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Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing
stringent relationships between the kernels of the one- and two-body problems, which must be
preserved in any veracious treatment of mesons as bound-states. In this connection, one may view
the dressed gluon-quark vertex, Γa

µ, as fundamental. We use a novel representation of Γa
µ, in terms

of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-
antiquark Bethe-Salpeter kernel, K , that is symmetry-consistent with a given quark gap equation.
A strength of the scheme is its ability to expose and capitalise on graphic symmetries within the
kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K , which are two-
particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex,
that cannot be absorbed as a dressing of Γa

µ in a Bethe-Salpeter kernel nor expressed as a member of
the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT
identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel
obtained simply by dressing both gluon-quark vertices in a ladder-like truncation; and, moreover,
adding any number of similarly-dressed crossed-box diagrams cannot improve the situation.

PACS numbers: 11.10.St; 11.30.Rd; 12.38.Aw; 12.38.Lg

I. INTRODUCTION

A natural framework for studying the two valence-
body bound-state problem in quantum field theory is pro-
vided by the Dyson-Schwinger equations (DSEs) [1], with
the one-body gap equation and two-body Bethe-Salpeter
equation (BSE) playing leading roles. The approach is
useful in hadron physics owing to asymptotic freedom
in quantum chromodynamics (QCD), which materially
reduces model dependence in sound nonperturbative ap-
plications because the interaction kernel in each DSE is
known for all momenta within the perturbative domain,
i.e. k2 & 2GeV2. Any model need then only describe
the kernels’ nonperturbative behaviour. That is valuable
because DSE solutions are propagators and vertices, in
terms of which all cross-sections are built. The approach
thus connects observables with the long-range behaviour
of QCD’s running coupling and masses. Hence, feedback
between predictions and experimental tests can be used
to refine any model input and thereby improve under-
standing of these basic quantities. This opens the way
to addressing questions pertaining to, e.g.: the gluon-
and quark-structure of hadrons; and the emergence and
impact of confinement and dynamical chiral symmetry
breaking (DCSB).

The DSEs are a collection of coupled equations; and
a tractable problem is only obtained once a truncation
scheme is specified. A weak-coupling expansion repro-
duces perturbation theory; but, although valuable in
the analysis of large momentum transfer phenomena in
QCD, it cannot yield nonperturbative information. A
symmetry-preserving scheme applicable to hadrons was
introduced in Refs. [2, 3]. That procedure generates a

BSE from the kernel of any gap equation whose dia-
grammatic content is known. It thereby guarantees, in-
ter alia, that all Ward-Green-Takahashi (WGT) identi-
ties [4–7] are preserved, without fine-tuning, and hence
ensures, e.g. current-conservation and the appearance of
Goldstones modes in connection with DCSB.

The leading-order term in the procedure of Refs. [2, 3]
is the rainbow-ladder (RL) truncation. It is widely
used and known to be accurate for light-quark ground-
state vector- and isospin-nonzero-pseudoscalar-mesons
[8–11], and properties of ground-state octet and decuplet
baryons [12–15], because corrections in these channels
largely cancel owing to the parameter-free preservation of
relevant WGT identities ensured by this scheme. How-
ever, higher-order contributions do not typically cancel
in other channels [16–18]. Hence studies based on the
RL truncation, or low-order improvements thereof, usu-
ally provide poor results for light-quark scalar- and axial-
vector-mesons [19–24], exhibit gross sensitivity to model
parameters for tensor-mesons [25] and excited states [26–
29], and are unrealistic for heavy-light systems [30–32].

