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Cosmic inflation is commonly assumed to be driven by quantum fields. Quantum mechanics
predicts phenomena such as quantum fluctuations and tunneling of the field. Here we show an
example of a quantum interference effect which goes beyond the semi-classical treatment and which
may be of relevance in the early universe. We study the quantum coherent dynamics for a tilted,
periodic potential, which results in genuine quantum oscillations of the inflaton field, analogous to
Bloch oscillations in condensed matter and atomic systems. The underlying quantum superpositions
are typically very fragile, but may persist in the early universe giving rise to quantum interference
phenomena in cosmology.
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It is commonly assumed that the universe underwent
inflation, an early epoch of rapid expansion [1–4]. Infla-
tion successfully explains a number of cosmological ob-
servations, such as the near homogeneity and isotropy of
the universe. In addition, quantum fluctuations during
inflation are assumed to have seeded the observed large-
scale inhomogeneities in the matter distribution. There
is currently much interest in identifying other observable
signatures of genuine quantum effects in cosmology [5–
8]. Here we treat the inflaton field quantum mechanically
and study its quantum dynamics. Due to quantum inter-
ference phenomena, the dynamics can significantly differ
from the semi-classical predictions, with possible conse-
quences for observations.

In the simplest model of inflation a single scalar field is
responsible for the rapid expansion of the universe. Here
we briefly review the main results [9, 10]. The classical
action for the scalar field Φ with a potential V (Φ) and
gravity is

S =

∫

d4x
√

|g|

(

m2
P

2
R−

1

2
gµν∇µΦ∇νΦ− V (Φ)

)

, (1)

where R is the Ricci-scalar, g the determinant of the met-
ric and mP = (8πG)−1/2 is the reduced Planck-mass (we
use units with ~ = c = 1 throughout the manuscript).
The homogeneous and isotropic solution for the gravita-
tional field is the FRW-metric, given by

ds2 = −dt2 + a(t)2
(

dr2 + r2dθ2 + r2sin2θdφ2
)

, (2)

where for simplicity a spatially flat universe was assumed.
Defining H = ȧ/a, where the dot denotes differentiation
with respect to the time coordinate t, the Einstein equa-
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tions for a homogeneous field Φ(x, t) = Φ(t) yield

H2 =
1

3m2
P

(

1

2
Φ̇2 + V (Φ)

)

Ḣ = −
1

2m2
P

Φ̇2

(3)

The Klein-Gordon equation on the above metric becomes

Φ̈ + 3HΦ̇ + V ′(Φ) = 0, (4)

where the prime denotes differentiation with respect to
Φ. The Hubble parameter H , characterizing the expan-
sion of the universe, depends on the field Φ and its po-
tential V (Φ). These cause the scale factor a(t) to grow
exponentially during most of the inflationary period. To-
wards the end of inflation the potential energy is reduced,
the “friction” term 3HΦ̇ in eq. (4) can become negligible
and the field oscillates inside the potential V (Φ). As the
expansion ends, reheating starts and the field decays into
other particles. This can be approximately captured by
an additional effective damping term ΓΦ̇ in the equation
of motion (4).
The equations of motion are analogous to the descrip-

tion of a particle in a potential. Despite the use of a
quantum field in the model, the description so far was
completely classical. In the usual treatment, inhomoge-
neous perturbations to the field, δΦ(x, t), are considered
in the linearized regime and quantized. These pertur-
bations, which are interpreted to arise due to vacuum
fluctuations, become squeezed due to inflation and decay
into the matter distribution we see today. But the homo-
geneous field contribution is usually assumed to remain
classical.
Here we consider the quantum dynamics of the homo-

geneous inflaton field. To this end, we consider the equa-
tion of motion (4) for the quantized homogeneous field Φ̂
and study the resulting quantum dynamics. We consider

standard quantization with
[

Φ̂(x), π̂(y)
]

