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Abstract

We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s)

with Nf = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are

extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this

computation, we use pion masses of 0.33 and 0.42 GeV and 2.7 fm3 lattices with Iwasaki gauge

action and a 0.17 GeV pion and 4.6 fm3 lattice with I-DSDR gauge action, all generated by the

RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient and high

statistics calculation. Chiral behavior of lattice EDM’s is discussed in the context of baryon chiral

perturbation theory. In addition, we also show numerical evidence on the relationship of three-

and two-point correlation functions with the local topological charge distribution.
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I. INTRODUCTION

Electric dipole moments (EDM) are sensitive observables of the CP-violating (CPV)

effects of the fundamental interactions described by the standard model (SM) and theories

beyond the SM (BSM). The measurement of the neutron EDM (nEDM) has been attempted

in experiments since the 1950’s; however no evidence for the nEDM has been found, and the

latest experimental upper bound is tiny, DN ≤ 2.9 × 10−26 e·cm (90% CL)[1, 2]. From the

theoretical point of view, the contribution to the nEDM from the CPV phase in the CKM

mixing matrix is extremely small since the first non-vanishing contribution appears at three

loops, and DN ∼ 10−31 e·cm [3–6], more than 5 orders of magnitude below the experimental

bound. On the other hand, since the QCD Lagrangian contains a CP-odd θ term, the CPV

effect from the strong interaction may dominate, even though its contribution appears to be

unnaturally small, DN/θ̄ ∼ 10−17 e·cm [7–20]. This is known as the strong CP problem.

For searches of new physics due to BSM scenarios, the nEDM is just about the most

important observable, since naturalness arguments strongly suggest that BSM interactions

will not be aligned with the usual quark mass eigenstates [21]. As a consequence, in most

BSM scenarios, there will be additional CP-odd phases, thus the nEDM is a unique way to

search for the effect of this new phase(s). Extensions of the SM can generate a nEDM at

1-loop order in the new interactions, for example Left-Right Symmetric models [22], extra-

higgses models, warped models of flavor [21] and supersymmetric (SUSY) models [23–28].

Indeed some of the most popular models, e.g. SUSY, have a problem that the expected size

of the nEDM value is bigger than existing bounds [29]. In fact, in warped models which

are considered extremely attractive for a geometric understanding of flavors, the nEDM

naturally arises around the same level as the current experimental bound, so there is a

mild tension by factors of a few. This means that if the nEDM is not discovered after

another order of magnitude improvement is made, then that will cause a serious constraint

on the warped models of flavor. To extract BSM effects arising in an EDM, both high

energy particle contributions and low energy hadronic effects have to be taken into account.

Although there have been several estimates of BSM contributions to EDM’s, for instance

from the quark electric dipole, chromoelectric dipole, and Weinberg operators, based on

effective models, baryon chiral perturbation theory (BChPT) and sum rules [13–20, 30–32],

it is necessary to evaluate the unknown low-energy constants appearing in such models. On
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the other hand, computations from first principles using lattice QCD are also possible. A

recent attempt to estimate the quark EDM contribution is given in [33, 34].

This paper presents a first step in a feasibility study of the non-perturbative computation

of nucleon EDM’s. The starting point is to perform the path-integral from an ab-initio

calculation including the θ-term. The renormalizability of the θ-term allows a Monte-Carlo

integration without considering the mixing with lower-dimensional CP violating operators.

It is also an appropriate test for the next step towards inclusion of higher dimensional CP-

odd sources associated with BSM theories. Currently there are three strategies for neutron

and proton EDM computations in lattice QCD:

(1) Extraction of the EDM using an external electric field [35–39],

(2) Direct computation of the EDM form factor, in which the EDM is given in the limit

of zero momentum transfer [40–42],

(3) Use of imaginary θ and extraction of the EDM as in (1) or (2). [43–45]

In (1) the neutron and proton EDM are evaluated from the energy difference of nucleons

with spin-up and spin-down in a constant external electric field. In [37, 38] the calculation is

carried out with a Minkowskian electric field, with the signal appearing as a linear response

to the magnitude of the electric field. However, as shown in [37, 38], possibly large excited

state contamination results due to enhanced temporal boundary effects of the Minkowskian

electric field.

(2) is a straightforward method in which the EDM appears as the non-relativistic limit

of the CP violating part of the matrix element of the the electromagnetic (EM) current in

the ground state of the nucleon. It requires the subtraction of CP-odd contributions arising

from mixing of the CP-even and odd nucleon states in the θ-vacuum [40, 41]. In this method,

the EDM is obtained from the form factor at zero momentum transfer. This paper employs

this strategy.

In (1) and (2), the θ-term in Euclidean space-time is pure imaginary while the CP-even

part of the action is real, which leads to a so-called sign problem for Monte-Carlo simulation.

To avoid this issue, the idea of (3) is to employ a purely real action by using an imaginary

value of θ in the generation of gauge field configurations. This has an advantage of improved

signal-to-noise over the reweighting method. In [43, 44] preliminary results indicate relatively

small statistical errors for the nEDM, however we note that these results may be affected by

lattice artifacts due chiral symmetry breaking of Wilson-type fermions. Recently updated
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results in Nf = 2+1 QCD using (3) have been presented in Ref. [45] and appear promising.

Figure 11 (also see [46]) shows the summary plot of EDM results obtained using the strate-

gies (1) and (3) and Wilson-clover fermions and strategy (2) using domain-wall fermions

(DWF) which maintain chiral symmetry at non-zero lattice spacing to a high degree [47].

