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Abstract

We derive the photon propagator in light-shell gauge (LSG) vµA
µ = 0, where vµ = (1, r̂)µ.

This gauge is an important ingredient of the light-shell effective theory - an effective theory
for describing high energy jet processes on a 2-dimensional spherical shell expanding at the
speed of light around the point of the initial collision producing the jets. Since LSG is a non-
covariant gauge, we cannot calculate the LSG propagator by using the standard procedure
for covariant gauges. We therefore employ a new technique for computing the propagator,
which we hope may be of relevance in other gauges as well.
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1 Introduction

In this paper, we calculate the photon propagator in what we have called light-shell gauge (LSG)

vµA
µ = 0 (1)

where
vµ = (1, r̂)µ (2)

While this gauge seems interesting in its own right as a generalization of the somewhat more familiar
and widely-used light-cone gauge NµA

µ = 0 where Nµ = (1, 0, 0, 1)µ, an interesting application of
LSG arises in the context of light shell effective theory (LSET), which we introduce in [1] (and
[2]). The basic idea is simple and comes from classical electromagnetism. Consider a high energy
collision in which charged particles suddenly emerge from a single point from an initially neutral
charge distribution. In the limit where the collision takes place instantaneously and the charged
particles move out at the speed of light, a pulse of radiation is produced which moves outward
along a spherical surface whose radius expands at the speed of light. The electromagnetic fields
are then sharply peaked on this spherical surface and are zero both inside and outside it. We
call this surface the light-shell (as it is the equal t slice of the light-cone of the initial space-time
event at t = r = 0). In [1], we showed that a similar picture also applies to the case of classical
non-abelian gauge theories, with the color electromagnetic fields residing entirely on the light-
shell. This suggests that in the relevant limit, we should be able to construct an effective field
theory for QED and QCD on the light-shell, which we hope may eventually provide another way
of looking at high-energy scattering in gauge theories. It may be worth mentioning that some of
the recent work on asymptotic gauge symmetries has been exploring related themes involving the
null sphere at infinity [3, 4, 5, 6, 7]. One important finding in [1] was that not only the classical
electromagnetic fields (both for the abelian and non-abelian cases) reside entirely on the light-shell,
but the potentials too can be expressed in a similar form where they are zero everywhere except on
the t = r shell, if we choose the light-shell gauge condition (1). For the abelian case, the potentials
can in fact be calculated explicitly and are given (in LSG) by

A0 (t, ~r ) = φ (t, ~r ) = −
∑

i

qi δ(t− r) log (1− n̂i · r̂) (3)

and
~A (t, ~r ) = r̂ φ (t, ~r ) (4)

which are determined by the single function φ. For the non-abelian case, we are not able to
calculate the potentials explicitly but are still able to show that in light-shell gauge, they are zero
everywhere except on the t = r sphere.

LSG is also an important part of the construction of our quantum effective field theory based on
the above picture, as we explain in [2]. Briefly, our effective field theory involves scaling out the
large energy-momenta associated with hard scalars going out radially, just as we scale out the
large energy associated with heavy quark masses in HQET [8]. The consequence of this is that the
gauge interactions of hard scalars, at leading order, are proportional to vµA

µ. These interactions
therefore vanish in LSG, and all the leading order physics associated with the interactions of gauge
fields with hard scalars in the full theory is then described in our effective theory entirely in terms
of a gauge invariant source around the origin of space-time. The reason for this source to be not
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exactly located on the origin is that LSG is not well-defined at r = 0, forcing the source to be
defined on a light-shell of infinitesimal radius around the origin instead. For the same reason,
many of our subsequent manipulations are ill-defined at the origin, and we expect our LSG photon
propagator, which we calculate in this note, to make sense only in the punctured space from which
the origin is excluded.

