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Abstract

We consider the transformation properties of fermions under the discrete symmetries CPT, CP,

and C in the presence of B-L violation. We thus generalize the analysis of the known properties

of Majorana neutrinos, probed via neutrinoless double beta decay, to include the case of Dirac
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I. INTRODUCTION

In theories with B-L violation the possibility of Majorana fermions, which are particles

that are their own antiparticles, emerges. Such particles, as long known, have special trans-

formation properties under the discrete symmetries CPT and CP, as well as C [1–4]. Their

observation would reveal the existence of dynamics beyond the Standard Model (SM). B-L

violation can appear in theories of quarks, that carry baryon number B, and/or leptons,

that carry lepton number L, though the possibility of Majorana neutrinos has had the most

scrutiny. This is because a crisp dichotomy can arise in the theoretical description of a

massive neutrino: it can be either a Dirac or a Majorana particle, in that its mass can

emerge from either Dirac or Majorana mass terms. The neutrino mass could also emerge

from mass terms of both types [5], though even if the neutrino were pseudo-Dirac [6], so that

its Dirac mass would give a predominant contribution to its total mass, the mass eigenstates

would be Majorana [7, 8]. Moreover, the observation of neutrinoless double beta decay [9]

would establish the existence of the Majorana neutrino because the existence of B-L vio-

lation would generate an effective Majorana mass term even if such a mass term were not

explicitly present [10].

The seminal papers of Kayser and Goldhaber [1] and Kayser [2] concern the analysis of

the special CPT, CP, and C properties of Majorana fields and states and the implications

of those properties for neutrinoless double beta decay. Earlier, Carruthers [3], as well as

Feinberg and Weinberg [4], determined the existence of phase restrictions in the P and

TC transformations, with Carruthers [3] analyzing the detailed properties of particle self-

conjugate multiplets. These works contain the implicit assumption that phase restrictions

are associated with particle self-conjugate fields, or, alternatively, that B-L symmetry is

only broken through the appearance of a Majorana field. In this paper we generalize this

earlier work to the treatment of Dirac fields with B-L violation. In order to preserve the

symmetry restrictions found in the Majorana case, we find that the phases associated with

the action of the discrete symmetries on fermion fields must be restricted in order to address

the symmetry transformations of fermion interactions with B-L violation. In the absence

of B-L violation, the phases and thus the phase restrictions we describe have no physical

impact, so that our considerations are specific to theories with B-L violation.

Our analysis is pertinent to theories of both leptons and quarks with B-L violation,
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where we note that the possibility of B-L violation in the quark sector can be probed

through neutron-antineutron (n-n̄) oscillations. The n-n̄ system with B-L violation bears

direct comparison to the possibility of a pseudo-Dirac neutrino. We recall that, in the SM,

the neutron and antineutron are Dirac fermions, as are the quarks that comprise them,

because quantum chromodynamics (QCD), the accepted theory of the strong interactions,

is a SU(3) gauge theory with a complex fundamental representation [11]. The empirical

success of the quark model, which explains the significant magnetic moments of the neutron

and proton, suggests that the Dirac mass of the neutron dominates its measured mass.

Indeed, the current empirical limit on the free n-n̄ oscillation time limits the Majorana

mass to δm = (τnn̄)
−1 ≤ 6 × 10−29MeV at 90% C.L. [12]. We will find that the phase

restrictions on the discrete symmetry transformations in the presence of B-L violation have

important implications for the interplay of n-n̄ oscillations with external fields and sources;

in particular, they resolve the conflict between Refs. [13, 14]. Generally, this interplay is key

to improving the sensitivity of future experimental searches [15, 16].

Herewith we sketch an outline of the body of the paper. We begin, in Sec. II, by recapping

the Majorana phase constraints [1, 2] before building a Majorana field from Dirac fields in

order to study the discrete symmetry transformations of the Dirac fields in the presence

of B-L violation. We find, as a result, constraints on the phases in the discrete symmetry

transformations of fermion fields. With these in place we then turn, in Sec. III, to the CPT

and CP transformation properties of B-L violating operators. Remarkably B-L violating

operators can be constructed that are either even or odd under CPT, even though all the

operators are explicitly Lorentz invariant. The CPT phase restriction we derive changes the

sign of the B-L violating operators under CPT. With it in place, we find that the CPT-odd

operators vanish upon use of fermion anticommutation relations, so that the CPT theorem

is respected [17]. We consider the implications of these results in regards to the interplay

of n-n̄ oscillations with external fields and sources, as well as whether their observation can

connote a breaking of CP symmetry, in Sec. IV. Noting the failure of locality in theories of

self-conjugate fields with half-integral isospin [18–21], we consider the compatibility of the

appearance of B-L violation with the SM in Sec. V, before offering a final summary.
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II. MAJORANA PHASE CONSTRAINTS

To determine the phase-factor restrictions on the discrete symmetry transformations that

emerge in the Majorana case, we follow Refs. [1, 2] and replace the Dirac field ψ in the discrete

symmetry transformations of Eqs. (40,41,42) with a general Majorana field ψm, for which

the plane-wave expansion is given by

ψm(x) =

∫

d3p

(2π)3/2
√
2E

∑

s

{

f(p, s)u(p, s)e−ip·x + λf †(p, s)v(p, s)eip·x
}

. (1)

We note that f † and f denote the creation and annihilation operators for the Majorana

particle of interest. The unimodular quantity λ is called a creation phase factor; it may be

present, in general, and can be chosen arbitrarily. We refer the reader to Appendix A for a

summary of our definitions, conventions, and other useful basic results.