Older results suffer from large statistical errors and uncontrolled systematic errors. To pur-

sue a more reliable estimate of the neutron and proton EDM’s, we adopt strategy (2) and use

DWF. To efficiently reduce statistical errors we employ all-mode-averaging (AMA) [48–50].

This paper is organized as follows: in section II we introduce notation and give formulae

used to extract the CP-even EM and CP-odd EDM form factors for the neutron and proton

from correlation functions computed in lattice QCD. In section III we first describe the

lattice setup, including AMA parameters, and then give numerical results for the EM and

EDM form factors and subsequent neutron and proton EDM’s. We discuss our lattice QCD

result in the context of phenomenological estimates in section IV and present an idea to

further reduce statistical errors related to reweighting in section V. Finally we summarize

our study in VI.

II. MEASUREMENT OF EDM FORM FACTOR

A. Extraction of EDM form factor

The matrix element of the EM current is parameterized with CP-even and odd form

factors,

〈N(~pf , sf)|V EM
µ |N(~pi, si)〉θ = ūθ

N(~pf , sf)
[

F1(q
2)γµ +

iF2(q
2)

2mN

[γµ, γν]

2
qν

+
F θ
3 (q

2)

2mN

γ5[γµ, γν]

2
qν

]

uθ
N(~pi, si). (1)

where F1 and F2 are the usual CP-even EM form factors, and F θ
3 = F3θ +O(θ3) is the CP-

odd EDM form factor. Here we focus on the electromagnetic interaction with quarks inside

the nucleon in the θ-vacuum, so 〈〉θ represents the path-integral with the θ-term. uθ
N denotes

the nucleon spinor-function depending on θ. Each form factor is extracted order-by-order in

θ from the expanded three-point function and Eq. (1) as shown below (also see [40, 41] for

more detail). Note that momentum transfer q = pf − pi is used in the space-like region.

With the QCD action SQCD + iθQ, where θ is the vacuum angle, and Q =
∫

GG̃/64π2
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is topological charge computed from gluon field strength G, we represent the three-point

function in our lattice study as

Cθ
Vµ
(tf , ~pf ; t, ~q; ti, ~pi) ≡ 〈ηN(tf , ~pf)V EM

µ (t, ~q)η̄N(ti, ~pi)〉θ (2)

with interpolation operator ηN = (uTCγ5d)u for the proton, ηN = (dTCγ5u)d for the neu-

tron, and charge conjugation matrix C. Here the EM current is defined by the local bilinear,

V EM
µ = ZV q̄γµQcq with quark charge matrix Qc = diag(2/3,−1/3,−1/3), as in the contin-

uum theory, but multiplied by the lattice renormalization factor ZV . The above equation

can be expanded for small θ,

Cθ
Vµ
(tf , ~pf ; t, ~q; ti, ~pi) = CVµ

(tf , ~pf ; t, ~q; ti, ~pi)

+ iθCQ
Vµ
(tf , ~pf ; t, ~q; ti, ~pi) +O(θ2), (3)

with

CVµ
(tf , ~pf ; t, ~q; ti, ~pi) = 〈ηN (tf , ~pf)V EM

µ (t, ~q)η̄N(ti, ~pi)〉, (4)

CQ
Vµ
(tf , ~pf ; t, ~q; ti, ~pi) = 〈ηN (tf , ~pf)V EM

µ (t, ~q)η̄N(ti, ~pi)Q〉. (5)

All terms on the RHS are computed in the θ = 0 vacuum. Eq.(4) is the leading order in

θ expansion of Cθ
Vµ
, which is referred to as θ-LO, and Eq.(5) is the next-to-leading order

(θ-NLO). In this paper, we ignore the SUf (3) suppressed disconnected quark diagrams and

compute only the connected part in three-point function.

In order to extract the nucleon form factor, we use the following ratio [51],

Rµ(tf , ~pf ; t, ~q; ti, ~pi) = K
CVµ

(tf , ~pf ; t, ~q; ti, ~pi)

CG(tf − ti, ~pf)

[

CL(tf − t, ~pi)CG(t− ti, ~pf)CL(tf − ti, ~pf)

CL(tf − t, ~pf)CG(t− ti, ~pi)CL(tf − ti, ~pi)

]1/2

,

(6)

with the three-point function defined in Eq.(4) and Eq.(5), where

K =

√

(EN(~pf ) +mN)(EN (~pi) +mN)
√

EN(~pf)EN (~pi)
. (7)

In Eq.(6), using the nucleon two-point function after parity projection P+
4 ≡ (1 + γ4)/2,

CL/G(t, ~p) = tr
[

P+
4 〈ηL/G(t, ~p)η̄G(0, ~p)〉

]

, (8)

with smeared-source/smeared-sink correlation functions denoted as CG(t, ~p) and smeared-

source/local-sink as CL(t, ~p), it is convenient to extract the matrix element as shown below.
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Taking the large time-separation limit to project onto the nucleon ground states,

Rµ(tf , ~pf ; t, ~q; ti, ~pi) ≡ lim
tf−t,t−ti→∞

Rµ(tf , ~pf ; t, ~q; ti, ~pi)

=
∑

sf ,si

uθ
N(~pf , sf)〈N(~pf , sf)|Vµ|N(~pi, si)〉θūθ

N(~pi, si)

= Rµ(~pf , ~pi) + iθRQ
µ (~pf , ~pi) +O(θ2), (9)

for the matrix element in (1).