Since LSG is a non-covariant gauge, we cannot calculate the LSG propagator by using the standard
procedure for covariant gauges which has been well established [9]. A gauge that shares some
characteristics with LSG is radial (Fock-Schwinger) gauge [10] which is defined by the condition

xµA
µ = 0, (5)

and has found widespread use in QCD sum-rules [11]. Shared characteristics between LSG and
radial gauge include breaking translational invariance by choosing an origin and coordinate de-

pendent gauge condition. As a result, it is often convenient to use a position space formulation
rather than momentum space formulation. While these gauges share some characteristics, only
LSG guarantees zero field strength off of the light-shell [1] and allows for simplification of calcu-
lations in LSET [2]. Another important difference is that the radial gauge condition is invariant
under homogeneous Lorentz transformations, while LSG is only invariant under rotations about
the origin.

Since we are at such an early stage (the first, as far as we know) in exploring this gauge, we restrict
our analysis to QED where we can avoid complications that come with non-abelian theories.4 Even
in QED, we cannot use standard methods for calculating propagators in non-covariant gauges, such
as LSG. We therefore, along the road to the LSG propagator, present a different technique which
we hope may prove useful in other gauges as well.

The basic outline of our derivation is as follows. We begin by writing the photon lagrangian in
LSG in a matrix form, treating ~A and r̂ as column vectors. In particular, we show in section 2
that the photon’s kinetic energy can be written

L = −
1

2

(

Ar
~AT
⊥

)

M

(

Ar

~A⊥

)

(6)

where we treat ~A as a column vector and write

~A⊥ = ~A− r̂ r̂T ~A = ~A−
(

r̂ · ~A
)

r̂ (7)

and Ar is the radial component of ~A (and is not to be confused with Ar in the covariant tensor
form)

Ar ≡ r̂ · ~A (8)

So, in terms of the scalar potential A0 and the components of ~A, (1) can be written as

A0 = Ar (9)

Then in the following sections we will show how from M we are able to construct the LSG propa-
gator. This is not simply a matter of inverting M because ~A⊥ does not have a radial component.

4We hope to extend this work to QCD and in the process describe attributes avoided herein (e.g. ghosts).
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What we therefore need to compute is the inverse of M restricted to the subspace from which
we have projected out this (non-existent) radial component. We will see that doing so turns out
to be non-trivial since M does not commute with the projection operator in the radial direction.
As a result, we cannot express M in a diagonal basis and simply take the inverse on the relevant
subspace to obtain the propagator. We therefore need to follow a slightly more involved procedure.
Our technique, we hope, may also be applicable to other non-covariant gauges.

2 The Lagrangian in LSG

We will now find the matrix M in equation (6) starting with the standard form of the photon
kinetic energy:

L = −
1

4
FµνF

µν =
1

2

(

~∇A0 + ∂t ~A
)2

−
1

2

(

~∇× ~A
)2

(10)

We then insert the LSG condition A0 = Ar, giving

L =
1

2

(

~∇Ar + ∂t ~A
)2

−
1

2

(

~∇× ~A
)2

(11)

To arrive at the form given in (6), we manipulate the above terms one at a time. The first term
can be written as

(

∂t ~A+ ~∇Ar

)2

=
(

r̂
(

∂t + r̂ · ~∇
)

Ar + ~∇⊥Ar + ∂t ~A⊥

)2

(12)

where (not yet in a matrix notation)

~∇⊥ = ~∇− r̂
(

r̂ · ~∇
)

(13)

We expand (12) to get

=
((

∂t + r̂ · ~∇
)

Ar

)2

+
(

∂t ~A⊥

)2

+
(

~∇⊥Ar

)2

+ 2
(

~∇⊥Ar

)

· ∂t ~A⊥ (14)

Integrating this by parts gives

= −Ar(∂t + ~∇ · r̂)(∂t + r̂ · ~∇)Ar −Ar
~∇2Ar + Ar

(

~∇ · r̂
)(

r̂ · ~∇
)

Ar

− ~A⊥ · ∂2

t
~A⊥ − Ar∂t~∇⊥ · A⊥ − ~A⊥ · ~∇⊥∂tAr

(15)

For the
(

~∇× ~A
)2

term we can write

(

~∇× ~A
)2

=
(

~∇× Arr̂ + ~∇× ~A⊥

)2

(16)

We can work out the rr, r ⊥, ⊥ r and ⊥⊥ terms in this separately by writing all the cross products
explicitly in terms of Cartesian indices and simplifying. The rr term is