Noting the C transformation

Cψm(x)C
−1 = iηcγ

2ψ∗
m(x) (2)

and applying the Majorana relation,

iγ2ψ∗
m(x) = λ∗ψm(x), (3)

yields

Cψm(x)C
−1 = ηcλ

∗ψm(x) (4)

and thus

Cf(p, s)C−1 = ηcλ
∗f(p, s) , (5)

Cf †(p, s)C−1 = ηcλ
∗f †(p, s) . (6)

Since C is a unitary operator, taking the Hermitian conjugate of either relation reveals that

η∗cλ is real. Noting the CP transformation

CPψm(t,x)(CP)−1 = iηpηcγ
0γ2ψ∗

m(t,−x) (7)

and Eq. (3) yields

CPψm(t,x)(CP)−1 = ηpηcλ
∗γ0ψm(t,−x) (8)
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and thus

CPf(p, s)(CP)−1 = ηcηpλ
∗f(−p, s) , (9)

CPf †(p, s)(CP)−1 = −ηcηpλ∗f †(−p, s) . (10)

Since CP is a unitary operator, taking the Hermitian conjugate of either relation shows

that η∗pη
∗
cλ must be imaginary. We have already established that η∗cλ is real, so that η∗p itself

must be imaginary. Under T we have

Tψm(t,x)T
−1 = ηtγ

1γ3ψm(−t,x), (11)

which yields

Tf(p, s)T−1 = sηtf(−p,−s), (12)

Tf †(p, s)T−1 = sηtλ
2f †(−p,−s). (13)

Since T is an antiunitary operator, we write T = KUt, where Ut is a unitarity operator and

K denotes complex conjugation. Then taking the Hermitian conjugate of either relation

shows that ηtλ must be real. Finally we note the CPT transformation of ψm

CPTψm(x)(CPT)−1 = −ηcηpηtγ5ψ∗
m(−x) , (14)

with γ5 ≡ iγ0γ1γ2γ3, which yields,

ξf(p, s)ξ−1 = sλ∗ηcηpηtf(p,−s) , (15)

ξf †(p, s)ξ−1 = −sληcηpηtf †(p,−s) , (16)

where we employ CPT ≡ ξ. Since ξ is an antiunitary operator, we write ξ = KUcpt, where

Ucpt denotes a unitarity operator. Consequently, taking the Hermitian conjugate of either

relation reveals that ηcηpηt is pure imaginary. Since we have already established that ηp

is imaginary, we see that ηcηt must also be real — and note that just this emerges from

the analysis of the TC transformation as well. In contrast, the combination ηcηp itself is

unconstrained. In summary, we have found all the restrictions on the phases that appear in

C, P, T, and combinations thereof, and our results are equivalent to those in Refs. [1–3].

We now turn to the particular case of a Majorana field that is constructed from Dirac

fields. Given Eqs. (40,41,42), the existence of phase restrictions in the application of C,

P, and T to Dirac fields themselves may already be self-evident. However, we confirm this

5



through explicit calculation. Thus we build ψm from the linear combination aψ + bCψC−1

in which a and b are complex numbers to be determined. Under C, ψm becomes

CψmC
−1 =

b

a
(aψ +

a2

b
CψC−1) .

Since ψm is a Majorana field, CψmC
−1 ∝ ψm, yielding the condition a2 = b2, i.e., a = ±b.

After imposing a normalization condition on ψm, we find

ψm±(x) =
1√
2
(ψ(x)±Cψ(x)C−1) , (17)

which has the plane-wave expansion

ψm± =

∫

d3p

(2π)3/2
√
2E

∑

s

{ 1√
2
[b(p, s)± ηcd(p, s)]u(p, s)e

−ip·x

+
1√
2
[d†(p, s)± ηcb

†(p, s)]v(p, s)eip·x}. (18)

Comparing with Eq. (1), we define

wm±(p, s) ≡
1√
2
[b(p, s)± ηcd(p, s)], (19)

and observe that the second term can be written as

1√
2
(d†s(p)± ηcb

†
s(p)) = ±ηcw†

m±(s,p), (20)

so that we can rewrite ψm± in a simple way

ψm±(x) =

∫

d3p

(2π)3/2
√
2E

∑

s

{

w±(p, s)u(p, s)e
−ip·x ± ηcw

†
±(p, s)v(p, s)e

ip·x
}

. (21)

Comparing with Eq. (1), we find that λ is no longer arbitrary; rather, λ = ±ηc. Since ψm±

is a Majorana field, our earlier lines of reasoning, as well as our conclusions, should still

apply. Note, e.g., that applying the C transformation to ψm± yields

Cψm±(x)C
−1 =

1√
2
[(ηciγ

2)ψ∗(x)± ψ(x)] = ±ψm± , (22)

which is automatically consistent with our earlier conclusion that η∗cλ is real, since λ = ±ηc.
Turning to the explicit CP and CPT transformation properties of ψm± we confirm our

earlier results that both η∗cη
∗
pλ (or ηp) and ηcηpηt are imaginary — and thus that ηcηt is

real. Interestingly, the study of T and CT (or TC) transformations lead to no further phase

restrictions. Under T, ψm± becomes

Tψm±(t,x)T
−1 =

1√
2
{ηtγ1γ3ψ(−t,x)± (ηcηt)

