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We calculate the electric conductivity of a gas of relativistic particles with isotropic cross sections
using the Boltzmann equation as the starting point. Our analyses is restricted to elastic collisions.
We show the perfect agreement with previously published numerical results for a massless quark-
gluon plasma, and give results for the electric conductivity of an interacting hadron gas, employing
realistic resonance cross sections. These results for the electric conductivity of a hot hadron gas, as
created in (ultra-)relativistic heavy-ion collisions, are of rich phenomenological as well as theoretical
interest and can be compared to, e.g., lattice quantum field theory calculations.

I. INTRODUCTION

In ultrarelativistic heavy ion collisions the core of the fireball can reach temperatures high enough to temporarily
produce a new phase of nuclear matter, the quark-gluon plasma (QGP), in which quarks and gluons are the relevant
degrees of freedom [1–4]. After a few fm/c (in the center of momentum of the collision), the nuclear matter produced
cools down and undergoes a phase transition into a hadronic phase [5]. The hadron gas produced at the late stages
of the collision is still hot, with temperatures . 160 MeV, and hadrons can still collide multiple times before they
stream freely into the detector.
The theoretical understanding of the experimentally measured data is essential for gaining knowledge of our nature

at extreme scales. Among the most successful descriptive pictures of the different phases of nuclear matter are hy-
drodynamic calculations [6–13], and solutions of the Boltzmann equation (BE) [14–27]. Hydrodynamical calculations
describe the QGP [28] and the hadron gas (HG) as a droplet of viscous fluid, and need as an input macroscopic
properties of the matter, as the equation of state (EOS) and transport coefficients, like the shear and bulk viscosity.
The existence of a finite shear viscosity in the QGP is necessary to explain, e.g., experimental data of the elliptic
flow coefficient v2 [29]. The Boltzmann equation, governing the time development of a particle distribution function
due to collisions, allows for a direct computation of transport coefficients, and also the space-time development of
the QGP phase can be described numerically [14, 18–20, 23, 24, 26, 27]. In some of these studies, the BE was solved
numerically in a fixed box, employing various cross section for a given set of particles. With such a setup, the transport
coefficients shear viscosity over entropy density η/s, heat flow κ, as well as the static electric conductivity σel could
be computed directly, see, e.g., Ref. [21, 22, 25, 30–33]. The computation of the latter coefficient in a new, analytic
way is the aim of this paper. Using established analytic developments [34–36], we investigated how an equilibrated
relativistic gas of electrically charged particles, governed by the BE, behaves upon the influence of a small, static,
electric field that is turned on. Assuming that the total system is electrically neutral, naturally an electric current
will develop and eventually reach a static value (in an infinitely large system or setting periodic boundary conditions).

The longitudinal static electric conductivity σel relates the response of the electric current
1 ~j to the externally applied

static electric field ~E,

~j = σel
~E. (1)

We can thereby compute σel for a given set of (massive or massless) particle species in the system and the given set
of their mutual, elastic, collision cross section. This is basically an extension to the well-known Drude formula for the
electric conductivity (see Sec. III B) for a hadron resonance gas.
The electric conductivity can be related to the diffusion of magnetic fields in a medium [37–39] and the soft dilepton

production rate [40–42] of a hot thermal medium. This is a measurable quantity, however, experimental constraints
would e.g. require an accurate modelling of heavy-ion collisions, and the theoretical understanding of dilepton yields
is still subject of active research [43].

∗ greif@th.physik.uni-frankfurt.de
1 More precise, the electrically charged particle diffusion current density



2

Many scientific groups have recently investigated this transport coefficient, including the mentioned numerical
solution of the BE [31, 33], off-shell transport models [44, 45], holography [46], lattice gauge theory [41, 47–55], Dyson-
Schwinger calculations [56], analytic calculations within perturbative quantum chromo dynamics (QCD) [57, 58], a
dynamical quasiparticle model [59, 60] and chiral perturbation theory [39]. All (but Ref. [46]) of these calculations
aim at the value of σel in the QGP phase, some do extend below the transition temperature towards the HG. In
general, the results differ over several orders of magnitude, and comparisons among different approaches are often
intriguing. In the HG there has been so far no analytic computation of the electric conductivity from pure kinetic
theory, something we will provide in this work. We investigate the influence of masses, average total cross sections,
and different species. We finally state the temperature dependent electric conductivity of a hadron gas with well
justified approximations. Indeed, the framework can give a very precise answer from kinetic theory for any (charge
neutral) elastic particle system, and is not restricted to the results considered in this paper.
This work is organized as follows. In Sec. II we give basic definitions regarding the relativistic formulation for the

fluid dynamical quantities. In Sec. III we derive the algorithm for the computation of the conductivity from linear
response, and continue in Sec. IV with our results. First, we reproduce previously published numerical results and show
the convergence of the method in Sec. IVA, then we show the influence of masses systematically in Sec.IVB, followed
by the results for a realistic Pion gas in Sec. IVC, a Pion-Nucleon-Kaon gas with fixed cross sections (Sec. IVD) and
realistic cross sections (Sec. IVE). We give a conclusion and outlook in Sec. V.
Our units are ~ = c = k = 1; the space-time metric is given by gµν = diag(1,−1,−1,−1). Greek indices run from

0 to 3.

