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We recently derived a quantization condition for the energy of three relativistic particles in a
cubic box [1, 2]. Here we use this condition to study the energy level closest to the three-particle
threshold when the total three-momentum vanishes. We expand this energy in powers of 1/L, where
L is the linear extent of the finite volume. The expansion begins at O(1/L3), and we determine the
coefficients of the terms through O(1/L6). As is also the case for the two-particle threshold energy,
the 1/L3, 1/L4 and 1/L5 coefficients depend only on the two-particle scattering length a. These
can be compared to previous results obtained using nonrelativistic quantum mechanics [3–5] and
we find complete agreement. The 1/L6 coefficients depend additionally on the two-particle effective
range r (just as in the two-particle case) and on a suitably defined threshold three-particle scattering
amplitude (a new feature for three particles). A second new feature in the three particle case is that
logarithmic dependence on L appears at O(1/L6). Relativistic effects enter at this order, and the
only comparison possible with the nonrelativistic result is for the coefficient of the logarithm, where
we again find agreement. For a more thorough check of the 1/L6 result, and thus of the quantization
condition, we also compare to a perturbative calculation of the threshold energy in relativistic λφ4

theory, which we have recently presented in Ref. [6]. Here all terms can be compared and we find
full agreement.
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I. INTRODUCTION

In two recent papers, we derived a relation between the spectrum of three relativistic particles in a periodic box
and on-shell, infinite-volume two-to-two and three-to-three scattering amplitudes [1, 2]. If the first paper, Ref. [1], we
related the finite-volume spectrum to an unphysical infinite-volume three-to-three scattering quantity that we denoted
Kdf,3. The formalism was then completed in Ref. [2], where we presented the purely infinite-volume relation between
Kdf,3 and the standard three-to-three scattering amplitude, M3. As the derivation of these results is lengthy and
involved, it is important to check them as thoroughly as possible. Some checks were made in Refs. [1, 2], but the
purpose of the present note is to provide a more significant check. We do so by calculating, in our formalism, the
energy of the state closest to threshold as a function of the inverse box size 1/L, and comparing to results obtained
using two other methods: nonrelativistic quantum mechanics (NRQM) (as done in Refs. [3–5]) and a perturbative
expansion in relativistic λφ4 theory (a calculation we have recently completed in Ref. [6]). These two methods provide
complimentary checks of the results of our general formalism.

The result derived in Refs. [1, 2] is for a scalar field φ with a Z2 symmetry, φ→ −φ, so that only even legged vertices
appear. This theory is studied in a cubic box with side length L and periodic boundary conditions in all three spatial
directions. The absence of 2 −→ 3 transitions means that a direct comparison can be made to the nonrelativistic
approach, since in the latter particle number is conserved.

The analysis of Refs. [1, 2] allows for nonzero total three momentum, ~P , in the finite-volume frame. However,

since Refs. [3–6] consider only zero total three-momentum, we restrict ourselves here to ~P = 0. This means that the
threshold occurs when the total energy satisfies E = 3m, with m the physical mass of the scalar particle. In the
absence of interactions, this is also the energy of the lowest-lying three-particle state in the box, with all particles at
rest. Including interactions, the energy of this state will shift by an amount

∆Eth = E − 3m, (1)

that should go to zero as L → ∞. For two particles, it is well known that ∆Eth ∝ a/L3 + O(1/L4), with a the
scattering length (see Ref. [7] and references therein). The 1/L3 factor arises because the two particles, both of which
have spatially uniform wavefunctions, need to be close to each other in order to interact. We expect that ∆Eth for
three particles should scale with the same power of 1/L, since one possible process is a pairwise interaction with the
third particle spectating. Similarly, a localized three-particle interaction should lead to a contribution scaling as 1/L6,
since all three particles must be close. These expectations are indeed borne out by the results of Refs. [4–6].

It should be noted that, in finite volume, there is an infinite tower of states with energies En(L) satisfying
limL→∞En(L) = 3m. We are only interested in the lowest lying level in this infinite set, for which, as noted
above, ∆E = O(1/L3). In particular we are not concerned with excited states, that, in the noninteracting limit,
contain at least two particles with nonzero momenta. The energy shifts for such states scale as ∆E = O(1/L2) with
positive coefficients. Our quantization condition could also be used to develop the 1/L expansion of the energy shifts
for these excited states, but we do not pursue this in the present article.

In light of these considerations we expand the energy shift as

∆Eth =

∞∑

n=3

an(L)

Ln
, (2)

and determine the an(L) up to n = 6. We include a possible L dependence in the coefficients, since Refs. [4–6] find a
logarithmic dependence for a6(L).

As we will show, our results for a3−5, as well as the logarithmic, volume-dependent term in a6(L), agree with
those from Refs. [3–5] (which were also checked in Ref. [6]). We cannot, however, make a useful comparison with the
NRQM results for the volume-independent part of a6(L). This is for two reasons. First, as we discovered in Ref. [6],
there are differences between the nonrelativistic and relativistic results for the two-particle threshold energy shift at
O(1/L6). Such differences arise from relativistic kinematics, and we expect these to persist also in the three-particle
case. Second, this is the order at which a three-particle interaction first appears, and the definition of this quantity is
scheme dependent. The schemes used in the two NRQM calculations differ from that used in our formalism (as well
as from each other), and the relationship between these schemes is not known at present. It is primarily because of
this issue that we carried out the perturbative calculation of Ref. [6], since in that calculation we could use the same
scheme for defining the three-particle interaction, and thus provide an unambiguous check for a6(L).1

1 See also Ref. [13] for a recent review of results for three particles in a finite volume.
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FIG. 1. (a) The three-to-three scattering amplitude contains three types of pairwise scattering diagrams that lead to divergences
at threshold. The scaling of the divergence with the shift from threshold, ∆E, and the two-particle scattering length, a, is
shown. (b) We define a finite threshold scattering amplitude by subtracting the singular parts of these diagrams before sending
the energy to 3m. The rings, in contrast to filled circles, indicate that only the two-to-two scattering amplitude near threshold
appears in the subtraction. The vertical dashed lines indicate that a simple pole is used in place of the fully dressed propagator.
Detailed definitions are given in Sec. III D.

Since the scheme-dependence of the three-particle interaction plays an important role in the following, we briefly
recall how this issue arises. The quantity that one naively expects to enter the 1/L6 energy shift in a relativistic
theory is the infinite-volume three-to-three scattering amplitude at threshold. This cannot be the case, however,
since this amplitude diverges as ∆E = E − 3m vanishes.2 The divergences are due to the three pairwise scattering
diagrams shown in Fig. 1(a), and scale as a2/∆E, a3/

√
∆E and a4 log(∆E), respectively, where a is the scattering

length. The existence of such singularities is a general field-theoretic result that was established long ago [8–11]. Our
formalism accommodates these divergences by finding that ∆Eth depends on a modified quantity, M3,th, given by
subtracting the divergent terms from M3 [see Fig. 1(b) as well as Eq. (114) below]. The choice of subtraction is,
however, ambiguous, and introduces dependence on a cutoff scale and scheme.

The remainder of this paper is organized as follows. In the following section we summarize the quantization condition
of Ref. [1], which takes the form of a determinant of formally infinite-dimensional matrices. The core of this paper is
Sec. III, in which we describe the development of the threshold expansion. The central difficulty is that, at O(1/L6) in
the expansion of ∆Eth, all entries in the infinite-dimensional matrices contribute. We thus first recast the quantization
condition into a more useful form, given in Eq. (33). We then analyze the reduced result by understanding the 1/L
scaling of its components. The analysis is rather involved and lengthy, and requires the introduction of the threshold
amplitudeM3,th discussed above. Brief conclusions are given in Sec. IV. Technical calculations are collected in three
appendices.

II. SUMMARY OF QUANTIZATION CONDITION

In this section we recall the three-particle quantization condition from Ref. [1]. This condition determines the
spectral energies, Ei, to be those values for which

det[1 + F3Kdf,3] = 0 . (3)

Here F3 and Kdf,3 are matrices, to be defined below, that depend on E (and, in the case of F3, also on L). Particle
interactions enter through two infinite-volume scattering quantities: the three-particle quantity Kdf,3, shown explicitly,
and the two-particle K matrix K2, contained in F3.
Kdf,3 is a three-particle divergence-free K matrix. It depends on the same (on shell) kinematic variables as M3,

and is invariant under interchange of the external particle momenta. It differs from the standard three-to-three
scattering amplitude in two important ways [1, 2]. First, physical divergences, which are known to occur in the three-
particle scattering amplitude, M3, are absent in Kdf,3. These divergences are due to pairwise scatterings separated
by arbitrarily long lived intermediate states [see Fig. 1(a)]. Second, loop integrals defining Kdf,3 are evaluated with a

2 As discussed later, there are also divergences above threshold. We imagine here choosing the kinematics such that the above-threshold
divergences are avoided, and then moving towards threshold, at which point the divergences cannot be avoided.
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pole prescription differing from the standard iε prescription. This feature is needed to properly accommodate finite-
volume effects from the two-particle unitary cusp. The issue of two-particle cusps plays a minor role in the threshold
expansion so we do not describe it here. We direct the interested reader to Refs. [1, 2, 13] for a thorough discussion.

The precise relation between Kdf,3 andM3 is given in Ref. [2]. First, one uses an integral equation to convert Kdf,3

to Mdf,3. The latter is an intermediate quantity that, like Kdf,3, has no singularities due to long-lived intermediate
states. Unlike Kdf,3, however, Mdf,3 is defined with the standard iε-pole prescription and is therefore more closely
related to the standard scattering amplitude. Mdf,3 is defined in Eq. (93) below. Second, one adds back in the
singular terms. These depend only on kinematic variables as well as the on-shell two-to-two scattering amplitude.
As we see below, the threshold expansion of Eq. (3) actually reproduces the integral equation that converts Kdf,3

to Mdf,3. In addition, the expansion produces an infinite series of terms that convert Mdf,3 to the quantity M3,th

introduced above. Of the three quantities, Kdf,3, Mdf,3 and M3,th, only the latter appears in our final result for the
threshold expansion. This is also the quantity that is most closely related to the standard scattering amplitude.

We now explain the matrix indices of Kdf,3 and F3. These specify the incoming and outgoing configuration of

three on-shell particles with ~P = 0 and given total energy E. We arbitrarily pick one of the three incoming particles

and label its momentum ~k, and similarly label one of the outgoing momenta ~k′. We sometimes refer to these two

particles as “spectators”, for reasons that will become clear below. In infinite volume ~k and ~k′ are continuous, but the

quantization condition, Eq. (3), depends only on Kdf,3 for finite-volume momenta satisfying ~k,~k′ ∈ (2π/L)Z3. With ~k,
~k′ specified, the total momentum and energy of the remaining two particles is also determined, separately for the in-
and out-states. Thus the only remaining degrees of freedom are the incoming and outgoing two-particle orbital angular
momenta in their respective center-of-mass (CM) frames. We specify these using spherical harmonic indices: `,m for

the in-state and `′,m′ for the out-state. Altogether, for fixed E (and ~P = 0), Kdf,3 depends on ~k′, `′,m′ and ~k, `,m.
Since these quantities take discrete values, it is convenient to view Kdf,3 as a matrix, i.e. Kdf,3 = Kdf,3;k′,`′,m′;k,`,m.

Equivalently, Kdf,3 is a linear operator acting on a space with orthonormal basis vectors |~k, `,m〉, such that

〈~k′, `′,m′|Kdf,3|~k, `,m〉 = Kdf,3;k′,`′,m′;k,`,m . (4)

The other factor in Eq. (3), F3, is a matrix acting on the same space. It is given by

F3 =
1

L3

1

2ω

[
F

3
− F 1

K2
−1 + F +G

F

]
, (5)

where we have used the form of the result given (up to trivial rearrangements) in Appendix C of Ref. [1]. Four new
matrices enter Eq. (5): 1/(2ω), F , G, and K2. The first three are kinematical quantities, and will be described below.
We first discuss K2, which is given by

K2;k′,`′,m′;k,`,m = δk′kδ`′`δm′m
16πE∗2,k
q∗k

tan δ`(q
∗
k) . (6)

The physical interpretation of this infinite-volume quantity is that it describes a process in which the spectator

particles do not interact (so that ~k = ~k′) while the other two particles scatter (so that the two-particle CM angular
momentum is conserved). In the two-particle CM frame, the momentum of each particle is denoted q∗k, while their
combined energy is E∗2,k. These are given, respectively, by

q∗2k = E∗22,k/4−m2 and E∗22,k = (E − ωk)2 − ~k 2 , (7)

where ωk =
√
~k 2 +m2. Stripping away the Kronecker deltas from Eq. (6), what remains is the two-particle K matrix,

given in terms of the physical, infinite-volume scattering phase shift δ`(q
∗
k).

As written, Eq. (6) is only valid above threshold, i.e. for (q∗k)2 > 0. However, our formalism also requires K2 below

threshold. This is because, as ~k 2 increases, E∗2,k drops below 2m and thus (q∗k)2 becomes negative. The subthreshold

result is defined in Ref. [1], and is obtained from the above threshold result, (6), by two changes. First, one analytically
continues the scattering phase shifts below threshold in the standard way using threshold expansions. For example,
for ` = 0, one uses

q−1[tan δ0(q)] = −a
[
1 +

1

2
raq2 +O[(aq)4]

]
, (8)
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which is valid for both positive and negative q2. Here a is the scattering length in the nuclear physics convention,3

and r is the effective range. Similar expansions exist for the higher partial waves, but we will only need the result

q−1[tan δ`(q)] = O(q2`) . (9)

In addition to the analytic continuation of the phase shift, the subthreshold definition of K2 includes a term related
to the two-particle unitary cusp (and involving the cutoff function H introduced below). However, this term does not
contribute to any power of 1/L when doing an expansion about the threshold energy. We thus do not describe it in
this work.