To describe the RHS of (9) up to second order in θ, we replace the spinor sums by the

matrix [40]

∑

s

uθ
N(~p, s)ū

θ
N(~p, s) = ENγ0 − i~p · ~γ +mNe

iαN (θ)γ5 , (10)

≈ ENγ0 − i~p · ~γ +mN (1 + iαN (θ)γ5) +O(θ2), (11)

where the CP-odd mixing angle αN(θ) induced by the θ-term appears explicitly. Here αN(θ)

is a Lorentz scalar, thus is a function only of the quark mass. To lowest order, αN(θ) ≈ θαN

is determined by

Cθ
L/G(t, ~p) = tr

[

γ5〈ηL/G(t, ~p)η̄G(0, ~p)〉θ
]

≃ Z∗

L/GZG
2mN

EN
iαNθ

(

e−EN t + (−)be−EN (Lt−t)
)

, (12)

for large t. ZL/G denotes the normalization factor for local (L) or Gaussian smeared (G)

sinks. b indicates the boundary condition in the temporal direction with size Lt; b = 0 is for

periodic boundary conditions, and b = 1 anti-periodic. The N∗ state, the parity partner of

the nucleon in the θ = 0 vacuum, can not be projected out by parity projection under the

CP-violating θ vacuum; however the N∗ is exponentially suppressed as e−(mN∗−mN )t due to

mN∗ ≫ mN . Note that to the order we are working, the Z’s and E’s are given by the usual

lowest order in θ, CP-even quantities.

Using (11) and the definitions in (1), and taking traces with projectors P+
4 and P+

5z ≡
i(1 + γ4)γ5γz/2, the θ-LO form factors are obtained from (9) by

tr
[

P+
5zRx(0, ~p)

]

=
py
EN

Gm(q
2), (13)

tr
[

P+
5zRy(0, ~p)

]

= − px
EN

Gm(q
2), (14)

tr
[

P+
4 Rt(0, ~p)

]

=
EN +mN

EN
Ge(q

2), (15)
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with Sachs electric and magnetic form factors

Ge(q
2) = F1(q

2)− q2

4mN
F2(q

2), Gm(q
2) = F1(q

2) + F2(q
2). (16)

Hereafter the momenta are set to ~pf = 0 at sink and ~pi = ~p at source.

Similarly, including the αN term in (11), the form factors appearing at θ-NLO are obtained

from

tr
[

P+
5zRQ

t (0, ~p)
]

= i
pz

2EN

[

αN

{

F1(q
2) +

3mN + EN

2mN
F2(q

2)

}

− EN +mN

mN
F3(q

2)

]

. (17)

The EDM form factors F3 are then determined by the subtracting the αNF1,2 terms.

III. NUMERICAL RESULTS

A. Lattice parameters

We use lattices with size Lσ × Lt = 243 × 64, Iwasaki gauge action with a−1 = 1.7848(6)

GeV (gauge coupling is β = 2.13) [52], and Lσ × Lt = 323 × 64, Iwasaki(I)-DSDR gauge

action with a−1 = 1.3784(68) GeV (gauge coupling is β = 1.75) [53]. Both lattice scales were

determined from a global, continuum and chiral fit [54], including physical point ensembles.

The fermions are domain wall fermions (DWF), which significantly suppress the O(a) lattice

artifact due to chiral symmetry breaking. The small additive quark mass from residual ex-

plicit chiral symmetry breaking, or residual mass, is amres = 0.0032 and amres = 0.0019 for

the Iwasaki 243 and I-DSDR 323 ensembles, respectively. The chiral symmetry of domain-

wall fermions is useful to investigate the chiral behavior of the EDM without any additive

renormalization. We use the two light quark masses m = 0.005 and m = 0.01, corresponding

to 330 and 420 MeV pion masses for the Iwasaki 243 ensembles, and m = 0.001 correspond-

ing to a 170 MeV pion mass for the I-DSDR 323 ensemble, in order to investigate the chiral

behavior of the nucleon EDM. To suppress correlations between measurements on succes-

sive configurations, we use a 10 (unit length) trajectory separation for Iwasaki 243 and 16

trajectory separation for I-DSDR 323. The renormalization factor for the vector current is

ZV = 0.71273(26) for Iwasaki 243 [54], and ZV = 0.6728(80) for I-DSDR 323 [53]. Both are

evaluated at −mres, i.e., in the chiral limit. Table I shows the lattice parameters on each

gauge ensemble.
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TABLE I. Lattice and AMA parameters. NG refers to the number of AMA measurements per

configuration and Nλ the number of eigenvectors. Note that the exact propagators are computed

on one time-slice t/a = 0 for 243 or four time-slices t/a = 0, 16, 32, 48 for 323.

Size a−1(GeV) Vol.(fm3) Ls mass NG Nλ AMA approx mπ(MeV) configs tsep(fm)

243 × 64 1.7848(6) 2.73 16 0.005 32 400 |r| < 0.003 330 772 1.32

187 0.9

243 × 64 1.7848(6) 2.73 16 0.01 32 180 |r| < 0.003 420 701 1.32

133 0.9

323 × 64 1.3784(68) 4.63 32 0.001 112 1000 100-125 CG iter 170 39 1.29

We use Gaussian-smeared sources as described in [51] with width 0.7 for Iwasaki 243 and

0.6 for I-DSDR 323 ensembles, respectively, and the number of hits of the 3D Laplacian

was 100 and 70, respectively. The three-point function is constructed with a zero-spatial-

momentum sequential source (~pf = 0) on a fixed time-slice for the sink nucleon operator

(see [55] for details). Fourier transforming the position of the EM current injects spatial

momentum ~q = ~p, so ~pi = −~p is removed at the source by momentum conservation. In

this analysis we employ four different spatial momentum-transfer-squared values, |~q|2 =

4π2~n2
p/L

2
σ, ~n

2
p = 1, 2, 3, 4, and average over all equivalent values of |~p|2 to improve statistics.