II. BASIC DEFINITIONS

We consider a dilute gas consisting of Nspecies particle species, with the i-th particle species having electric charge
qi and degeneracy gi. This system is in the presence of an external electromagnetic field, given by an electromagnetic
field strength Fµν , and its net-electric charge density is assumed to be approximately zero at all space-time points.
The state of the system is characterized by the single particle distribution function of each particle species, fi(x, p).
The time evolution equation satisfied by fi(x, p) is the Boltzmann equation, which is an integro-differential equation
with the following general structure

kµ
∂

∂xµ
f i
k + kνqiF

µν ∂

∂kµ
f i
k =

Nspecies
∑

j=1

Cij(x
µ, kµ),

where Cij is the collision term, that will be specified later in this work. Since our goal is to calculate the electric
conductivity of this system, we shall consider the case of a homogeneous, but time-dependent electric field.
The energy-momentum tensor and net electric charge four-current are expressed as the following momentum inte-

grals of the single-particle distribution function

T µν =

Nspecies
∑

i=1

〈kµkν〉i , Nµ
q =

Nspecies
∑

i=1

qi 〈kµ〉i

where we employ the following notation

〈. . .〉i ≡ gi

∫

d3k

(2π)3k0
(. . .)f i

k.

These currents are associated to conserved quantities and satisfy the continuity equations, ∂µT
µν = 0 and ∂µN

µ
q = 0.

It is convenient to decompose T µν and Nµ
q in terms of the fluid’s collective velocity field, uµ. Without loss of

generality, these currents are re-expressed as

T µν = ǫuµuν −∆µν (P0 +Π) + πµν , (2)

Nµ
q (x) = nqu

µ + V µ
q . (3)

Above, we introduced the energy density ǫ, the thermodynamic pressure P0, the bulk viscous pressure Π, the shear
stress tensor πµν , the net electric charge density nq, and the net electric charge diffusion current V µ

q . We also defined
the spatial projector ∆µν = gµν − uµuν and employed Landau’s definition of the fluid velocity as an eigenvector of
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T µν with eigenvalue ǫ, that is, T µνuν = ǫuµ. In this scheme, each new variable introduced is expressed by a given
contraction/projection of the currents with uµ and ∆µν ,

ǫ = uµuνT
µν, P0 +Π = −1

3
∆µνT

µν , (4)

πµν = ∆µν
αβT

αβ, nq = uµN
µ
q , V

µ
q = N 〈µ〉

q . (5)

For convenience, we adopt the notation A〈µ〉 ≡ ∆µ
νA

ν and A〈µν〉 ≡ ∆µν
αβA

αβ . The latter definition used the double,

traceless, symmetric projection operator ∆µν
αβ = (∆µ

α∆
ν
β +∆ν

α∆
µ
β)/2−∆µν∆αβ/3. Since our goal will be to compute

the electric conductivity coefficient of a gas, most of the dissipative currents introduced above will play no role in our
calculation. Nevertheless, we introduced them above for the sake of completeness.
We can define a temperature and chemical potential for this system using the traditional matching conditions,

ǫ = ǫeq(T, µq), nq = neq
q (T, µq). (6)

where ǫeq and neq
q are the energy density and net electric charge density of a system in thermodynamic equilibrium

with temperature T and chemical potential µq. The values of temperature and chemical potential must be inverted
from the above equations. With these definitions, we can introduce the local equilibrium distribution function,

f i
0,k = gi exp (−uµk

µ/T + qiµq/T ) ,

and the deviation from equilibrium δf i
k = f i

k − f i
0,k, where, µi = qiµq is the chemical potential of the i–th species.

Momentum integrals over these distribution functions will be expressed using the following notation

〈. . .〉i,0 ≡ gi

∫

d3k

(2π)3k0
(. . .)f i

0,k, 〈. . .〉i,δ ≡ gi

∫

d3k

(2π)3k0
(. . .)δf i

k.

The electric net charge diffusion current then is

jµ = N 〈µ〉
q =

Nspecies
∑

i=1

qi 〈kµ〉i,δ .

III. LINEAR RESPONSE TO THE ELECTRIC FIELD

The scenario we want to consider here is that of a thermal ’brick’ of matter, in which the temperature T ≡ β−1
0

and chemical potential µq ≡ αq
0/β0 do not vary in space nor time. We generalize the methods proposed in [61–

63] to calculate retarded Green’s function associated to the response of a multi-component system to an external
electric field. We present the general calculation first, using the full linearized collision term, and show afterwards
that the formalism reduces to the well-known Drude formula in the relaxation time approximation. In all remaining
computations we use the full linearized collision term.