(

~∇×Arr̂
)2

=
(

r̂ × ~∇Ar

)2

= (r̂j∇kAr) (r̂j∇kAr)− (r̂j∇kAr) (r̂k∇jAr) (17)
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=
(

~∇Ar

)2

− (r̂k∇kAr) (r̂j∇jAr) (18)

=
(

~∇Ar

)2

−
(

r̂ · ~∇Ar

)2

(19)

Integrating this by parts gives

= −Ar∇
2Ar + Ar

(

~∇ · r̂
)(

r̂ · ~∇
)

Ar (20)

The ⊥⊥ term is
(

~∇× ~A⊥

)

·
(

~∇× ~A⊥

)

=
(

∇jA
k
⊥

) (

∇jA
k
⊥

)

−
(

∇jA
k
⊥

) (

∇kA
j
⊥

)

(21)

= − ~A⊥ · ∇2 ~A⊥ +
(

~A⊥ · ~∇
)(

~∇ · ~A⊥

)

(22)

Similarly, it can be shown that the r ⊥ and ⊥ r terms are

(

~∇×Ar r̂
)

·
(

~∇× ~A⊥

)

= Ar

(

~∇ · r̂
)(

~∇ · ~A⊥

)

(23)

and
(

~∇× ~A⊥

)

·
(

~∇× Arr̂
)

=
(

~A⊥ · ~∇
)(

r̂ · ~∇Ar

)

(24)

Combining all the terms from (15), (20), (22), (23), and (24), we can write the Lagrangian in the
matrix form in (6) repeated below

L = −
1

2

(

Ar
~AT
⊥

)

M

(

Ar

~A⊥

)

(25)

where we now know the matrix M is given by

M =

(

(∂t + ~∇ · r̂)
~∇

)

(

(∂t + r̂ · ~∇) ~∇T
)

+

(

0 0
0 I 2

)

(26)

Now things get a little complicated. The 4× 4 matrix differential operator M is invertible, but its
inverse is not the propagator we want. The LSG propagator is the inverse of M restricted to the
subspace from which we have projected out the (non-existent) radial component of ~A⊥. Let P be

the projection operator onto the radial direction of ~A. Then the inverse we are looking for is the
operator D satisfying

P D = DP = 0
(I − P ) M (I − P ) D = D (I − P ) M (I − P ) = (I − P )

(27)

Because P does not commute with M , we cannot simply invert M and then project onto the
relevant subspace. Instead, we will use a 2-step procedure. We will first show how the linear
algebra of this 2-step procedure works in general, and then apply it to the LSG propagator in
particular.
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3 Inversion on a subspace

Our aim is to take an invertible matrix M , and find its inverse restricted to the subspace projected
onto by (I − P ), where P is a projection operator onto a subspace and I is the identity matrix.
That is, we wish to find the matrix D satisfying (27). There are two steps. Step one (which, for
LSG, we will put off until later and relegate to an appendix) is to find the inverse of M−1 on the
space projected onto by P . That is, we find an operator ν satisfying

ν P = P ν = ν ν P M−1 P = P M−1 P ν = P (28)

Then in step two we consider the following operator:

D = M−1 −M−1 ν M−1 = M−1 −M−1 P ν P M−1, (29)

It is straightforward to apply (28) to see that D satisfies (27), and thus it is the desired inversion
of M on the subspace projected by (I − P ).

4 Returning to the LS gauge propagator

We now show how we can apply (29) to find the LSG propagator. In this and the following sections
we will use an operator notation (discussed in more detail in appendix A) in which differential
operators, their inverses, and ordinary functions of coordinates are all treated as linear operators
acting on the tensor product space of our 4-component index space and the space of functions of
the coordinates.

