
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Jet substructure classification in high-energy physics with
deep neural networks

Pierre Baldi, Kevin Bauer, Clara Eng, Peter Sadowski, and Daniel Whiteson
Phys. Rev. D 93, 094034 — Published 27 May 2016

DOI: 10.1103/PhysRevD.93.094034

http://dx.doi.org/10.1103/PhysRevD.93.094034


Jet Substructure Classification in High-Energy Physics with Deep Neural Networks

Pierre Baldi,1 Kevin Bauer,2 Clara Eng,3 Peter Sadowski,1 and Daniel Whiteson2

1Department of Computer Science, University of California, Irvine, CA 92697
2Department of Physics and Astronomy, University of California, Irvine, CA 92697

3Department of Chemical and Biomolecular Engineering, University of California, Berkeley CA 94270

At the extreme energies of the Large Hadron Collider, massive particles can be produced at such
high velocities that their hadronic decays are collimated and the resulting jets overlap. Deducing
whether the substructure of an observed jet is due to a low-mass single particle or due to multiple
decay objects of a massive particle is an important problem in the analysis of collider data. Tra-
ditional approaches have relied on expert features designed to detect energy deposition patterns
in the calorimeter, but the complexity of the data make this task an excellent candidate for the
application of machine learning tools. The data collected by the detector can be treated as a two-
dimensional image, lending itself to the natural application of image classification techniques. In
this work, we apply deep neural networks with a mixture of locally-connected and fully-connected
nodes. Our experiments demonstrate that without the aid of expert features, such networks match
or modestly outperform the current state-of-the-art approach for discriminating between jets from
single hadronic particles and overlapping jets from pairs of collimated hadronic particles, and that
such performance gains persist in the presence of pileup interactions.

PACS numbers:

I. INTRODUCTION

Collisions at the LHC occur at such high energies that
even massive particles are produced at large enough ve-
locities that their decay products become collimated. In
the case of a hadronic decay of a boosted W boson
(W → qq′), the two jets produced from these two quarks
then overlap in the detector, creating a single merged jet.
The substructure of the jet’s energy deposition can dis-
tinguish between jets which are due to a single hadronic
particle or due to the decay of a massive object into mul-
tiple hadronic particles; this classification is known as jet
“tagging” and is critical for understanding the nature of
the particles produced in the collision [1].

This classification task has been the topic of intense re-
search activity [2–5]. The difficult nature of the problem
has lead physicists to reduce the dimensionality of the
problem by designing expert features [6–15] which incor-
porate their domain knowledge. In the current state of
the art applications, jets are either classified based on
one of these features alone or by combining multiple de-
signed features with shallow machine learning classifiers
such as boosted decision trees (BDTs). It is possible,
however, that these designed expert features do not cap-
ture all of the available information [16–18], as the data
are very high-dimensional. Despite extensive theoretical
progress in the microphysics of jet formation [19–21] and
development of theoretically-motivated tools to mitigate
the impact of unrelated interactions [22] which makes the
expert features robust and physically meaningful, there
exists no complete analytical model for classification di-
rectly from theoretical principles, though see Ref. [23].
On the other hand, the existence of effective simulation
tools [24, 25] allows for the generation of large simu-

lated samples. Therefore, approaches that use the higher-
dimensional but lower-level detector information to learn
this classification function may outperform those which
rely on fewer high-level expert-designed features.

Measurements of the emanating particles can be pro-
jected onto a cylindrical detector and then unwrapped
and considered as two-dimensional images, enabling the
natural application of computer vision techniques. Re-
cent work demonstrates encouraging results with shallow
classification models trained on jet images [26–28]. Deep
networks have shown additional promise in particle-level
studies [29]. However, deep learning has not yet been
applied to more realistic scenarios which include simula-
tion of the detector response and resolution, and most
importantly, the effect of unrelated simultaneous pp in-
teractions, known as pileup which contributes significant
energy depositions unrelated to the particles of interest.

In this paper, we perform jet classification on images
built from simulated detector response using deep neural
network models with a combination of locally-connected
and fully-connected layers. Our results demonstrate that
deep networks can distinguish between detector clus-
ters due to single or multiple jets without using domain
knowledge, matching or exceeding the performance of
shallow classifiers used to combine many expert features.

II. THEORY

A typical application of jet classifiers is to discriminate
single jets produced in quark or gluon fragmentation from
two overlapping jets produced when a high-velocity W
boson decays to a collimated pair of quarks. The goal is
then to learn the classification function, or equivalently,
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the likelihood ratio:

PW→qq(jet)

Pq/g(jet)

In practice, there are two significant obstacles to cal-
culating and applying this ratio.