The Euclidean time-separation of the sink and source in the three-point function is set

to 12 and 9 time-slices for 243 and 323 ensembles, respectively (both about 1.3 fm). On

Iwasaki 243 we also employ a shorter separation of 8 time slices to investigate excited state

contamination.

The AMA parameters [48–50] are summarized in Tab. I. Here translational invariance is

employed as the covariant symmetry to be averaged over. Approximate quark propagators

on each time slice are computed starting from the initial source locations and shifting once

in each direction by one-half of the spatial linear size of the lattice. In addition, on the

I-DSDR 323 ensemble, we repeat the shift three more times, starting from a different initial

spatial source location. To compute the bias correction, the exact (to numerical precision)

propagators are computed at the same initial source location(s) on one time-slice t/a = 0

for 243 or four time-slices t/a = 0, 16, 32, 48 for 323.
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Quark propagators are computed using the conjugate gradient (CG) algorithm and the

4D-even-odd-preconditioned Dirac operator [48–50]. As shown in Tab. I, we compute var-

ious numbers of low modes of the preconditioned Dirac operator to deflate the CG and to

construct the approximate quark propagators 1 using the implicitly restarted Lanczos al-

gorithm with Chebyshev polynomial acceleration [56]. To reduce the memory footprint for

the I-DSDR 323 ensemble, a Möbius Dirac operator [57–59] with Ls = 16 was used for the

approximation instead of the DWF operator with Ls = 32. In addition, the eigenvectors for

this case were computed in mixed precision and stored in single precision. In Reference [50]

a detailed discussion of these AMA procedures and the attendant bias is discussed.

B. Topological charge distribution

We describe the topological charge distribution used in our analysis of the CP-odd parts

of the two- and three-point functions. Topological charge Q is computed using the 5-loop-

improved lattice topological charge [60] which is free of lattice spacing discretization errors

through O(a4). The gauge fields are smoothed before computing Q by APE smearing [61, 62]

with smearing parameter 0.45 for 60 sweeps as done in [52, 53]. Figures 1 and 2 show

histograms of the topological charge and its Monte Carlo time history for the ensembles

used here. The shape is roughly Gaussian for the Iwasaki 243 ensembles, while on the other

hand the I-DSDR 323 ensemble, where measurements were made on only 39 configurations,

shows some deviations (the distribution for the whole ensemble looks much better [53]).

Despite the poor shape, at least the peak is near Q = 0, and it is roughly symmetric. In

fact, the Shapiro-Wilk test [63] for Q on the I-DSDR 323 ensemble yields W = 0.982 with

p-value 0.758, enabling us to verify a normal distribution. We also observe a rather long

auto-correlation time of the topological charge for this ensemble.

1 As detailed in [50], the approximation defined by a fixed number of CG iterations, rather than that

defined by a fixed residual vector norm, is a safer choice to prevent possible bias due to finite precision

arithmetic. Calculations on the 243 ensemble, done in very early stage of the work, used the approximation

with fixed residual norm. We have not repeated the calculation with a fixed number of CG iterations as

the resulting statistical error would certainly overwhelm the potential bias. In Appendix C of [50] a new

method to completely remove the bias is given.
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FIG. 1. Distribution of topological charge and its Monte Carlo time history. Pion mass 330

MeV (top) and 420 MeV (bottom), Iwasaki 243, ensembles. The solid line represents a Gaussian

distribution function.

The topological susceptibility obtained on these ensembles is

χQ = 〈Q2〉/V =



















3.1(2)× 10−4 GeV4 (330 MeV pion, Iwasaki 243),

4.4(2)× 10−4 GeV4 (420 MeV pion, Iwasaki 243),

0.9(2)× 10−4 GeV4 (170 MeV pion, I-DSDR 323),

(18)

and one sees the suppression with quark mass expected from chiral perturbation theory

[64]. χQ can be used to investigate the relationship between the axial anomaly in QCD and

CP-odd effects at θ-NLO [64, 65], for instance the mixing angle αN or the nucleon EDM.

We discuss this point later.
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FIG. 2. Same as Figure 1 but for the I-DSDR 323 ensemble in 170 MeV pion.

C. Nucleon two-point function

The values of the nucleon mass (energy) and mixing angle αN are obtained by fitting with

the nucleon two-point function using a single exponential function (see Tab. II). The nucleon

energy and wave function renormalization ZL/G are obtained from the CP-even part of the

nucleon propagator (θ-LO) using the spin-projector P+
4 . αN is obtained from the CP-odd

part using Eq.(12). Since we are only working to θ-NLO, to reduce the statistical error on

αN , the mass in the CP-odd part is fixed to the θ-LO mass obtained from the CP-even part.

The fit ranges are given Tab. II, and were chosen to produce a χ2/d.o.f roughly equal to 1,

but with errors that are as small as possible.