A. General calculation with linearized collision term

We consider a system initially in thermal equilibrium, with f i
k = f i

0,k and Fµν = 0. We then suddenly turn on a
small external electric field. No external magnetic fields are present and we neglect the effect of any induced field.
The distribution function acquires an off-equilibrium part, f i

k = f i
0,k + δf i

k, and the field strength tensor becomes

Fµν → δFµν = Eµuν − Eνuµ (7)

where Eµ = uνF
µν is the electric field. We write down the linearized BE (similar to [63]), neglecting any term that

is second order in δf , δFµν , or their product,

kµ
∂

∂xµ
f i
0,k + kµ

∂

∂xµ
δf i

k + kνqiδF
µν ∂

∂kµ
f i
0,k =

Nspecies
∑

j=1

C
(l)
ij (xµ, kµ), (8)
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with C
(l)
ij (xµ, kµ) being the linearized collision term. Without loss of generality, we carry out all computations in

the local rest frame of the fluid, uµ = (1, 0, 0, 0). Since Eµ is orthogonal to the velocity, uµE
µ = 0, we replace

kνE
ν → k〈ν〉E

ν . Then we have

kµ
∂

∂xµ
δf i

k +
qi
T
f i
0,kk〈ν〉E

ν =

Nspecies
∑

j=1

C
(l)
ij (xµ, kµ). (9)

The linearized collision term can be written as an operator Ĉ acting on δf ,

C
(l)
ij (xµ, kµ) ≡ Ĉδf i

k =

∫

dK ′dPdP ′γijW
ij
kk′→pp′f

i
0,kf

j
0,k′

(

δf i
p

f i
0,p

+
δf i

p′

f j
0,p′

− δf i
k

f i
0,k

− δf j
k′

f j
0,k′

)

(10)

where we use the notation dK ≡ d3k/
[

(2π)3k0
]

, γij = 1− 1/2δij and W ij
kk′→pp′ = sσij(s,Θ)(2π)6δ(4)(kµ+k′µ−pµ−

p′µ). Above, we only considered elastic 2-to-2 collisions. The total cross section σtot,ij(s) is related to the differential
cross section σij(s,Θ) in the following way,

σtot,ij(s) =
2π

ν

∫

dΘ sinΘσij(s,Θ), cosΘ =
(k − k′)(p− p′)

(k − k′)2
, s = (k + k′)2. (11)

We take the Fourier transform of the Eq. (9), and divide it by the energy Ek =
√
k2 +m2, leading to the following

equation for the Fourier transform of the nonequilibrium distribution function, δf̃ i
k,

−iωδf̃ i
k + i

k

Ek

· qδf̃ i
k −

Nspecies
∑

j=1

1

Ek

Ĉijδf̃
i
k = − qi

TEk

f0,kk
〈ν〉Ẽν

⇒ δf̃ i
k = − 1

T

qi

−iω + i k
Ek

· q−∑Nspecies

j=1
1
Ek

Ĉij

f i
0,k

k〈ν〉
Ek

Ẽν , (12)

where Ẽν is the Fourier transform of Eν and the last equation is the formal solution for the distribution function in
Fourier space. Using the formal solution derived for δf̃ i

k in Eq. (12), we can express the Fourier transform of the net
electric charge current in the following simple form

j̃µ = −
Nspecies
∑

i=1

qi
T

∫

dKk〈µ〉
qi

−iω + i k
Ek

· q−∑Nspecies

j=1
1
Ek

Ĉij

f i
0,k

k〈ν〉
Ek

Ẽν ≡ G̃µν
R (ω,q)Ẽν , (13)

where we introduced the retarded Green’s Function G̃µν
R (ω,q).

In order to compute the static electric conductivity, it will be enough to compute the retarded Greens function
G̃µν

R (ω,q) at vanishing frequency and wavenumber, G̃µν
R (0,0). For this purpose, we introduce a vector Bα

i (Q,Ki),
which satisfies the following integro-differential equation



−iω + i
k

Ek

· q−
Nspecies
∑

j=1

1

Ek

Ĉij



Bα
i (Q,Ki) = qif

i
0,k

k〈α〉

Ek

. (14)

Once Bα is known, the solution for G̃µν
R (ω,q) follows trivially as

G̃µν
R (ω,q) = −

Nspecies
∑

i=1

qi
T

∫

dKk〈µ〉B〈ν〉
i (Q,Ki). (15)

Strictly speaking, Bα is a general function of Q = (ω,k), however, since we will need it only at vanishing Q, it is
sufficient to only consider its dependence on the 4-momentum K, that is, Bα

i (Q = 0,Ki). We know that Bα
i (K)

is a 4-vector orthogonal to uµ and its tensor structure must be constructed from combinations of uµ, kµ, and gµν .
Therefore, it must be a tensor of the following form, Bα

i (K) ∼ k〈α〉, with the proportionality factors being functions
of the scalars µq, T , and Ek. It is convenient to express it as an expansion in powers of the energy,