These difficulties are surmounted by the scheme in
Ref. [33] because it enables the use of more realis-
tic kernels for the gap and Bethe-Salpeter equations,
which possess a sophisticated structure, including Dirac
vector⊗vector and scalar⊗scalar quark-antiquark inter-
actions. Significantly, this technique is also symmetry
preserving; but it does not require knowledge of the di-
agrammatic content of the gap equation’s kernel, whose
complexity may be expressed in the form chosen for the
dressed gluon-quark vertex, a subject of great interest
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FIG. 1. Quark self-energy, Σ(k) = iγ · k[A(k2) − 1] + B(k2),
Eq. (1): solid line with open circle, dressed-quark propagator
S(q) = 1/[iγ · q + Σ(q)]; open-circle “spring” , dressed-gluon
propagator, Dµν (p−q); and (red) shaded circle, dressed gluon-
quark vertex, Γa

µ(q, p). A coupling g appears at each vertex.

itself, e.g. Refs. [34–42]. The gap equation in Fig. 1 is:

Σ(k) = Z1

∫ Λ

dq

g2Dµν(k − q)Γa
µ(k, q)S(q)

λa

2
γν , (1)

where
∫ Λ

dq
represents a Poincaré invariant regularisation

of the four-dimensional integral, with Λ the regulariza-
tion mass-scale, and Z1(ζ

2,Λ2), is the vertex renormal-
isation constant, with ζ the renormalisation scale. An
additional strength of the new scheme is its capacity to
express DCSB in the integral equations connected with
bound-states. It has therefore enabled elucidation of
novel nonperturbative features of QCD [13, 38, 43–46]
and facilitated material progress toward the prediction
of hadron observables in continuum-QCD [47].
Notwithstanding the existence of this improved

scheme, there is merit in providing a mechanical ap-
proach capable of elucidating that Bethe-Salpeter kernel
which is symmetry-consistent with any given gap equa-
tion. Possessing such a tool, one may, e.g. validate any
newly-proposed Bethe-Salpeter kernel that is based on a
skeleton expansion of the gap equation, simply by check-
ing whether it ensures preservation of the WGT identi-
ties, and/or expose the full complexity demanded of the
symmetry-consistent kernel by any concrete statement
about the gap equation’s structure. We describe such an
approach herein, delivering our explanations mainly in
terms of diagrams. Naturally, each one corresponds to
a well-defined integral, which could be written explicitly.
In those terms, however, the proliferation of symbols,
nested integrals, etc. would obscure the reasoning. In
using diagrammatic methods we are capitalising on the
pedagogical capacity and intuitive strengths which have
led to Feynman diagrams being adopted so widely.

II. INSUFFICIENCY OF VERTEX-DRESSED

LADDER KERNELS

The BSE for a colour-singlet vertex, GM , which may
exhibit meson bound-states, is depicted in Fig. 2:

[GM (k;P )]rs = ZMgM+
∫ Λ

dq

[S(q+)GM (q;P )S(q−)]tuK rs
tu (k, q;P ) , (2)

where ZM is a renormalisation constant, the total mo-
mentum P = k+ − k−, where k+ = k + ηP , k− =

FIG. 2. Upper panel. BSE for a colour-singlet vertex,
GM (k;P ). The channel is defined by the inhomogeneity, e.g.
with gM = 1

2
τ iγ5γµ one gains access to all states that commu-

nicate with an isovector axial-vector probe, such as the pion
and a1 meson. The interaction between the dressed valence-
constituents is completely described by the scattering kernel,
K . Lower panel. For I 6= 0 mesons, the Bethe-Salpeter kernel
is a sum of two terms, Eq. (4). The interaction content of both
is completely determined by that of the dressed gluon-quark
vertex, explicitly for K S and implicitly for K Γ, Eq. (5).

k − (1 − η)P , with η ∈ [0, 1]: no observable can depend
on η, i.e. the definition of the relative momentum.
The scattering kernel, K (k, q;P ) in Eq. (2), expresses

all possible interactions that can occur between a dressed
quark and dressed antiquark; and is two-particle irre-
ducible (2PI), viz. it does not contain quark+antiquark to
single gauge-boson annihilation diagrams nor diagrams
that become disconnected by cutting one quark and one
antiquark line. Naturally, this means that K also in-
cludes an enumerable infinity of n ≥ 2-PI contributions.
The kernel that ensures preservation of all WGT iden-

tities associated with a given colour-singlet vertex may
be expressed as [2, 3]:

K (k, q;P ) = −
δΣ(k)

δS(q)
, (3)

which corresponds to “cutting” each internal fermion line
in all dressing diagrams. This cutting procedure actually
furnishes a kernel in the “diagonal configuration” [48]:
K (k, q; 0). The general momentum configuration may
be obtained as described following Eq. (44) in Ref. [17],
i.e. in addition to the usual effect of differentiation, the
functional derivative adds P to the argument of every
quark line through which it is commuted when applying
the product rule. One may alternatively generate the
full momentum arguments by beginning with the effec-
tive action A[S] expressed in coordinate space [49, 50],
obtaining the dressed-quark propagator as the solution
of δA[S]/δS = 0, and subsequently employing Eq. (3).
For systems with nonzero isospin, I 6= 0, quark propa-

gators appearing in gluon vacuum-polarisation diagrams
may be neglected and the kernel can be expressed as a
sum of just two terms [3, 17, 18, 33, 52, 53]:

K I 6=0(k, q;P ) = K S(k, q;P ) + K Γ(k, q;P ) , (4)
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FIG. 3. Pion mass-squared vs. current-quark mass, obtained
with the BC Ansatz, Eq. (6), for Γa

µ in the gap equation,
Fig. 1: dashed (blue) curve, Bethe-Salpeter kernel in Fig. 2
is K = K S; dot-dashed (red) curve, kernel is K L-ΓΓ, the
dressed-vertex ladder-like kernel; and solid (black) curve,
complete BC-vertex-consistent kernel constructed following
Refs. [33, 51]. Evidently, only the complete kernel is sufficient
to ensure the existence of a Nambu-Goldstone pion. (Results
obtained with the dressed-gluon line represented by the inter-
action in Ref. [28]: D = 0.5GeV2, ω = 0.5GeV, τ → ∞.)

as depicted in the lower panel of Fig. 2, where the con-
tent of the vertex Λµ is completely determined by the
functional derivative of the dressed gluon-quark vertex:

Λa
µ(k, q;P ) ∼

δΓa
µ(k, q)

δS(q)
. (5)

Extending our reasoning to I = 0 systems is not diffi-
cult in principle; but many extra diagrams arise and one
must also allow for the possibility that contributions of
a topological nature may play an important role [54].
In some exceptional circumstances, as when Γa

µ is ex-
pressed via a recursion relation and the dressed-gluon
propagator has negligible support at nonzero momenta,
e.g. the model in Ref. [55], Λa

µ ≡ 0 in the pseudoscalar
channel [17, 18]. In this case the Bethe-Salpeter kernel
that preserves the axial-vector WGT identity for a given
gap equation with dressing defined by Γa

µ, is obtained by
including the specified dressing on only one of the vertices
in a ladder-like kernel, viz. K S(k, q;P ). That is not true
in any other channel and, in general, false in all channels;
a fact emphasised by the dashed (blue) curve in Fig. 3,
which displays the pion mass obtained using a Ball-Chiu
(BC) vertex Ansatz [56] (t = [k + q]/2):

iΓa
µ(k, q) =

λa

2

[
ςAiγµ + δA

i
2 tµγ · t+ δB tµID

]
, (6)

ςF = [F (k2) +F (q2)]/2, δF = [F (k2)−F (q2)]/(k2 − q2),
for the dressed vertex in Fig. 1 and K = K S in the upper
panel of Fig. 2. (Here F = A,B are the scalar functions
characterising the quark propagator, Fig. 1.) Plainly, al-
though the gap equation guarantees DCSB, the BSE does
not produce a pion with the nature of a Goldstone-boson.
One might imagine that if dressing only one vertex

fails, then, perhaps, dressing both vertices, to obtain a

FIG. 4. Upper panel. DSE for the dressed gluon-quark vertex,
Γa
µ. Only selected contributions are shown. The complete

equation is depicted, e.g. in Fig. 2.6 of Ref. [1]. The shaded
(blue) circle at the junction of three gluon lines is the dressed
three-gluon vertex. Lower panel. Some of the contributions
to the quark-antiquark scattering kernel, K , generated by the
gap equation expressed in terms of the dressed gluon-quark
vertex depicted in the upper panel. The last diagram drawn
explicitly is an example of anH-diagram. It is 2PI; but cannot
be expressed as a correction to either vertex in a ladder kernel
nor as a member of the class of crossed-box diagrams.