First, while theoretical understanding of the processes
involved has made significant progress, a formulation of
this likelihood ratio from fundamental QCD principles
is not yet available. However, there do exist effective
models which have been successfully incorporated into
widely used tools capable of generating simulated sam-
ples. Such samples can then be used to deduce the likeli-
hood ratio, but the task is very difficult due to its high-
dimensionality. Expert features with solid theoretical
grounding exist to reduce the dimensionality of this prob-
lem, but it is unlikely that they capture all of the infor-
mation, as the theoretical understanding is not complete
and the concepts which motivate them do not include the
detector effects or the impact of pileup interactions. The
goal of this paper is to attempt to capture as much of the
information as possible and learn the classification func-
tion from simulated samples which include these effects,
without making the simplifying theoretical assumptions
necessary to construct expert features.

Second, the effective models used in simulation tools do
not provide a perfectly accurate description of observed
collider data. A classification function learned from sim-
ulated samples is limited by the validity of those samples.
While deep networks may provide a powerful method
of deducing the classification function, expert features
which encapsulate theoretical understanding of the pro-
cess of jet formation are valuable in assessing the success
and failure of these models. In this paper, we use expert
features as a benchmark to measure the performance of
learning tools which access only the higher-dimensional
lower-level data. We expect that deep networks may pro-
vide additional classification power in concert with the
insight offered by expert features, and perhaps motivate
the development of modifications to such features rather
than blindly replacing them.

III. DATA

Training samples for both classes were produced using
realistic simulation tools widely used in particle physics.

Samples of boosted W → qq′ were generated with a
center of mass energy

√
s = 14 TeV using the diboson

production and decay process pp → W+W− → qqqq
leading to two pairs of quarks; each pair of quarks are
collimated and lead to a single jet. Samples of jets origi-
nating from single quarks and gluons were generated us-
ing the pp → qq, qg, gg process. In both cases, jets are
generated in the range of pT ∈ [300, 400] GeV.

Collisions and immediate decays were simulated with
madgraph5 [30] v2.2.3, showering and hadronization

simulated with pythia [24] v6.426 , and response of the
detectors simulated with delphes [31] v3.2.0. The jet
images are characterized by the energies deposited at dif-
ferent points on the approximately cylindrical calorime-
ter surface.

The classification of jets as due to W → qq′ or sin-
gle quarks and gluons is sensitive to the presence of ad-
ditional in-time pp interactions, referred to as pile-up
events. We overlay such interactions in the simulation
chain, with an average number of interactions per event
of 〈µ〉 = 50, as an estimate of future ATLAS Run 2
data with the LHC delivering collisions at a 25ns bunch
crossing interval. The impact of pile-up events on jet re-
construction can be mitigated using several techniques.
After reconstructing jets with the anti-kT [32] clustering
algorithm using distance parameter R = 1.2, we apply a
jet-trimming algorithm [22] which is designed to remove
pileup while preserving the two-pronged jet substructure
characteristic of boson decay. Jet trimming re-clusters
the jet constituents using the kT [33] algorithm into sub-
jets of radius 0.2 and discards subjets with pT less than
3% of the original jet. Then the final trimmed jet is
built using the remaining subjets. Trimmed jets with
300 GeV< pT <400 GeV are selected, in order to ensure
the minimum W boson velocity needed for collimated de-
cays. In principle, the machine learning algorithms may
be able to classify jets without such filtering; we leave
this for future studies.

To compare our approach to the current state-of-the-
art, we calculate six high-level jet variables commonly
used in the literature; calculations are performed us-
ing FastJet [34] v3.1.2. First, the invariant mass of the
trimmed jet is calculated. Then, the trimmed jet’s con-
stituents are used to calculate the other substructure
variables, N -subjettiness [9, 35] τβ=1

21 , and the energy cor-

relation functions [10, 36] Cβ=1
2 , Cβ=2

2 , Dβ=1
2 , and Dβ=2

2 .
A comprehensive summary of these six jet substructure
variables can be found in Ref. [2]. Figures 1 shows the
distribution of the variables for the two classes of jets,
both with and without pileup conditions.

In this paper, we investigate the power of classifica-
tion of the jets directly from the lower-level but higher-
dimensional calorimeter data, without the dimensional
reduction provided by the variables above. The strategy
follows that of well-established image classification tools
by treating the distribution of energy in the calorimeter
as an image. The images were preprocessed as in pre-
vious work by centering and rotating into a canonical
orientation. The origin of the coordinate axis was set at
the center of energy of each jet, then the image was ro-
tated so that the principal axis θ is in the same direction
for each jet, where θ is defined as

tan(θ) =
∑
i

φi × Ei
Ri

/∑
i

ηi × Ei
Ri

(1)

Ri =
√
η2i + φ2i . (2)