Bα
i (K) = f i

0,kk
〈α〉

∞
∑

n=0

a(i)n En
k , (16)
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where a
(i)
n are the expansion coefficients. Using the well-known relation

∫

dKk〈µ〉k〈ν〉En
i,kf

i
0,k =

1

3
∆µν

∫

dKEn
kf

i
0,k∆αβk

αkβ, (17)

together with Eqs. (15) and (16), it is possible to express the retarded Green’s function in terms of the coefficients

a
(i)
n ,

G̃µν
R (0,0) = −∆µν

Nspecies
∑

i=1

∞
∑

n=0

qi
3T

a(i)n

∫

dKf i
0,kE

n
k∆αβk

αkβ ≡ ∆µνG̃R. (18)

Above, we defined the scalar retarded Green’s function

G̃R = −
Nspecies
∑

i=1

∞
∑

n=0

qi
3T

a(i)n

∫

dKEn
k (∆µνk

µkν)f i
0,k,

which can be used to express the linear relation between current and driving electric field at Q = 0 as

j̃µ = G̃RẼ
µ.

The above relation allows us to identify the electric conductivity as σel ≡ G̃R.
Naturally, the expansion (16) must be truncated at some point and we will discuss the convergence of our results

to the order of the truncation. We note that, even at the lowest possible order of truncation, the resulting transport
coefficients are expected to be accurate up to 10 %, see, e.g., [34, 64]. Our next step is the determination of the

expansion coefficients a
(i)
n . Multiplying Eq. (14) with Em

k k〈β〉 and integrating over momentum we get an equation for

a
(i)
n ,

∞
∑

n=0

∫

dKiE
m−1
k k〈β〉



−
Nspecies
∑

j=1

Ĉijf
i
0,kE

n
kk

〈α〉a(i)n



 = qi

∫

dKiE
m−1
k k〈α〉k〈β〉f i

0,k.

Using straightforward manipulations of this equation and the above definition of the collision term, Eq. (10), we can
rewrite it in the following form,

∞
∑

n=0

Nspecies
∑

j=1

[

Ai
mnδ

ij + Cij
mn

]

a(j)n = bim,

where we defined

Ai
mn =

Nspecies
∑

j=1

∫

dKidK
′
jdPidP

′
jγijW

ij
kk′→pp′f

i
0,kf

j
0,k′E

m−1
i,k k〈α〉

(

En
i,pp

〈α〉 − En
i,kk

〈α〉
)

,

Cij
mn =

∫

dKidK
′
jdPidP

′
jγijW

ij
kk′→pp′f

i
0,kf

j
0,k′E

m−1
i,k k〈α〉

(

En
j,p′p′〈α〉 − En

i,k′k′〈α〉
)

,

bim = qi

∫

dKEm−1
k (−∆µνkµkν) f

i
0,k. (19)

For later use we denote the above matrix in particle species space and expansion space as

N ij
mn ≡ Ai

mnδ
ij + Cij

mn. (20)

Note that there is no sum over i implied. The Landau matching condition can also be expressed as

∆λ
νuµT

µν =

Nspecies
∑

i=1

∫

dKuνk
νk〈µ〉δf i

k = − 1

3T

Nspecies
∑

i=1

∞
∑

n=0

a(i)n

∫

dKf i
0,kE

n+1
k (∆αβkαkβ)Ẽ

µ = 0.
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Since this should be true for any electric field and any of its components, we obtain a constraint that must be satisfied

by the coefficients a
(i)
n ,

Nspecies
∑

i=1

∞
∑

n=0

a(i)n

[∫

dKf i
0,kE

n+1
k (∆αβkαkβ)

]

= 0

⇒
Nspecies
∑

i=1

∞
∑

n=0

a(i)n din = 0 with din ≡
∫

dKf i
0,kE

n+1
k (∆αβkαkβ). (21)

Solving the integrals in Eq. (19) for a given set of species and cross sections allows us to obtain the unknown

coefficients a
(i)
n by inverting the matrix Ai

mnδ
ij + Cij

mn along with condition (21). In practice, this amounts to
removing one line and column from the matrix N ij

mn.

B. Relaxation time limit

Nonrelativistically, the Drude formula for the electric conductivity σel,nr of a single charge carrying species (e.g.
electrons) with charge qe, density ne and mass me reads

σel,nr =
neq

2
eτ

me

, (22)

where τ is the mean time between collisions of the charge carriers (e.g. electrons) with, e.g., atomic cores. The
Boltzmann equation can be solved analytically in the relaxation time approximation, which corresponds to a simplistic
model for the collision term,

pµ∂µfq + qFαβpβ
∂fq
∂pα

= −pµuµ

τ
(fq − feq,q) . (23)

It allows for a straightforward calculation of the charged particle distribution fq after applying an external electric
field. The uncharged particle distribution remains thermal fq=0 = feq,q=0 and is not affected by the electric field,