We now define the remaining matrices contained in F3. The first is a simple diagonal kinematical matrix,
[

1

2ω

]

k′,`′,m′;k,`,m

≡ δk′kδ`′`δm′m
1

2ωk
. (10)

The second, G, resembles the three particle nonrelativistic propagator, decorated by angular dependence. It has both
diagonal and off-diagonal entries:

Gp,`′,m′;k,`,m ≡
(
k∗

q∗p

)`′ 4πY`′,m′(k̂∗)H(~p )H(~k )Y ∗`,m(p̂∗)

2ωkp(E − ωk − ωp − ωkp)

(
p∗

q∗k

)`
1

2ωkL3
. (11)

Here q∗p is defined as for q∗k in Eq. (7) except with k → p, ~k∗ is the result of boosting the vector ~k with velocity

~βp = ~p/(E − ωp), and ~p∗ is defined by a similar boost with ~k ↔ ~p. In addition, ωkp =

√
(~k + ~p )2 +m2 is the on shell

energy of the particle with the “third” momentum coordinate, −~k − ~p. Finally, H is a cutoff function, defined by4

H(~k) = J([E∗2,k/(2m)]2) , J(x) ≡





0 , x ≤ 0 ;

exp
(
− 1
x exp

[
− 1

1−x

])
, 0 < x ≤ 1 ;

1 , 1 < x .

(12)

It ensures that the boosts needed to obtain ~p∗ and ~k∗ are well defined. A key property of J(x) is that it is smooth.
In particular, since J(x) = 1 for x ≥ 1, all its derivatives vanish as x → 1−. Thus the function remains unity to all
orders in a Taylor expansion about x = 1. For further discussion of J and H see Ref. [1].

The last matrix, F , is a generalization of the zeta functions introduced in Ref. [7]:

Fk′,`′,m′;k,`,m ≡ δk′kF`′,m′;`,m(~k) , (13)

F`′,m′;`,m(~k) = F iε`′,m′;`,m(~k) + ρ`′,m′;`,m(~k) , (14)

F iε`′,m′;`,m(~k) =
1

2

[
1

L3

∑

~a

−
∫

~a

]
4πY`′,m′(â∗)Y ∗`,m(â∗)H(~k)H(~a )H(~bka)

2ωa2ωka(E − ωk − ωa − ωka + iε)

(
a∗

q∗k

)`+`′
. (15)

Here
∫
~a
≡
∫
d3a/(2π)3, while the sum over ~a runs over all finite-volume momenta. ~a∗ is the vector obtained by boosting

~a to the two particle CM frame, treating ~k as the spectator momentum, i.e. boosting with velocity ~βk = ~k/(E − ωk).
Finally, ρ is a phase space factor defined by

ρ`′,m′;`,m(~k) ≡ δ`′`δm′mH(~k)ρ̃(E∗2,k) , (16)

ρ̃(E∗2,k) ≡ 1

16πE∗2,k
×
{
−iq∗k (2m)2 < E∗22,k ,

|q∗k| 0 < E∗22,k ≤ (2m)2 ,
(17)

The addition of the ρ term to F iε in Eq. (14) changes the pole prescription from iε to the “P̃V” prescription defined
in Ref. [1].

We close this section by rearranging the matrices appearing in the quantization condition in two minor ways. The
first takes care of the powers of 1/q∗p or 1/q∗k (which we collectively refer to as 1/q∗) contained in G and F . Since

3 The convention is such that a > 0 for repulsive two-body interactions and a < 0 for attractive. Thus we expect the proportionality
factor in ∆Eth ∝ a/L3 +O(1/L4) to be positive. [See the text after Eq. (1) above.]

4 Other choices of the function J are possible, as discussed in Ref. [1], but this is the form we use for numerical evaluations.
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we will find that q∗ ∼ 1/L, these terms apparently lead to positive powers of L, complicating the development of
the threshold expansion. These powers of 1/q∗ are, however, misleading, since they are canceled by corresponding
positive powers contained within K2 and Kdf,3. This is shown for K2 by the result (9), and for Kdf,3 by a general
result shown in Appendix A of Ref. [1]. It is thus preferable to make this cancellation explicit by introducing factors
of the matrix

Qk′,`′,m′;k,`,m ≡ δk′kδ`′`δm′m(q∗k)` . (18)

The second change is to insert factors of the matrix 1/(2ω) and its inverse (2ω) such that the symmetric matrix
(2ω)−1G appears.

Specifically, we introduce

F̃3 = QF3Q , K̃df,3 = Q−1Kdf,3Q
−1, K̃2 = (2ω)Q−1K2Q

−1, F̃ = (2ω)−1QFQ , and G̃ = (2ω)−1QGQ , (19)

in terms of which the quantization condition becomes

det[1 + F̃3K̃df,3] = 0 , (20)

where

F̃3 =
1

L3

[
F̃

3
− F̃ 1

H F̃
]
, (21)

with

H ≡ K̃−1
2 + F̃ + G̃ . (22)

We stress that both K̃df,3 and K̃2 have a well defined limit as q∗ → 0, and indeed are functions of (q∗)2 that can be

analytically continued to negative values. We also note that G̃, F̃ and K̃2, and thus also H, are hermitian.

III. THRESHOLD EXPANSION

To develop the 1/L expansion we need to know how the various quantities entering the quantization condition,

Eq. (3), scale with 1/L when E ≈ 3m. Specifically, recalling that ~k = 2π~n/L is one of the matrix indices on the
quantities in (3), we can work out the scaling assuming that n = |~n| = O(L0) so that k = O(1/L) � m. This is
the same as assuming that important contributions to the sums over matrix indices occur when all three particles

are nonrelativistic. This assumption is naive, since the sums actually range up to values of ~k where H(~k) = 0, for
which k ∼ m. It turns out that the naive scaling gives the correct prediction for the first three orders in the 1/L
expansion of ∆Eth. We demonstrate this in Sec. III E, where we also show how to reach the correct result for the
1/L6 contribution, for which the naive scaling is insufficient.

As we explain in detail in the first subsection below, the assumption |~n| = O(L0), together with the assumed form
(2) for ∆Eth, allows one to determine the scaling with 1/L of each of the components of the matrices entering into

the quantization condition. We find that the elements of K̃df,3 are of O(L0), which is simply the statement that

this is an infinite-volume quantity with a nonzero limit at threshold. The dominant contributions to F̃ and G̃ are

also of O(L0), so that F̃3 ∼ 1/L3 due to the explicit volume factor in Eq. (21). Naively, one might conclude that

F̃3K̃df,3 ∼ 1/L3 and cannot cancel the contribution from the unit matrix in Eq. (20), as would be necessary to satisfy
the quantization condition. There are two ways to avoid this conclusion. First, the determinant involves a product

over O(L3) matrix indices, and this multiplicity factor can cancel the 1/L3 in F̃3. Second, the matrix H can, for an
appropriately tuned energy, have an eigenvalue of O(1/L3), due to cancellations between the terms in Eq. (22) [which

are each of O(L0)]. This leads to F̃3 scaling as O(L0). Both mechanisms turn out to contribute in the solution to the
quantization condition, and we describe them in turn.

To illustrate the impact of having O(L3) matrix indices, we expand the determinant in terms of cofactors5

det[1 + F̃3K̃df,3] =
(

1 + [F̃3K̃df,3]000;000

)
C000 +

∑

{k`m}6=0

[F̃3K̃df,3]000;k`mCk`m . (23)

5 Ck`m is the determinant of the matrix reached by removing the 000th row and the k`mth column from 1 + F̃3K̃df,3, multiplied by an
alternating phase.
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We focus on the second term. From the discussion above, we know that the matrix elements [F̃3K̃df,3]000;k`m scale
as 1/L3. Now we use the result that the infinite-volume limit of (1/L3)

∑
~k acting on a smooth function equals the

integral,
∫
d3k/(2π)3, of that function. Assuming that Cklm scales as L0, this implies that the second term in (23) in

fact scales as L0 rather than as 1/L3. To determine the actual scaling of Cklm, one would need to iteratively repeat
the cofactor analysis, removing increasingly more rows and columns and evaluating determinants. It is plausible that
this could lead to additional L3 enhancements. In this study, however, we are able to avoid this complicated line
of analysis, by recasting the quantization condition in a form that, for studying the threshold energy, is simpler to
handle. We thus use Eq. (23) only to emphasize that the naive scaling of terms can be invalidated by the presence of
sums over the O(L3) indices, leading to a potential proliferation of contributions. This observation will play a central
role in the subsequent analysis.

To illustrate the second mechanism needed to find the threshold solution of the quantization condition, we adopt

the naive scaling worked out in the next subsection. In this scaling, the dominant parts of F̃ and G̃ are, respectively,

F̃00 ≡ F̃000;000 and G̃00 ≡ G̃000;000, both of which scale as L0 (as do all elements of K̃df,3). Here we are introducing

the abbreviation that the subscript 00 refers to the matrix element with ~k = ~k′ = ~0 and ` = `′ = m = m′ = 0. The

dominant part of F̃3 is then

F̃3;00 ≡ F̃3;000,000 ≈ −
1

L3
F̃00[H−1]00F̃00 , (24)

with all other matrix elements suppressed by additional powers of 1/L. If this were the entire story, the quantization
condition would collapse, as L→∞, to the algebraic equation

1 + F̃3;00K̃df,3;00 = 0 . (25)

This equation can be solved if ∆E [of the form shown in Eq. (2)] can be tuned such that H has an eigenvalue that
behaves as c/L3. We call this putative small eigenvalue λ0. It is also necessary that the corresponding eigenvector,

|λ0〉, have nonzero overlap with |~0, 0, 0〉 when L → ∞. In that case [H−1]00 ∼ L3, so that F̃3;00 ∼ L0 and the
quantization condition (25) can be satisfied if ∆E is tuned so that the constant c has the appropriate value. The
requisite tuning of the eigenvalue of H is possible because, as can be seen from Eq. (22), H00 consists of three terms

of O(L0), two of which (F̃ and G̃) depend on ∆E (as shown in the next subsection).
To obtain the correct expression for the energy of the near-threshold state one must combine the two mechanisms.

The first mechanism alone would require a cancellation between quantities in which all finite-volume sums have been
replaced by integrals, so that dependence on L is lost. This cannot lead to the desired volume dependence of Eq. (2).
The second mechanism does lead to such a volume dependence—indeed, as we show below, in order that λ0 ∼ 1/L3 we
must remove L0, 1/L and 1/L2 contributions from λ0, and this fixes the coefficients a3, a4 and a5 in ∆Eth. However,
to determine the a6/L

6 term in ∆Eth, it turns out that we must control an infinite number of contributions arising
because of the first mechanism.

As noted above, we have not found it fruitful to work directly with the expansion given in Eq. (23). Instead, after
some trial and error, we have found that an alternative form of the quantization condition allows a simpler analysis.
This is

lim
E→3m+∆Eth

〈λ0|F̃ K̃df,3
1

1+F̃3K̃df,3

F̃ |λ0〉 =∞ , (26)

where |λ0〉 is the eigenvector of H introduced above whose eigenvalue, λ0, is tuned to be of O(1/L3). We will provide
motivation for this form shortly, but first explain why it is valid. We begin by noting that we expect there to be
only one eigenvalue that can be tuned in this way, since only in the element H00 can the requisite cancellation occur.
This is consistent with our expectation that there is only a single near-threshold state. Next we note that the matrix

element in Eq. (26) can diverge if F̃ diverges or if one of the eigenvalues of 1 +F̃3K̃df,3 vanishes.6 The divergence of F̃
only occurs at non-interacting energies, and thus does not lead to interesting solutions. We avoid them by requiring
∆Eth to have the form indicated in Eq. (2), which differs from all non-interacting energies once L is large enough.
With this proviso we see that, whenever Eq. (26) holds, the original quantization condition, Eq. (20), is also satisfied.

In fact, Eq. (26) is a stronger condition than (20) because it requires that the eigenvector of 1+F̃3K̃df,3 corresponding

to the vanishing eigenvalue has nonzero overlap with the vectors F̃ |λ0〉 and K̃df,3F̃ |λ0〉.

6 Divergences in eigenvalues of Kdf,3 do not give a solution as they cancel between numerator and denominator.
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A more physical motivation for the condition (26) is that it corresponds approximately to finding the pole in the
correlation function

Cφ3(E) =

∫
dτ ei(iE)τ 〈φ̃(τ,~0)3 φ̃(0,~0)3〉 , (27)

with φ̃(τ,~k) the spatial Fourier transform, in the finite box, of a scalar field coupling to a single particle. Here it is
understood that the τ integral is performed for real iE. The resulting function can then be analytically continued
into the entire complex E plane, with the energy poles then appearing on the real E axis. This correspondence holds
because (as shown below) |λ0〉 differs from the free particle state |~0, 0, 0〉 by factors that vanish as L→∞. In addition,

the quantity K̃df,3(1+F̃3K̃df,3)−1 expands to a geometric series in which, following the analysis of Ref. [2], we can think

of K̃df,3 as a local three-particle interaction, while the intervening factors of F̃3 incorporate all possible two-to-two
scatterings in finite volume. The correlator Cφ3(E) is exactly of the form that, were one doing a lattice simulation,
one would use to pick out the near-threshold state, since the deviation of the true state from the noninteracting
three-particle operator falls as a power of 1/L.

In any case, what matters in the following is that Eq. (26) is a valid form for the quantization condition. To see its
utility, we define

F̃3 ≡ F 3 + Fλ0
3 , (28)

Fλ0
3 ≡ −F̃ |λ0〉

1

N0L3λ0
〈λ0|F̃ , (29)

where 〈λ0|λ0〉 = N0.7 In words, Eq. (28) splits F̃3 into a part arising from the small eigenvector of H and the
remainder F 3, which is not enhanced when ∆E is tuned. Substituting this form into our new quantization condition
and performing straightforward manipulations, we find

〈λ0|F̃ K̃df,3
1

1+F̃3K̃df,3

F̃ |λ0〉 = 〈λ0|F̃
1

[K̃df,3]−1+F 3+Fλ0
3

F̃ |λ0〉 , (30)

= Z 1

1−Z/(N0L3λ0)
, (31)

where

Z = 〈λ0|F̃ K̃df,3
1

1+F 3K̃df,3

F̃ |λ0〉 . (32)

We now see the reason for placing factors of F̃ next to the external states in the quantization condition (26). This
mirrors the factors that appear in F 00

3 , and leads to a simple final expression (31) involving only the matrix element
Z.

Using Eq. (31) we see that the quantization condition can be rewritten as

Z = N0L
3λ0 . (33)

We stress that although Z has a very similar form to the quantity appearing in the quantization condition (26), it

does not diverge near threshold. This is because the enhanced contribution to F̃3 has been removed, and F 3 is of
O(1/L3) for all near-threshold energies. In fact, as we show below, Z is related to the divergence-free three-particle
amplitude at threshold, Mdf,3.

To use Eq. (33) we tune the coefficients a3, a4 and a5 in ∆Eth such that λ0 ∼ 1/L3. Then we fix a6 by enforcing
(33). Clearly this form of the quantization condition is much simpler than the original version, Eq. (3), since it no
longer requires evaluating the formally infinite-dimensional determinant. This simplicity comes, however, at a cost in
generality—our new form is only useful for studying the near-threshold state.