Images are then reflected so that the maximum energy



3

Trimmed Mass (GeV)
0 20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.02

0.04

0.06 W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

=1β
21τ

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.01

0.02

0.03

0.04 W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

=2β
2C

0 0.05 0.1 0.15 0.2

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.02

0.04

0.06

W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

=1β
2C

0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.01

0.02

0.03

0.04

W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

=2β
2D

0 1 2 3 4 5

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.01

0.02

0.03

0.04

0.05
W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

=1β
2D

0 1 2 3 4 5

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.01

0.02

0.03

0.04
W->qq

QCD

 >=50µW->qq < 

 >=50µQCD < 

FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W → qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W → qq′) on the right, after preprocessing as described in
the text.

value is always in the bottom half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 × 3.0 radian window, then binned into pix-
els to form a 32 × 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W → qq′) on the right, after preprocessing.

IV. TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint
Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (β1 = 0.9, β2 = 0.999, ε = 1e−08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
receptive fields are shared. Fully-connected layers were
stacked on top of the locally-connected layers to aggre-
gate information from different regions of the detector
image. The network architecture — the number of layers
of each type, plus the width of the fully-connected layers
— was optimized using Spearmint. Out of the 25 net-
work architectures explored on the no-pile-up task, the
best had four locally-connected layers followed by four
fully-connected layers of 425 units. This network has
roughly 750,000 tunable parameters, while the best shal-
low network (one hidden layer of 1000 units) had over
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1 million parameters. On the pile-up data, 19 different
network architectures were tested; the best was again an
8-hidden-layer architecture, with 3 locally-connected lay-
ers, five fully-connected layers, and 500 hidden units in
each layer. Convolutional networks were also explored,
but as expected, the translational invariance provided
by these architectures did not provide any performance
boost.

BDTs were trained on the six high-level variables us-
ing Scikit-Learn [43]. The maximum depth of each es-
timator, the minimum number of examples required to
constitute an internal node (parameterized as a fraction
of the training set), and the learning rate were separately
optimized for the datasets with and without pileup us-
ing Spearmint (110 and 140 experiments, respectively).
The number of estimators was fixed to 500; when eval-
uating the marginal improvement of performance with
the addition of each estimator, we observed that in the
best model, performance plateaued after inclusion of less
than 100 estimators. This suggests that the number of
estimators was not limiting. The minimum number of ex-
amples required to form a leaf node was fixed to be one
fourth of that required to constitute an internal node. In
both cases, the best BDT classifier had a maximum tree
depth of 49, a minimum split requirement of 0.0021, and
a learning rate of 0.07. The best BDT trained on the
no-pileup data had approximately 700,000 tunable pa-
rameters, while the best BDT trained on the pileup data
had approximately 750,000.

V. RESULTS

Deep networks with locally-connected layers showed
the best performance. For example, the best network
with 5 hidden layers has two locally-connected layers fol-
lowed by three fully-connected layers of 300 units each;
this architecture performs better than a network of five
fully-connected layers of 500 units each.

Final results are shown in Table III. The metric used
is the Area Under the Curve (AUC), calculated in sig-
nal efficiency versus background efficiency, where a larger
AUC indicates better performance. In Fig 4, the signal
efficiency is shown versus backround rejection, the inverse
of background efficiency. In the case without pile-up, as
studied in Ref. [29], the deep network modestly outper-
forms the physics domain variables, demonstrating first
that successful classification can be performed without
expert-designed features and that there is some loss of
information in the dimensional reduction such features
provide. See the discussion below, however, for comments
on the continued importance of expert features.

Our results also demonstrate for the first time that
such performance holds up under the more difficult and
realistic conditions of many pileup interactions; indeed,
the gap between the deep network and the expert vari-
ables in this case is more pronounced. This is likely due
to the fact that the physics-inspired variables rest on ar-

TABLE I: Hyperparameter support for Bayesian optimization
of deep neural network architectures. For the no-pileup case,
networks with a single hidden layer were allowed to have up
to 1000 units per layer, in order to remove the possibility of
the deep networks performing better simply because they had
more tunable parameters.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Hidden units per layer 100 500 425 500

Fully-connected layers 1 5 4 5

Locally-connected layers 0 5 4 3

TABLE II: Hyperparameter support for BDTs trained on 6
high-level features, and the best combinations in 110 and 140
experiments, respectively, for the no-pileup and pileup tasks.
Minimum leaf percent was constrained to be one fourth of the
minimum split percent in all cases.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Tree depth 15 75 49 49

Learning rate 0.01 1.00 0.07 0.07

Minimum split percent 0.0001 0.1000 0.0021 0.0021

guments motivated by idealized pictures.