As shown in Fig. 3, the effective mass of the θ-NLO nucleon propagator has a clear

plateau, and its value is consistent with that from the θ-LO nucleon propagator for both

local and smeared sinks. The plateau of the effective mass plot for θ-NLO seems to start

at shorter time separation than those for θ-LO 2. We also note the constancy of αN even

when the nucleon carries finite momentum which is in agreement with the formulation in

Eq.(12). In the following analysis we use αN computed with the Gaussian sink, evaluated

at zero momentum.

2 Unlike θ-LO, there is a mixed contribution with CP-even and CP-odd states in θ-NLO two-point function

having alternative sign. The excited states may have similar masses and amplitudes between CP-even

and CP-odd, and so that the plateau-like beahvior of effective mass in shorter time separation of θ-NLO

implies that cancellation of excited states contamination occurs.
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FIG. 3. Effective mass of the nucleon (θ-LO, Gaussian smeared sink) compared to the θ-NLO

effective mass using local and Gaussian sinks. mπ = 330 MeV (left) and 420 MeV (middle),

Iwasaki 243, and 170 MeV, I-DSDR 323 (right).

D. Electromagnetic form factor

First we present the CP-even form factors Ge and Gm obtained from Eq.(15) and

Eqs.(13),(14). For the Iwasaki 243 ensembles, precise results for the (iso-vector) form

factors, using a multiple source method, have appeared previously [51]. Using AMA, we

achieve a further reduction of the statistical errors compared to previous work. The precise

measurement of the EM form factors is important for the EDM calculation since linear

combinations of Ge and Gm are needed for the subtraction terms proportional to αN .

In Figs. 4 and 5 we show the time-slice dependence of the EM form factors for each

momenta and also compare the results for two different time-separations, tsep, between

the nucleon source and sink operators. Suitable nucleon ground state form factors can

be extracted from the plateau regions 4 ≤ t/a ≤ 8, as seen in Fig. 4 (left panel) and

3 ≤ t/a ≤ 6 in Fig. 5 for the smaller quark mass I-DSDR ensemble (note the electric form

factor for the neutron is very small, and should be zero at q2 = 0). In these regions excited

state contributions are evidently suppressed. Although increasing tsep reduces excited state

contamination, the signal-to-noise ratio also decreases exponentially.
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TABLE II. The nucleon energy and its CP-odd mixing angle αN . The nucleon energy and αN are

given for the Gaussian smeared sink operator.

Iwasaki 243 in 0.33 GeV pion

fit-range [6, 12] [5, 9]

~p2(GeV2) EN (GeV) αN

0.000 1.1738(25) -0.356(22)

0.218 1.2618(27) -0.350(22)

0.437 1.3480(34) -0.348(22)

0.655 1.4321(52) -0.342(24)

0.873 1.5092(90) -0.334(27)

Iwasaki 243 in 0.42 GeV pion

fit-range [7, 13] [5, 9]

~p2(GeV2) EN (GeV) αN

0.000 1.2641(28) -0.370(22)

0.218 1.3454(31) -0.367(23)

0.437 1.4210(40) -0.366(23)

0.655 1.4931(57) -0.363(24)

0.873 1.5660(93) -0.357(27)

I-DSDR 323 in 0.17 GeV pion

fit-range [5, 10] [5, 9]

~p2(GeV2) EN (GeV) αN

0.000 0.9746(66) -0.333(128)

0.073 1.0122(69) -0.269(132)

0.147 1.0491(78) -0.409(230)

0.220 1.0827(86) -0.448(287)

0.293 1.1116(114) -0.381(148)
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To see whether our value of tsep is large enough, we compare the form factors computed

using two different values on the 243 ensembles. In the right panel of Fig. 4 one observes a

clear plateau between 3 ≤ t/a ≤ 5 for the smaller value of tsep which is in good agreement

with the results shown in the left panel. In Figs. 6 the average values of the form factors

are shown. As expected, in Fig. 6 the values for different tsep agree within statistical errors,

so we conclude that excited state contamination is small for tsep ≈ 1.3 − 1.4 fm source-

sink separations used for the observables in this study. A few percent precision on the form

factors for Gp
e, G

p
m and Gn

m is obtained, and less than 20% precision for Gn
e . For tsep = 0.9 fm

even higher precision is seen despite having only a quarter of the statistics. This indicates

that tsep = 0.9 fm allows good statistical precision while keeping control of excited state

contamination.

E. EDM form factor

The EDM form factor is extracted from the CP-odd functions given in Eq. (17) which

contains F3 and terms proportional to α to be subtracted. First we decompose F3 into two

pieces,

F3 = FQ + Fα, (19)

with

FQ =
mN

EN +mN
i
2EN

pz
tr
[

P+
5zRQ

t

]

, (20)

Fα =
mN

EN +mN
αN

(

F1 +
3mN + EN

2mN
F2

)

, (21)

where FQ contains the total θ-NLO three-point function, and Fα contains the subtraction

terms. From Figure 7, one sees that Fα is relatively precise with a statistical error of about

10%, while that of FQ is more than 50%. This indicates that the ultimate signal-to-noise of

F3 depends mainly on FQ. Again, the region 4 ≤ t/a ≤ 8 is used to obtain the EDM form

factor.