In the following subsections we use this reduced quantization condition to determine the 1/L expansion of the
threshold energy shift. This analysis is organized as follows. We begin in the following subsection by determining

the 1/L scaling properties of K̃2, G̃ and F̃ . Next, in Sec. III B, we use these inputs to develop the perturbative

7 We use an unnormalized state |λ0〉 since this proves convenient when studying this state and its eigenvalue using Raleigh-Schrödinger
perturbation theory, as we do in Sec. III B.
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expansion of λ0 and the corresponding state |λ0〉. Following this, in Sec. III C we prove an important identity relating
a matrix element entering the quantization condition and the infinite-volume divergence-free three-particle scattering
amplitude. We manipulate this result further in Sec. III D, to reach our final threshold three-particle observable,
denoted M3,th. Finally in Sec. III E we combine results to expand Eq. (33) in powers of 1/L and determine the
coefficients in ∆Eth.

A. Scaling of matrix components with 1/L

In this subsection we determine how the elements of the matrices K̃2, F̃ and G̃ scale with 1/L in the regime where
the spectator-momentum matrix index satisfies k ∼ 1/L� m. We assume that ∆E scales as 1/L3 throughout.

We repeatedly use several simple kinematic results that follow from the definitions in Eq. (7). In the special case
~k = 0 we have the exact results

ωk = ω0 = m, q∗20 = m∆E +
∆E2

4
≡ q2 , and E∗2,0 = 2m+ ∆E = 2ωq , (34)

where we have introduced the convenient abbreviation q for the three-momentum of each of the non-spectator particles

in the case that the spectator has zero momentum. We note that q2 ∼ ∆E ∼ 1/L3. For general ~k = 2π~n/L 6= ~0, with
n ∼ O(1), we expand in powers of 1/L, finding

ωk = m

(
1 +

k2

2m2
+O[(mL)−4]

)
, (35)

E∗2,k = 2m

(
1− 3k2

8m2
+

∆E

2m
+O[(mL)−4]

)
, (36)

q∗2k = −3k2

4
+m∆E +m2O[(mL)−4] . (37)

Note that, unlike for ~k = 0, in this case the CM frame of the non-spectator pair is moving relative to the rest frame
of the finite volume.

We consider first the 1/L scaling of K̃2, which we recall is a diagonal matrix. Since this is an infinite-volume

quantity, L dependence enters only through ∆E. The leading term is of O(L0) and is simply given by the value of K̃2

at threshold in the appropriate partial wave. As noted above, this is non-vanishing for all `,m because of the factors

of Q−1 in the definition (19). It turns out that the only explicit expression we need is for the ~k = 0, ` = 0,m = 0
element.8 This can be obtained by inserting the threshold expansion, Eq. (8), into the definitions (6) and (19), and
using the kinematic results of Eq. (34):

K̃2;00 = −64πm2a

{
1 +

∆E

2m
[1 + ram2] +O

[
1

(mL)6

]}
. (38)

At this stage, we reiterate that we are considering in this subsection only what we have called the “naive” scaling

behavior, valid when k ∼ 1/L� m. It turns out that all entries of K̃2 (i.e. all ~k, ` and m) actually contribute to ∆E
at O(1/L6), due to the high-momentum ends of the sums over indices. This is explained in Sec. III B.

The scaling of the elements of G̃ is more complicated. Recall that G̃ is given by Eq. (11) with the factors of q∗k
removed and an overall factor of 1/(2ωp) included:

G̃p,`′,m′;k,`,m ≡
1

L3

1

2ωp

4π(k∗)`
′
Y`′,m′(k̂∗)H(~p )H(~k )(p∗)`Y ∗`,m(p̂∗)

2ωkp(E − ωk − ωp − ωkp)
1

2ωk
. (39)

We begin with the generic case in which one or both of ~k and ~p are of O(1/L), from which it follows that both ~p ∗

and ~k∗ are also of this order. Noting that the energy denominator then behaves as E −ωk −ωp −ωkp ∼ 1/L2, we see
from Eq. (39) that the generic scaling is

G̃p,`′,m′;k,`,m ∼
1

L1+`+`′
(~k 6= 0 and/or ~p 6= 0). (40)

8 Higher partial waves are suppressed because, in the matrix products that arise, these are always multiplied by entries of G̃ or F̃ with
` 6= 0.
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The exceptions to this scaling are the ~k = ~p = 0 elements. These are special because k∗ and p∗ now vanish, and

the energy denominator scales as E − 3m = ∆E ∼ 1/L3 rather than 1/L2. These results imply that the ~k = ~p = 0

elements of G̃ vanish unless ` = `′ = 0, while the 00 element is of O(L0), rather than O(1/L) as the generic scaling
would predict.

The upshot is that, in the naive scaling regime, the dominant contributions are from the ` = `′ = 0 entries of G̃.

These can be obtained directly from the definition Eq. (39). We quote here only the ~k = ~p = 0 component

G̃00 =
1

8m3∆EL3
. (41)

As we show in Sec. III B, it turns out that only the ` = `′ = 0 entries of G̃ contribute to ∆Eth through O(1/L5). As

for K̃2, all entries of G̃ contribute to ∆Eth at O(1/L6) due to the high-momentum ends of the sums.

Finally, we describe the scaling of the elements of F̃ , which we recall is given by Eqs. (13)-(15) multiplied by

(2ωk)−1(q∗k)`+`
′
:

F̃k′,`′,m′;k,`,m ≡ δk′k
1

2

[
1

L3

∑

~a

−
∫

~a

]
4π(a∗)`+`

′
Y`′,m′(â∗)Y ∗`,m(â∗)H(~k)H(~a )H(~bka)

2ωk2ωa2ωka(E − ωk − ωa − ωka + iε)
+δk′k

(q∗k)`+`
′

2ωk
ρ`′,m′;`,m(~k) . (42)

Note that F̃ diverges whenever E equals the sum of the energies of three free particles, each having a finite-volume
momentum (and with the total momentum vanishing). The value of E we are interested in—the near-threshold
energy level in the presence of interactions—avoids these divergences. However, the fact that these poles lie nearby

can enhance the scaling of F̃ .

To determine the nature of this enhancement, we rewrite F̃ in terms of dimensionless variables, using manipulations
mirroring those used in Ref. [14]. Dropping contributions to the summand of the sum-integral difference that are

nonsingular (and which thus lead only to exponentially suppressed contributions to F̃ ), we find

F̃k′,`′,m′;k,`,m = δk′k

{(
H(~k)

16π2ωk(E − ωk)

)(
2π

L

)1+`+`′

Z`′,m′;`,m(x2, ~nk) +
(q∗k)`+`

′

2ωk
ρ`′,m′;`,m

}
, (43)

Z`′,m′;`,m(x2, ~nk) =


∑

~na

−
∫

~na


 r

`′+` Y`′,m′(r̂)Y ∗`,m(r̂)H(~a)H(~bka)

x2 − r2 + iε
, (44)

where x = q∗kL/(2π), ~a = 2π~na/L, and
∫
~na

=
∫
d3na. The vector ~r is related to ~na by

r‖ =
1

γ

(
na‖ − |~nk|/2

)
, r⊥ = na⊥ , ~nk =

~kL

2π
, γ =

E − ωk
E∗2,k

, (45)

where parallel and perpendicular are relative to the momentum −~k of the nonspectator pair. Note that r2 runs over
all positive values and zero as ~na is varied.

The function in Eq. (44) is simply related to the zeta functions defined in Ref. [15] (in a way described in Refs. [14,
16]) except that here we are using a different UV regularization.9 The key property of this function for the present
discussion is that, for fixed ~nk, as L → ∞, Z`′,m′;`,m(x2, ~nk) limits to an L-independent function of x2 that is finite
except for an infinite sequence of poles. There is one pole for each term in the sum over ~na, occurring when x2 equals
the corresponding value of r2. These are exactly the poles mentioned above that occur when E = ωk + ωa + ωka.

We first consider ~k = ~k′ 6= ~0, so that, using Eq. (37), x2 = −3n2
k/4+O(1/L). Since x2 is negative definite, it does not

approach the poles of Z, which are all at x2 ≥ 0. Thus there is no enhancement of the scaling, and Z(x2, ~nk) = O(L0).

The scaling of the first term in F̃ is therefore given by the explicit factors of 1/L. The ρ-dependent term has the

same scaling, and so we conclude that F̃ ∼ 1/L1+`+`′ when ~k = ~k′ 6= ~0.

We next turn to ~k = ~k′ = ~nk = 0, in which case x2 vanishes in the infinite volume limit: x2 = q2L2/(2π)2 ∼ 1/L.
Thus if Z has a pole at x2 = 0, there can be an enhancement in the scaling. For ~nk = 0, Eq. (45) gives r2 = n2

a, so
there is indeed pole at x2 = 0, from the ~na = 0 term in the sum. However, this pole is present only when ` = `′ = 0.

9 Our functions are regulated by the product of H functions, whereas Ref. [15] uses analytic regularization.
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For nonvanishing angular momenta, the residue vanishes due to the factor of r`
′+` = n`+`

′
a . This implies that, even

for ~k = ~k′ = 0, the scaling derived above for ~k = ~k′ 6= 0 holds when one or both of ` and `′ are nonvanishing. The

only special case is ~k = ~k′ = ` = `′ = 0. Here the ~na = 0 term in the sum gives Z(x2,~0) ∼ 1/x2 ∼ L, and thus

F̃00 ∼ L0, i.e. enhanced by one power of L compared to the generic scaling. In the subsequent analysis we will need

the first four terms in the 1/L expansion of F̃00. These are worked out in Appendix A, with the result

F̃00 =
1

16mωq

{
1

q2L3
− I

4π2L
− q2L3J

(4π2L)2
− (q2L3)2K

(4π2L)3
+O

(
1

L4

)}
. (46)

Here I, J and K are numerical constants defined in Appendix A.

As with K̃2 and G̃, the high momentum entries of F̃ also contribute to ∆E at O(1/L6). This contribution comes
only from the ρ dependent term, the second term in Eqs. (42) and (43).

B. Perturbative expansion of λ0

In this subsection we develop the perturbative expansion of λ0, the eigenvalue that appears on the left-hand side
of our reduced quantization condition, Eq. (33). We recall that λ0 is the eigenvalue H [defined in Eq. (22)] that can
be tuned to be of O(1/L3) by adjusting ∆E. This tuning is required to satisfy Eq. (33). As already mentioned,
H is generally O(L0), so that ∆E must be adjusted to cancel three orders to achieve the desired scaling. Such a

cancellation is only possible for the 00 entry of H, because only for this entry do G̃ and F̃ contain O(L0) parts that

can cancel with K̃−1
2 . It follows that λ0 can be described as a perturbation of this entry and that the corresponding

state, |λ0〉, is a perturbation of |~0, 0, 0〉.
We now seek to determine an expression for λ0 in terms of ∆E. Since H is hermitian we can borrow technology

from non-relativistic quantum mechanics. In particular, we analyze λ0 using a method related to Raleigh-Schrödinger
perturbation theory (RSPT). It proves convenient to first slightly rewrite our “Hamiltonian” in terms of the two-
particle scattering amplitude M2 instead of K2,

H = M̃−1
2 + F̃ iε + G̃ , (47)

where

M−1
2 = K−1

2 + ρ , (48)

M̃−1
2 = (2ω)−1QM2

−1Q = K̃−1
2 + (2ω)−1QρQ , (49)

F̃ iε = (2ω)−1QF iεQ = F̃ − (2ω)−1QρQ , (50)

and F iε is defined in Eq. (15). The reason for this choice is that, for fixed k ∼ m, F iε(~k) is exponentially suppressed
as L→∞, since the summand of the sum-integral difference in (15) is smooth.10 We use this result repeatedly in the

following analysis. The same is not true of F (~k), due to the ρ(~k) term in Eq. (14).
Next, we split H into a part H0 that contains all the terms scaling as L0 in the k ∼ 1/L regime, and the remainder,

HR, which is of O(1/L). As explained in the previous subsection, all nonzero elements of K̃2, as well as the components

F̃00 and G̃00, are of O(L0). The ρ terms are of O(1/L) and thus do not change the scaling. Thus we introduce the
subtracted quantities

/F
iε ≡ F̃ iε − |~0, 0, 0〉F̃ iε00〈~0, 0, 0| , (51)

/G ≡ G̃− |~0, 0, 0〉G̃00〈~0, 0, 0| , (52)

in which the O(L0) component is excised, and split H as

H = H0 +HR , (53)

H0 = M̃−1
2 + |~0, 0, 0〉(F̃ iε00 + G̃00)〈~0, 0, 0| , (54)

HR = /F
iε

+ /G . (55)

10 For ∆E ∼ 1/L3 and the spectator momentum k ∼ m, the non-spectator pair are far below threshold, the energy denominator is of
O(m), and there are no poles.
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By construction, H0 is diagonal, with eigenvectors |~k, l,m〉, and corresponding eigenvalues

λ
(0)
0 ≡ λ(0)

000 = M̃−1
2;00 + F̃ iε00 + G̃00 = K̃−1

2;00 + F̃00 + G̃00 , (56)

λ
(0)
klm =

q∗k
16πE∗2,k

cot δ`(q
∗
k) + ρ̃(E∗2,k) , {~k, l,m} 6= {~0, 0, 0} . (57)

We see again that only λ
(0)
0 can be tuned to be small, while all other eigenvalues are of O(L0). One subtlety in the

following is that H0 is not necessarily hermitian, since the eigenvalues with ~k = 0 but ` 6= 0 can be complex. This is

because ρ̃(E∗2,k) [defined in Eq. (17)] is imaginary if ∆E > 0, which is possible if ~k = 0. Nevertheless, the eigenvectors
of H0 form an orthonormal basis, and this is sufficient for the subsequent analysis. We note also that H0 does become
hermitian when ∆E = 0, i.e. when L→∞.