In this language, the projection operator P is

P =

(

0 0

0 R̂R̂T

)

(30)

Since the formula (29) for the inverse on a subspace involves the inverse of M on the full space,
we must begin by finding M−1. For this purpose, it is convenient to note that M can be written
in terms of a diagonal matrix Md and a triangular matrix T as (where In is the n × n identity
operator)

M = TMdT
†, (31)

where

Md =

((

∂t + ~∇T R̂
)(

∂t + R̂T ~∇
)

0

0 2

)

, (32)

T =

(

1 0

~∇
(

∂t + ~∇T R̂
)−1

I3

)

(33)

and

T † =

(

1
(

∂t + R̂T ~∇
)−1

~∇T

0 I3

)

(34)
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This makes inverting M straightforward, and we get for M−1





(

∂t + R̂T ~∇
)−1 (

1 + ~∇T
2

−1 ~∇
)(

∂t + ~∇T R̂
)−1

−
(

∂t + R̂T ~∇
)−1

~∇T
2

−1

−2
−1 ~∇

(

∂t + ~∇T R̂
)−1

2
−1



 (35)

The next ingredient we need is the inverse of M−1 restricted to the subspace. Here it is useful to
avoid the matrix structure and define a linear operator µ, as

µ =
(

0 R̂T
)

M−1

(

0

R̂

)

(36)

whence ν in (28) is given by

ν =

(

0 0

0 R̂ µ−1 R̂T

)

(37)

Now we can just use (29) and put the pieces together to formally compute the LSG propagator.
Doing so and simplifying gives the following results:

Drr =
(

∂t + R̂T ~∇
)−1 (

1 + ~∇ T C ~∇
) (

∂t + ~∇T R̂
)−1

(38)

Dr⊥ = −
(

∂t + R̂T ~∇
)−1

~∇ T C (39)

D⊥r = −C ~∇
(

∂t + ~∇T R̂
)−1

(40)

D⊥⊥ = C (41)

where C is given by
C = 2

−1−2
−1 R̂ µ−1 R̂T

2
−1 (42)

Note that from this form we can see that C is transverse; that is, if we act with the projection
operator for the transverse subspace on either side of C, we get C. What remains to be done is to
derive an explicit form for C, which is done in detail in appendix B, with the result

C = −R ~∇⊥ 2
−1 L−2R ~∇T

⊥ + ~L 2
−1 L−2 ~LT (43)

where
R ≡ |~R|. (44)

Since this involves L−2, we must show that this is well defined. We show in appendix C that
because of the operators that appear on either side of L−2 in (43), the L−2 operator never acts on
an L = 0 state, and the expression (43) makes sense.

Putting (43) into (38-41) gives

Drr =
(

∂t + R̂T ~∇
)−1

(

1− R−1 L2
2

−1 R−1
)

(

∂t + ~∇T R̂
)−1

(45)

Dr⊥ =
(

∂t + R̂T ~∇
)−1

R−1
2

−1 ~∇T
⊥ R (46)
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D⊥r = R ~∇⊥ 2
−1 R−1

(

∂t + ~∇T R̂
)−1

(47)

D⊥⊥ = −R ~∇⊥ 2
−1 L−2R ~∇T

⊥ + ~L 2
−1 L−2 ~LT (48)

We can also combine these into a 3 × 3 matrix form, call it D3, appropriate for unconstrained ~A
fields:

R̂
(

∂t + R̂T ~∇
)−1 (

∂t + ~∇T R̂
)−1

R̂T + ~L 2
−1 L−2 ~LT

−
(

R ~∇⊥ L−2 − R̂
(

∂t + R̂T ~∇
)−1

R−1

)

L2
2

−1

(

L−2R ~∇T
⊥ − R−1

(

∂t + ~∇T R̂
)−1

R̂T
)

(49)

5 Conclusion

Here we have derived the photon propagator in light-shell gauge. In the process of this derivation,
we have presented a technique that may also be useful for calculations in other non-covariant
gauges (and, we hope, other applications). LSG is a crucial part of the construction of the light-
shell effective theory [1, 2], which we hope may provide a new viewpoint for high-energy scattering
in gauge theories.