∗(iγ2)∗γ1γ3ψ∗(−t,x)} , (23)

6



but noting Eq. (42) this should be equivalent to

ηtγ
1γ3ψm±(−t,x) =

1√
2
{ηtγ1γ3ψ(−t,x)± iηtηcγ

1γ3γ2ψ∗(−t,x)} ; (24)

and we conclude that ηcηt is real. Upon applying CT (or TC) to ψm± we find just the same

constraint: that ηcηt must be real.

In summary, we have found that in order to preserve the phase restrictions found in the

Majorana case, the phases in the discrete symmetry transformations of fermion fields must

themselves be restricted. Specifically we have found that ηp must be imaginary and that the

combination ηcηt must be real. As a result, we find that P2ψ(x)P−2 = −ψ(x). Furthermore,

we find that although ηcηpηt is pure imaginary the combination ηcηp is unconstrained.

Before proceeding we note that the phase restrictions we have found are not restricted to

our particular choice of gamma matrix representation and that certain aspects thereof apply

to the transformations of two-component (Majorana) fields as well. For definiteness we con-

sider representations in which (γµ)† = γ0γµγ0 is satisfied, so that Eq. (40) holds [22]. This

subset of possible representations includes the Weyl and Majorana representations as well,

so that our choice spans all the commonly used ones. Moreover, unitary transformations

exist that connect all the representations for which Eq. (40) holds [23]. For completeness,

we present the particular phase restrictions associated with the discrete-symmetry transfor-

mations of two-component Majorana fields in Appendix B.

III. THEORIES OF DIRAC FERMIONS WITH B-L VIOLATION

We now turn to the implications of the phase constraints we have discussed and begin by

considering the discrete symmetry transformations of various B-L violating operators with

Dirac fields, for which the prototypical example is

ψTCψ + h.c. , (25)

where “h.c.” denotes the Hermitian conjugate. Note that C satisfies (σµν)TC = −Cσµν , so

that the construction of Eq. (25) is automatically Lorentz invariant. In what follows we work

at energies far below the scale of B-L breaking; indeed, we work at sufficiently low-energy

scales that we suppose the Dirac field ψ can be regarded as elementary. Moreover, since the

primary use of such operators will be in theories of neutron-antineutron oscillations, or in
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theories of pseudo-Dirac neutrinos, we assume that the mass associated with the fermion

field is dominated by its Dirac mass; this reduces the list of possible non-trivial operators

that can appear. In what follows we enumerate all the lowest mass dimension B-L violating

operators with Lorentz structures that span the possible bilinear covariants and discuss

their transformation properties under CPT, as well as CP. We do not include operators with

derivatives on the fermion field operators because the free-particle Dirac equation can be

used to bring them to the form of those we do include. Thus we consider operators Oi,

namely,

O1 = ψTCψ + h.c.
CPT
=⇒ −(ηcηpηt)

2 , (26)

O2 = ψTCγ5ψ + h.c.
CPT
=⇒ −(ηcηpηt)

2 , (27)

O3 = ψTCγµψ ∂νFµν + h.c.
CPT
=⇒ +(ηcηpηt)

2 , (28)

O4 = ψTCγµγ5ψ ∂
νFµν + h.c.

CPT
=⇒ −(ηcηpηt)

2 , (29)

O5 = ψTCσµνψ F
µν + h.c.

CPT
=⇒ +(ηcηpηt)

2 , (30)

O6 = ψTCσµνγ5ψ F
µν + h.c.

CPT
=⇒ +(ηcηpηt)

2 , (31)

where we have included the axial tensor operator O6 even if not strictly necessary, and we

have reported the phase factor for the transformation of each operator under CPT as well.

Note that we have included the electromagnetic field strength tensor F µν and its source

as needed to make the B-L violating operators transform as Lorentz scalars. Remarkably,

the set of operators Oi do not transform under CPT with a definite sign, and the phase

constraints we have derived in Sec. II, that (ηcηpηt)
2 = −1, only serves to flip the sign of

each eigenvalue. The existence of CPT-odd operators that are Lorentz scalar is in apparent

contradiction with the CPT theorem [17], which asserts that CPT breaking implies that

Lorentz symmetry is broken also. Nevertheless, the theorem remains secure, because, as

we shall show, the operators of Eqs. (28,30,31) vanish once the anticommuting nature of

fermion fields is taken into account. This anticommuting behavior is implicit to the de-

termination of the transformation of the Dirac bilinears under C and CPT and is not an

additional assumption. That only the operators of Eqs. (28,30,31) vanish outright speaks to

the key nature of the phase constraint (ηcηpηt)
2 = −1 in making theories with B-L violation

consistent with the tenets of quantum field theory.