dressed-vertex ladder-like kernel, K L-ΓΓ, will be suffi-
cient to produce a symmetry-consistent system. It is
known from Refs. [3, 17, 18, 33] that this is false in gen-
eral: the simplest Abelian-like one-loop gluon-correction
to the gluon-quark vertex (generated by the diagram la-
belled “Ab” in Fig. 4) demands the presence of crossed-
box contributions to the symmetry-consistent kernel.
Suppose though, that one neglects Abelian-like dress-

ings of Γa
µ; namely, all terms generated by the Ab-

diagram in Fig. 4 and its analogues in other relevant ker-
nels. (Abelian-like contributions may be subdominant
[18, 35, 57].) One then arrives at the diagrams in the
second line of Fig. 4. Inserting this vertex into Fig. 1 and
using Eq. (3), it is apparent that the first contribution
(bare gluon-quark vertex) generates the RL truncation,
which is the first term depicted on the right-hand-side
(rhs) of the lower panel in Fig. 4. It is evident, too, that
the second diagram in the second line of Fig. 4 produces
a sum of two terms in K , viz. a three-gluon vertex cor-
rection on the quark line and another on the antiquark
line. These are the second two terms in the lower panel
of Fig. 4; therefore, at this point it might seem plau-
sible that a vertex-dressed ladder kernel can provide a
symmetry-preserving framework for the study of mesons.
However, the third diagram drawn in the second line

of Fig. 4 has not yet been considered. Amongst others,
it generates an H-diagram, viz. the last image drawn
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in the lower panel of Fig. 4. Kindred contributions to
Γa
µ produce an enumerable infinity of similar terms in

K . Such contributions cannot be expressed as a correc-
tion to either vertex in a ladder kernel and neither are
they members of the class of crossed-box diagrams. H-
diagrams are a distinct class of essentially non-Abelian
2PI contributions to K . If they are omitted from the
kernel, then the BSE obtained thereby cannot produce
colour-singlet vertices that satisfy WGT identities involv-
ing a dressed-quark propagator generated by the vertex
in Fig. 4, whether or not Ab-type diagrams are neglected.
It is notable that H-type diagrams produce an infrared

divergence in the perturbative calculation of the static-
quark potential, i.e. a contribution which exhibits un-
bounded growth as the distance between the source and
sink increases [58]. One might view this as a sign that
the inclusion of H-type diagrams in the quark-antiquark
scattering kernel could be important if one seeks to re-
cover an area-law in the static-quark limit [59].
The general insufficiency of the vertex-dressed ladder

kernel (K L-ΓΓ) is also highlighted by Fig. 3: with the BC
vertex, Eq. (6), one obtains the dot-dashed (red) curve.
Plainly, this kernel generates far too much attraction.
That is not surprising, given the dashed (blue) curve in
the same figure, which shows that K S provides attrac-
tion in the pseudoscalar kernel; and, in dressing both ver-
tices, one has not obviously added any repulsion. Impor-
tantly, however, there is actually destructive interference
amongst the various contributions in the BSE obtained
with K L-ΓΓ: whereas the ς2A terms produce attraction,
those involving δB generate net repulsion.
Consider therefore, a modified Ansatz, viz. Eq. (6) with

δB → 2δB. In this case, weakening the interaction
strength: D = 0.5 → 0.29GeV2 produces m2

π = 0 at
mq = 0. Evidently, one can tune the interaction strength
to achieve a massless pion; but securing that numerical
outcome is not equivalent to ensuring preservation of the
axial-vector WGT identity. This is readily seen by check-
ing the quark-level Goldberger-Treiman relation [60, 61]:

Eπ(k
2, k · P = 0;P 2 = 0)

mq=0
∝ B(k2) , (7)

a corollary of the axial-vector WGT identity, where Eπ

is the leading term in the pion’s Bethe-Salpeter ampli-
tude. Using the δB → 2δB Ansatz, both in the gap
equation and to generate K L-ΓΓ, one finds that Eq. (7)
is violated: an accurate interpolation of the monoton-
icall decreasing ratio is provided by Eπ(k

2)/B(k2) =
(1+0.02x)/(1+0.08x+0.01x2), x ∈ [0, 50], x = k2/B2(0),
where B(k2 = 0) = 0.28GeV. (We normalised the ratio
to unity at k2 = 0. It is 0.47 at x = 9.) On the other
hand, Eq. (7) is preserved without fine tuning when K is
constructed according to Ref. [33]. It follows that there
exist gap equation kernels, too numerous to count, for
which K L-ΓΓ yields m2

π = 0 at mq = 0; but the pairing
nevertheless fails to preserve the axial-vector identity.
The preceding discussion invalidates claims made in

Ref. [62], e.g., referring now to diagrams therein, under

FIG. 5. Upper panel. DSE for the dressed gluon-quark vertex,
Γa
µ, expressed with the antiquark providing the reference line

and involving the s-channel 1PI gluon-quark scattering am-
plitude C . Lower panel. In terms of the gluon-quark vertex,
the equation for the quark self-energy is manifestly symmetric
when expressed using C .

no circumstances can the BSE in Fig. 12 be symmetry-
consistent with the gap equation generated by Fig. 5.

III. SYMMETRY-CONSISTENT

BETHE-SALPETER KERNEL

In order to generalise the discussion in Sec. 2, we first
observe that the common manner of expressing the quark
self-energy, Fig. 1, is grossly asymmetric with respect to
the two gluon-quark vertices: one vertex is fully-dressed,
whereas the other has its tree-level form. This can be
remedied by changing the way one looks at the dressed
gluon-quark vertex. Namely, instead of considering the
vertex from the gluon’s perspective, it is advantageous
to adopt the antiquark’s view, depicted in Fig. 5, and
write a DSE for this vertex in terms of the gluon-quark
scattering amplitude C , which is 1PI in the s-channel:

Γa
µ(p, q) =

λa

2 γµ + ΓQ
µ =: Γ(0)

µ ∗ M , (8)

ΓQ
µ =

∫ Λ

dℓ

λb

2 γρS(ℓ+)Dρσ(ℓ−)C ba
σµ(ℓ, q; p) , (9)

where Γ
(0)
µ = λa

2 γµ is the tree-level contribution, ΓQ
µ ex-

presses all (quantum) corrections, and the sum is repre-
sented by the operation of the transition matrix M , de-
fined implicitly in Eq. (8). Inserting Eq. (9) into Eq. (1),
one obtains the manifestly symmetric expression for the
quark self-energy depicted in the lower panel of Fig. 5.

Eq. (3) can now be used to obtain that kernel in Eq. (2)
which ensures preservation of all WGT identities relevant
to the channel considered. For I 6= 0, the differentiation
produces the series in Fig. 6. Once more, the rainbow-
ladder truncation appears as the simplest contribution,
arising from diagram (a) in Fig. 5; but it is augmented in
general by a series of complex corrections. Denoting the
third diagram in line (b) of Fig. 6 by Σ 6C (k), viz. the image
with C itself being cut, and represents its contribution in



5

FIG. 6. In I 6= 0 channels, Eq. (3) produces this series of
diagrams for the 2PI kernel of the symmetry-consistent BSE.
The dashed (red) lines represent the act of functional differen-
tiation and the arrows direct attention to the resulting kernel
contribution, when that can be depicted simply.

