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We solve the Balitsky-Kovchegov evolution equation at next-to-leading order accuracy including
a resummation of large single and double transverse momentum logarithms to all orders. We numer-
ically determine an optimal value for the constant under the large transverse momentum logarithm
that enables including a maximal amount of the full NLO result in the resummation. When this
value is used the contribution from the α

2
s terms without large logarithms is found to be small at

large saturation scales and at small dipoles. Close to initial conditions relevant for phenomenological
applications these fixed order corrections are shown to be numerically important.
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I. INTRODUCTION

In high energy hadronic collisions perturbative QCD
predicts a rapid growth of gluon densities, as emissions
of gluons that carry a small longitudinal momentum frac-
tion are favored. At such high densities non-linear sat-
uration phenomena become important. The Color Glass
Condensate (CGC) [1] has proven itself to be a powerful
effective field theory to describe the strong interactions
in these high-density environments. Leading order CGC
calculations have been able to successfully describe qual-
itatively, and also semi-quantitatively, many high-energy
scattering processes where the small-x (longitudinal mo-
mentum fraction) part of the hadronic wave function is
probed. These include, for example, deep inelastic scat-
tering [2] and single [3–6] and double inclusive [7–10]
particle production. The CGC framework has also been
successfully applied to calculations of the initial state for
hydrodynamical modeling of a heavy ion collision [11–13].

When describing high-energy scattering in QCD it is
useful to employ the eikonal approximation. The most
convenient degrees of freedom are then the transverse co-
ordinate dependent Wilson lines that describe the eikonal
propagation of a quark or a gluon trough the dense color
field of the target. Cross sections can be expressed in
terms of correlators of Wilson lines, the most simple one
being the dipole (correlator of two fundamental represen-
tation Wilson lines) which gives the scattering amplitude
for the quark-antiquark dipole to scatter off a hadronic
target. A necessary ingredient in many CGC calculations
of cross sections is the Balitsky-Kovchegov (BK) equa-
tion, which determines the dependence of this dipole am-
plitude on rapidity (or, equivalently, in Bjorken-x or en-
ergy). It was first derived at leading order in Refs. [14, 15]
and at next-to-leading order in Ref. [16].

When perturbative QCD calculations are done in the
collinear factorization framework, next-to-leading order
(NLO) corrections are known to be numerically signifi-
cant. The same could be expected also in the CGC. Thus,
in order to test our understanding of saturation phenom-
ena encountered in high-energy collisions, the CGC cal-

culations must be made more quantitative by calculating
the cross sections at NLO accuracy. First steps in this di-
rection have been taken recently by calculating the single
inclusive [17–21] and DIS cross sections [22, 23] at this
order in the QCD coupling αs. However, it is not con-
sistent to use these the NLO cross section calculations
without a solution to the corresponding NLO evolution
equation.

The NLO BK equation was solved numerically for the
first time recently in Ref. [24]. Its linearized version, the
NLO BFKL equation has been known before [25–27], and
a solution to it with an absorptive boundary conditions
(to mimic the non-linear effects) also exists [28]. The
NLO BFKL equation includes large logarithms of trans-
verse momentum that have been resummed in Refs. [29–
32]. However, as the BFKL equation is valid only in the
linear regime where the scattering amplitude is small,
these resummations can not be straightforwardly applied
to the BK equation. For the non-linear BK equation a
resummation scheme for the large transverse logarithms
has been developed recently [33, 34]. In addition to these
resummations, there have also been proposals to include
a kinematical constraint in the BK equation [35, 36].

In our previous publication [24] we showed that the
NLO BK equation does not always give a physically
meaningful evolution, and can not be applied to phe-
nomenology. In this work, we study how the re-
summation of large transverse logarithms proposed in
Refs. [33, 34] changes this picture.

This paper is organized as follows. First, in Sec. II we
briefly review the NLO BK equation, and present the re-
summation of large logarithms to the equation in Sec. III.
The numerical solution of the resummed NLO evolution
equation is discussed in Sec. IV.