The idea that the operators in Eqs. (28,30,31) should have no effect has been discussed

in particular contexts, though never from the viewpoint of their wrong CPT. For example,
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the vector, tensor, and axial tensor electromagnetic form factors of Majorana neutrinos

have been shown to vanish [24–29], and we refer the reader to the succinct treatment of

Ref. [23]. Similarly, in the phenomenology of flavor-spin neutrino oscillations, the flavor-

diagonal ν transition magnetic moment has been noted to vanish [30–32]. We now establish

that the operators of Eqs. (28,30,31) vanish regardless of whether Majorana or Dirac fields

are employed.

A. CPT-odd operators with Majorana fields

In the case of Majorana fields, for which Eq. (3) holds, we can immediately show that

the operators of Eqs. (28,30,31) — and only these of our list — vanish identically, and that

this follows from the anticommuting nature of fermion fields. We note that Eq. (3) can

be rewritten as any of ψT
mC = λψ̄m, C

†ψ∗
m = λ∗γ0ψm, ψ

†
mC

† = −λ∗ψT
mγ

0, and Cψm =

−λγ0ψ∗
m. Thus O1, e.g., can be rewritten as (λ+λ∗)ψ̄mψm or −(λ+λ∗)ψT

mψ̄
T
m, but these are

equal because ψ̄mψm = −ψT
mψ̄

T
m. Therefore O1 need not vanish. Similarly for O2 we have

(λ−λ∗)ψ̄mγ5ψm, or −(λ−λ∗)ψT
mγ5ψ̄

T
m, and thus O2 also need not vanish. Noting that Cγµ =

−γµ TC we see, however, that O3 = (λ + λ∗)ψ̄mγ
µψmjµ = (λ + λ∗)ψT

mγ
µT ψ̄T

mjµ, with jµ ≡
∂νFµν , and thus O3 vanishes. In contrast, we have that O4 = (λ−λ∗)ψ̄mγ

µγ5ψmjµ = −(λ−
λ∗)ψT

mγ5γ
µ T ψ̄T

mjµ, and we conclude that O4 can be nonzero. Finally, since (σµν)TCγµ =

−Cσµν , we have that O5 = (λ + λ∗)ψ̄mσ
µνψmFµν = (λ + λ∗)ψT

m(σ
µν)T ψ̄T

mFµν , as well as

O6 = (λ − λ∗)ψ̄mσ
µνγ5ψmFµν = (λ − λ∗)ψT

mγ5(σ
µν)T ψ̄T

mFµν . We see that both O5 and O6

vanish as well. Thus we have proven what we set out to show.

B. CPT-odd operators with Dirac fields

In the case of Dirac fields, for which Eq. (3) does not hold, a similarly ready proof that

the operators of Eqs. (28,30,31) vanish is not available. In this case we evaluate the oper-

ators explicitly by postulating that the field operators satisfy equal-time anticommutation

relations and expanding them in the free-particle, plane-wave expansion of Eq. (43). We

then immediately find that O5 and O6 [13], as well as O3, vanish due to the anticommuting

nature of fermion fields. Since our demonstration assumes that the fermion is both free

and point-like, we now turn to ways in which we can make it more general, considering the
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conditions under which we can extend it to the case of bound particles, as well as to that of

strongly bound composite particles. We would like our conclusions to be pertinent to n− n̄

oscillations, for both free and bound neutrons.

In the case that the particle is loosely bound, e.g., the effect of the “wrong CPT” operators

is still zero because the loosely bound state can be regarded as a linear superposition of free

states of momentum k, weighted by its wave function [33]. Since the wrong CPT operators

vanish for free states, then the operators involving such loosely bound particles will also.

We note that since the binding energies of neutrons in large nuclei are no more than ∼ 8

MeV per particle, our argument should be sufficient to conclude that Eqs. (28,30,31) do not

operate for bound neutrons.

An interesting question may be what happens if the fermion is actually a strongly bound

composite particle, such as the neutron itself. We have explored this in the particular case

of n− n̄ oscillations using the M.I.T. bag model [34, 35], following the analysis of Ref. [36].

Since the quarks within the bag are free, an expansion of the quark fields in single-particle

modes analogous to Eq. (43) exists [35], suggesting that the results of our earlier analysis

at the nucleon level should be pertinent here as well. Indeed an explicit calculation of the

transition matrix element 〈n̄|O1|n〉 using the O1 operator of Ref. [36] with the substitution

of uT α
χ1 Cσ

µνuβχ1Fµν for uT α
χ1 Cu

β
χ1 yields zero. In what follows we assume that the operators

of Eqs. (28,30,31) do indeed vanish if Lorentz symmetry is not broken. As an aside, we note

that an explicit proof of the CPT theorem within confining theories is still lacking [37].

C. CP transformation properties

We now turn to the analysis of the CP properties of the surviving B-L violating operators,

finding

O1 = ψTCψ + h.c.
CP
=⇒ −(ηcηp)

2 , (32)

O2 = ψTCγ5ψ + h.c.
CP
=⇒ −(ηcηp)

2 , (33)

O4 = ψTCγµγ5ψ ∂
νFµν + h.c.