Using the results for K̃2, F̃00 and G̃00 given in Eqs. (38), (41) and (46), respectively, as well as the kinematic relation

(34), we can work out the 1/L expansion of λ
(0)
0 . We obtain

λ
(0)
0 = − 1

64πm2a

[
1− x(1 + ram2)

2m3L3

]
+

1

16m

[
1

x
− I

4π2mL
− J x

(4π2mL)2
− Kx2

(4π2mL)3
− 3

4m3L3

]
+

1

8mx
+O

(
1

L4

)
,

(58)

where the first square bracket contains the expansion of K̃2;00, the second the expansion of F̃00, the last term is G̃00,
and we have introduced the dimensionless variable

x ≡ ∆EL3m2 , (59)

which is of O(L0). In order to tune λ0 to scale as 1/L3, we will find that λ
(0)
0 itself must scale as 1/L2. This is

because the difference, λ0 − λ(0)
0 , contains a term scaling as 1/L2 that must be canceled. We defer details of the

tuning to Sec. III E, except for one result. This concerns the cancellation of the O(L0) part of λ
(0)
0 . Using the result

2G̃00 = F̃00 +O(1/L) [which can be read off from Eq. (58)] this cancellation requires −3K̃2;00F̃00 = 1 +O(1/L). We
need this result in the following subsection.

We now work out the perturbative expansion for λ0 and the corresponding eigenvector |λ0〉 in powers of HR. A
standard starting point for developing RSPT is

|λ0〉 = |λ(0)
0 〉+R0(HR − λ0 + λ

(0)
0 )|λ0〉 , (60)

R0 ≡
1− |λ(0)

0 〉〈λ
(0)
0 |

λ
(0)
0 −H0

, (61)

where |λ(0)
0 〉 = |~0, 0, 0〉 is the unperturbed state. Note that, in this formulation, |λ0〉 satisfies 〈λ(0)

0 |λ0〉 = 1, implying
that |λ0〉 as defined in Eq. (60) is not normalized to unity, N0 = 〈λ0|λ0〉 6= 1. Iterating Eq. (60) yields

|λ0〉 =

∞∑

n=0

|λ(n)
0 〉 , (62)

with

|λ(n)
0 〉 ≡

[
R0(HR − λ0 + λ

(0)
0 )
]n
|λ(0)

0 〉 . (63)

Contracting with 〈λ(0)
0 |H leads to the perturbative expansion for the eigenvalue

λ0 = λ
(0)
0 +

∞∑

n=0

λ
(n+1)
0 , (64)

λ
(n+1)
0 ≡

[
HR
[
R0(HR − λ0 + λ

(0)
0 )

]n]

00

. (65)

To obtain standard RSPT one inserts the expansion for λ0 and reexpands in powers of HR. We will not take this
step but rather work with the forms above, containing λ0. This is possible because we will find that, at the order in

1/L that we work, we can set λ
(0)
0 − λ0 to zero on the right-hand sides of Eqs. (63) and (65).
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We first analyze the perturbative shift to the eigenvalue. Naively, since HR ∼ 1/L, we might expect that a third
order calculation is sufficient to obtain the desired accuracy, λ0 ∼ 1/L3. However, as described in the introduction to
this section, this scaling breaks down for k ∼ m, and for such large momenta it turns out that an all orders summation
is needed.

The first-order shift λ
(1)
0 vanishes, since /G and /F

iε
are both defined with vanishing 00th component. Thus the first

nonvanishing correction appears at second-order:

λ
(2)
0 =

[
(/F

iε
+ /G)R0(/F

iε
+ /G)

]
00
. (66)

To obtain this form we have used the result
[
(/F

iε
+ /G)R0(−λ0 + λ

(0)
0 )
]

00
= 0 , (67)

which follows from the fact that R0 has all zeroes in its first column. We can further reduce λ
(2)
0 by using the fact

that λ
(0)
0 will be tuned to be of O(1/L2). This implies

R0 = −M̃2 +O(1/L2) , (68)

and substituting into Eq. (66) gives

λ
(2)
0 =

∑

~k,`,m

/G000;k`m

[
−M̃2 +O(1/L2)

]
k`m;k`m

/Gk`m;000 +
∑

`m

/F
iε
000;0`m

[
−M̃2 +O(1/L2)

]
0`m;0`m

/F
iε
0`m;000 , (69)

where we have written out all sums explicitly. In writing this form we have used the facts that /F
iε

is diagonal in ~k,
that the slashed quantities have no 00 element, and that /G000;0lm vanishes whenever ` 6= 0.

We want to pick out contributions falling no faster than 1/L3 from Eq. (69). We do so by keeping terms that have
the desired scaling either in the low momentum (k ∼ 1/L) regime or in the high momentum (k ∼ m) regime, or both.
For low momenta, the dominant contribution comes from the first term with ` = 0, for then /G = O(1/L). Thus the
first term scales as 1/L2 (and the dominant contribution arises when intermediate angular momentum vanishes). In

the second term, only ` 6= 0 contributes, with the leading term coming from ` = 4. Since /F
iε
000;040 = O(1/L5), the

second term scales as 1/L10, and can be dropped in the low momentum regime.11 In fact, for this term this is the

only relevant regime, since there is no sum over ~k.
What remains is to analyze the first term in Eq. (69) in the high-momentum regime, k ∼ m. Then the only explicit

L dependence arises from the overall factor of 1/L3 in /G. At first sight this leads to a 1/L6 scaling since there are
two factors of /G. However, the total number of terms in the high-momentum part of the sum scales as L3, canceling

one of the factors of 1/L3. This is just an application of the result that, for a smooth function12 f(~k),

1

L3

∑

~k

f(~k) =

∫
d3k

(2π)3
f(~k) +O(e−mL) . (70)

The resulting integral is independent of L, and we are dropping exponentially suppressed corrections. The conclusion

is that the high-momentum contribution to /G[−M̃2]/G scales as 1/L3. While subleading to the low-momentum 1/L2

scaling, it is still of an order that we must keep. We also note that, in contrast to the low-momentum result, higher
angular-momentum contributions are not suppressed when k ∼ m.

The net result is that

λ
(2)
0 =

[
/G[−M̃2]/G

]
00

+O
(

1

L4

)
, (71)

where no constraint is placed on the intermediate matrix indices.

11 This follows from the observation that Y40(k̂) is the lowest spherical harmonic with ` 6= 0 for which (1/L3)
∑
~k
Y40(k̂)f(|~k|) 6= 0, where

f(|~k|) is any radial function for which the sum converges.
12 M̃2 and /G are both smooth functions in the high-momentum regime, since this corresponds (when ∆E ∼ 1/L3) to the far sub-threshold

region.
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We now turn to the third-order perturbative correction, which takes the form

λ
(3)
0 =

[
(/F

iε
+ /G)R0(/F

iε
+ /G− λ0 + λ

(0)
0 )R0(/F

iε
+ /G)

]
00
, (72)

=
[
/G[−M̃2](/F

iε
+ /G− λ0 + λ

(0)
0 )[−M̃2]/G

]
00

+O
(

1

L6

)
. (73)

There are now two summed momenta, which we refer to as k and p, and to determine the scaling we must examine
contributions from all possible momentum regimes. First suppose both are of O(1/L), so that naive scaling can
be applied. Then the dominant contribution, scaling as 1/L3, comes from the s-wave parts of each factor of /G

and /F
iε

. This is the first example where /F
iε

enters the result for λ0. Note further that since, by assumption,

−λ0 + λ
(0)
0 = O(1/L2), it leads to a suppressed contribution to λ

(3)
0 of O(1/L4). This can be dropped.

We next consider the regime in which both momenta are large, of O(L0). Here F iε is exponentially suppressed,
and can be dropped. The contribution involving three factors of /G comes with three explicit factors of 1/L3, but two

of these are canceled by the sums over ~k and ~p. Thus, as in the small-momentum regime, this term is O(1/L3), but

in this regime all partial waves must be kept. This leaves the term containing −λ0 + λ
(0)
0 and two factors of /G. Since

−λ0 + λ
(0)
0 = O(1/L2), this contribution has an explicit factor of 1/L8, one power larger than the explicit factor on

the three /G term. However, since −λ0 + λ
(0)
0 is diagonal, this contribution is only enhanced only by one sum rather

than two, leading to an overall 1/L5 scaling. Thus this term can also be dropped.

The final region to consider is that in which one momentum is small and the other large. Since F iε and −λ0 + λ
(0)
0

are diagonal in momentum space, this regime is only possible for the term containing three /Gs. Since we are keeping
this term for all momenta anyway, no special attention to this case is needed.

Based on these considerations, we deduce that

λ
(3)
0 =

∑

~k

/G0kM̃2;kk /F
iε
kkM̃2,kk /Gk0 +

[
/G[−M̃2]/G[−M̃2]/G

]
00

+O
(

1

L4

)
. (74)

Here the notation in the matrices in the first term indicates that only ` = 0 components are kept, e.g. /F
iε
kk ≡ /F

iε
k00;k00.

By contrast, the intermediate indices are summed over all momenta and all partial waves in the second term. We
stress again that the first term is dominated by small momenta, while in the second all momenta contribute.

The generalization to higher orders is now clear. For n > 3 one has four or more factors drawn from /G, /F
iε

and

−λ0 + λ
(0)
0 . This means that the low-momentum contribution scales as 1/L4 or higher and can be dropped. In the

high-momentum regime an O(1/L3) contribution does arise, given by

λ
(n)
0 =

[
/G
[
−M̃2 /G

]n−1
]

+O
(

1

L4

)
, for n > 3 . (75)

The n− 1 momentum sums cancel all but one of the factors of 1/L3 contained in the /Gs, so that the overall scaling
is 1/L3. All other contributions are suppressed.

Summing our results for λ0 to all orders, we conclude that

λ0 = λ
(0)
0 +

∑

~k

/G0kM̃2,kk /F
iε
kkM̃2,kk /Gk0 +

∞∑

n=1

[
/G
[
− M̃2 /G

]n]
00

+O
(

1

L4

)
, (76)

where, in the last term, all intermediate momenta and partial waves must be kept.

We turn now to the perturbative analysis of the state |λ0〉, using Eq. (63). We are specifically interested in the two
quantities involving this state that enter into the quantization condition Eq. (33). These are the normalization N0

and the matrix element Z [Eq. (32)]. For both of these, we need only the leading L0 behavior when L→∞ with ∆E
tuned such that λ0 ∼ 1/L3.

The task of identifying the leading terms is similar to that for λ0. After making the simplifications that follow from

the properties of /G, /F
iε

, and R0, the first two terms can be written

|λ(1)
0 〉 = [−M̃2](/G+ /F

iε
)|λ(0)

0 〉
[
1 +O(1/L2)

]
, (77)

|λ(2)
0 〉 = [−M̃2](/G+ /F

iε − λ0 + λ
(0)
0 )[−M̃2](/G+ /F

iε
)|λ(0)

0 〉
[
1 +O(1/L2)

]
. (78)



15

Using these results, we find that the leading order correction to N0 = 〈λ0|λ0〉 occurs at second order:13

N0 = 1 + 〈~0, 0, 0|(/G+ /F
iε

)†M̃†2M̃2(/G+ /F
iε

)|~0, 0, 0〉
+ 2Re〈~0, 0, 0|M̃2(/G+ /F

iε
)M̃2(/G+ /F

iε
)|~0, 0, 0〉+O(1/L3) . (79)

Here we are already using the result that higher-order contributions are of O(1/L3), as will become clear shortly.

Note also that, at this stage, we have to account for the fact, noted above, that M̃2 and /F
iε

are not hermitian. In the

low-momentum regime, both of the second-order terms scale as 1/L2, since the dominant terms in /G and /F
iε

scale
as 1/L. Similarly, at nth order, the low momentum terms scale as 1/Ln. In the high-momentum regime, F iε can be

dropped, and each of the /G factors has an explicit 1/L3. There is, however, only a single intermediate sum over ~k, so
the overall scaling is as 1/L3. The same can be easily seen to hold at all higher orders. We thus conclude that

N0 = 1 +O(1/L2) . (80)

Now we turn to the matrix element Z, which can be expanded as a geometric series

Z = 〈λ0|F̃ K̃df,3F̃ |λ0〉 − 〈λ0|F̃ K̃df,3F 3K̃df,3F̃ |λ0〉+ · · · . (81)

Our aim is to substitute the perturbative expansion of |λ0〉 and determine the L0 part of Z. We note immediately
that the contribution from the low-momentum regime in the results (77) and (78) are suppressed by powers of 1/L
and can be dropped. The same is true at higher orders. In the high-momentum regime the dominant contribution

comes from terms with multiple /Gs (since, as in the analysis for λ0, /F
iε

is exponentially suppressed and the −λ0 +λ
(0)
0

term lacks a momentum sum to cancel the explicit 1/L2). This high-momentum contribution is of O(L0) and must
be kept. To see this scaling, consider the first term on the right-hand side of Eq. (81) and substitute Eq. (77) for |λ0〉.
The presence of a factor of Kdf,3 in the “middle” of the matrix element implies that there is one momentum sum for
each factor of /G, and this cancels the 1/L3 factors in /G. The same cancellation occurs at all orders in perturbation
theory, and also for the higher-order terms in the geometric series in Eq. (81). This implies that, in the evaluation of
the leading order contribution to Z, we can make the following substitution for the nth order term

|λ(n)
0 〉 −→

[
−M̃2 /G

]n
|~0, 0, 0〉 . (82)

These leading terms can then be summed into

|λ0〉 −→
1

1 + M̃2 /G
|~0, 0, 0〉 . (83)

Thus we find

Z = 〈~0, 0, 0| 1

1 + /GM̃2

F̃ K̃df,3
1

1 + F 3K̃df,3

F̃
1

1 + M̃2 /G
|~0, 0, 0〉+O(1/L) . (84)

Here we have used the result that M̃2 is hermitian at O(L0).

C. Relation to the divergence-free three-to-three scattering amplitude

In this subsection we demonstrate the following relation between the matrix element appearing in our modified quan-
tization condition, Eq. (33), and the infinite-volume divergence-free three-to-three scattering amplitude at threshold
[defined in Eq. (94) below]:

{
9(K̃2;00)2Z

} ∣∣∣∣
E=3m+∆Eth

=Mdf,3;00 +O(1/L) . (85)

13 The first-order term vanishes because /G00 = /F
iε
00 = 0.
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n ⌘
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(n + 2)⇥

FIG. 2. Diagrammatic definitions of quantities defined in the text. (a) The unsymmetrized subtraction functions, I
(u,u)
n . Here

the black disks represent on-shell projections of M2, and the vertical dashed lines represent simple poles, used in place of the
propagators. For I0 we have indicated the coordinate dependence, which applies for all of the functions. (b) The divergence-
free three-to-three amplitude, Mdf,3. This quantity is given by subtracting an infinite series of pairwise scattering diagrams,∑∞
n=0 In, from the standard three-to-three scattering amplitude, M3. Here S indicates that the symmetrized versions of In

are to be used in the subtraction.