II. BALITSKY-KOVCHEGOV EQUATION AT
NEXT TO LEADING ORDER

The Balitsky-Kovchegov equation describes the rapid-
ity evolution of the dipole operator which can be written
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as a correlator of two Wilson lines U :

S(x− y) =
1

Nc

〈Tr (UxU
†
y )〉. (1)

Here the brackets 〈〉 refer to an average over the target
color field and x and y are transverse coordinates. The
dependence on rapidity (or Bjorken-x) of the Wilson lines
is left implicit. The next-to-leading order evolution equa-

tion for the dipole operator in rapidity can be written as:

∂y
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The kernels and Wilson line operators derived in [16] are
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The convolutions ⊗ in Eq. (2) denote integration over the

transverse coordinate z (in KBC
1 ) or z and z′ (in K2 and

Kf ). We use the notation X2 = (x−z)2, X ′2 = (x−z′)2,

Y = (y − z)2 and Y ′ = (y − z′)2.

Because every trace is proportional to Nc, in the large-
Nc limit the terms with traces of more than two Wilson
lines can be neglected. The large-Nc limit also implies
the mean-field limit, where the correlators of products
of traces factorize into products of the two-point func-
tion S(r). This mean-field limit closes the equation: the
rapidity derivative of the dipole operator S(r) can be
computed in terms of S(r) only. At finite Nc, correlators
of more than two Wilson lines are needed which, in prin-
ciple, have their own evolution equations. In that case
one should solve an infinite hierarchy of coupled evolution
equations, or equivalently the JIMWLK [37–43] equation
at NLO accuracy [44, 45]. This would be numerically de-
manding, and a much more practical approach could be
to use e.g. the so called Gaussian approximation (see e.g.
Ref. [46]) to express the higher-point functions in terms

of the dipole operator only. As the effect of the finite-Nc

corrections to the leading order BK equation is known to
be much smaller than ∼ 1/Nc

2 ≈ 10% (which would be
a naive expectation from the 1/Nc expansion) [47], we
take the large-Nc limit in this work.

One of the NLO corrections is the running of the QCD
coupling αs. The term involving the renormalization
scale µ2 in Eq. (3) should be absorbed into the running of
αs. What other terms are included in the scale-dependent
coupling is a scheme choice. We adopt the choice derived

in Ref. [48] and replace all terms in KBC
1 proportional

to the beta function coefficient β = 11
3 Nc − 2

3nf (with
nf = 3 in this work) by the so called Balitsky running
coupling. This prescription is used here because we want
to resum all large logarithms, and the Balitsky running
coupling resums αsβ contributions, and in particular the

logarithm ∼ β lnX2/Y 2 from KBC
1 .

The Balitsky prescription has been successfully used
in phenomenological applications to include running cou-
pling effects in the leading order BK equation. For the
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other terms we choose to evaluate αs at the scale given
by the size of the parent dipole r, as it is the only avail-
able external scale. Notice also that for the α2

s terms

the difference between the scale choices for the coupling
is formally a higher-order α3

s correction. The kernel K1

can now be written as

αsNc
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+
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)]
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αs(r)
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X2Y 2
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9
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9
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− 2 ln
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r2 ln
Y 2
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]
. (9)

The strong coupling constant αs at the given distance
scale r is evaluated as

αs(r) =
4π

β ln

{[(
µ
2
0

Λ
2
QCD

) 1
c

+

(
4e
−2γE

r
2
Λ

2
QCD

) 1
c

]c} . (10)

The parameters c and µ0 control the infrared behavior of
the coupling constant, and here we take µ0/ΛQCD = 2.5
and c = 0.2, which freezes the coupling to ≈ 0.76 in
the infrared. Note the constant factor 4e−2γE ≈ 1.26 in
the identification k2 ∼ 4e−2γE/r2, which is taken from
the explicit Fourier transform of the kernel calculated
analytically in Refs. [49, 50] and confirmed numerically
in Ref. [51]. In the leading order fits to the deep in-
elastic scattering data the scale at which the coupling
is evaluated is taken as a fit parameter by identifying
k2 ∼ 4C2/r2. These fits require C2 ∼ 4 . . . 20 in order
to get a slow enough evolution speed [2]. In this work
we do not seek parametrizations that give a best fit to
the DIS data, and use the theoretically motivated value
C2 = e−2γE .

The NLO BK equation was first solved in Ref. [24]
where it was shown that the equation is unstable. In
particular, depending on the initial condition the dipole
amplitude N(r) = 1−S(r) may decrease or even become
negative when rapidity increases, which is unphysical as
it would correspond to a decrease of the unintegrated
gluon distribution when decreasing the momentum frac-
tion x. The origin of this problematic behavior was

traced back to the double logarithmic term ∼ ln X
2

r
2 ln Y

2

r
2

in the kernel K1. To fix this problem, a resummation of
large logarithmic corrections is needed.