To investigate the presence of excited state contamination, we show the EDM form factor

with tsep = 1.32 fm and tsep = 0.9 fm in Fig. 8. The smaller separation result has an even

better signal than tsep = 1.32 fm, and their plateaus are consistent. Therefore one sees that

the contamination of excited states is negligible in this range.
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In Fig. 9 we investigate statistical error scaling by examining subsets of our data with

reduced NG, the number of source locations of O(appx)
G in the AMA procedure. We find good

agreement with the full results, and the statistical error roughly scales with the square root

of the number of configurations. Furthermore comparing the full statistics with reduced NG,

there is a similar reduction of the statistical errors, e.g. the second line in Figure 9 indicates

the rate of 52% with one-quarter statistics (200 configurations) is close to the ideal rate,

50%. In the fourth line, the rate 44% is slightly larger than the ideal rate 1/
√
8 ≃ 35%. It

turns out that the gauge configurations we used do not show strong correlations between

different trajectories, and also for AMA there is not a large correlation between different

source locations. Our choice of approximation and NG seem to perform well for the statistical

error reduction of the EDM form factor for the Iwasaki 243 ensembles, and also the I-DSDR

323 ensemble.

In Tab. III and IV, we present the results of the EM and EDM form factors, extracted by

fitting the plateaus to a constant value. The EDM form factors for the Iwasaki 243 ensembles

have roughly 25-30% statistical errors, at best, and the errors grow to more than 100% at

worst, depending on the nucleon and momenta. For the I-DSDR 323 lattice the EDM form

factor is very noisy, and we do not observe a clear signal. This is likely due to the relatively

poor sampling of the topological charge on this small ensemble of configurations since we

do observe relatively small errors for the CP-even EM form factors.

In the next section we estimate the nucleon EDM’s by extrapolating these results to zero

momentum transfer.

F. Lattice results for the neutron and proton EDM

To extrapolate to q2 = 0 a simple linear function consistent with chiral perturbation

theory is used,

F3(q
2)/2mN = dN + S ′q2 +O(q4), (22)

where dN represents the leading order, and S ′ the next-to-leading order in the q2 dependence

of the EDM form factor. dN is defined as the coefficient of the leading, linear, term in θ in

the experimental value of the EDM, DN = dNθ +O(θ3). Furthermore, according to ChPT

[19, 20] at NLO, S ′ in the isoscalar channel (also isovector) is related to the low-energy

constant of the CP violating pion-nucleon coupling, and this point is discussed later.
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FIG. 7. The operator time dependence for the components of the EDM form factor, FQ (total)

and the subtraction term Fα. Momentum transfer increases from left to right. Iwasaki 243, 330

MeV pion ensemble. The three-point function is defined in (17). The source and sink operators

are located in t/a = 0 and 12.

In Figs. 10, we show the q2 dependence of the EDM form factors. F3(q
2) exhibits mild q2

dependence within relatively large statistical errors. Since we assume a linear function at low

q2 for F3(q
2), fit ranges 0.20 GeV2 < q2 < 0.6 GeV2 in Iwasaki 243, and 0.07 GeV2 < q2 <

0.273 GeV2 in DSDR 323 are chosen. The central values and statistical errors for those fits

are given in Tab. V, and shown in Fig. 10. One sees that using such fitting ranges yield

small χ2/dof, although the extrapolated EDM value has errors of about 40–80%, and also

the slope, which corresponds to S ′, has almost 100% statistical error. For the near physical

pion mass ensemble the relative statistical error is still large: the proton EDM is zero within

one standard deviation and the neutron EDM is only non-zero by a bit more than two.

Clearly more precision is needed.

Figure 11 displays our results for the EDM as a function of the pion mass squared, and

for comparison we show older calculations with Nf = 2 Wilson-clover and Domain-Wall

fermions, and recent Nf = 3 Wilson-clover fermions [45] and Nf = 2 + 1 + 1 twisted-mass

(TM) fermions [42]. One also sees that our results are comparable with the recent imaginary-
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at several momenta indicated in the above of each panel. We locate the source and sink operators

in t/a = 0 and 12 for tsep = 1.32 fm, t/a = 0 and 8 for tsep = 0.9 fm.

θ calculation[45] and ETMC collaboration [42]. We note that DWF chiral symmetry forbids

potentially large lattice artifacts arising from mixing with chiral symmetry breaking terms

associated with Wilson fermions [36], unlike the Wilson-clover simulations in [45] (This cor-

responds to mixing with topological charge and pseudoscalar mass terms induced by lattice

artifacts. Since in our case there is only a small residual mass which controls chiral symme-

try breaking, this mixing is irrelevant for the current precision. However, considering higher

dimension CP-violation operators, e.g. the chromo-electric dipole moment, the mixing with

lower-dimensional operators should be taken into account. See [33] for more details.). Effec-

tive theories like chiral perturbation theory [7, 17, 20] and several models in QCD sum rules

[13, 14] have found d
p(n)
N = (−)(1–4)× 10−3 e·fm (the minus sign is for the neutron), about

one order of magnitude smaller than the central value of lattice QCD results computed at

unphysically large pion mass.
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statistics cases. The smaller panels show the distribution of jackknife estimates for each case. The

solid line denotes a Gaussian distribution function. 330 MeV pion (left) and 420 MeV pion (right)

ensembles.