= i~δ(x − y),

where π̂ is the conjugate momentum field operator. In
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the usual, semi-classical treatment, the field has always
a specific well-defined value, say Φ1. In this treat-
ment, quantum tunnelling can transform the field from
one well-defined value to another, Φ1 → Φ2 [11]. The
system can probabilistically “penetrate” a classical bar-
rier, but it materializes with a classically well defined
value afterwards. However, quantum mechanically the
field can be in a superposition of different amplitudes,
|Φ1〉 + |Φ2〉, which is not captured by a semi-classical
treatment. Until a measurement is performed, or de-
coherence occurs, superpositions of different amplitudes
are physically valid solutions. Usually, such states are
fragile and would quickly decohere, as for example in
condensed matter systems. Within the single-field infla-
tionary model, however, one can expect quantum coher-
ence to be preserved, as there is no decoherence channel
within the model. Assuming that additional deleterious
effects destroy the quantum coherence after some time
t∗, the field can evolve into quantum superpositions for
times t < t∗. For a quantum state, one can only assign
probabilities to each specific value of the field, but none
of the possible superposed outcomes are yet classically
realized.
In our discussion the quantized nature of gravity is ne-

glected. In other words the gravitational degrees of free-
dom remain fully classical and we interpret H = 〈H〉 as
an effectively classical variable. Clearly such a treatment
is incomplete in describing the full evolution during all
of inflation and the entanglement with gravitational de-
grees of freedom is not accounted for. To incorporate the
latter, a quantum theory of gravity would be necessary,
which is outside the scope of this work.
At first, we discuss the dynamics without the “damp-

ing” term 3HΦ̇, to get insight into the quantum behavior
of the system. We will later include this term, which is
necessary for the slow-roll behavior. In this regime the
quantum dynamics of the field is governed by

¨̂
Φ + V ′(Φ̂) = 0 . (5)

Rather than studying the decomposition of the field into
individual modes, we consider the equation of motion for
the entire field. This resembles the quantum evolution of
a system in first quantization. Note that the dynamics of
quantum systems in the presence of potentials has been
extensively studied in low-energy quantum theory [12].
Here we can directly apply some results to the field op-
erator Φ̂, since the equation of motion is mathematically
analogous to the Heisenberg equation of motion for the
position operator in non-relativistic quantum theory.
In particular, we consider the model by Abbott [13] in

which the potential is of the form

V (Φ̂) = V0 cos

(

2πΦ̂

f

)

+ ǫ
Φ̂

f
, (6)

as also depicted in Fig. 1. We assume this potential de-
scribes the dynamics in the regime that we are interested

( )

= /

FIG. 1. The assumed potential for the homogeneous field Φ,
which consists of a periodic part and an additional tilt (see
eq. (6)). The minima (sites) are labeled by n, the orange
lines represent the local ground states. The field can tunnel
from one site to another, governed by the rate density Ω. Due
to the tilt in the potential, the quantum dynamics results in
coherent, periodic oscillations over many sites.

in, which may also be the case at some intermediate time
during inflation. This model has also been studied in the
context of a cyclic universe [14]. The quantum dynamics
for this type of potential is very different from the clas-
sical counterpart: quantum systems undergo coherent,
periodic oscillations. The eigenstates for this potential
are not localized inside a potential well; rather they are
delocalized over several minima. Thus, if the system is
initially inside a well, it will not have a well-defined en-
ergy but will be in a superposition of different energy
eigenstates. The system will evolve in time and spread
out (this being also the physical reason for quantum tun-
neling). In other words, the states localized in the min-
ima are not ground states or true vacuum states, but
will slowly delocalize. Importantly, the delocalization is
also altered by the linear contribution to the potential:
the “tilt” is responsible for coherent oscillations of the
system, also known as Bloch oscillations [15, 16]. These
oscillations can extend over many minima and are quan-
tum mechanical in nature, as they arise due to quantum
interference. Such oscillations have been observed in var-
ious experiments [17–19].
To study the effect in detail, we can directly use the

developed techniques in low-energy quantum theory [20–
23]. It is convenient to express the full dynamics of the
system with potential (6) in the Hamiltonian formula-

tion, where the dynamics of Φ̂, eq. (5), is generated by

an effective Hamiltonian Ĥ =
∫

d3xĤ with the Hamilto-
nian density

Ĥ = −
Ω

4

∞
∑

n=−∞

(ânâ
†
n+1 + ân+1â

†
n) + ǫ

∞
∑

n=−∞

nâ†nân. (7)

Here, the operator â†n (ân) creates (annihilates) a field
excitation in the n-th local potential well minimum (see
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Fig. 1), and Ω is the hopping rate per unit volume be-
tween neighboring sites. In terms of these operators, the
field is Φ̂ = f

∑

n nâ
†
nân. The use of the above Hamil-

tonian assumes only nearest-neighbor hopping, and ne-
glects any higher energy levels inside the minima (only
the local false vacuum states are considered).