the BSE by K 6C , then it is evident from Fig. 6 that

K I 6=0 = −g2
[
Γ(0)
µ Dµν Γ

(0)
ν

+ Γ(0)
µ Dµν Γ

Q
ν + ΓQ

µ Dµν Γ
(0)
ν

]
+ K 6C (10)

= −g2ΓµDµνΓν
︸ ︷︷ ︸

K L−ΓΓ

+g2ΓQ
µDµν Γ

Q
ν + K 6C . (11)

Plainly, K L-ΓΓ in Eq. (11) is a dressed-vertex ladder-
like subcomponent of the symmetry-consistent kernel (al-
ready considered in Sec. 2); but there is much more in
the complete kernel. To elucidate, we focus on K 6C and
consider the nature of C . This amplitude contains in-
finitely many diagrams; and although an infinite number
of them contain no internal quark line, that collection
cannot contribute to K 6C . The relevant contributions to
C are those which contain at least one quark line; and
hence, for I 6= 0, K 6C has the expansion depicted in Fig. 7.
The lower panel of Fig. 7 focuses on the first term

on the rhs of the upper panel, which produces the
following contribution to the quark-antiquark kernel:
(−g2)ΓQ

µDµνΓ
Q
ν . All remaining terms generate n ≥ 2-

PI contributions to K I 6=0 that are structurally inequiva-
lent to those contained in K L-ΓΓ, as illustrated by Fig. 8.
Denoting these terms by K 6L, one arrives finally at

K I 6=0 = K L-ΓΓ + K 6L . (12)

That it is impossible for K L-ΓΓ alone to serve as a
symmetry-consistent quark-antiquark scattering kernel is
also evident here. Amongst infinitely many others, the
second and third images drawn explicitly in the expres-
sion for K 6C in Fig. 7 contain the contributions in Fig. 8:
the top-left image expresses a correction to the gluon-
quark vertex, so its influence is felt within K L-ΓΓ; but
it must simultaneously contribute to K 6L, as displayed in
Fig. 7, producing the H-diagram depicted Fig. 8.

FIG. 7. Upper panel. In I 6= 0 channels, K 6C has the expansion
depicted here, where the dashed (red) lines indicate the quark
line that reacts to the functional differentiation in Eq. (3).
The expansion necessarily involves g + q → (m + 1)g + q,
m ≥ 1, transition matrices, M1, etc. Lower panel. A focus
on the first diagram on the rhs in the upper panel reveals the
simple nature of its contribution to K .

FIG. 8. Explicating the origin of H-diagrams and crossed-box
terms in the quark-antiquark scattering kernel, K I 6=1. Left –
elements in the gluon-quark scattering matrix, C ; and right –
contributions they generate in K 6C .

IV. EPILOGUE

Working with a simple Ansatz for the dressed gluon-
quark vertex, Γa

µ, we considered the capacity of vertex-
dressed ladder-like Bethe-Salpeter kernels to preserve
Ward-Green-Takahashi (WGT) identities relevant to me-
son bound-states; and found that whilst they can read-
ily be tuned to produce a massless pion in the chiral
limit, they nevertheless fail to preserve the axial-vector
WGT identity and are thus incomplete. We generalised
these observations using a novel representation of Γa

µ in
terms of the gluon-quark scattering amplitude, which en-
abled us to show that whilst a dressed-vertex ladder-like
truncation is the simplest term in the complete Bethe-
Salpeter kernel, K , it is insufficient in general, owing
to the presence of, inter alia, H-diagrams, viz. two-loop
terms, involving the three-gluon vertex, that cannot be
absorbed into K as a part of Γa

µ nor expressed as a mem-
ber of the class of crossed-box diagrams. Consequently,



6

the WGT identities essential for a valid description of
mesons cannot generally be preserved when K is ob-
tained merely by dressing both gluon-quark vertices in a
ladder-like truncation; and, moreover, adding any num-
ber of similarly dressed terms in the class of crossed-box
diagrams cannot improve the situation. Fortunately, so-
phisticated alternatives exist [33], are in practical em-
ployment [38, 43–47] and are being refined [51].
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