IV. DISCUSSION

The neutron and proton EDM’s induced by the θ-term in the QCD action must vanish

in the chiral limit since it can be moved entirely into a pseudoscalar mass term by a chiral

rotation because of the QCD axial anomaly [7–12, 15–20]. Such a mass term vanishes if

any of the quarks in the theory are massless. In chiral perturbation theory, the leading

behavior [7] is

dN ≈ ḡπNNgπNN

mN
log

m2
π

m2
N

(23)
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TABLE III. Fn
3 /2mN (e· fm) on Iwasaki 243 ensemble.

m = 0.005 P N

q2(GeV2) tsep = 1.32 fm tsep = 0.9 fm tsep = 1.32 fm tsep = 0.9 fm

0.210 0.022(17) 0.017( 9) -0.040(13) -0.025( 7)

0.405 0.025(12) 0.025( 7) -0.031( 9) -0.027( 5)

0.586 0.013(15) 0.028( 7) -0.018(11) -0.026( 5)

0.760 -0.001(19) 0.010( 7) -0.018(14) -0.016( 6)

m = 0.01 P N

q2(GeV2) tsep = 1.32 fm tsep = 0.9 fm tsep = 1.32 fm tsep = 0.9 fm

0.212 0.034(17) 0.027(15) -0.005(11) -0.015(10)

0.412 0.023(13) 0.021(11) -0.011( 8) -0.012( 7)

0.604 -0.006(15) 0.014(10) 0.003(10) -0.010( 7)

0.782 0.012(17) 0.003( 9) -0.005(12) -0.002( 7)

TABLE IV. Fn
3 /2mN (e· fm) on I-DSDR, 323, 170 MeV pion ensemble.

P N

q2(GeV2) tsep = 1.3 fm tsep = 1.3 fm

0.072 0.033(80) -0.083(34)

0.141 0.057(50) -0.048(31)

0.208 0.027(69) -0.028(38)

0.273 -0.057(75) -0.067(50)

with CP-preserving and CP-violating πNN couplings, gπNN and ḡπNN
3 , respectively,

whereas in the low energy nuclear effective theory [9, 10], the EDM can also be described as

dN ≈ 2

f 2
π

χ2
QµN

ḡπNN

2mN
(24)

where µN is the nucleon magnetic moment and χQ is the topological charge suscep-

tibility, represented in leading order chiral perturbation theory as χQ = m2
πf

2
π(m

2
η′ −

3 In which ḡπNN is defined as the coefficient of the leading order in θ expansion of CP violating coupling

as in [7].
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TABLE V. Result of EDM which is obtained by the extrapolation of q2 to zero with linear ansatz

using fitting range of 0.21 GeV2 ≤ q2 ≤ 0.586 GeV2 for 243 m=0.005, 0.212 GeV2 ≤ q2 ≤ 0.604

GeV2 for 243 m=0.01 and 0.072 GeV2 ≤ q2 ≤ 0.273 GeV2 for 323 DSDR m=0.001. The value of

S′ and its χ2/dof are also shown in this table. Here those errors denote statistical one.

Iwasaki 243 Proton Neutron

mπ (GeV) tsep (fm) dpN (e·fm) S′

p (e·fm3) χ2/dof dnN (e·fm) S′

n (e·fm3) χ2/dof

0.33 1.32 0.030(25) −11.0(21.2)×10−4 0.7(1.7) −0.053(18) 24.3(14.6)×10−4 0.2(9)

0.33 0.9 0.015(12) 10.3(8.5)×10−4 0.1(6) −0.029(8) 1.0(5.4)×10−4 1.0(2.0)

0.42 1.32 0.064(27) −45.2(21.8)×10−4 1.3(2.3) −0.021(15) 11.7(12.9)×10−4 1.8(2.7)

0.42 0.9 0.035(19) −10.4(10.7)×10−4 0.03(46) −0.016(11) 3.4(5.9)×10−4 0.02(36)

I-DSDR 323 Proton Neutron

mπ (GeV) tsep (fm) dpN (e·fm) S′

p (e·fm3) χ2/dof dnN (e·fm) S′

n (e·fm3) χ2/dof

0.17 1.3 0.101(90) −166.4(147.1)×10−4 0.4(7) −0.093(43) 87.4(74.0)×10−4 0.5(9)

m2
π)/(Nfm

2
η′) [64] (here fπ = 92 MeV). As given in Eq. (24), the topological charge distri-

bution and its susceptibility are related to the EDM, and thus it is interesting to check this

relationship in lattice QCD for consistency with the effective model. Figure 12 shows such a

relationship at our lattice point, and also displays the predicted bound from baryon ChPT

at the physical point, for which we use mπ = 0.135 GeV and mη′ = 0.957 GeV. One also

sees that for the neutron EDM there is a slight tension between the lattice result and the

ChPT estimate, however our simulation point is still far from the physical one.

Although the statistical uncertainty of our lattice results (Fig. 11) is too large to dis-

criminate the quark mass dependence given in (23) or (24), the sign of neutron and proton

EDM’s are opposite, and that sign is consistent with the nucleon magnetic moment as one

can see in Fig. 4. Further, since the ratio of the proton and neutron EDM’s is given from

the ratio of those magnetic moments, as seen in Eq. (24), using the quark model the ratio

is (dnN/d
p
N)quark = −2/3, assuming no SU(2) isospin breaking. Our lattice calculation gives

roughly dnN/d
p
N ≃ −2 and dnN/d

p
N ≃ −0.5 for the lighter and heavier 243 quark mass en-

sembles, respectively, the same sign and order of magnitude as the quark model prediction.
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Note that the analytic result of the neutron EDM in NLO SU(2) [19] and SU(3) [16] ChPT

suggests that higher order corrections are about 40%, and furthermore there is the additional

uncertainty of the CPV πNN coupling [30–32].

