 , b′(0) = 0 ,

h′(0) = 0 , h(r̂o) = 0 , h′(r̂o) = 0 (13)

For the positive and negative Λ̃ we match in the exte-
rior region r̂ > r̂o, the Reissner-Nordström de Sitter and
Reissner-Nordström Anti de Sitter solutions respectively.
The conserved Noether current is given by:

jµ = −i e [Φ(DµΦ)∗ − Φ∗(DµΦ)] , Dµ j
µ = 0 (14)

The charge Q of the boson star is given by

Q = − 1

4π

∫ r̂o

0

jt
√−g dr dθ dφ , jt = − h2(r̂)b(r̂)

A2(r̂)N(r̂)

For all the gravitating solutions we obtain the mass

parameter M (in the units employed):

M =

(

1−N(r̂o) +
αQ2

r̂2o
− Λ̃

3
r̂2o

)

r̂o
2

(15)

We now study the numerical solutions of Eqs. (12a)-
(12c) with the boundary conditions defined by A(r̂o) = 1
and Eq. (13) and determine their domain of existence for
some specific values of the parameters of the theory. Our
theory has three parameters α, λ̃ and Λ̃ and we study
the theory for different values of Λ̃ giving it positive as
well as negative values, keeping α and λ̃ fixed (namely,

α = 0.2 and λ̃ = 1.0) and we discuss the corresponding
physics as it is observed in our phase diagram.
We study the phase diagram of the theory involving

the vector and scalar fields at the center of the boson
star for the different values of the cosmological constant
Λ̃. We observe some interesting phenomena near some
specific values of Λ̃ where the system is seen to have bi-
furcation points B1 , B2 , B3 and B4 which correspond
to four different values of the cosmological constant Λ̃:
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FIG. 1. (color online) Fig. (a) depicts the phase diagram of
the theory for the vector field at the center of the star b(0)
and the scalar field at the center of the star h(0) for different

values of the cosmological constant Λ̃ in the range Λ̃ = −2.000
to Λ̃ = +1.000. The points B1, B2, B3 and B4 represent the
four bifurcation points. The entire region depicted in the
phase diagram in Fig. (a) is divided into four regions IA,
IB and IIA, IIB in the vicinity of B1. The region IIB of the
phase diagram shown in Fig. (a) is separately depicted in
details in Fig. (b). The region IIB of the phase diagram
is subdivided into three regions IIB1, IIB2 and IIB3 in the
vicinity of B2. The region IIB3 is further subdivided into the
regions IIB3a, IIB3b and IIB3c in the vicinity of B3. Similarly
the region IIB3c is subdivided in to the regions IIB3c1, IIB3c2
and IIB3c3 in the vicinity of B4. The asterisks shown in Fig.
(a), corresponding to h(0) = 0, represent the transition points
from the boson stars to the boson shells. The Figure shown
in the inset in Fig. (b) represents a part of the phase diagram
with better precision.
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FIG. 2. (color online) Fig.(a) shows a plot of the vector field
at the center of the star b(0) versus the radius r̂o of the boson
star. The point B1 corresponds to the bifurcation point and
the entire region depicted in Fig. (a) is divided into four
regions IA, IB and IIA, IIB in the vicinity of B1. The region
IIB shown in Fig. (a) is separately depicted in details in Fig.
(b). The asterisks shown in Fig. (a) represent the transition
points from the boson stars to the boson shells. The spiral
behavior of the solutions is visible in the regions IA and IIB.
The Figure shown in the inset in Fig. (b) represents a part
of the region IIB with better precision.

Λ̃c1 ≃ 0.22521, Λ̃c2 ≃ 0.52605 , Λ̃c3 ≃ 0.54076 and

Λ̃c4 ≃ 0.541250 respectively (the possibility of some more
bifurcation points not being ruled out). The theory is

seen to have rich physics in the domain Λ̃ = +0.500 to
Λ̃ ≃ +0.62.

For a meaningful discussion, we divide our phase dia-
gram into four regions denoted by IA, IB, IIA and IIB in
the vicinity of B1 (as seen in Fig. 1(a) ). The asterisks
seen in Fig. 1(a) coinciding with the axis b(0) (i.e. cor-
responding to h(0) = 0), represent the transition points
from the boson stars to boson shells.

The regions IA, IB and IIA do not have any bifurca-
tion points, however, the region IIB is seen to contain
rich physics evidenced by the occurrence of more bifur-
cation points in this region. For better details, the region
IIB is also plotted in Fig. 1(b) .This region IIB is fur-
ther divided into the regions IIB1, IIB2 and IIB3 in the
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vicinity of B2 as seen in Fig. 1(b).
The region IIB3 is seen to have further bifurcation

point B3. In the vicinity of B3 we further subdivide the
phase diagram into the regions IIB3a, IIB3b and IIB3c as
seen in Fig. 1(b). The region IIB3b is seen to have closed
loops and the behavior of the phase diagram in this re-
gion is akin to that of the region IIB2. Also the Figure
shown in the inset in Figs. 1(b) and 1(c) represents a
part of the phase diagram with better precision.
The region IIB3c is again seen to have further bifurca-