CP
=⇒ −(ηcηp)

2 , (34)

where we have left the phase dependence explicit. Noting our earlier determined phase

constraint that η2p = −1, we see, nevertheless, that the CP transformation properties of

the operators are not definite — rather, they are given by η2c , where ηc is not determined.
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Explicit examples of the indeterminate nature of the CP transformation, illustrated through

the phase rotation ψ → ψ′ = eiθψ, can be found in Ref. [38]. The noted phase rotation

has the effect of changing ηc → e2iθηc, ηt → e−2iθηt, with ηp unchanged, under ψ → ψ′

in the C, T, and P transformations, respectively. We emphasize that the indeterminacy

arises from that in η2c and thus emerges generally for B-L violating operators. In Ref. [38]

ηc = ηp = 1 and ηt = i throughout, and although these choices are consistent with the

phase constraint we have found for the CPT transformation, they are not consistent with

the phase constraints we have found for P and TC, though this does not impact their

conclusion regarding the indeterminacy of CP. If η2c were set to −1, then Eq. (32) gives the

result reported in Ref. [14]. We argue on physical grounds that the observation of n − n̄

oscillations cannot itself constitute evidence of CP violation in the following section.

IV. IMPLICATIONS OF THE CPT AND CP PHASES

In this section we consider the consequences of the CPT and CP transformation properties

we have determined in previous sections, particularly in regards to their implications for

the interplay of the appearance of n − n̄ oscillations with external magnetic fields. It has

long been thought that experimental searches for free n− n̄ oscillations must be performed

in a high-vacuum, low-magnetic-field environment, because the energy of a neutron and

antineutron generally ceases to be the same in the presence of matter or magnetic fields,

suppressing n− n̄ oscillations [39, 40]. However, if a n− n̄ transition could connect a neutron

and antineutron of opposite spin, then CPT invariance would guarantee that those states

would be of the same energy in a magnetic field — and eliminating the magnetic field would

no longer be necessary. In Ref. [13] it was argued that spin-dependent SM effects involving

transverse magnetic fields could, in effect, realize n− n̄ transitions in which the particle spin

flips and thus accomplish this goal. However, this conclusion is sensitive to the CPT phase

constraint we have discussed. To illustrate, we revisit the example analyzed in Ref. [13]: a

neutron at rest that can oscillate to an antineutron is in a static magnetic field B0 and to

which a static transverse field B1 is suddenly applied at t = 0. Noting that B0 fixes the

spin quantization axis and defining ω0 ≡ −µnB0 and ω1 ≡ −µnB1, the Hamiltonian matrix
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in the |n(+)〉, |n̄(+)〉, |n̄(−)〉, |n̄(−)〉 basis at t > 0 is of form

H =















M + ω0 δ ω1 0

δ M − ω0 0 −ω1

ω1 0 M − ω0 −δη2cpt
0 −ω1 −δη2cpt M + ω0















, (35)

where M is the neutron mass and δ, which is real in this example, denotes a n(+) → n̄(+)

transition matrix element. The other signs are fixed by Hermiticity and CPT invariance.

We have now explicitly included the dependence of the B-L violating operator on the phase

of the CPT transformation, namely, ηcpt ≡ ηcηpηt. In Ref. [13] the phase ηcpt was set to

unity; in this work we have, rather, established that η2cpt = −1.

In Ref. [13] the unpolarized n-n̄ transition probability was found to be, noting |δ| ≪
|ω0| , |ω1|,

Pn→n̄(t) = δ2

[

ω2
1t

2

ω2
0 + ω2

1

+
ω2
0

(ω2
0 + ω2

1)
2
sin2(t

√

ω2
0 + ω2

1)

+
ω2
0ω

2
1t

(ω2
0 + ω2

1)
5/2

(

1− sin

(

2t
√

ω2
0 + ω2

1

))

]

+O(δ3) , (36)

where if |ω0| ∼ |ω1| the first term is of O(1) in magnetic fields — and thus the quenching

previously noted no longer appears. However, the exact eigenvalues at t > 0 are

E1 =M −
√

ω2
0 + (δ − ω1)2 ,

E2 =M +
√

ω2
0 + (δ − ω1)2 ,

E3 =M −
√

ω2
0 + (δ + ω1)2 ,

E4 =M +
√

ω2
0 + (δ + ω1)2 . (37)

As pointed out in Refs. [14, 41], this is incompatible with rotational invariance because

the eigenenergies do not depend on the magnitude of the total magnetic field |B| alone.
However, once we have included the needed phase η2cpt = −1, we then find that the energy

eigenvalues at t > 0 do indeed depend on |B|, as needed by rotational invariance [14, 41],

recovering the form found in Ref. [14], and that n(+) → n̄(−) and n(−) → n̄(+) transitions

no longer occur. As a result, nn̄ transitions are quenched irrespective of the presence of

transverse magnetic fields. We note that employing time-dependent magnetic fields in the

manner familiar from the theory of magnetic resonance [42, 43], as discussed in Ref. [13],
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does not change this conclusion — the time-dependent case, upon a change of variable,

resembles the static case we have already analyzed. Finally, then, the failure of rotational

invariance in Eq. (37) [13] is a consequence of the inadvertent use of a Hamiltonian matrix

in which the n − n̄ transition operator broke CPT and hence Lorentz invariance; this is

redressed through the inclusion of the phase ηcpt.