σel =
1

3T

Nspecies
∑

i=1

q2i niτ. (24)

Here, τ is the mean time between collisions of particles, independent of the particle type; for more details, see, e.g.,
Ref. [31]. Using Eq. (15) with a relaxation time collision operator we recover the relaxation time answer, Eq. (24),
for the electric conductivity,

j̃µ =

Nspecies
∑

i=1

(qi)
2

T

∫

dKk〈µ〉
1

−∑Nspecies

j=1 Ĉij

f i
0,kk

〈ν〉Ẽν

=

Nspecies
∑

i=1

(qi)
2

T

∫

dKk〈µ〉
τ

Ek

f i
0,kk

〈ν〉Ẽν

=

Nspecies
∑

i=1

(qi)
2τ

3T

[∫

dK
1

Ek

(∆αβkαkβ)f
i
0,k

]

Ẽµ

=

Nspecies
∑

i=1

(qi)
2τ

3T
n0,iẼ

µ. (25)

IV. RESULTS

Our main goal is to calculate the electric conductivity of a hadron gas characterized by (measured) hadron-hadron
cross sections (e.g. Breit-Wigner peaked resonances). In practice we have to limit the calculation to the dominant
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Figure 1. Convergence of the analytical computation for the electric conductivity for a massless quark-gluon gas towards the
numerical value obtained by the partonic cascade BAMPS ([31])

hadron species, such as pions, protons, neutrons, kaons. To understand the results and to cross check our method, we
work systematically and include more species, masses and cross sections step-by-step. The use of simplified hadronic
cross sections is common practise, e.g. in Ref. [65] the authors model a multicomponent hadron gas with species
dependent constant cross sections in order to compute shear viscous phase space corrections. The authors of Ref. [63]
compute the hadronic shear viscosity over entropy ratio using different constant cross sections for meson-meson,
meson-baryon and baryon-baryon scattering.

A. Massless particles and constant isotropic cross sections

As a first step, we compute the electric conductivity for a massless gas of charged and uncharged particles, colliding
with a fixed value of the cross section σtot, which is assumed to be constant. We give the result for the matrix in

Eq. (20), which we truncate at n = 2. We define n̄ij = (δijninT − ninj), with nT =
∑Nspecies

i ni being the total
particle density. The matrix is

N ij
mn =









N ij
00 N ij

10 N ij
12

N ij
10 N ij

11 N ij
12

N ij
20 N ij

21 N ij
22









= σtot







15
2 T

2n̄ij 36T 3n̄ij 210T 4n̄ij

36T 3n̄ij T 4 (216 δijninT − 192ninj) T 5 (1520 δijninT − 1240ninj)
210T 4n̄ij T 5 (1520 δijninT − 1240ninj) T 6 (12510 δijninT − 8850ninj)






.

This is the key information to obtain the electric conductivity at order 0 + 1 + 2 in the above energy expansion
for arbitrary many massless particle species. In order to compare with previously published numerical solutions of
the BE, we give the explicit result for a gas of seven species, with electric charges (in units of e) q1,3 = 1/3, q2,4 =
−1/3, q5 = 2/3, q6 = −2/3, q7 = 0 and degeneracys g1,2,3,4,5,6 = 6, g7 = 16, which mimic a quark-gluon plasma. Using
that e2 = 4π/137, and considering a cross section of σtot = 3 mb, we obtain the following value of conductivity for
this system,

σel =
0.000832737 GeV2

T
. (26)

In Ref. [31] the ultrarelativistic BE was solved for exactly this configuration (using the partonic cascade BAMPS),
and the result matches the analytic computation of this paper, Eq. (26), by about 99%. By changing the order of the
expansion, we show in Fig. 1, that the result converges for the considered order in expansion (truncation of the sum
in Eq. (16) at n = 2).
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Figure 2. The mass dependence of the electric conductivity for (three species of) interacting relativistic particles. The cross
section was arbitrarily fixed to 10 mb, and the degeneracy ratio of charged/uncharged species is 2/9, the charges are ±1, 0. On
the x-axis we vary the mass ratio of the charged to the uncharged species, and show results for different masses of the charged
species. (color online)

B. Influence of masses to the electric conductivity

In order to see the influence of sizeable masses to the electric conductivity, we consider an arbitrary, simplified
scenario for illustrative purposes. There are three species present, one species with charge +1, degeneracy 1, one with
charge −1, degeneracy 1, and one with zero charge and degeneracy 9. All particles have masses, and we vary the ratio
of the mass of the charged species with respect to the mass of the uncharged species. In Fig. 2 we show the results
for the electric conductivity over temperature depending on this ratio, for different absolute values of the mass of the
charged species. There we fix the cross section to an arbitrary value (10 mb) and set the temperature to be 140 MeV
and the chemical potential is µq = 0. This is a useful exercise to illustrate the mass dependence. In thermal and
chemical equilibrium, lower mass particles are more abundant than higher mass particles, and one sees clearly the
dependence of the electric conductivity to the number-density ratio of charged to uncharged particles. The electric
conductivity is clearly very dependent on both the mass (or density) ratio of charged/uncharged species, and also on
the mass (or density) of the charge carrying species. However, the precise values need to be computed (finally via
numerical integration) as explained in Sec. III.