In the Heisenberg picture, the operator Φ̂(t) evolves
in time according to eq. (5), which is generated by the

above effective Hamiltonian via
˙̂
Φ(t) = i

[

Ĥ, Φ̂
]

. The

same Hamiltonian can also be used to study the dynamics
in the Schroedinger picture [24, 25], i.e. the dynamics
of the state, or wave functional, is given by |Ψ(t)〉 =

Û |Ψ(0)〉 = e−iĤt|Ψ(0)〉. The Schroedinger picture can
be instructive to gain insight into the quantum processes
that arise.
Classically, the system would be accelerated by the

linear term in eq. (6), but if trapped in a potential
minimum, it would remain bound. Semi-classically, the
system can tunnel to neighboring sites, governed by the
hopping rate ω =

∫

d3xΩ and the potential tilt. The full
quantum dynamics given by eq. (7) predicts a coherent
quantum phenomenon: Bloch oscillations of the system
at a frequency ωB =

∫

d3xǫ. These oscillations can be
described in terms of the eigenstates of the Hamiltonian
(7), the Wannier-Stark states [26] |ψm〉 with eigenener-
gies Em = mωB with integer m. In terms of the localized
states |Φn〉 = |n〉 corresponding to site n, these are given
by

|ψm〉 =
∑

n

Jn−m

(

ω

2ωB

)

|n〉, (8)

where Jk are Bessel functions of the first kind. Us-
ing the summation property of the Bessel function,
∑

n Jn(x)Jn+k(x)e
2iky = ikJk(2x siny)e

−ikx/2, one finds
the propagator from site k to n to be

〈n |Û | k〉 =
∑

j

e−iEjt〈n |ψj〉〈ψj | k〉

= Jn−k

(

ω

ωB
sin(

ωBt

2
)

)

ei
1

2
(n+k)ωBtin−k.

(9)

Thus, if the system is initially localized at some site (or
in other words, is in a false vacuum)|Ψ(0)〉 = |n = 0〉,
the time evolution is

|Ψ(t)〉 =
∑

n

inJn

(

ω

ωB
sin(

ωBt

2
)

)

e−
i
2
ωBt|n〉. (10)

The system coherently spreads periodically over many
sites, with the Bloch frequency ωB. The largest oscilla-
tion amplitude of the field is on the order of L ≈ fω/ωB.
After a time TB = 2π/ωB, the state is given by its initial
value, |Ψ(TB)〉 = |Ψ(0)〉, see Fig. 2. At each instant of
time, one can only assign a probability to a certain field
value, given by |〈n |Ψ(t)〉|. The state remains delocalized
until a measurement or decoherence occurs.

| |

FIG. 2. Bloch oscillations of the system, for an initially lo-
calized state inside a potential well. The system spreads as
a coherent superposition over many sites of the potential (la-
beled by n). The oscillations are periodic with frequency ωB ,
which depends on the tilt of the potential. On average, the
system remains in the potential well in which it started.

One can also find the solutions in the Heisenberg pic-
ture [21, 23], i.e. the time evolved field state Φ̂(t). To
this end, we follow the algebraic approach as developed
in Ref. [23]. The displacement operator D̂ shifts the

field from one site to the next, i.e. D̂|n〉 = |n + 1〉

and D̂†|n〉 = |n − 1〉, and has the properties D̂D̂† = 1,
[

Φ̂, D̂
]

= f Φ̂. The Heisenberg equation of motion for

the displacement operator gives the solution D̂(t) =

D̂(0)eiωBt. In terms of the displacement operator, the
field operator evolves in time as

˙̂
Φ(t) =

ifω

4

(

D̂(0)eiωBt − D̂†(0)e−iωBt
)

(11)

with the solution

Φ̂(t) = Φ̂(0)+
fω

4ωB

(

D̂(0)
(

eiωBt − 1
)

+ D̂†(0)
(

e−iωBt − 1
)

)