We also hope that further insight can be gained once this method is extended to non-abelian gauge
theories.
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A Operator Notation

Throughout we have used a notation that involves local and non-local operators. For example,
when a local operator, such as R−1 appears, it is

R−1 (x1, x2) =
1

r1
δ (x1 − x2) (50)

and when not written, the delta function and integrations over the arguments are implicit. We

also come across the operators 2−1,
(

∂t + R̂ · ~∇
)−1

and
(

∂t + ~∇ · R̂
)−1

. We know that 2−1 is
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the position space propagator for a massless scalar and is given by

2
−1(x− y) = −

i

4π2

1

(x− y)2 − iǫ
(51)

The expressions for
(

∂t + ~∇ · R̂
)−1

and (∂t + R̂ · ~∇)−1 are not uniquely defined and depend on the

boundary conditions of the physical problem under consideration.

However, without any specific physical set up in mind, it is worth noting that the LSG propagator

contains the product
(

∂t + R̂ · ~∇
)−1

(∂t + ~∇ · R̂)−1. Therefore, consistency with LSG requires a

choice for these inverse operators for which the product is well-defined.

One possible expression for
(

∂t + ~∇ · R̂
)−1

can be obtained by noting that ~∇ · r̂ = 1

r2
∂rr

2. We can

therefore write an equation of the form

(

∂t + ~∇ · r̂
) 1

r2
θ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (52)

=
1

r2
δ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) = δ4(x− x′) (53)

We therefore conclude that our inverse is

(

∂t + ~∇ · R̂
)−1

=
1

r2
θ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (54)

Likewise, we can follow a similar argument to obtain

(∂t + R̂ · ~∇)−1 = −
1

r′2
θ(t′ − t) δ(t− r − t′ + r′)δ(z − z′)δ(φ− φ′) (55)

(54) and (55) give a well-defined form for the product of the two inverse operators, and are therefore
consistent with light-shell gauge. However, we can also have (54) along with

(∂t + R̂ · ~∇)−1 =
1

r′2
θ(t− t′)δ(t− r − t′ + r′)δ(z − z′)δ(φ− φ′) (56)

and that still gives a well-defined product. In contrast, if we take the definitions

(

∂t + ~∇ · R̂
)−1

= −
1

r2
θ(t′ − t) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (57)

and

(∂t + R̂ · ~∇)−1 =
1

r′2
θ(t− t′) δ(t− r − t′ + r′)δ(z − z′)δ(φ− φ′), (58)

we are not able to obtain a well-defined product of these operators. Specifically, when we multiply
(58) and (57) in terms of the required convolution, we get an integral of the form dr/r2 which
blows up at r = 0. In contrast, if we take the product of (55) and (54), we find that there are no
such problems since the region near r = 0 is excluded by the boundary conditions. We hope to
address some of these issues arising from boundary conditions in the context of light-shell effective
theory in [12].
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B Derivation of C

We can find C by brute force, but here we will instead use a slicker approach, which will take
advantage of (27). Using the formula (26) for M and our result for the propagator (38)-(41), it is
straightforward to see that (I4 − P )M (I4 − P )D is

(

1 0

~∇⊥

(

∂t + ~∇T R̂
)−1

− (I3 − P3) 2 C ~∇
(

∂t + ~∇T R̂
)−1

(I3 − P3) 2 C

)

(59)

where P3 = R̂ R̂T , and we have used (I3 − P3)C = C. For D to be the LSG propagator, we want
the 2nd row entries of (I − P )M (I − P )D to be 0 and I3 − P3. Both these requirements are
satisfied if

(I3 − P3) 2 C = I3 − P3 (60)

We will now use this condition to find an explicit expression for C. Our approach will involve first
finding a basis for the space perpendicular to R̂, and then acting on (60) with various operators
to find the components of C in this basis. We begin by identifying the proper basis. Notice that

R ~∇T
⊥ = i

(

~L× R̂
)T

(61)

So ~L and R ~∇⊥ are both orthogonal to R̂ and orthogonal to one another, therefore forming our
basis. We can express (I3 − P3) in terms of them. First note that from (61) it follows that

R ~∇T
⊥
~∇⊥ R = −L2 (62)

so with proper normalization we have

(I3 − P3) = ~LL−2 ~LT − ~∇⊥ RL−2R ~∇T
⊥ (63)

Now we want to find the components of C. The first, and easiest component to find is computed
by acting on (60) with ~L on both sides to give