This is a key result as it allows us to connect the output of the finite-volume quantization condition to an infinite-
volume scattering quantity. We stress that this result only holds when the quantity on the left-hand side is evaluated
at E = 3m+ ∆Eth, i.e. the energy must be held at the solution to the quantization condition as L→∞.

We first review the definition of Mdf,3, given in Eq. (87) of Ref. [2]. To do so we introduce the set of integrals

iI
(u,u)
n;`′m′;`m(~p,~k) ≡

∫
d3kn

(2π)32ωkn
· · ·
∫

d3k1

(2π)32ωk1

[
iM2(~p ) iG∞

(
~p,~kn

)
iM2(~kn) · · · iG∞

(
~k1,~k

)
iM2(~k)

]
`′m′;`m

,

(86)
where n is a positive integer,

G∞`′m′;`m(~p,~k) =

(
k∗

q∗p

)`′ 4πY`′,m′(k̂∗)H(~p )H(~k )Y ∗`,m(p̂∗)

2ωkp(E − ωk − ωp − ωkp + iε)

(
p∗

q∗k

)`
, (87)

and

M2;`′,m′;`,m(~k) ≡ δ`′`δm′m

[
q∗k

16πE∗2,k
cot δ`(q

∗
k) + ρ̃(E∗2,k)

]−1

, (88)

is the standard two-to-two scattering amplitude for two-particles carrying energy momentum (E − ωk,−~k). This

differs from the matrix M2, introduced in Eq. (48) above, only in that M2(~k) is defined for continuous ~k. The
products in the square brackets of Eq. (86) are understood as matrix products over the spherical-harmonic indices.
We also extend the definition to n = 0 via

iI
(u,u)
0;`′m′;`m(~p,~k) ≡

[
iM2(~p ) iG∞

(
~p,~k
)
iM2(~k)

]
`′m′;`m

. (89)

These definitions are shown diagrammatically in Fig. 2(a). The basic structure is a sequence of on-shell scattering

amplitudes alternating with a pole term that interchanges the scattering pair. The superscript (u, u) on I
(u,u)
n (~k, ~p)
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indicates that the quantity is unsymmetrized, in the sense that the momenta ~k and ~p are assigned to the particles
that are unscattered by the outermost insertions. The factors of G∞ (represented by the vertical dashed lines in the
figure) have the same singularities as propagators in the standard Feynman rules for the diagrams. Thus the integrals

I
(u,u)
n are simplified versions of the corresponding Feynman diagrams, having the same singularities, but depending

only on on-shell two-to-two scattering amplitudes.
We next define symmetrized versions of these integrals

iIn(~p, â′∗;~k, â∗) ≡ S
[
iI

(u,u)
n;`′m′;`m(~p,~k)

]
≡

∑

{~x′,~y′}∈Pout

∑

{~x,~y}∈Pin

4πY ∗`′m′(ŷ′∗)iI
(u,u)
n;`′m′;`m(~x′, ~x)Y`m(ŷ∗) , (90)

where we sum over possible external momentum assignments

Pout ≡
{
{~p,~a′}, {~a′,−~a′ − ~p }, {−~a′ − ~p, ~p }

}
, (91)

Pin ≡
{
{~k,~a}, {~a,−~a− ~k}, {−~a− ~k,~k}

}
. (92)

Here ~k, ~a and −~a−~k are the momenta of the initial particles, while ~p, ~a′ and −~a′ − ~p are those of the final particles.
The direction â∗ is that of ~a after boosting to the CM frame of the scattered pair, with â′∗ defined analogously
for the final state. Similarly, when the momentum pair is ~x, ~y, ŷ∗ is defined by boosting (ωy, ~y ) with with velocity
~β = ~x/(E − ωx). Note also that, prior to symmetrization, we have to insert the spherical harmonics and sum over
their indices in order to obtain functions of the external momenta.

As we explain in detail in Refs. [1, 2], the sum over all symmetrized integrals In has the same singularities as the
full three-to-three scattering amplitudeM3. Thus the difference between these quantities, which we denoteMdf,3, is
free of divergences. Explicitly, this is defined as

iMdf,3(~p, â′∗;~k, â∗) ≡ iM3(~p, â′∗;~k, â∗)−
∞∑

n=0

iIn(~p, â′∗;~k, â∗) , (93)

and is shown diagrammatically in Fig. 2(b). What is required for Eq. (85) is the value of this amplitude at threshold:

Mdf,3;00 ≡Mdf,3(~0, â′∗;~0, â∗)
∣∣
E=3m

. (94)

Note that the right-hand side is, in fact, independent of the direction-vectors â′∗ and â∗, since ~a′∗ = ~a∗ = 0 when

~p = ~k = 0 and E = 3m. Thus we have included no such dependence in Mdf,3;00. An equivalent definition is giving

by decomposing Mdf,3(~p, â′∗;~k, â∗) in spherical harmonics, keeping only the s-wave term, and evaluating this at

threshold. Thus the index label on Mdf,3;00 is consistent with that for K̃2, G̃ and F̃ used above.
Having explained the definition of the right-hand side of Eq. (85) we now turn to proving the claim. To do so we

write out the two sides in more detail. Using the result for Z worked out in the previous subsection, Eq. (84), we can
express the left-hand side of (85) as

{
9(K̃2;00)2Z

} ∣∣∣∣
E=3m+∆E

= L K̃df,3
1

1+F 3K̃df,3

R

∣∣∣∣
E=3m+∆E

+O(1/L) . (95)

Here we have introduced the row and column vectors

Lk`m = −3K̃2;00

[
1

1 + /GM̃2

F̃

]

000,klm

, (96)

Rk`m = −3

[
F̃

1

1 + M̃2 /G

]

klm,000

K̃2;00 . (97)

As for the right-hand side, we can rewrite this using the general relation between finite-volume and infinite-volume
three-particle scattering amplitudes given in Eq. (80) of Ref. [2]. For the threshold amplitude this relation is

Mdf,3;00 = lim
L→∞

∣∣∣∣
iε

S
[(

1

3
− 1

1 +M2,LG
M2,LF

)
Kdf,3

1

1+F3Kdf,3

(
1

3
− F

2ω

1

1 +GM2,L
M2,L(2ω)

)]

000;000

, (98)

where E = 3m, and the new matrix is M−1
2,L ≡ K−1

2 + F . Note that here we are apparently taking a step backwards
by expressing the infinite-volume quantity Mdf,3;00 in terms of the L → ∞ limit of a finite-volume matrix element.
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The reason for doing so is that the connection to the left-hand side of the desired relation (85) is then much clearer.
One new feature in (98) is that the infinite-volume limit is taken using an iε prescription. As explained in Ref. [2],
a prescription is needed to avoid singularities in F and G. The prescription that is required for (98) to hold is that
singularities in summands are shifted by iε, after which the infinite-volume limit is well defined.

The symmetrization operator, S, in Eq. (98) is essentially the same as that defined in Eq. (90), although there
are some subtleties when applied to the finite-volume matrices [2]. These do not concern us here, however, because
symmetrization is trivial for the threshold amplitude—it leads simply to an overall factor of 9.

We proceed by rewriting the result (98) in a form that is similar to Eq. (95). After some reorganization (including
insertions of appropriate factors of QQ−1 and using Q00 = 1) we find

Mdf,3;00 = lim
L→∞

∣∣∣∣
iε

L̃ K̃df,3
1

1+F̃3K̃df,3

R̃ , (99)

where E = 3m and the new row and column vectors are

L̃k`m =

[
1− 3H−1 F̃

]

000,k`m

, (100)

R̃k`m =

[
1− 3F̃H−1

]

k`m,000

. (101)

The result we are aiming to demonstrate can now be rewritten as

lim
L→∞

L K̃df,3
1

1+F 3K̃df,3

R

∣∣∣∣
E=3m+∆Eth

= lim
L→∞

∣∣∣∣
iε

L̃ K̃df,3
1

1+F̃3K̃df,3

R̃

∣∣∣∣
E=3m

. (102)

We have chosen the notation in such a way that the results look similar, but we still have significant work to do to
demonstrate equality. We stress that the nature of the infinite-volume limits differs between the two sides: on the
left-hand side ∆E is tuned to satisfy the quantization condition, while on the right-hand side ∆E = 0.

We first focus on the matrices between the “L” and “R” vectors, and show that

lim
L→∞

K̃df,3
1

1 + F 3K̃df,3

∣∣∣∣
E=3m+∆Eth

= lim
L→∞

∣∣∣∣
iε

K̃df,3
1

1 + F̃3K̃df,3

∣∣∣∣
E=3m

. (103)

We first give a qualitative explanation of this equality. The limit on the right-hand side has been investigated

in Ref. [2], and is given by an infinite-volume function T`′,m′;`,m(~p,~k) [where ~p and ~k are the external spectator
momenta, both held fixed in the limit]. The contribution that survives in the limit comes from large intermediate
momenta—contributions from low momenta are suppressed by powers of 1/L. We note also that, once the limit is
taken, we can send ε→ 0+, since the poles are at threshold, and do not need regulation once sums have been converted

to integrals. The quantity on the left-hand side differs in two ways: (i) F̃3 is replaced by F 3 = F̃3 − Fλ0
3 , and (ii) the

infinite-volume limit is approached with the tuned ∆Eth = O(1/L3) rather than ∆E = 0. Note that this limit avoids
the poles in F and G that occur at ∆E = 0, so that one does not need to use the iε prescription at an intermediate
stage. Thus, as far as the contributions from large intermediate momenta are concerned, one approaches exactly the
same kinematic point as on the right-hand side and should attain the same limit. For large momenta the subtracted
part Fλ0

3 is suppressed by powers of 1/L. The only complication is that, when approaching the limit with tuned ∆E,

there is an enhanced low-momentum contribution to F̃3, namely that from Fλ0
3 . This, however, is removed by the

subtraction in F 3, so the left-hand side also receives no low-momentum contributions as L→∞.
To demonstrate the result in detail we expand both sides of (103) in a geometric series and argue that the results

agree order by order. The leading order terms are identical, so the first nontrivial result to show is

lim
L→∞

K̃df,3(F̃3 − Fλ0
3 )K̃df,3

∣∣∣∣
E=3m+∆Eth

= lim
L→∞

∣∣∣∣
iε

K̃df,3F̃3K̃df,3

∣∣∣∣
E=3m

. (104)

Our first step is to replace the iε regulated limit on the right-hand side with one in which E− 3m = c/L3, with c any
constant differing from the tuned value a3 to be determined below. This avoids the poles in F and G [which are at
E = 3m and E = 3m+O(1/L2)] so that the limit is well-defined. In other words we have

lim
L→∞

∣∣∣∣
iε

K̃df,3F̃3K̃df,3

∣∣∣∣
E=3m

= lim
L→∞

K̃df,3F̃3K̃df,3

∣∣∣∣
E=3m+c/L3

. (105)
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Next we argue that on the left-hand side of (104) we can replace E = 3m + ∆Eth with E = 3m + c/L3, with any
choice of c:

lim
L→∞

K̃df,3(F̃3 − Fλ0
3 )K̃df,3

∣∣∣∣
E=3m+∆Eth

= lim
L→∞

K̃df,3(F̃3 − Fλ0
3 )K̃df,3

∣∣∣∣
E=3m+c/L3

. (106)

Note here that Fλ0
3 = −F̃ |λ0〉〈λ0|F̃ /(N0L

3λ0) depends on how E is chosen to approach 3m, since both λ0 and the

|λ0〉 depend on E. To understand this equality consider first the F̃3 terms. We recall from our earlier discussion

that F̃3 has an explicit factor of 1/L3, whereas K̃df,3 ∼ O(L0). The 1/L3 can only be canceled by a sum over large
intermediate momenta (leading to the infinite volume function T described above) or by the presence of an eigenvalue

of H scaling as 1/L3. The latter corresponds to a low-momentum intermediate state since |λ0〉 = |~0, 0, 0〉 +O(1/L).
The subtraction on the left-hand side removes this potential O(L0) contribution, however, so that the difference F 3

cannot gives rise to an O(L0) low-momentum contribution. Thus it makes no difference precisely how the large volume
limit is taken as long as the same asymptote is approached. This is the case for the two sides of (106) for any choice
of c.

Finally, we note that the Fλ0
3 term can be dropped from the right-hand side of Eq. (106),

lim
L→∞

K̃df,3(F̃3 − Fλ0
3 )K̃df,3

∣∣∣∣
E=3m+c/L3

= lim
L→∞

K̃df,3F̃3K̃df,3

∣∣∣∣
E=3m+c/L3

, (107)

as long as c 6= a3. This is simply because the explicit factor of 1/L3 in Fλ0
3 cannot be canceled for an untuned energy.

Combining these three steps we find that the left- and right-hand sides of (104) are equal. This argument can
be extended almost verbatim to the higher order terms in the expansions of Eq. (103), and we do not repeat the
discussion. This establishes the desired equality, Eq. (103).

It remains only to relate the “end caps” that appear in Eqs. (95) and (99). We consider first the barred end caps of
Eqs. (96) and (97), which are to be evaluated along the tuned energy trajectory E = 3m+ ∆Eth in the limit L→∞.

This means that we can replace K̃2;00 with M̃2;00, and that, as noted above following Eq. (59), the combination

−3M̃2;00F̃00 has the limiting value of unity. However, /G does not contain an O(L0) term when ∆E → 0, since the
potentially large term has been subtracted. Combining these observations we find

lim
L→∞

Lk`m

∣∣∣∣
E=3m+∆Eth

=

[
−3M̃2F̃ + 3M̃2 /GM̃2

1

1 + /GM̃2

F̃

]

000,k`m

=

[
1 + 3M̃2 /GM̃2

1

1 + /GM̃2

F̃

]

000,k`m

, (108)

lim
L→∞

Rk`m

∣∣∣∣
E=3m+∆Eth

=

[
−3F̃M̃2 + 3F̃M̃2 /GM̃2

1

1 + /GM̃2

]

k`m,000

=

[
1 + 3F̃M̃2 /GM̃2

1

1 + /GM̃2

]

k`m,000

, (109)

where we have left the infinite-volume limit and the constraint E = 3m + ∆Eth implicit in the middle and final
equality.