VI. INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with τ21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by

TABLE III: Performance results for BDT and deep networks.
Shown for each method are both the signal efficiency at back-
ground rejection of 10, as well as the Area Under the Curve
(AUC), the integral of the background efficiency versus signal
efficiency. For the neural networks, we report the mean and
standard deviation of three networks trained with different
random initializations.

Performance

Technique Signal efficiency AUC

at bg. rejection=10

No pileup

BDT on derived features 86.5% 95.0%

Deep NN on images 87.8%(0.04%) 95.3%(0.02%)

With pileup

BDT on derived features 81.5% 93.2%

Deep NN on images 84.3%(0.02%) 94.0%(0.01%)
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FIG. 4: Signal efficiency versus background rejection (inverse
of efficiency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal efficiency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on
the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.

While one cannot probe the motivation of the ML al-
gorithm, it is possible to compare distributions of events
categorized as signal-like by the different algorithms in
order to understand how the classification is being accom-

Jet Mass [Gev]
0 20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
 qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

=1β
2C

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05  qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

=2β
2C

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045  qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

=1β
2D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

=2β
2D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05
 qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

=1β
21τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n 
of

 S
el

ec
te

d 
E

ve
nt

s

0

0.005

0.01

0.015

0.02

0.025

0.03
 qq→W

QCD, rej=20

QCD, rej=5

QCD

BDT(expert)

DNN(image)

No pile-up

FIG. 5: Distributions in simulated samples without pileup of
high-level jet substructure variables for pure signal (W → qq)
and pure background (QCD) events. To explore the decision
surface of the ML algorithms, also shown are background
events with various levels of rejection for deep networks
trained on the images and boosted decision trees trained on
the expert features. Both algorithms preferentially select jets
with values near the peak signal values. Note, however, that
while the BDT has been supplied with these features as an
input, the DNN has learned this on its own.

plished. To compare distributions between different algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher efficiency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.
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FIG. 6: Distributions in simulated samples with pileup of
high-level jet substructure variables for pure signal (W → qq)
and pure background (QCD) events. To explore the decision
surface of the ML algorithms, also shown are background
events with various levels of rejection for deep networks
trained on the images and boosted decision trees trained on
the expert features. Both algorithms preferentially select jets
with values near the peak signal values. Note, however, that
while the BDT has been supplied with these features as an
input, the DNN has learned this on its own.

VII. DISCUSSION

The signal from massive W → qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly efficient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly difficult as the accuracy of the classifier increases.

Physicists have spent significant time and effort de-
signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup effects), they

cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.

Our experiments support two conclusions. First, that
machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-
liance on expert features. The slight improvement in
classification power offered by the deep network com-
pared to the combination of expert features is likely due
to the fact that the network has succeeded in discover-
ing small optimizations of the expert features in order
to account for the detector and pileup effects present in
the simulated samples. This marks another demonstra-
tion of the power of deep networks to identify important
features in high-dimensional problems. In practice, while
deep network classification can boost jet tagging perfor-
mance, expert features offer powerful insight [23] into the
validity of the simulation models used to train these net-
works. We do not claim that these results make expert
features obsolete. However, it suggests that deep net-
works can provide similar performance on a variety of
related problems where the theoretical tools are not as
mature. For example, current tools do not always in-
clude information from tracking detectors, nor do they
offer performance parameterized [44, 45] in the mass of
the decaying heavy state.

Second, we conclude that the current set of expert fea-
tures when used in combination (via BDT or other shal-
low multi-variate approach) appear to capture nearly all
of the relevant information in the high-dimensional low-
level features describe by the jet image. The power of
the networks described here is limited by the accuracy
of these models, and expert features may be more ro-
bust to variation among the several existing simulation
models [46]. In experimental applications, this reliance
on simulation can be mitigated by using training sam-
ples from real collision data, where the labels are derived
using orthogonal information.

Data in high energy physics can often be formulated
as images. Thus, these results reported on the repre-
sentative classification task of single q or g jets versus
massive jets from W → qq′ are very likely to apply to
a broader set of similar tasks, such as classifying jets
with three constituents, as in the case of top quark decay
t→Wb→ qq′b, or massive jets from other particles such
as Higgs boson decays to bottom quark pairs. Note that
in more realistic datasets, calorimeter information often
contains depth information as well, such that the images
are three-dimensional instead of two; however, this does
not represent a difficult extrapolation for the machine
learning algorithms. While the fundamental classifica-
tion problems are very similar from a machine learning
standpoint, the literature of expert features is somewhat
less mature, further underlining the potential utility of
the reported deep learning methods in these areas.
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Future directions of research include studies of the ro-
bustness of such networks to systematic uncertainties in
the input features and to change in the hadronization
and showering model used in the simulated events.

Datasets used in this paper containing millions of sim-
ulated collisions is available for download [47].
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