We now turn to the possibility of CP violation in free n− n̄ oscillations in the absence of

external fields, for which the n− n̄ transition probability is controlled by |δ|2 [39]. Referring
to Eqs. (32,33), though only Eq. (32) operates [13], we see that the probability transforms

as |ηc|2 = 1. Thus even if δ does not have definite CP its associated observable is CP even.

Consequently the observation of free n−n̄ oscillations cannot itself constitute a CP-violating

effect. This is in contradistinction to the case of a permanent electric-dipole moment (EDM)

d, for which the low-energy Hamiltonian for a particle with spin S is

H = −µ
S
S ·B− d

S
S · E . (38)

Here a nonzero value of d generates an observable CP-violating effect, even if it is generated

by a single operator, because the spin-state energy splitting generated by the µ-term in a

nonzero magnetic field changes upon the reversal of an applied electric field.

We conclude this section by noting that despite the failure of the specific method proposed

in Ref. [13], spin-dependent effects could well prove key to realizing n − n̄ oscillations. In

particular, the n− n̄ transition operator

O4 = ψTCγµγ5ψ ∂
νFµν + h.c. (39)

couples states of the same energy in a magnetic field, so that, in effect, n(+) → n̄(−)

can occur directly because the interaction with an external source, such as an electron

beam, flips the spin. This is concomitant with the study of the crossed process n(p1, s1) +

n(p2, s2) → γ∗(k), for which only L = 1 and S = 1 is allowed in the initial state via angular

momentum conservation and Fermi statistics [14]. As a result, this particular operator

does not require the eradication of magnetic fields to engender an observable effect. The

experimental concept in this case would be completely different from those considered thus

far, engendering e + n → n̄ + e, e.g. Nuclear stability should also set limits on this source

of B-L violation [14].
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V. B-L VIOLATION AND THEORIES OF SELF-CONJUGATE FERMIONS

In our study of B-L violating operators, we have found that it is possible to write down

operators which are odd under CPT but yet are also Lorentz invariant. These operators

do vanish once the anticommuting nature of fermion fields is taken into account, though

the precise stature of the results depends on whether the fermion fields are Majorana or

Dirac. In the Majorana case, the demonstration is immediate, following from the definition

of the Majorana field, Eq. (3), and the anticommuting nature of fermion fields, whereas in

the Dirac case it is not. In the latter case canonical quantization and a Fourier expansion

of the fermion field is required, though fermion antisymmetry still plays a crucial role. In

this section we consider the roots of these differences and indeed why it should be possible

to write down a CPT-odd, Lorentz-invariant operator, even if it does ultimately vanish.

To do this, we recall theories of self-conjugate particles with half-integer isospin, which are

non-local [18–21] and have anomalous CPT properties [44–50].

In attempting to rationalize the spectral pattern of the low-lying, light hadrons, Car-

ruthers discovered a class of theories for which the CPT theorem does not hold [18]. We

note the pions form a self-conjugate isospin multiplet (π+, π0, π−), whereas the kaons form

pair-conjugate multiplets (K+, K0) and (K̄0, K−), so that the particle and antiparticle ap-

pear in distinct isospin multiplets. Carruthers discovered that free theories of self-conjugate

bosons with half-integer isospin are nonlocal, that the commutator of two self-conjugate

fields with opposite isospin components do not vanish at space-like separations [18], ren-

dering the theory noncausal and hence physically unacceptable. Moreover, since weak local

communitivity fails [48], CPT symmetry is no longer expected to hold [51], nor should the

theorem of Ref. [17] apply. These results were quickly generalized, and apply to theories of

arbitrary spin [19–21]. Consequently it is possible to have self-conjugate theories of isospin

I = 0, but it is not possible to have self-conjugate theories of I = 1/2. These developments

are pertinent to the findings in this paper, because a Majorana fermion is a self-conjugate

particle of I = 0, whereas the neutron and antineutron are members of pair-conjugate

I = 1/2 multiplets. Since p − p̄ oscillations are forbidden by electric charge conservation,

a theory of n − n̄ oscillations need not be a theory of self-conjugate isofermions. We note,

however, that the very quark-level operators that generate n− n̄ oscillations [36] would also

produce p− p̄ oscillations under the isospin transformation u ↔ d. Since QCD is symmetric
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under u ↔ d exchange in its chiral limit, the admissible B-L violating operators in that

case must then necessarily break isospin symmetry, so that self-conjugate isofermions do

not appear. Since isospin symmetry is broken in the SM by quark mass and electric charge

differences, the SM itself is compatible with the appearance of B-L violating operators in

the quark sector.

VI. SUMMARY

In this paper we have determined the restrictions on the phases associated with the dis-

crete symmetry transformations C, P, and T of fermion fields that appear in theories of

B-L violation, generalizing the earlier work of Refs. [1, 2]. These phase constraints do not

impact B-L conserving theories because the phases are unimodular, but they are key to de-

termining the behavior of B-L violating operators under discrete symmetry transformations

because they enter as the phase squared. As a result, they have important implications for

the interplay of B-L violating dynamics with the SM.