(12)
The above results highlight how Bloch oscillations can

arise, but they are insufficient to make a link to infla-
tion. We relate the results to cosmological parameters
via eq. (3), interpreting the expansion parameter H as a
semi-classical mean value. But a semi-classical approx-
imation is invalid when superpositions of vastly differ-
ent states are involved [27], as is the case shown in Fig.
2. Instead, we therefore focus on another initial condi-
tion, in which the field has initial Gaussian spread over

many sites, |Ψ(0)〉 = N
∑

n e
−n2/2σ2

|n〉, where N is the
normalization factor. In this case, the relevant quantity
becomes
〈

˙̂
Φ2
〉

=
f2ω2

8

(

1− e−1/σ2

cos(2ωBt)
)

≈
f2ω2

4
sin2(ωBt),

(13)
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| |

FIG. 3. Bloch oscillations for an initial Gaussian distribution
over several potential wells. The system does not further de-
localize, but the mean oscillates at frequency ωB . Damping of
the system causes an additional slow drift downwards, which
is not shown here.

where the last approximation holds for an initially broad
Gaussian. The behavior in this case is shown in Fig.
3, the system remains relatively localized such that a
semi-classical value is better justified, but undergoes os-
cillations as a whole throughout the potential landscape.

In particular, the quantity
〈

˙̂
Φ2
〉

, which is relevant here,

undergoes oscillations at frequency ωB.

In the above discussion of Bloch oscillations, the aver-
age of the field remains unaffected (〈Φ〉 = 0), meaning
that the field does not, on average, roll down the po-
tential landscape. The quantum solution above predicts
coherent oscillations, but the field comes back to its ini-
tial value after a time TB = 2π/ωB and does not roll
down the potential. This is, however, required for infla-
tionary models, such that inflation can end when the field
reaches a sufficiently small potential energy. Until now,
we have also neglected the additional damping term in
eq. (4), 3HΦ̇. This approximateion can hold during “fast
roll”, when the acceleration dominates over the friction
term (for the example considered here, this constitutes

the regime H ≪ ωB or 1 ≫ 3HΦ̇/Φ̈ ≈ fω/(mPωB), re-
quiring that the periodicity of the field be smaller than
the Planck-mass). One can expect this condition to hold
at the early phase of inflation and towards the end of
inflation, thus one may expect the strongest Bloch oscil-
lations to occur then. This translates to super-horizon
scales and small scales, respectively, which are not rele-
vant for current observations.

However, a stretch of potential of the form discussed
here may be encountered during the slow-roll of the field
and may cause such oscillations during intermediate e-
folds. This requires that the potential allows for slow
roll of the field further downwards. In fact, including the

damping term 3HΦ̇ in the dynamics of the field yields
an additional slow drift of the system, which recovers
the slow-roll behavior. Bloch oscillations in the presence
of damping have been extensively studied [28, 29], the
gradual loss of energy results in an overall slow drift given
by

¯̇Φd = −
ωf

2

ωB

3H

1 +
(

ωB

3H

)2 ≈ −
ωf

2
.
3H

ωB
(14)

This average drift occurs over a long time-scale (since
H ≪ ωB) and is superimposed on the short-time oscilla-
tions given by eq. (13). Thus slow-roll is preserved even
in the presence of a potential of the form considered here.
In addition to the effective damping of the field, any pos-
sible decoherence channel will destroy quantum coher-
ence and the associated Bloch oscillations [30]. Within
the single-field inflationary model, however, one would
expect quantum coherence to be preserved1. Neverther-
less, decoherence will put an end to quantum phenomena
at some point, at the very latest during reheating when
the field decays into other fields.
We note that an overall slow drift can also occur if the

potential is slightly modified to include a small periodic
drive. The quantum solution for this case is given in the

Appendix, which allows for the slow reduction of
〈

Φ̂(t)
〉

over time. The relevant term for the oscillating part in
this case is

〈

˙̂
Φ2
〉

≈
f2ω2

4
sin2(θB(t)), (15)

where θB(t) is given below eq. (A9) and reduces to ωBt
for the case discussed above. The oscillatory part of the
Hubble parameter is therefore given by

H2
osc =

f2ω2

24m2
P

sin2(θB(t)). (16)