C. Pion Gas

Pions are the most abundant hadrons in an equilibrated hadron gas. Therefore a pure pion gas can be considered
a good starting point to understand some features of a realistic hadron gas. We set the chemical potential to zero for
simplicity. Mainly, pions interact via the formation and decay of a ρ-resonance (see App. B). In Fig. 3(a) we give results
for 3 pion species π+, π−, π0, interacting via Mandelstam s-dependent (isotropic) resonance cross sections, where we
include the dominant ρ-meson peak. Clearly, the electric conductivity approaches a minimum below ∼ 180 MeV.
This can be physically motivated, as transport coefficients like the conductivity are expected to show a minimum in
the QGP-hadron crossover region. This region is now believed to be in the vicinity of ∼ 154 MeV [66].
In Fig. 3(a) we compare our results with the results from different groups. The brown dash-dotted line represents

calculations using Chiral Perturbation Theory (ChPT) [39] and include only pions. The ChpT-based analysis uses the
Green-Kubo formula to extract the conductivity from the spectral function, identifying the dominant diagrams in a
low energy and low temperature expansion and implementing unitary of the partial waves in the thermal width. The
temperature dependence of the results from ChPT is very similar to those found in our results, although the overall
magnitude of our electric conductivity is about a factor of ∼ 1.6 higher. The blue open diamonds are results obtained
from lattice QCD calculation for an 2+1d anisotropic and unquenched lattice, Ref. [47]. However, the authors discuss
that the lattice data especially around the phase transition should be treated with caution (see Ref. [47] for details).
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The grey dashed line is the result obtained in a conformal Super-Yang Mills plasma [67]. In Ref. [46, 68], the authors
used a non-conformal, bottom up holographic model to compute the electric conductivity (cyan dotted line). The full
orange diamonds are results from the pQCD-based partonic cascade BAMPS [31], employing a running coupling,
leading order, Debye-screened pQCD interactions including elastic and inelastic (radiative) scattering of gluons, up,
down and strange quarks.

D. Pion-Kaon-Nucleon Gas with constant cross sections

Constant isotropic cross sections are often used to compare different models or theories. In Fig. 3(b) we show results
for the electric conductivity for a gas of pions (π+, π−, π0; m = 138 MeV), Kaons (K0, K̄0,K+,K−; m = 496 MeV)
and nucleons (p, p̄, n, n̄; m = 938 MeV), all interacting with a constant cross section σtot. The chemical potential is
again zero. We tune this cross section, in order to meet other calculations at the transition temperature from hadrons
to the QGP. Strongly coupled theories and 2+1d non-quenched lattice require cross section values of 30 − 110 mb,
whereas the pQCD-based partonic cascade BAMPS needs a value of ∼ 7.5mb. These numbers should be taken with
care, as we are dealing here with an oversimplified scenario of effective average cross sections. Especially as one
approaches the crossover region, this concept is questionable, however it allows to gain some understanding about
the effective coupling strength of different theories. In Fig.3(b), the full purple line includes only pions, and uses
σtot = 30 mb. By comparing with the dashed red line (all species), one sees the influence of other, heavier species.
Also the temperature dependence changes slightly. This is due to the fact, that the ratio of densities of different
species is temperature dependent, as the mass enters here as an additional scale. Different contributing massive
species can thus result in different temperature behaviour of the conductivity. We expect, that the inclusion of even
more species, albeit not very abundant, may decrease the electric conductivity. This may be true even in the case of
realistic s-dependent cross sections, cf. Sec. IVE.
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Kaons (K0, K̄0, K+, K−) and nucleons (p, p̄, n, n̄). The cross
section σtot is constant and isotropic, and we show results for 4

different values. Results for a pure pion gas are shown for
comparison.

Figure 3. Results for the electric conductivity from this work and other theories. Parton transport BAMPS [31], Chiral
Perturbation Theory ChPT [39], SYM theory [67], a non-conformal holographic model (n-c hm) [46] and lattice [47, 50]
calculations are shown for comparison. These theories all require very different effective cross sections when compared to
kinetic theory. (color online)