We have found that the phase associated with the transformation of a fermion field

under CPT, ηcpt, must always be imaginary and that the phase associated with P, ηp, must

be imaginary for fermions for which a P transformation exists. Generally, however, the

phase associated with CP, ηcp, is indeterminate for B-L violating operators. We find that the

constraint on ηcpt reconciles the disagreement between Refs. [13, 14], to the end that magnetic

fields do indeed quench n-n̄ oscillations mediated by the operator ψTCψ+h.c. [14]. However,

spin dependence can still play a key role in n-n̄ transitions, as proposed in Ref. [13], and in

this paper we have noted the prospects associated with the operator ψTCγµγ5ψjµ+h.c. [14],

for which n(+) → n̄(−), e.g., is mediated by the external current jµ. We note that n(+) and

n(−) are of the same energy irrespective of the external magnetic fields. Moreover, we have

shown that the appearance of n-n̄ oscillations does not in itself break CP, in contradistinction

to Ref. [14], and that this is true irrespective of ηcp.

We expect that CPT is an exact symmetry of a local, Lorentz invariant quantum field

theory [51], and if CPT is broken, then Lorentz invariance fails also [17]. We have found

that it is possible to construct B-L violating, Lorentz-invariant operators that are either

CPT even or odd, but that one set vanishes due to the anticommuting nature of fermion

fields. The CPT phase constraint we have found is essential to making the nonvanishing B-L
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operators CPT even. Our ability to prove that the CPT-odd operators vanish depends on

whether the fermion fields are Majorana or Dirac, with additional assumptions needed in the

Dirac case. We have explained this in connection to theories of self-conjugate isofermions,

for which locality fails [18–21], and the CPT properties are anomalous [44–50]. In this regard

Majorana neutrinos and neutrons are distinct, because only the latter carry I = 1/2. The

conservation of electric charge saves a theory with n−n̄ oscillations, in which p-p̄ oscillations

do not occur, from being a theory of self-conjugate isofermions; nevertheless, CPT-odd,

Lorentz-invariant operators can appear, though they ultimately appear to vanish.

APPENDICES

A. Discrete symmetries — definitions and other essentials

In this appendix we collect the definitions and basic results that underlie the central ar-

guments of the paper. The discrete-symmetry transformations of a four-component fermion

field ψ(x) are given by

Cψ(x)C−1 = ηcCγ
0ψ∗(x) ≡ ηciγ

2ψ∗(x) ≡ ηcψ
c(x) , (40)

Pψ(t,x)P−1 = ηpγ
0ψ(t,−x) , (41)

Tψ(t,x)T−1 = ηtγ
1γ3ψ(−t,x) , (42)

where ηc, ηp, and ηt are unimodular phase factors of the charge-conjugation C, parity P,

and time-reversal T transformations, respectively, and we have chosen the Dirac-Pauli

representation for the gamma matrices. Note that ψc(x) is the conjugate field and that

C2ψ(x)C−2 = ψ(x) and T2ψ(x)T−2 = −ψ(x), irrespective of arbitrary phases, but that

P2ψ(x)P−2 = η2pψ(x). Our choices and results conform with those of Ref. [13] if the arbi-

trary phases are set to unity — and with those of Ref. [22], though we have chosen a specific

representation of the gamma matrices.

The plane-wave expansion of a Dirac field ψ(x) is given by

ψ(x) =

∫

d3p

(2π)3/2
√
2E

∑

s=±

{

b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x
}

, (43)

with spinors defined as

u(p, s) = N





χ(s)

σ·p
E+M

χ(s)



 ; v(p, s) = N





σ·p
E+M

χ′ (s)

χ′(s)



 , (44)
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noting χ′ (s) = −iσ2χ(s), χ+ =
(

1
0

)

, χ− =
(

0
1

)

, and N =
√
E +M . Noting that b(d)

annihilates a particle (antiparticle), we find the following transformation properties:

Cb(p, s)C† = ηcd(p, s) ; Cd†(p, s)C† = ηcb
†(p, s) ,

Cb†(p, s)C† = η∗cd
†(p, s) ; Cd(p, s)C† = η∗c b(p, s) , (45)

Pb(p, s)P† = ηpb(−p, s) ; Pd†(p, s)P† = −ηpd†(−p, s) ,

Pb†(p, s)P† = η∗pb
†(−p, s) ; Pd(p, s)P† = −η∗pd(−p, s) , (46)

Tb(p, s)T−1 = sηtb(−p,−s) ; Td†(p, s)T−1 = sηtd
†(−p,−s) ,

Tb†(p, s)T−1 = sη∗t b
†(−p,−s) ; Td(p, s)T−1 = sη∗t d(−p,−s) , (47)

where, for convenience, we note that

γ0u(p, s) = u(−p, s) ; γ0v(p, s) = −v(−p, s) , (48)

u(p, s) = iγ2v∗(p, s) , (49)

u∗(p, s) = sγ1γ3u(−p,−s) ; v∗(p, s) = sγ1γ3v(−p,−s) , (50)

γ5u(p, s) = −sv(p,−s) . (51)

B. Phase restrictions for two-component fields

In this section we develop the phase restrictions associated with the discrete-symmetry

transformations of two-component Majorana fields. We develop these in two different ways:

the first by connecting Dirac fields, and our earlier phase constraints, with two-component

Majorana fields and the second by analyzing the transformation properties of two-component

Majorana fields directly.