This term induces oscillations on top of the usual, domi-
nant contribution of the potential, which is governed on
larger time-scales by the slow drift (14).
Linking our results to observations of the cosmic mi-

crowave background anisotropies or large scale struc-
ture requires the study of inhomogeneous perturbations
on top of the quantum solution for the homogeneous
field. The power spectrum of such perturbations with
wavenumber k is [9, 10] Pk ∝ H2

k , where Hk is the Hub-
ble parameter at horizon exit. The oscillations in eq.
(16) affect both, the horizon exit time and the ampli-
tude of inhomogeneous perturbations, thus leading to a
small periodic modulation of the power spectrum. Their
detection could provide evidence of quantum coherent

1 It is sometimes assumed that quantum suerpositions of different

field configurations are forbidden. Here we assume that they can

persist in the early universe.
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phenomena during inflation2. The quantum coherent os-
cillations discussed here can appear for the specific, pe-
riodic Abbott potential [13] and small variations thereof.
The potential may vary throughout the inflationary his-
tory, but if a patch of such a potential is encountered at
some point, Bloch oscillations may occur. The example
of Bloch oscillations may also be relevant whenever sev-
eral potential minima are present. For such oscillations to
occur, the boundary conditions are negligible as long as
they are further away than the maximum coherent oscil-
lation amplitude L = fω/ωB [20]. Thus, for a potential
with many local minima and periodicity over a finite re-
gion, similar behaviour can be expected. In string theory
for example, one expects a vast potential landscape [31]
where such conditions may be met. If, however, the min-
ima are completely disordered and spread out randomly,
quantum interference results in localization of the field
in analogy to Anderson localization [32].
The present analysis serves as an example for a quan-

tum interference effect that may be of relevance in cos-
mology. We briefly summarize the conditions under
which the phenomenon can occur. The quantum mechan-
ical nature of the homogeneous field has to be preserved,
in particular, its ability to be in a quantum superposi-
tion. For this to hold it is paramount that the field does
not decohere during its evolution in the periodic poten-
tial considered. In addition, we assume a semi-classical
treatment of the interaction with gravity. While the field
itself remains quantum mechanical and the expansion
manifests itself as an effective damping parameter, the
backaction of the field onto the metric is captured only
semi-classically in the mean field limit. This can only
hold if the superposition is not too delocalized. Finally,
the discussed oscillations can occur if the potential has
some periodicity at some point during inflation, and may
be observable if such a stretch of potential is encoun-
tered during those e-folds that are accessible in today’s
experiments.
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Appendix A: Bloch oscillations

We review the solution of the quantum equation of
motion (5) in the presence of a tilted, periodic potential

2 Note that a different potential could lead to classical oscilla-

tions with a similar signature; discerning the quantum oscilla-

tions from classical ones requires knowledge of the potential.

with periodicity f , given by the Hamiltonian

Ĥ = −
ω

4

∞
∑

n=−∞

(ânâ
†
n+1 + ân+1â

†
n)

+ ε(t)

∞
∑

n=−∞

nâ†nân.

(A1)

This Hamiltonian includes a time-dependent tilt and is
valid in the tight-binding limit where tunnelling to only
the nearest-neighboring wells is allowed. This effective
Hamiltonian reproduces the equation of motion for the
field when neglecting the damping due to the expan-

sion,
¨̂
Φ + V ′(Φ̂) = 0, such that the evolution of the

homogeneous field is identical to a quantum particle in
the presence of a potential. The Abbott-model (6) is
captured when ε(t) = ωB. It is convenient to express
the above Hamiltonian in terms of the operators [33]

D̂ =
∑

ânâ
†
n+1, D̂

† =
∑

ân+1â
†
n and Φ̂ = f

∑

nâ†nân,
which obey the commutation relations
[

D̂, D̂†
]

= 0,
[

D̂, Φ̂
]

= −fD̂,
[

D̂†, Φ̂
]

= fD̂†.