E. Pion-Kaon-Nucleon Gas with experimental cross sections

The calculation procedure presented in this paper becomes gradually more complicated as more particle species are
included, with the final numerical integrations becoming rather tedious and time consuming. Furthermore, all cross
sections among all species have to be known, something quite problematic in the hadronic zoo. In order to get a rough
picture of the electric conductivity in a hadron gas, we use pions, kaons and nucleons as in the previous section, but
include now as realistic cross sections as possible, as shown in Tab.I. Many of them are approximated by constant
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Figure 4. Results for the electric conductivity from this work, including pions, kaons and nucleons, compared to results from
PHSD [44, 45] and all other theories as before. All constant cross sections (see Tab. I) are multiplied with a factor κ, which we
change in the range of κ = 0.5, 1, 1.5 in order to get a feeling for the uncertainty. (color online)

values, but we include different resonances. The chemical potential is zero. The result is shown in Fig. 4. In order to
get a handle on the uncertainty introduced by using approximated constant cross sections σconst. we multiply these
with a factor κ, σconst. → σconst.κ, and vary κ = 0.5, 1, 1.5. The change of the conductivity is visible but not dramatic.
Due to the presence of charged kaons (and nucleons, these are not as important), the conductivity is now higher
(30 − 130%) compared to the pure pion case from Fig. 3(a). The dip in the conductivity at around T = 100 MeV
is prominent. To explain this feature, we note first that the mean invariant collision energy 〈√s〉 from the 2 ↔ 2
collisions, whose effect we are effectively studying, is temperature dependent. For some combinations of species and
temperatures, 〈√s〉 lies in the region of a resonance peak, thus the electric conductivity decreases. However, one has
to be cautious, as this dip in the conductivity will disappear or shift for another choice of the set of cross sections, or
the inclusion of more resonances. This can be seen by the fact, that the dip moves as we vary κ. The temperature
dependence of σel/T at low T is roughly ∼ T−2 − T−6 depending on the cross sections. This is due to the overall
∼ T−2 behaviour just by definition (cf. Eq. (24)) combined with the nontrivial ratio of densities (where the masses
enter as additional scale) weighted by electric charge and cross sections 2. As can be seen by comparing with Fig. 3(b),
the overall magnitude in our case is dominated by the constant cross section values, mostly ∼ 10 mb in the important
channels. Although results have to be taken with care due to the uncertainties in the cross sections, they are (to
our knowledge) the first (semi-)analytic kinetic computation of the electric conductivity in the hadronic sector for
multiple species.
In Fig. 4 we also compare to results from the Parton-Hadron-String Dynamics (PHSD) approach [44, 45]. PHSD is

in the hadronic sector a covariant extension to the Boltzmann-Uehling-Uhlenbeck model [69]. The authors apply an
electric current to the numerical simulation in thermal equilibrium and observe a static current in order to extract the
electric conductivity. The hadronic sector contains several mesons and baryons with resonance cross sections. Their
results (triangles) are in the same order of magnitude as ours, and closer than the results from other groups.

V. CONCLUSIONS

In summary, we have developed an analytic formalism to compute the electric conductivity of relativistic, massless
or massive gases, governed by the linearized Boltzmann equation including elastic scattering. We use the full linearized
collision term, and are able to include arbitrary cross section parametrizations. Naturally, all species in a thermal
medium can interact with each other and charged species contribute to the electric current, whereas uncharged species

2 The temperature dependence of the resonance cross sections enters through the temperature dependence of the average Mandelstam-s.
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π+ π− π0 K+ K− K0 K̄0 p n p̄ n̄

π+ 10 ρ ρ 10 10 K⋆ 10 ∆ 10 10 ∆

π− 10 ρ K⋆ 10 10 K⋆ 10 ∆ ∆ 10

π0 5 K⋆ 10 K⋆ K⋆ ∆ ∆ ∆ ∆

K+ 10 10 10 50 6 10 20 10

K− 10 50 10 20 10 6 10

K0 10 50 6 6 20 20

K̄0 10 8 20 6 6

p 20 20 100 20

n 20 20 100

p̄ 10 10

n̄ 10

Table I. The cross sections we used among all species. Numbers are in mb, ρ,K⋆ and ∆ denote Breit-Wigner shaped cross
sections with those resonances. Values taken from [70–73]. Complicated or unknown functional forms are approximated by an
average constant value. The results depend modestly on the choice of these parametrisations, compare also the results from
Sec.IVD)

act as a resistance for the current. The formalism can be reduced to the well-known Drude formula for the electric
conductivity. It involves a complicated matrix inversion, and, to be exact, the computation of infinitely many kinetic
integrals. For massive species, these have to be evaluated using numerical integration methods. The expansion we make
converges rather fast. By comparing to previously published numerical results for the massless case we find excellent
agreement. The formalism is quite general and can be extendend in various ways, thus we start by investigating
the dependence of the conductivity to masses and mass ratios of charged to uncharged species. Ultimately, we use
the formalism to present results for the electric conductivity of a massive pion gas, including all pion species, and
experimentally measured (Breit-Wigner resonance) cross-sections. We see in accordance with other published results,
that the conductivity decreases with increasing temperature, approaching results from a non-conformal holographic
model. The temperature dependence is very similar to results from ChPT. Furthermore we include pions, kaons
and nucleons with their masses, and present results for a constant isotropic cross section. In this simplified case
we can obtain effective cross sections in the range from ∼ 7 − 100 mb when compared to other theories as pQCD
parton transport or lattice. We extend the study further, and present results using a set of approximated realistic
cross sections, including resonances. In the present paper, we restrict the results to zero chemical potential. The
influence of chemical potentials will be adressed in future. Clearly, the limiting factor is the lack of precise knowledge
of elastic cross sections among the hadrons, and our results depend on the choice of their parametrisation. Unknown
or complicated cross sections can only be approximated by energy independent constants. However, we believe that
the inclusion of fairly realistic cross sections involving pions and kaons, including the ρ,∆ and K⋆ resonance renders
the result physical. The cross sections among protons or neutrons play only a minor role for the final result, as
these particles are less abundant due to their mass3. The approximation we made by neglecting heavier particles is
thus well justified, however, in future, the study can naturally be extended to include more particle species and their
resonances. It is also possible to compute other transport coefficients in a similar fashion.
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Appendix A: Calculations of the collision integrals