~LT (I3 − P3) 2 C~L = ~LT (I3 − P3) ~L (64)

This is easy because ~L commutes with 2, so we get

~LT C ~L = 2
−1 L2 (65)

Acting on the left of (60) with ~LT and on the right with ~∇⊥ R as follows

~LT (I3 − P3) 2 C ~∇⊥ R = ~LT (I3 − P3) ~∇⊥ R (66)

works similarly once we observe ~LT ~∇⊥ R = 0, giving

~LT C ~∇⊥ R = 0 (67)

The final two matrix elements require the commutator
[

R ~∇T
⊥ , 2

]

= 2R−2 L2 R̂T (68)

10



We now take a detour to demonstrate this commutator relation. We can write

2 = ∂2

t −
(

~∇T R̂
) (

R̂T ~∇
)

+ L2 R−2 (69)

The middle term in (69) can be written
(

~∇T R̂
) (

R̂T ~∇
)

=
(

~∇T ~R
)

R−2

(

~RT ~∇
)

=
(

~RT ~∇
)

R−2

(

~RT ~∇
)

+ 3R−2

(

~RT ~∇
)

= R−2

(

(

~RT ~∇
)2

+
(

~RT ~∇
)

)

(70)

We chose this particular form because
(

~RT ~∇
)

is a scaling operator that counts the total powers

R or 1/~∇.5 So this term commutes with R ~∇T
⊥ and the only term in 2 that fails to commute is

L2 R−2.

The factors of R commute with both ~∇T
⊥ and L2, so we just need to consider
[

R ~∇T
⊥ , L2

]

(71)

Using (61), we can write this in components, as
[

i ǫabcLbR̂c , LdLd

]

(72)

= i ǫabcLb

(

Ld

[

R̂c , Ld

]

+
[

R̂c , Ld

]

Ld

)

(73)

= −ǫabcǫcdeLb

(

LdR̂e + R̂eLd

)

(74)

= −Lb

(

[

La, R̂b

]

+ 2R̂bLa − 2LbR̂a −
[

R̂a, Lb

]

)

(75)

The first and fourth terms in (75) cancel each another. The second term vanishes because ~L·R̂ = 0.
The third term gives

[

R ~∇T
⊥ , L2

]

= 2L2 R̂T (76)

or
[

R ~∇T
⊥ , 2

]

= 2R−2 L2 R̂T (77)

which is (68).

We now return to the derivation of C, but note that (77) vanishes when acting on C. So, acting

with R~∇T
⊥ on the left and ∇⊥ R on the right gives

R ~∇T
⊥ 2 C ~∇⊥R = 2 R ~∇T

⊥ C ~∇⊥ R = −L2 (78)

implying
R ~∇T

⊥ C ~∇⊥R = −2
−1 L2 (79)

In the same way we can see that the last component is zero

R ~∇T
⊥ 2 C ~L = 2 R ~∇T

⊥ C ~L = 0 (80)

Combining (65), (67), (79) and (80) with (63) gives

C = −R ~∇⊥ 2
−1 L−2R ~∇T

⊥ + ~L 2
−1 L−2 ~LT (81)

5Note also that the last form is trivial to remember because it vanishes for ra with a = 0 or −1 as it should.
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C Does L−2 make sense?

The derivation of C (in appendix B) formally involves the inverse of L2, and of course this makes
no sense on L = 0 states. But all we actually need is for (63) to make sense acting on arbitrary
functions, so that

(I3 − P3) ~f(~r) = ~LL−2 ~LT ~f(~r)− ~∇RL−2R ~∇T
⊥
~f(~r) (82)

This is perfectly well-defined, because if either the ~LT ~f(~r) or R ~∇T
⊥
~f(~r) component has zero angular

momentum, then that component itself is zero. This can been seen by first noting that if L2 acting
on either of these components is zero, then the component must be a function of the radius only,
call it g(r). If we integrate g(r) over dΩ, we get 4πg(r), but at the same time we see that integrating
either component over dΩ must be zero because in both cases we are integrating a total derivative
over a closed surface. Therefore g(r), which denotes either component, is necessarily zero.
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