Turning to the “tilded” end caps of Eqs. (100) and (101), the infinite-volume limit is to be taken with E = 3m

using the iε prescription. This means that the enhanced eigenvalue of H = M̃−1
2 + F̃ iε + G̃ plays no role. As

explained in Ref. [2], F̃ iε vanishes in this limit [since it is a difference between a sum and an integral regulated using

an iε prescription, see Eq. (13)]. However, F̃ does not vanish in general, due to the contribution of the ρ term [see

Eq. (14)], although F̃00 does vanish at threshold, since ρ vanishes there. We find

lim
L→∞

∣∣∣∣
iε

L̃k`m = lim
L→∞

∣∣∣∣
iε

[
1− 3M̃2

1

1 + G̃M̃2

F̃

]

000,k`m

= lim
L→∞

∣∣∣∣
iε

[
1 + 3M̃2G̃M̃2

1

1 + G̃M̃2

F̃

]

000,k`m

, (110)

lim
L→∞

∣∣∣∣
iε

R̃k`m = lim
L→∞

∣∣∣∣
iε

[
1− 3F̃M̃2

1

1 + G̃M̃2

]

k`m,000

= lim
L→∞

∣∣∣∣
iε

[
1 + 3F̃M̃2G̃M̃2

1

1 + G̃M̃2

]

k`m,000

. (111)

To complete the argument we note that the distinction between G̃ and /G is subleading in L. We deduce

lim
L→∞

L
∣∣∣
E=3m+∆Eth

= lim
L→∞

∣∣∣∣
iε

L̃
∣∣∣
E=3m

, lim
L→∞

R
∣∣∣
E=3m+∆Eth

= lim
L→∞

∣∣∣∣
iε

R̃
∣∣∣
E=3m

. (112)

Combining Eqs. (103) and (112) completes the demonstration of the desired result, Eq. (85).
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D. Relation to minimally subtracted threshold three-to-three amplitude

Using the results (76) and (85), as well as the equality of K̃2;00 and M̃2;00 at threshold, we can rewrite the
quantization condition (33) as

9L3

{
(K̃2;00)2λ

(0)
0 +

[
[−M̃2]/G

∞∑

n=1

[
− M̃2 /G

]n
[−M̃2]

]

00

+
∑

~k

M̃2,00 /G0kM̃2,kk /F
iε
kkM̃2,kk /Gk0M̃2,00

}∣∣∣∣∣
E=3m+∆Eth

=Mdf,3;00 +O(1/L) . (113)

We recall that the second term in curly braces contains low-momentum contributions scaling as 1/L2 and 1/L3, and
a high-momentum contribution scaling as 1/L3, while the third term contains only a low-momentum contribution
scaling as 1/L3. At this stage we could pull out these low-momentum contributions, evaluate them explicitly, and
replace the high-momentum contributions by appropriate infinite-volume integrals. With these expressions in hand
we could then determine the coefficients in the expansion (2) for ∆Eth. The coefficient a6 would then depend on the
divergence-free amplitude at threshold, Mdf,3;00.

However, there is one feature of such a result that is unsatisfactory. We recall thatMdf,3 is defined by subtracting
fromM3 a series of integrals In that remove the physical divergences [see Fig. 2 and Eq. (93)]. The issue is that these
integrals, defined in Eq. (86), involve the two-particle scattering amplitude M2 evaluated far below threshold (since
the spectator momenta range up to k ∼ m at which point the CM energy of the nonspectator pair is (3m−ωk)2−k2 �
4m2). While there is nothing wrong in principle with this (one can obtain the subthreshold amplitude by analytic
continuation) it introduces what seems to be an unnecessary complication. The point of the subtractions, after all, is
to remove the physical divergences, which occur at threshold.

It turns out, however, that the formalism, and in particular, Eq. (113), is hinting at a remedy. The high-momentum
part of the second term in curly braces turns out, as shown below, to exactly cancel the high-momentum (far sub-
theshold) parts of the integrals In contained in Mdf,3;00. Thus we are led to a different definition of the subtracted
threshold amplitude that depends only on physical quantities at or above threshold. This is the threshold amplitude
M3,th defined schematically in the Introduction. Here we give its precise definition and then use it to simplify the
quantization condition.

Our specific definition ofM3,th makes use of the observation that the infinite series of terms subtracted in Eq. (93)
is not needed to reach a divergence-free quantity when working with degenerate particles.14 From the general consid-
erations of Ref. [8] we know that, above threshold, only I0 and I1 need to be subtracted. Infrared (IR) divergences are
more severe at threshold, but, as shown in Appendix B, In with n ≥ 3 remain finite, so the only additional subtraction
we need at threshold is of I2. In total, then, our first step towards a definition of M3,th is to drop the subtraction
of In with n ≥ 3 from Mdf,3;00. The next step is to modify the remaining quantities, I0, I1 and I2, to remove the
dependence on subthrshold M2. In fact, since I0 does not contain an integral [see Eq. (89)], we need only to modify
the latter two.

These considerations lead to the definition

M3,th ≡ lim
δ→0

[
M3,δ(0, â

′∗; 0, â∗)− I0;δ(0, â
′∗; 0, â∗)−

∫

δ

d3k1

(2π)3
Ξ1(~k1)−

∫

δ

d3k1

(2π)3

∫

δ

d3k2

(2π)3
Ξ2(~k1,~k2)

]
. (114)

Here δ indicates the presence of an IR regularization, to be defined shortly, while Ξ1 and Ξ2 are the modified integrands
whose integrals replace I1 and I2, respectively. They are given in Eqs. (121) and (122) below, and depend only on
the scattering length, a, i.e. not on the scattering amplitude for subthreshold momenta.

We begin our explanation of the definition of M3,th by describing the δ regularization. This consists of two parts.

The first is that all IR divergent integrals are cutoff by a lower limit, k ≥ δ (applied in the frame in which ~P = 0).
This is indicated by the subscript on the integrals in Eq. (114). As discussed below, this allows us to set E = 3m for
these terms, i.e. to work directly at threshold. However, I0 diverges at threshold when the spectator momenta ~p and
~k vanish:

I
(u,u)
0 (~0,~0) ∝ 1

E − 3m
. (115)

14 The set of integrals that needs to be subtracted is larger if the particles are not degenerate. See Refs. [1, 8] for more discussion.
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Thus we must introduce a second part in the definition of δ regularization: the energy E must approach threshold
as E − 3m ∝ δ4 with a nonzero proportionality constant. The subscript δ on I0 in Eq. (114) indicates that E − 3m
scales in this way. As we explain shortly, the choice of the fourth power of δ allows us to effectively work at threshold
for I1 and I2 while regulating I0. In fact, any power of δ greater than cubic suffices.15

We next determine the form of the modified integrand Ξ1. We begin with the unsymmetrized form of I1, which is

iI
(u,u)
1;`′,m′;`,m(~p;~k) ≡

∫
d3k1

(2π)32ωk1

[
iM2(~p ) iG∞

(
~p,~k1

)
iM2(~k1)iG∞

(
~k1,~k

)
iM2(~k)

]
`′,m′;`,m

. (116)

We want to pull out from this integral the part that leads to the IR divergence at threshold, for this is the only part
that we need to subtract from M3. As explained in Appendix B, IR divergences at threshold are present only if

~p = ~k = 0 and if all three of the scattering amplitudes M2 are in the s-wave. Thus we focus on

I
(u,u)
1;00;00(~0;~0) =

∫
d3k1

(2π)3

M2,s(~k1)

2ωk1

(
M2,s(~0 )H(~k1)

2ωk1(E −m− 2ωk1 + iε)

)2

+ IR finite , (117)

where we are using the abbreviation M2,s ≡ M2;00;00. The “IR finite” term is IR finite at threshold and comes

from higher intermediate partial waves. The integral in (117) has a double pole at k1 = |~k1| = q, where q [defined in
Eq. (34)] is the three-momentum of each particle in the nonspectator pair. This pole is regulated by the iε prescription
that comes with G∞. However, unlike the case of a single pole, the integral here diverges when ε→ 0, for any E ≥ 3m.
This divergence is necessary to cancel the corresponding physical divergence in M3. The issue at hand is to find a

simpler integral that has the same IR divergence at threshold but does not depend, as I1 does, onM2,s(~k1) evaluated
far below threshold.

To do so we apply the δ regularization to I1. Then, in the IR regime where k1 ∼ δ, we have that

E −m− 2ωk1 = −k
2
1

m
+ E − 3m+O(k4

1) = −k
2
1

m

[
1 +O(δ2)

]
, (118)

since E − 3m scales in the same way as the k4
1 term. This implies that the pole always lies below the cutoff on k1,

so that the integral is well regulated. Since the overall IR divergence is linear (
∫
dk1/k

2
1) the O(δ2) terms lead to

IR-finite corrections and thus can be dropped from the subtraction to M3. This is why our δ4 scaling of E − 3m is
effectively the same as setting E = 3m. The same holds for I2, since this integral has a weaker IR divergence.

We conclude that to obtain the same IR divergence as in I
(u,u)
1 we need only expand the residue of the double

pole about ~k1 = 0 and keep the constant and linear terms. Since E − 3m scales quartically we can set E = 3m in

this expansion. Similarly we can set ωk1 to m. The factors of H(~k1) equal unity to all orders in a Taylor expansion
about threshold, but we do not expand them as they are needed for UV convergence in some terms. Thus all we

need to expand is M2,s(~k1), which can be done using the relation between M̃2 and K̃2 [Eq. (48)], the definition of
ρ [Eq. (16)], the near-threshold form of K2 [Eqs. (6) and (8)], and the expression for q2

k [Eq. (37)]. The net result is
that the modified integrand is16

Ξ
(u,u)
1 (~k1) ≡ − [32πma]3

8m

[
H(~k1)2

k4
1

+ a

√
3

2

H(~k1)3

k3
1

]
, (119)

and this satisfies

lim
δ→0

[
I

(u,u)
1;δ;00;00(~0,~0)−

∫

δ

d3k1

(2π)3
Ξ

(u,u)
1 (~k1)

]
= finite . (120)

At threshold, symmetrization leads only to multiplication by 9, so we can replace the subtraction of I1 with that of
the integral of

Ξ1(~k1) = 9 Ξ
(u,u)
1 (~k1) . (121)

15 Note that, whatever power one chooses, the square of the scattering particle momentum in M2 within I0 will scale in the same way as
the energy difference, q2 ∼ E − 3m. Thus, in the δ → 0 limit, both the scattering length and the effective range contribute to the I0
subtraction. Indeed, since the r-dependent terms are finite, one could choose not to subtract these. This would change the definition of
M3,th and would also change the explicit r dependent term in a6 [see Eq. (136)] to compensate.

16 This factor of H2 is not necessary to make the 1/k41 term UV convergent, but we keep it for the sake of uniformity, since the UV cutoff
is needed for the 1/k31 term.
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This is the quantity entering Eq. (114).
A similar analysis for I2 leads to the modified integrand

Ξ2(~k1,~k2) =
9

16m2
[32mπa]4

H(~k1)2H(~k2)2

k 2
1 [k 2

1 + k 2
2 + (~k1 + ~k2)2]k 2

2

. (122)

There is only a single term since the integral is only logarithmically IR divergent.
This completes the explanation of the quantities entering the definition ofM3,th, Eq. (114). To use this to simplify

the quantization condition, we need to relate M3,th to our original threshold amplitude, Mdf,3;00. Combining the
definition of Mdf,3;00, given in Eqs. (93) and (94), with the result (114) we find

M3,th =Mdf,3;00 + lim
δ→0

{(
I1;δ −

∫

δ

d3k1

(2π)3
Ξ1(~k1)

)
+

(
I2;δ −

∫

δ

d3k1

(2π)3

∫

δ

d3k2

(2π)3
Ξ2(~k1,~k2)

)}
+

∞∑

n=3

In . (123)

Since I0 does not appear, we can set E = 3m in the expression in curly braces. In other words, IR regularization
is achieved here simply by cutting off the IR divergent integrals. We are also adopting the notation that In or
In;δ without arguments implies that both spectator momenta vanish and E = 3m, so that these are purely s-wave
quantities (as for Mdf,3;00). The interpretation of the result (123) is that the subtraction of

∑∞
n=3 In is unnecessary

for degenerate particles, and so we undo this by adding the series back in. In addition we add back part of I1 and I2,
but with a subtraction defined using Ξ1 and Ξ2 that keeps M3,th finite.

We conclude this section by rewriting the quantization condition (113) in terms ofM3,th. We will need the following
results

−9L3
[
M̃2 /G

[
− M̃2 /G

]n
M̃2

]
00

∣∣∣∣∣
E=3m+∆Eth

= In +O(1/L) for n ≥ 3 , (124)

−9L3
[
M̃2 /G[−M̃2 /G]2M̃2

]
00

∣∣∣∣∣
E=3m+∆Eth

− 1

L6

∑

~k1,~k2 6=0

Ξ2(~k1,~k2) =

lim
δ→0

[
I2;δ −

∫

δ

d3k1

(2π)3

∫

δ

d3k2

(2π)3
Ξ2(~k1,~k2)

]
+O(1/L) ,

(125)

−9L3
[
M̃2 /G[−M̃2 /G]M̃2

]
00

∣∣∣∣∣
E=3m+∆Eth

− 1

L3

∑

~k1 6=0

Ξ1(~k1) = lim
δ→0

[
I1;δ −

∫

δ

d3k1

(2π)3
Ξ1(~k1)

]
+O(1/L) , (126)

which are demonstrated below. Using these, and the relation (123), we find that the quantization condition can be
written as

{
9L3(K̃2;00)2λ

(0)
0 + 9L3

∑

~k

M̃2,00 /G0kM̃2,kk /F
iε
kkM̃2,kk /Gk0M̃2,00

− 1

L3

∑

~k1 6=0

Ξ1(~k1)− 1

L6

∑

~k1,~k2 6=0

Ξ2(~k1,~k2)

}∣∣∣∣∣
E=3m+∆Eth

=M3,th +O(1/L) . (127)

We use Eq. (127) in the following subsection to derive the threshold expansion.
We now return to the demonstration of Eqs. (124)–(126). We first note that, in all three expressions, we can replace

E = 3m+∆Eth in the first terms with simply E = 3m. This is because there are no contributions to these terms that
are enhanced by the tuning of ∆E. Thus shifting the energy away from threshold by ∆Eth leads only to corrections
suppressed by 1/L3. The net result is that all terms in Eqs. (124)–(126) can be evaluated at threshold. Note that for
this it is important that the left-hand sides contain /G rather than G, since the latter diverges at threshold.