In the calculations of the matrix elements, the following integrals have to be solved. We will show only some
examples, all other integrals can be worked out in a similar fashion. Consider the following integral,

∫

dPdP ′(2π)6sσij(s,Θ)δ(4)(kµ + k′µ − pµ − p′µ)pα ≡ Γα. (A1)

We define a unitless vector (normalized total momentum of the collision) P̃µ
T = (kµ + k′µ)/

√
s, and the projection

orthogonal to it, ∆µν
P = gµν − P̃µ

T P̃
ν
T . The tensor Γα can only depend on P̃µ

T , so we can decompose,

Γα = a(s)P̃α
T , a(s) = P̃α

T Γα (A2)

where

aij(s) = γij

∫

dPdP ′(2π)6sσij(s,Θ)δ(4)(kµi + k′µj − pµi − p′µj )(pαi P̃T,α). (A3)

We can always evaluate a scalar integral in the center of momentum/center of mass frame, where pαi P̃T,α = p0i . In
the massless case, a = σij(s,Θ)s

√
s/4, in the massive case,

aij(s) = γij

∫

d3p

p0i

d3p

p0i
sσij(s,Θ)δ(p0i + p′0j −√

s)δ(3)(pi + p′
j)p

0
i

= γij

∫ |r|2d|r|
p0i p

′0
j

sσij(s,Θ)δ(p0i + p′0j −√
s)δ(3)(pi + p′

j)p
0
i

=
1

2

(

γij

∫

dΩσij(s,Θ)

)

√

(s− sija )(s− sijb )

√

1

4s
(s− sija )(s− sijb ) +m2

i (A4)

where we defined

|r| = 1

2x

√

(x2 − (mi +mj)2) (x2 − (mi −mj)2), sija = (mi +mj)
2, sijb = (mi −mj)

2, x = p0i + p0j , (A5)

and use

dx

x
=

|r|d|r|
p0i p

0
j

. (A6)

The dKdK ′-integrals of Eq. (19) are easily done in the massless case, but require numerical integration in the massive
case.

Appendix B: Cross-sections for pion-Isotriplett elastic scattering via ρ resonances

As an example for the resonance cross sections, the total cross-section for the reaction

π± + π∓ → ρ0 → π± + π∓ (B1)

is given by (we use the parametrisation given e.g. in [70, 71])

σtot(
√
s) =

〈

jπ∓ ,mπ∓ , jπ± ,mπ± ||Jρ0 ,Mρ0

〉 2Sρ0 + 1

(2Sπ∓ + 1)(2Sπ± + 1)

π

p2CMS

Γρ0→π±+π∓Γtot

(Mρ0 −√
s)2 +

Γ2
tot

4

(B2)

Here, j, J is the isospin of the particle or resonance, Sparticle its spin and m,M the z-component of it. The Clebsch-
Gordon coefficients can be looked up:

〈

jπ∓ ,mπ∓ , jπ± ,mπ± ||Jρ0 ,Mρ0

〉

∓
√

1
2

〈

jπ− ,mπ− , jπ0 ,mπ0 ||Jρ− ,Mρ−

〉

− 1
2

〈

jπ0 ,mπ0 , jπ− ,mπ− ||Jρ− ,Mρ−

〉

1
2

〈

jπ+ ,mπ+ , jπ0 ,mπ0 ||Jρ+ ,Mρ+

〉

1
2

〈

jπ0 ,mπ0 , jπ− ,mπ− ||Jρ− ,Mρ−

〉

− 1
2
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The Center-of-Mass momentum is given by

pCMS =
1

2
√
s

√

(s− (mπ+ +mπ−)2) · (s− (mπ+ −mπ−)2). (B3)

The widths are themselves energy-dependent:

Γρ0→π±+π∓(
√
s) = Γpole

ρ0→π±+π∓

mρ√
s

(

pCMS(
√
s)

pCMS(mρ)

)2l+1
1.2

1 + 0.2
(

pCMS(
√
s)

pCMS(mρ)

)2l
, (B4)

with an angular momentum l of the decay. We are considering only one decay channel for each process, so Γtot =
Γdecay channel.
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