Nuclei or diamagnetic atoms (e.g., 199Hg, 129Xe) are important experimental avenues

for detecting EDM’s. To estimate their EDM’s using an effective theory framework, non-

perturbative evaluation of the low energy constants of the theory is essential. The low energy

constants related to the quark mass and q2 dependence of F3(q
2) and S ′, for instance, can be

obtained from lattice QCD. The values of S ′ in Tab. V (statistical errors only) are of similar

order to that from SU(3) ChPT at the leading-order, S ′

n(ChPT) = −3.1 × 10−4 e·fm3 [19]

(see also [29]). Furthermore, according to the argument of NLO BChPT (for details, see

[32]), S ′ for the isoscalar and isovector EDMs is approximately

S ′

isoscalar ≃ 0, S ′

isovector ≃
gAḡ

(0)
π

48π2fπm2
π

[

1− 5π

4

mπ

mN

]

, (25)

so ḡ
(0)
π , the CPV NNπ coupling, is leading in S ′

isovector. Although the precision shown

in Tab. V is not enough to address this comparison, our results provide a rough bound,

|ḡ(0)π | ∼ O(10−1). The phenomenological value is also estimated as ḡ
(0)
π ∼ 0.04 at leading

order [29], and recently ḡ
(0)
π = 0.0156(26) updated by [66].

Finally we consider the chiral behavior of the CP-odd mixing angle αN . It depends on

the (sea) quark mass but is independent of momentum. Since αN(θ) ∝ θ, it is expected

to vanish in the chiral limit. However, as seen in Fig. 13, we observe no significant mass

dependence for αN among all of the ensembles in our study. This may simply reflect that

the simulations are far from the chiral limit for EDM’s. We also note that the statistical

errors are large, especially for the 170 MeV pion ensemble, and there the topological charge

distribution is suspect since we have only used 39 configurations.

V. AN EXPLORATORY REWEIGHTING WITH TOPOLOGICAL CHARGE

DENSITY

The large statistical noise of the CP-odd correlation functions is possibly due to reweight-

ing with the global topological charge since for many, perhaps most, of the EM current inser-

tions, there is no overlap with a CP-odd vacuum fluctuation. So reweighting just adds noise

to the expectation value. Unfortunately for this study, we have averaged over space on each
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FIG. 12. The relation between the nucleon EDM’s and the topological charge susceptibility given

in (23) for the neutron (circle) and proton (square) in Iwasaki 243 ensembles. The cross symbol is

value of neutron EDM from baryon chiral perturbation theory [7, 17, 20].

time slice, so we can not examine these local correlations directly. But we can reweight the

correlation function with the charge density summed over a time slice, or several successive

time slices. To investigate the above, we sum the topological charge density over a range of

time slices, ± 1, 4, and 8 about the time slice of the sink operator. A plot of the nucleon

EDM and the corresponding mixing angle for such a reweighting is shown in Fig. 14.

One observes a dramatic decrease in the noise as the number of time slices that are

summed for the topological charge density decreases. Interestingly, the EDM values may

plateau between 9 and 17 time slices. Note that αN is not a physical observable and need

not plateau. In the future, we plan to investigate spatially local reweighting. One needs to

address issues of renormalization as well.
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VI. SUMMARY

This paper presents a lattice calculation of the nucleon electric dipole moment obtained

from the study of the CP-odd form factors of the nucleon in 2+1 flavor QCD with un-

physically heavy up and down quarks (the pion mass in this study ranges from 420 down

to 170 MeV). The QCD θ-term is included to the lowest order by reweighting correlation

functions with the topological charge. We employ the domain wall fermion discretization of

the lattice Dirac operator which allows us to control lattice artifacts due to chiral symmetry

breaking which may otherwise lead to significant systematic errors in the chiral regime. We

applied the all-mode-averaging (AMA) procedure [48, 49] to significantly boost the statis-

tical precision of the correlation functions which resulted in statistically significant values

of the neutron and proton EDM’s for the two heavier quark ensembles in our study, and a

less significant signal for the lightest, 170 MeV pion ensemble. We have examined the pion

mass dependence of the EDM’s, which is obtained by linear extrapolation of low momentum

transfer to zero momentum transfer with two different time-slice separation of source and

sink operators. In this analysis, the effect of excited state contamination is small compared
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as described in the text, on the same ensemble.
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to the statistical error.

In addition, we have investigated the relationship between the local topological charge

on each time slice of the lattice and the CP-odd correlation function. This idea may lead to

a significant noise reduction in future calculations by reweighting correlation functions with

the local topological charge density. We show promising numerical evidence that the large

noise associated with global topological charge fluctuations can be reduced.

In this paper, we have concentrated on a high statistics analysis using unphysical masses,

mπ =0.17 GeV – 0.42 GeV, and provide lattice QCD results for the nucleon EDMs and form

factors with statistical errors only. Future calculations will address systematic errors, in-

cluding finite size effects (FSE), poor topological charge sampling, the q2 = 0 extrapolation,

and lattice spacing artifacts. Baryon chiral perturbation theory (BChPT) in finite volume,

to the next-to-leading order [17, 18, 67], suggests the magnitude of FSE for our lattice sizes

and pion masses are roughly 10%, or less. However additional effects are possible, for in-

stance, at higher order in BChPT. We note several domain-wall fermion gauge ensembles

with different lattice cutoffs, volumes and pion masses below 0.2 GeV are available [53, 54]

to estimate these systematics. Recent developments in numerical algorithms like AMA make

it possible to carry out these calculations with current computational resources, and those

studies are under way.
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