Consider first Eq. (124). Following the arguments of Sec. III A, the high-momentum part of the sums on the left-
hand side leads to a contribution scaling as L0, in which we expect the sums can be replaced by integrals. If any of the
sums are restricted to low momenta, then the scaling arguments of Sec. III A can be used to show that the contribution
falls as L→∞. For example, if all the momenta are small, then, using the result that the dominant terms in /G scale
as 1/L, the overall scaling is as L3−(1+n) = L2−n, which is subleading for n ≥ 3. Since all intermediate momenta
must be large, we can restrict the sums to run over only nonzero values without making an error when L→∞. Doing
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so allows us to replace /G with G̃ in the sums. We can further replace G̃ with G∞ and M̃2 with M2, as long as we
take into account all the factors of 2ω, Q and L3. Doing so we find that the left- and right-hand sides of Eq. (124)
are simply the sum and integral, respectively, of the same summand/integrand, up to subleading corrections.17 Thus
we can rewrite (124) as

{[
1

L3

∑

~k1 6=0

· · · 1

L3

∑

~kn 6=0

−
∫

~k1

· · ·
∫

~kn

]
9iM2(0)iG∞(0,~k1) · · · iG∞(~kn, 0)M2(0)

}∣∣∣∣∣
E=3m

= O(1/L) . (128)

We know from Appendix B that, although the integrand diverges in the IR, the singularity is integrable. We also know
that the integrand is nonsingular in the high-momentum region, and is UV convergent. Thus we can use the general
result of Ref. [7] that such sum-integral differences vanish as a power of 1/L. This completes the demonstration of
Eq. (124)

Turning to Eq. (125), the argument proceeds along similar lines. We can again replace /G with G as long as we do
not allow either of the intermediate momenta to vanish. Here this is an identity, which follows because G000;0`m = 0
if ` 6= 0. Then we can manipulate the equation into the form

lim
δ→0

[
1

L6

∑

~k1,~k2 6=0

−
∫

δ

d3k1

(2π)3

∫

δ

d3k2

(2π)3

]{
9iM2(0)iG∞(0,~k1)iM2(~k1)iG∞(~k1,~k2)iM2(~k2)iG∞(~k2, 0)iM2(0)

− iΞ2(~k1,~k2)

}∣∣∣∣∣
E=3m

= O(1/L) . (129)

Here the first term in curly braces does lead to an IR divergent integral, and, correspondingly, a low-momentum
contribution to the sum that is of O(L0), but both of these are canceled by the Ξ2 term. Thus the expression in curly
braces is integrable and nonsingular, so that the sum-integral difference vanishes as L→∞.

The argument for Eq. (126) is essentially the same. Again we can replace /G with G as long as the intermediate

sum avoids ~k1 = 0. The equation can then be manipulated into

lim
δ→0

[
1

L3

∑

~k1 6=0

−
∫

δ

d3k1

(2π)3

]{
9iM2(0)iG∞(0,~k1)iM2(~k1)iG∞(~k1, 0)iM2(0)− iΞ1(~k1)

}∣∣∣
E=3m

= O(1/L) . (130)

Once again, the IR singlarities cancel, by construction, in the expression in curly braces, so the sum-integral difference
vanishes as L→∞.

E. Solution to the quantization condition

In this section we determine the coefficients an in the threshold expansion of ∆Eth, Eq. (2), by enforcing the quan-
tization condition, Eq. (127). As noted above, we must tune ∆E to cancel the O(L3), O(L2) and O(L) contributions

on the left-hand side of this condition. To do so, we need the result for the 1/L expansion of λ
(0)
0 , given in Eq. (58).

The algebraic manipulations needed are straightforward but tedious and we quote only the final results.
The O(L3) and O(L2) contributions to the left-hand side of the quantization condition come only from the O(L0)

and O(1/L) parts of λ
(0)
0 . Thus these two parts must vanish. Using Eq. (58) we see that canceling the O(L0) part of

λ
(0)
0 requires

a3 =
12πa

m
. (131)

This is three times the corresponding coefficient for two particles, which is the expected ratio as there are now three

pairs that can interact, and is indeed the result found in Refs. [3–6]. We emphasize that both F̃00 and G̃00 contribute
to a3, showing the necessity of both terms even at leading order.

17 We also need the result that In = 9I
(u,u)
n at threshold.
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At next order, the cancellation requires

a4

a3
= −aI

π
. (132)

This is the same relative correction as for the two particle case, and agrees with the results of Refs. [3–6].
To proceed one order higher we must determine the leading O(L) contribution from the sum over Ξ1, a quantity

whose definition is given in Eq. (121). We find18

1

L3

∑

~k1 6=0

Ξ1(~k1) = −482m2a3J
π

L− 9
[32mπa]3

(2m)3
m2 1

L3

∑

~k1 6=0

[
H(~k1)2 − 1

k 4
1

+ a

√
3

2

H(~k1)3

k 3
1

]
. (133)

As we show below, the second term on the right-hand side is of O(L0). Combining the J term from Ξ1 with that
from Eq. (58) we find that canceling the O(L) terms in Eq. (127) requires

a5

a3
=
a2

π2

(
I2 + J

)
. (134)

Again this agrees with Refs. [3–6]. We note that the J term in this result arises both from F̃00 and from the factors

of G̃0k contained in the sum over Ξ1. Thus the agreement provides a more stringent test of our formalism.
To determine the final coefficient, a6, we must work out the L→∞ limits of all the contributions on the right-hand

side of the quantization condition (127). We first consider the combination of the term containing λ
(0)
0 with the O(L)

contribution from Ξ1. Our tuning of ∆E has made this combination of O(L0). Explicitly, if we substitute the first

three orders of ∆Eth into the expression for λ
(0)
0 we find

lim
L→∞

{
9K̃2

2;00L
3λ

(0)
0 +

482m2a3J
π

L

}∣∣∣∣∣
E=3m+a3/L3+a4/L4+a5/L5

=

576

π2

[
a4m2

(
−I3 + IJ − 9K

)
− π3m2a

a6(L)

a3
+ 3π4a2 + 6π4m2a3r

]
. (135)

Combining this result with the remaining terms in Eq. (127), which are worked out in Appendix C, and demanding
that the equality hold at O(L0) then gives the expression for a6(L). We find

a6(L)

a3
=
( a
π

)3
[
−I3 + IJ − 9K +

16π3

3
(3
√

3− 4π) log

(
mL

2π

)
+ CF + C4 + C5

]

+
64π2a2

m
C3 +

3πa

m2
+ 6πra2 − M3,thr

48m3a3
. (136)

Numerical values for the new constants CF , C3, C4 and C5 are given in Appendix C, while those for I, J and K are
given in Appendix A. This completes our calculation of ∆Eth through O(1/L6). Together with results for a3, a4 and
a5 given respectively in Eqs. (131), (132) and (134), this is the main result of the paper.

In a6 only the logarithmic dependence on L can be compared to that found by the nonrelativistic calculations
of Refs. [4, 5], and indeed it agrees. The L-independent constants cannot be compared, both because relativistic
effects enter at this order, and because the nonrelativistic calculations use different definitions for the three-particle
threshold amplitude.19 It is for this reason that we have carried out an independent calculation of the threshold
expansion in relativistic λφ4 theory, working to cubic order [6]. Since a and a2r are both of O(λ) in this theory,
while M3,th = O(λ2), this allows us to check the last four terms on the right-hand side of Eq. (136). We find
complete agreement. This check also shows how our definition of M3,th works in detail through one-loop order. The
remaining terms in a6, i.e. the constants on the right-hand side containing the factor of a3, have not so far been
checked independently. This would require a fourth order calculation in the λφ4 theory.

We close this section by commenting on the cutoff dependence of the various quantities in Eq. (136). The constants
C3, C4 and C5 depend on the choice of cutoff function H, as does the argument of the logarithm (though not its coef-
ficient). The energy of a physical finite-volume state should not depend on H, and indeed this “scheme dependence”
is canceled by that ofM3,th. This can be seen explicitly by going back to the definition ofM3,th, Eq. (114), in which
the dependence on H enters through the functions Ξ1 and Ξ2, in exactly the same way as on the left-hand side of the
quantization condition (127).

18 Here we are using the definition J =
∑
~n6=0 1/(~n2)2, with ~n a vector of integers. This is equivalent to the definition given in Appendix A.

19 Nevertheless, we note that the I3 and IJ terms do agree, though not the K term. We have, however, found that a simple change in
the definition of M3,th leads to agreement also for the K terms. We do not present the details, however, since other constant terms do
not match, and, as noted in the text, the comparison is anyway fundamentally ambiguous.
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IV. CONCLUSIONS

In this paper, we have shown how to expand the energy of the state closest to threshold for three interacting
particles in powers of 1/L, starting from the quantization condition derived in Refs. [1, 2]. This turns out to be quite
involved, but also provides insight into the workings of the formalism. We find that the first three nontrivial terms,
a3, a4 and a5, as well as the logarithmic dependence in a6(L) agree with those found previously in calculations using
NRQM [3–5]. For a check of the volume-independent part of a6(L) (where relativistic corrections and the ambiguity
in the definition of the three-particle threshold amplitude enter) we have compared to a perturbative calculation in
relativistic λφ4 field theory [6].

The two-particle version of the threshold expansion [7] has been successfully used in many numerical simulations
of lattice field theories to determine the scattering length a. Using the formula presented here, this can, in principle,
be extended to the determination of the (suitably subtracted) three-particle scattering amplitude at threshold. This
will require accurate calculations for several volumes of both the two and three-particle threshold energy shifts, the
former needed to determine a and the effective range r. This will be challenging in practice, since one must control
the volume dependence up to O(1/L6).

The development of the threshold expansion for three particles is much more challenging than in the two-particle
case.20 The main reason for this difficultly is that the matrices appearing in the quantization condition cannot be
truncated when one works at O(1/L6). While this added to the technical challenge, it also led to the conversion of
the unphysical quantity Kdf,3, which appears in the quantization condition, into the physical subtracted threshold
amplitude M3,th. This was essential for the final result for ∆Eth to depend only on physical quantities.

One might be concerned that the complications that we have had to deal with here will carry over to the practical
application of the three-particle quantization condition. This is not, however, the case. When one does a 1/L
expansion one loses one of the the key simplifying features of the quantization condition. This feature, stressed in
Ref. [2], is that, if one truncates the two-particular angular momentum space, then the matrices of the determinant

condition, Eq. (3), become finite. This is because the remaining matrix index, ~k = 2π~nk/L, is automatically truncated

by the smooth cutoff function H(~k). In particular H(~k) vanishes for k & m implying that nk is constrained to satisfy
2πnk . mL. Thus only a finite number of values of ~nk need be used when applying to formalism to numerical
simulations. By contrast, the threshold expansion must be valid for arbitrarily large L, which implies that all ~n can
contribute.
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Appendix A: Evaluation of F̃00

In this appendix we expand the quantity F̃00 in powers of 1/L taking ∆E = E − 3m to scale as 1/L3. We recall

that F̃00 ≡ F̃000;000, with the latter defined in Eq. (42). For the analysis in the main text, we need to keep terms in

F̃00 up to O(1/L3).

We start from the expressions given in Eqs. (43) and (44). As the spectator momentum is ~k = 0, the scattered pair
are already in their CM frame, so the boost factor γ in Eq. (34) is unity. It follows that ~r = ~na. Thus we obtain

F̃00 =
1

16mωq





1

q2L3
+

1

4π2L


∑

~na 6=0

−P̃V

∫

~na


 H(~a)2

x2 − n2
a



 , (A1)

where x = qL/(2π) and we have used the fact that ~bka = −~a, and the evenness of H(~a), to rewrite the regulator

function. We have also absorbed the ρ term in Eq. (43) into the integral over ~na by reverting to the P̃V pole
prescription. As explained in Ref. [1], this prescription leads to integrals such as that in Eq. (A1) being real and

smooth functions of x2. In particular, the cusp at x2 = 0 present with the iε prescription is absent with the P̃V
prescription.

20 The latter is given up to O(1/L5) in Ref. [7] and to one higher order in Appendix C of Ref. [6].
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In Eq. (A1), we have pulled out the ~na = 0 term from the sum since this scales as L0 [using Eq. (34)]. The remainder
scales as 1/L, as already discussed in Sec. III A. For the sum in Eq. (A1) we can use the fact that |x2| ∼ 1/L � na
(and the absence of the ~na = 0 term in the sum) to expand the summand in powers of x2, leading to

∑

~na 6=0

H(~a)2

x2 − n2
a

= −
∞∑

j=0

[
q2L3

4π2L

]j ∑

~na 6=0

H(~a)2

(n2
a)1+j

. (A2)

Although H is needed to regulate the UV only for j = 0, we cannot drop it from the other terms, as doing so leads
to potential power law corrections. To see this, we note that [using Eq. (7)]

E2
2,a

4m2
=

5

2
− 3

2

√
1 +

a2

m2
+O

(
∆E

m

)
, (A3)

implying that the regulator function takes the explicit form

H(~a) = J

(
5

2
− 3

2

√
1 +

n2
a

N2
cut

)
+O

(
∆E

m

)
(A4)

with

Ncut =
mL

2π
. (A5)

Given the definition of the function J , Eq. (12), this implies that the sum over ~na is cut off (smoothly) at na ≈ Ncut.
Since this cutoff depends on L, it can introduce further L dependence in the individual terms of Eq. (A2). For
example, in the sum over H(~a)2/n4

a, it is easy to see that the cutoff leads to a 1/(mL) correction. Since this sum

arises in a 1/L2 term in F̃00, the correction would enter at O(1/L3), which is the highest order that we are controlling.
Thus we cannot remove the cutoff at this stage.21

We would like to do a similar expansion in powers of x2 for the integral in Eq. (A1). We know that this must

be possible since the P̃V prescription leads to smooth, nonsingular dependence on x2, including at x2 = 0. Naively
expanding, however, leads to integrals that diverge at ~na = 0. To proceed, we first pull out the x2 = 0 term

P̃V

∫

~na

H(~a)2

x2 − n2
a

= −
∫

~na

H(~a)2

n2
a

+ P̃V

∫

~na

x2H(~a)2

n2
a(x2 − n2

a)
, (A6)

where no pole prescription is needed for the IR and UV convergent integral in the first term on the right-hand side.
Next we use the result

P̃V

∫

~na

1

n2
a(x2 − n2

a)
= 0 , (A7)

which can be shown by explicit computation. Note that this integral is finite both in the UV and IR for x2 6= 0, so
that no regulation is required, and the x2 = 0 result is obtained by smoothness. Subtracting this vanishing integral
from that appearing in the second term on the right-hand side of Eq. (A6) we find

P̃V

∫

~na

x2H(~a)2

n2
a(x2 − n2

a)
= x2 P̃V

∫

~na

H(~a)2 − 1

n2
a(x2 − n2

a)
, (A8)

= −x2
∞∑

j=0

(x2)j
∫

~na

H(~a)2 − 1

(n2
a)2+j

. (A9)

Here we are allowed to do a Taylor expansion because the resulting integrals are convergent both in the IR and UV.
The IR convergence is assured by the factor of H(~a)2 − 1, a function of n2

a all of whose derivatives vanish at na = 0.
The UV convergence is manifest for all j. Once again, despite the UV convergence, we cannot drop the factors of H

21 We can, however, drop the ∆E term in Eq. (A4), since this is proportional to 1/L3, pushing the total power to 1/L5, i.e. beyond the
order we are working.
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since they give rise to power law corrections. Finally we note that no pole prescription is needed in the integrals in
Eq. (A9).