tion point B4, and in the vicinity of B4, we again subdi-
vide the phase diagram in to the regions IIB3c1, IIB3c2
and IIB3c3 as seen in Fig. 1(b) ( and in Fig. 1(b)). The
region IIB3c2 is again seen to have closed loops and the
behavior of the phase diagram in this region is akin to
that of the regions IIB2 and IIB3b. On the other hand,
the region IIB3c3 could in principle contain further bi-
furcation points and the behavior of the phase diagram
in this region is akin to that of the region IIB1, IIB3a
and IIB3c1.
The regions IA and IB could be divided into two sub-

regions corresponding to positive and negative values of
Λ̃, implying the dS and AdS regions corresponding to
positive and negative values of Λ̃. In the region IA, as we
change the value of Λ̃ in the AdS region from Λ̃ = 0.000
to Λ̃ = −2.000 , we observe a continuous deformation of
the curves in the phase diagram. In the region IB, as
we change the value of Λ̃ in the domain Λ̃ = 0.000 to
Λ̃ ≃ −0.02 the theory is seen to have solutions for the
boson stars only, without having transition points from
boson stars to boson shells and the curves corresponding
to the solutions disappear in the phase diagram of the
theory for the values Λ̃ . −0.02 .

As we change the value of Λ̃ in the dS region from
Λ̃ = 0.000 to Λ̃ = 1.000 , we observe a lot of new rich
physics. While going from Λ̃ = 0.000 to some critical
value Λ̃ = Λ̃c1 , we observe that the solutions exist in
two separate domains IA and IB ( as seen in Fig. 1(a)).

However, as we increase Λ̃ beyond Λ̃ = Λ̃c1 the solutions
of the theory are seen to exist in the regions IIA and IIB
(instead of the regions IA and IB).

As we increase the value of Λ̃ from one critical value
Λ̃ = Λ̃c1 to another critical value Λ̃ = Λ̃c2 , we notice that
the region IIA in the phase diagram shows a continuous
deformation of the curves and the region IIB is seen to
have its own rich physics as explained in the foregoing.
As we increase Λ̃ beyond Λ̃c2 , we observe that in the

region IIA there is again a continuous deformation of the
curves all the way up to Λ̃ = 1.000. However in the re-
gion IIB, we encounter another bifurcation point which
divides the region IIB in to IIB1, IIB2 and IIB3. We ob-
serve that in the region IIB1 there is a continuous defor-
mation of the curves and the region IIB2 contains closed
loops of the curves. The region IIB3 is subdivided into
the regions IIB3a, IIB3b and IIB3c. The region IIB3a
would have a continuous deformation of the curves and
the region IIB3b is seen to contain closed loops. The re-
gion IIB3c (subdivided into the regions IIB3c1, IIB3c2

and IIB3c3) has its own rich physics as depicted in Figs.
1(b) and 1(c) as discussed in details in the foregoing. The
region IIB3c3 has its own rich physics in the sense that
this region, could in principle, have further bifurcation
points.

A plot of the vector field at the center of the star b(0)
versus the radius r̂o of the boson star is depicted in Fig.
2(a). As before, the point B1 corresponds to the bifurca-
tion point and the entire region depicted in Fig. 2(a) is
divided into four regions IA, IB and IIA, IIB in the vicin-
ity of the bifurcation point B1. The region IIB shown in
Fig. 2(a) is separately depicted in details in Fig. 2(b).
The asterisks shown in Fig. 2(a) represent the transition
points from the boson stars to the boson shells. The spi-
ral behavior of the solutions is visible in the regions IA
and IIB. The Figure shown in the inset in Fig. 2(b) rep-
resents a part of the region IIB with a better precision.

In conclusion, we have studied in this work a theory of
massive complex scalar field coupled to the U(1) gauge
field and the gravity with a conical potential in the pres-
ence of a cosmological constant Λ which takes positive
as well as negative values. The theory is seen to have
rich physics in the domain Λ̃ = 0.5 to Λ̃ ≃ 0.62. Four
bifurcation points B1, B2, B3 and B4 have been ob-
tained in the phase diagram and the physical behavior of
the phase diagram has been discussed in the various re-
gions of the phase diagram. We have observed interesting
physics near the four bifurcation points which correspond
to the positive values of Λ̃.

Towards the end we make some interesting observa-
tions on our studies. Our theory has three free parame-
ters. If we fix any two of them at some appropriate values
and vary the third carefully then we notice that the bi-
furcation phenomenon occurs, suggesting that the bifur-
cation phenomenon seems to be generic. In the present
studies we have fixed α = 0.2 and λ̃ = 1.0 and have stud-
ied the theory by varying the value of Λ̃ from −2.0 to 1.0
in the phase diagram.

We wish to emphasize that in particular, if we for ex-
ample, fix Λ̃ = 0.541 , α = 0.2 and λ̃ = 1.0 then we obtain
closed loops in the phase diagram and if we vary any one
of the parameters keeing the other two parameters fixed
then we obtain bifurcation points between these closed
loops as seen in Fig. 1(b) for the variation of Λ̃.

The results of our preliminary investigations suggest
that in particular, if we fix Λ̃ = 0 and α = 0.2 and vary λ̃
carefully then we notice the bifurcation phenomenon in
an analogous manner with our present studies. Following
the same logic, if we fix Λ̃ and λ̃ appropriately and vary
α carefully then we again expect to obtain a bifurcation
phenomenon. These investigations are currently in the
process and the detailed results would be reported later
in a separate communication. Nevertheless we feel that
the occurence of the bifurcation phenomenon should be
a generic feature of the theory.
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