In Weyl representation, a Dirac spinor can be written as

ψ =





ξα

ηβ̇



 . (52)

where α and β can be 1 or 2. Here we employ the undotted and dotted notation used by

Refs. [52, 53]. The undotted contravariant spinor ξα and the covariant spinor ξα are in the

(1
2
, 0) representation of the Lorentz group SO(3,1), whereas the dotted covariant spinor ηβ̇

and the contravariant spinor ηβ̇ are in the (0, 1
2
) representation. One can raise or lower the
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undotted indices using the metric of SL(2,C)

gαβ =





0 1

−1 0



 = iσ2
αβ , (53)

gαβ =





0 −1

1 0



 = −iσ2
αβ , (54)

i.e.,

ξα = gαβξβ = −iσ2
αβξβ , (55)

and use the same metric for dotted indices.

Since the C and P transformations of Eqs. (40,41) connect the (1
2
, 0) and (0, 1

2
) represen-

tations of the Lorentz group and thus the two two-component fields in Eq. (52), a particular

two-component field cannot transform into itself under P or C. However, it can transform

into itself under CP or CPT (or T) [52, 53], so that phase constraints may exist for these

particular transformations. We will now determine them in two different ways.

In Sec. II, we found the phase constraints associated with the discrete-symmetry transfor-

mations of a Dirac field. Revisiting the CP and CPT transformations in Weyl representation,

we find

CP





ξα(x, t)

ηβ̇(x, t)



 (CP)−1 = ηcpiγ
0γ2





ξα†(−x, t)

η†
β̇
(−x, t)



 , (56)

CPT





ξα(x)

ηβ̇(x)



 (CPT)−1 = −ηcptγ5




ξα†(−x)
η†
β̇
(−x)



 . (57)

Since in Weyl representation

iγ0γ2 =





−iσ2 0

0 iσ2



 ; γ5 =





−1 0

0 1



 (58)

we use Eq. (55), e.g., to find

CPξα(x, t)(CP)−1 = −ηcpξ†α(−x, t) , (59)

CPηα̇(x, t)(CP)−1 = −ηcpηα̇†(−x, t) , (60)

CPTξα(x)(CPT)−1 = ηcptξ
α†(−x) , (61)

CPTηα̇(x)(CPT)−1 = −ηcptη†α̇(−x) , (62)
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where we note, as per Sec. II, that ηcpt ≡ ηcηpηt = ±i. Here we find no direct constraint on

the phase ηcp ≡ ηcηp, or ηt for that matter, because the analysis of Sec. II determined that

the combinations η∗cpλ and ηtλ were imaginary and real, respectively. Since the phase λ has

no meaning in the current context, no conclusions on ηcp or ηt can follow.

An alternate path to these results comes from the analysis of the plane-wave expansion

of the two-component Majorana field ξa(x) [54, 55]:

ξα(x) =
∑

s

∫

d3p

(2π)3/2(2Ep)1/2
[xα(p, s)a(p, s)e

−ipx + λyα(p, s)a
†(p, s)eipx] , (63)

where xα and yα are two-component spinors, whose definition and other pertinent details

can be found in Ref. [55]. Note that we have included a phase factor λ in ξa(x), in analogy

to the analysis of Sec. II. It is trivial to check that the phase λ included here functions in

the same way as in Eq. (1) and that it is forced to 1 when ξα(x) is used to constuct a Dirac

field 1. Using the CP transformation of ξα(x, t) [52, 53]

CPξα(x, t)(CP)−1 = ηcp(ξ
α)†(−x, t) (64)

and the relations [55]

(xα)†(p, s) = x†α̇(p, s) = −yα(−p, s) , (65)

(yα)†(p, s) = y†α̇(p, s) = xα(−p, s) (66)

yield

CPa(p, s)(CP)−1 = ηcpλ
∗a(−p, s) , (67)

CPa†(p, s)(CP)−1 = −ηcpλ∗a†(−p, s) . (68)

Since CP is a unitary operator, taking the Hermitian conjugate of either relation proves

that ηcpλ
∗ must be imaginary.

Under CPT, we have

CPTξα(x)(CPT)−1 = ηcpt(ξ
α)†(−x) . (69)

Using the relations [55]

x†α̇(p,−s) = 2sy†α̇(p, s) , (70)

y†α̇(p,−s) = − 1

2s
x†α̇(p, s) , (71)

1 Although the notation for a Dirac field employed by Refs. [52, 53] and [55] differs, our results are un-

changed.
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we find

CPTa(p, s)(CPT)−1 = − 1

2s
λ∗ηcpta(p,−s) , (72)

CPTa†(p, s)(CPT)−1 = 2sληcpta
†(p,−s) . (73)

Noting that CPT is an antiunitary operator, as in Sec. II, we can take the Hermitian

conjugate of either equation to show that ηcpt must be imaginary. Alternatively, after Ref. [2],

we define CPT|0〉 = |0〉 and note

1 = 〈0|a(p, s)a†(p, s)|0〉

= 〈0|CPTa(p, s)CPT−1CPTa†(p, s)CPT−1|0〉 . (74)

Then using Eqs. (72,73) shows that ηcpt = ±i.
In summary, we have used two methods to find the phase constraints on CP and CPT

for two-component fields, and have obtained the same results, which are that ηcp itself is

unconstrained, though ηcpλ
∗ must be imaginary, and ηcpt is always ±i.
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