Collecting these results we obtain the 1/L expansion for F̃00:

F̃00 =
1

16mωq

1

q2L3



1−

∞∑

j=1

[
q2L3

4π2L

]j
Ij



 . (A10)

Here

Ij =





[∑
~na 6=0−

∫
~na

]
H(~a)2

~n2
a

j = 1 ,
∑
~na 6=0

H(~a)2

(~na)2j −
∫
~na

H(~a)2−1
(~na)2j j ≥ 2 .

(A11)

These quantities retain an implicit dependence on L through the cutoff functions. However, this dependence is
expected to be exponentially suppressed (falling as exp(−Ncut)), since in the derivation of the formalism in Ref. [1]
the dependence on the form of H is exponentially suppressed. Indeed, it is simple to check that the leading power law
dependence on Ncut cancels between the sums and integrals for Im with m ≥ 2. Furthermore, numerically evaluating
the expressions, we observe that the convergence as Ncut increases is rapid and consistent with exponential. Thus we
can replace these quantities with their values when Ncut →∞. In the notation of Ref. [4] the first three become

I1 −−−−−−→
Ncut→∞

I , I2 −−−−−−→
Ncut→∞

J , I3 −−−−−−→
Ncut→∞

K . (A12)

We have checked that the numerical values we obtain for I, J and K agree with those quoted (to about 12 significant
figures) in Ref. [4].22 Quoting only four decimal places, the values are I = −8.914, J = 16.532 and K = 8.402.
Making the replacements of Eq. (A12) we obtain the result (46) quoted in the main text.

Appendix B: Proof that In>3 are finite at threshold

In this appendix we prove that, for n ≥ 3, the integrals In(~p, â′∗;~k, â∗), defined in Eqs. (86) and (90), are finite at
threshold, E = 3m. The potential divergence is only in the infrared, since the functions H contained in G∞ [defined
in Eq. (87)] regulate the ultraviolet. As will become clear in the following, the divergences in any In occur only when

the external spectator momenta are set to ~p = ~k = 0, so we primarily consider this case. Setting ~p = ~k = 0 at
threshold implies in turn that ~a′∗ = ~a∗ = 0, so that the In are pure s-wave, with no dependence on â′∗ and â∗.

When all momenta (both external and internal) are in the IR regime, k � m, the energy denominators in each
factor of G∞ take their nonrelativistic form

E − ωk − ωp − ωpk + iε −→ −[~k2 + ~p2 + (~k + ~p)2 − iε]/(2m) (B1)

Thus, if we set the external momenta to zero, and collect the n three-vectors that are being integrated into a 3n-

dimensional vector ~Q ≡ (~k1, · · · ,~kn), we have (since In contains n+ 1 factors of G∞ and n integrals)23

In ∼
∫
dQ

∫
dΩ Q3n−1 1

Q2(n+1)f(Ω)
∝
∫
dQ Qn−3 . (B2)

Here Ω stands for the collective angular coordinates. Thus the integral is IR divergent by power-counting for n = 1
and 2, while finite for n ≥ 3. There is, however, another possible source of divergence, namely that f(Ω) can have
zeroes. These occur when some, but not all, of the G∞ factors diverge. It turns out, however, that these zeroes result
in no additional divergences since they are canceled by corresponding zeroes in the numerator. Thus the naive overall
power-counting result is correct.

To explain this, we first replace In (with vanishing external momenta) with the simpler integral

In,IR ≡
∫

~k1,··· ,~kn

1

2~k2
1

1

~k2
1 + ~k2

2 + (~k1 + ~k2)2
· · · 1

~k2
n−1 + ~k2

n + (~kn−1 + ~kn)2

1

2~k2
n

. (B3)

22 Indeed, for I2 and I3, the expressions in Eq. (A11) provide a numerically efficient way of evaluating the sums.
23 Each factor of G∞ contains a double sum over angular momentum indices, but we consider here only s-wave contributions, since these

dominate in the IR due to the factor of (k∗)`
′
(p∗)` ∼ Q`′+` in G∞.
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This removes extraneous factors while maintaining the IR properties of the integral. We have dropped factors of iε
since they are not needed to regularize these integrals when working at threshold.

Next we consider the n = 3 case in detail.

I3,IR ≡
∫

~k1,~k2,~k3

1

2~k2
1

1

~k2
1 + ~k2

2 + (~k1 + ~k2)2

1

~k2
2 + ~k2

3 + (~k2 + ~k3)2

1

~2k2
3

, (B4)

=
1

8(2π)6

∫
dk1

∫
dk2k

2
2

∫
d cos θ12

∫
dk3

∫
d cos θ23

1

k2
1 + k2

2 + k1k2 cos θ12

1

k2
2 + k2

3 + k2k3 cos θ23
, (B5)

=
1

8(2π)6

∫
dQ

∫ π/2

0

dφ

∫ π/2

0

dθ

∫ π

0

dθ12

∫ π

0

dθ23

× sin θ12 sin θ23 sin3 θ sin2 φ(
sin2 θ + sin2 θ sinφ cosφ cos θ12

) (
sin2 θ sin2 φ+ cos2 θ + sin θ sinφ cos θ cos θ23

) . (B6)

Here we are using the variables (k1, k2, k3) = Q(sin θ cosφ, sin θ sinφ, cos θ). The lack of divergence in the overall Q
integral agrees with our analysis above. One of the possible divergences in the angular integrals occurs when θ ≈ 0

(corresponding to ~k1 and ~k2 vanishing but not ~k3). In this limit, the integrand becomes

sin θ12 sin θ23 sin2 φ θ3

(1 + sinφ cosφ cos θ12) θ2
+O(θ2) , (B7)

so the integral over θ is finite. There is a similar possible divergence when φ ≈ 0, θ ≈ π/2 (corresponding to ~k2 and ~k3

vanishing but not ~k1), but it is clear from the symmetry of the original expression (B4) under ~k1 ↔ ~k3 that this will

also lead to a convergent integral. Finally, the divergences when ~k1 and/or ~k3 both vanish (but not ~k2) are manifestly
integrable.

An alternative way of stating this result is that, when any pair of momenta vanish, there are two measure factors
of k2 and two denominators vanishing as k2, so the IR divergence cancels. In this form, the argument is easily
generalized to all In with n ≥ 3. If j coordinates vanish there will be j measure factors of k2 and, at most, j
denominators vanishing as k2. (To achieve this number of diverging denominators the momenta must be sequential
and include either the first or last momenta.) Thus all subintegrals are IR convergent, and we deduce that In itself
is finite.

The discussion so far assumes that both external momenta are set to zero. If one (or both) are nonvanishing, then
it is straightforward to see that the loss of one (or two) potentially vanishing denominators is sufficient to make In
IR finite for all n > 0, including n = 1 and 2. This assumes that E is evaluated at threshold. Similarly, all In are IR
finite if any of the internal angular momenta are taken to be anything other than s-wave. For example, in I1, whose
overall IR divergence is linear [

∫
dQQ−2 from Eq. (B2)], choosing the internalM2 to be in a p-wave leads to an extra

Q2 (one factor of Q from each of the adjacent G∞) and removes the divergence.

Appendix C: Calculation of finite terms

In this appendix we calculate the contributions of O(L0) arising from the second, third and fourth terms on the
left-hand side of the quantization condition Eq. (127). These are needed in Sec. III E to find the coefficients in the
expansion of the threshold energy ∆Eth.

We begin with

XF = lim
L→∞

{
9L3

∑

~k

M̃2,00 /G0kM̃2,kk /F
iε
kkM̃2,kk /Gk0M̃2,00

}∣∣∣∣∣
E=3m+∆Eth

(C1)

= lim
L→∞

{
9L3

∑

~k 6=0

M̃2,00G̃0kM̃2,kkF̃
iε
kkM̃2,kkG̃k0M̃2,00

}∣∣∣∣∣
E=3m

. (C2)

We recall that the notation here indicates that only s-wave contributions are kept. In the second form we have made
two changes. The first is an identity: we can replace the slashed G and F iε with the tilded versions as long as we

remove ~k = 0 from the sum. The second is to work directly at threshold, which is allowed since the absence of the
~k = 0 term means that ∆Eth ∼ 1/L3 always leads to a correction suppressed by 1/L.
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We recall from Sec. III A that the sum is dominated by small momenta, so it is legitimate to use nonrelativistic

expansions of the various quantities worked out in that Section and keep only the leading terms. Thus M̃2,00 and

M̃2,kk can be replaced by the constant −64πm2a [using Eq. (38) and the equality of M̃2,00 and K̃2;00 at threshold].

Using Eq. (39), the leading term in G̃0k is given by

G̃0k

∣∣
E=3m

= − 1

L

1

32π2m2

1

n2
k

+O(1/L2) , (C3)

where ~k = 2π~nk/L. Note that in the small-momentum regime we can set H(~k) to unity. Finally, using Eq. (43), and

recalling that F̃ iε differs from F̃ by dropping the ρ term, we have

F̃ iεkk

∣∣∣∣
E=3m

=
1

L

1

16πm2


∑

~na

−
∫

~na


 H(~a)H(~bka)

x2 − r2
+O(1/L2) , (C4)

where x2 = −3n2
k/4, and ~r is defined in Eq. (45), except that we can set γ = 1 in our kinematic regime. Since r2 > 0

while x2 < 0 there is no singularity in the summand/integrand, and thus the iε regularization can be dropped.
The sum-integral difference can be evaluated using the Poisson summation formula


∑

~na

−
∫

~na


 H(~a)H(~bka)

x2 − r2
= −

∑

~s 6=0

eiπ~s·~nk

∫
d3r e2πi~s·~rH(~a)H(~bka)

|x|2 + r2
(C5)

= −π
∑

~s 6=0

eiπ~s·~nk
e−2π|x|s

s
+O(e−mL) , (C6)

where ~s is a vector of integers. To obtain the second line we have used the fact that the Fourier transform in the first

line is dominated by values of r satisfying r . |x| = O(1), which in turn implies that ~a and ~bka are small, so that
the cutoff functions H can be replaced by unity up to exponentially small corrections. Doing so we can evaluate the
integral and obtain the result on the second line. The result shows that the zeta-function (sum-integral difference)
falls exponentially with increasing |x|. When evaluating this expression numerically, we find that the sum converges
rapidly for |x| & 1.

Combining these results, we find that

XF =
576m2a4

π2
(−16π2)

∑

~nk 6=0

1

n4
k

∑

~s 6=0

eiπ~s·~nk
e−2π|x|s

s
(C7)

≡ 576m2a4

π2
CF , (C8)

where numerical evaluation leads to CF = −6.19567. This accuracy is obtained by summing up to n2
k = 11 and

s2 = 12.

We next evaluate the contributions coming from the sum over Ξ1, i.e. those from the last term in Eq. (133). These
are

X1A = lim
L→∞



9

[32mπa]3

(2m)3
m2 1

L3

∑

~k 6=0

H(~k)2 − 1

k 4



 , (C9)

X1B = 9
[32mπa]3

(2m)3
m2 1

L3

∑

~k 6=0

a

√
3

2

H(~k)3

k 3
, (C10)

where we are implicitly working at E = 3m in the cutoff functions H. In the second quantity we cannot send L→∞
but we implicitly discard all terms which vanish as L→∞. Recalling that the Taylor expansion of H about ~k = 0 is
unity to all orders, we see that the summand of X1A is non-singular, so that the sum can be replaced by an integral
in the L→∞ limit. This leads to the result

X1A = 576πma3 64π2 C3 , (C11)

C3 ≡
∫

d3k

(2π)3

m[H(~k)2−1]

k4
= −0.05806 . (C12)
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For X1B , the summand has a pole so the sum cannot be replaced by an integral. Furthermore, the sum has a
logarithmic divergence in the UV that is cut off by H and leads to a log(mL) dependence. To determine its form we
rewrite the expression as

X1B =
576m2a4

π2
4π2
√

3
∑

~nk

H(2π~nk/L)3

n3
k

. (C13)

From the definition of H, Eq. (12), we know it vanishes when (E∗2,k)2 drops to zero. From the definition of (E∗2,k)2

in Eq. (7), we find (when E = 3m) that it vanishes when k/m = 4/3. Thus, in terms, of ~nk = (L/2π)~k, the sum
is cut off at (4/3)Ncut where Ncut = mL/(2π). Approximating the UV part of the sum with an integral gives the
logarithmic dependence, and by numerical evaluation we can determine the constant underneath:

∑

~nk

H(2π~nk/L)3

n3
k

= 4π logNcut + 1.54861 +O(1/L) . (C14)

Combining these results we find

X1B =
576m2a4

π2

(
16π3

√
3 logNcut + C4

)
+O(1/L) , (C15)

C4 = 105.892 . (C16)

The final contribution is that from Ξ2, which is

X2 =
1

L6

∑

~k1,~k2 6=0

Ξ2(~k1,~k2) . (C17)

This can be evaluated at E = 3m (which only affects the cutoff functions H contained in Ξ2). Using the definition of
Ξ2, Eq. (122), we find

X2 =
576m2a4

π2
16

∑

~n1,~n2 6=0

H(2π~n1/L)2H(2π~n2/L)2

n2
1[n2

1 + n2
2 + (~n1 + ~n2)2]n2

2

. (C18)

Again the sum has a logarithmic UV divergence, and, pulling this out, we find by numerical evaluation that

X2 =
576m2a4

π2

(
64π4

3
logNcut − C5

)
+O(1/L) , (C19)

C5 = 1947 . (C20)

We note that, while the coefficient C5 appears large, it is of the approximately the same size as the coefficient of the
logarithm: 64π4/3 ≈ 2080.
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