(A2)

Note that D̂|n〉 = |n + 1〉 and D̂†|n〉 = |n − 1〉, so the
operator shifts the field to the neighboring site. In terms
of these operators, the Hamiltonian becomes

Ĥ = −
ω

4

(

D̂ + D̂†
)

+
ε(t)

f
Φ̂. (A3)

The Heisenberg equations of motion for D̂(t) is
˙̂
D(t) = − i

[

D̂, Ĥ
]

= iε(t)D̂(t), which yields

D̂(t) = D̂0e
i
∫

t

0
dtε(t) and D̂†(t) = D̂†

0e
−i

∫
t

0
dtε(t), (A4)

where D̂0 is the operator at time t = 0. With this, we
can solve the equation of motion for the field operator
˙̂
Φ = −i

[

˙̂
Φ, Ĥ

]

= i(ω/4)
(

D̂†(t)− D̂(t)
)

:

Φ̂ = Φ̂(0)

+ i
fω

4

∫ t

0

ds
(

D̂†
0e

−i
∫

s

0
duε(u) − D̂0e

i
∫

s

0
duε(u)

)

.
(A5)

The integrals can be computed analytically for the case
of a constant tilt with periodic driving, ε(t) = ωB −
ǫ1 cos(ω1t), using the property of the Bessel functions
eix sin θ =

∑∞
k=−∞ Jk(x)e

ikθ . If there exist an integer k∗
such that ωB − k∗ω1 = 0, the solution is

Φ̂ = Φ̂(0)− i
fω

4

(

D̂†
0 − D̂0

)

Jk∗

(

ǫ1
ω1

)

t

−i
fω

4
D̂†

0

∑

k 6=k∗

Jk

(

ǫ1
ω1

)

2e−iωkt/2

ωk
sin

(

ωkt

2

)

+i
fω

4
D̂0

∑

k 6=k∗

Jk

(

ǫ1
ω1

)

2eiωkt/2

ωk
sin

(

ωkt

2

)

(A6)
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where ωk = ωB − kω1. Note that this expression reduces
to eq. (12) for ǫ1 = 0, which is the typical case for
Bloch oscillations. Neglecting the oscillating terms, we
can write

Φ̂ ≈ Φ̂(0)− i
fω

4

(

D̂†
0 − D̂0

)

Jk∗

(

ǫ1
ω1

)

t (A7)

so the field evolves linearly in time in the presence of the
harmonic drive. In particular, it can slowly roll down: if
the parameters ǫ1/ω1 are close to a zero of Jk∗

, the field
can roll arbitrarily slow.
The square of the field velocity, relevant for the expan-

sion rate, is found directly from the Heisenberg equation
of motion:

˙̂
Φ2 =

f2ω2

16

(

2− D̂†2
0 e

−i2ωBt+i2
ǫ1
ω1

sin(ω1t)

−D̂2
0e

i2ωBt−i2
ǫ1
ω1

sin(ω1t)
)

(A8)

For an initial Gaussian-distributed field over many sites

|Ψ(0)〉 = N
∑

n e
−n2/2σ2

|n〉, as in the main text, the
expectation value becomes

〈

˙̂
Φ2
〉

≈
f2ω2

4
sin2(θB(t)) (A9)

with θB(t) = ωBt−
ǫ1
ω1

sin(ω1t).
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H. Kurz, and K. Köhler, Physical Review Letters 70,
3319 (1993).

[18] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Sa-
lomon, Physical Review Letters 76, 4508 (1996).

[19] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli,
P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, Sci-
ence 347, 1229 (2015).

[20] H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys.
Rev. B 8, 5579 (1973).

[21] M. Holthaus and D. W. Hone, Philosophical Magazine,
Part B 74, 105 (1996).

[22] T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann,
New Journal of Physics 6, 2 (2004).

[23] H. J. Korsch and S. Mossmann, Physics Letters A 317,
54 (2003).

[24] C. Kiefer, Phys. Rev. D 45, 2044 (1992).
[25] S. Das, K. Lochan, S. Sahu, and T. P. Singh, Phys. Rev.

D 88, 085020 (2013).
[26] G. H. Wannier, Physical Review 117, 432 (1960).
[27] D. N. Page and C. D. Geilker, Physical Review Letters

47, 979 (1981).
[28] L. Esaki and R. Tsu, I B M J RES DEVELOP 14, 61

(1970).
[29] F. Grusdt, A. Shashi, D. Abanin, and E. Demler, Phys-

ical Review A 90, 063610 (2014).
[30] A. Buchleitner and A. R. Kolovsky, Physical Review Let-

ters 91, 253002 (2003).
[31] M. R. Douglas, Journal of High Energy Physics 5, 046

(2003).
[32] P. W. Anderson, Physical Review 109, 1492 (1958).
[33] H. J. Korsch and S. Mossmann, Physics Letters A 317,

54 (2003).