III. RESUMMING LARGE LOGARITHMS

There are two sources of large logarithmic corrections
to the BK equation that must be resummed to all or-
ders. First, as shown in Ref. [33], the successive gluon
emissions that are strongly ordered in both transverse
and longitudinal momenta generate a large double loga-
rithmic contribution ∼ lnX2/r2 lnY 2/r2 to the NLO BK

equation. These contributions are resummed in Ref. [33]

to all orders in αs lnX2/r2 lnY 2/r2, and the effect of the
resummation is to remove the double logarithmic term
from the kernel K1, and multiply it by an oscillatory fac-
tor

KDLA =

J1

(
2

√
ᾱsx

2

)
√
ᾱsx

2
≈ 1− ᾱsx

2

2
+O(ᾱ2

s ). (11)

The double logarithm here is x =
√

lnX2/r2 lnY 2/r2,

and ᾱs = αsNc/π. If lnX2/r2 lnY 2/r2 < 0, then an
absolute value is used and the Bessel function is changed
to J1 → I1, see Ref. [33].

In addition to the kernel of the evolution equation,
also the initial condition for the BK evolution must be
resummed. For this the dipole amplitude is parametrized
as

N(r) = 1− exp
(
−r2Q2

s,0Ã(ρ)
)
, (12)

where ρ = ln 1/(r2Q2
s,0) and the parameter Qs,0 controls

the value of the saturation scale Qs at the initial con-
dition. The resummed factor Ã is obtained from the
original A as

Ã(ρ) =

∫ ρ

0

dρ1

[
δ(ρ−ρ1)−√ᾱsJ1(2

√
ᾱs(ρ− ρ1)2

]
A(ρ1).

(13)
The McLerran-Venugopalan (MV) model [52] corre-
sponds to A(ρ) = ρ, which gives

Ã(ρ) =
ρ

2

[
1 + J0(2

√
αsρ

2) +
π

2
H0(2

√
αsρ

2)J1(2

√
αsρ

2)

−π
2
H1(2

√
αsρ

2)J0(2

√
αsρ

2)
]
.

(14)

In order to obtain a dipole amplitude that has a correct
behavior in the infrared limit we include also an infrared
cutoff and replace the prefactor ρ/2 by ln(1/rQs,0 + e).
Note that this parametrization is not exactly the MV
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model used in our previous work [6], but we choose to
use it here in order to be consistent with Ref. [33].

There is also a large single transverse logarithm (STL)
in the evolution equation that forbids us to do only a
simple αs expansion. As shown in Ref. [34], the large

transverse logarithm ∼ ln(1/rQs) at the order α2
s origi-

nates from the kernel K2, namely from the part

MSTL = − 2

(z − z′)4

+
X2Y ′2 +X ′2Y 2 − 4r2(z − z′)2

(z − z′)4(X2Y ′2 −X ′2Y 2)
ln
X2Y ′2

X ′2Y 2 . (15)

Note that the other terms in the kernels K2 and Kf

are suppressed by powers of r2 in the small dipole limit.
These large logarithms (at small r) appear together with
αs at all orders and can also be resummed. The resum-
mation was done in Ref. [34] by multiplying the kernel
K1 by a factor

KSTL = exp

{
−αsNcA1

π

∣∣∣∣∣ln Csubr
2

min{X2, Y 2}

∣∣∣∣∣
}
. (16)

The leading logarithm resummation done in Ref. [34]
does not fix the constant factor Csub (which should be
of the order one) in KSTL. We shall fix this coefficient
later in such a way that the resummation captures as
accurately as possible the full small-r limit of MSTL, i.e.
not only the leading logarithm. The constant A1 = 11/12
comes from the DGLAP anomalous dimension for q → qg
and g → gg splittings. Because the α2

s part of this re-
summation is included in the kernel K2, in order to avoid
double counting we subtract the α2

s piece of the single
logarithm resummation KSTL from the modified kernel
K1.

With all these building blocks, we can write the ker-
nel K1 used in this work. It is obtained from the kernel
of the NLO BK equation by including the Balitsky run-
ning coupling and resumming the large single and double
transverse logarithms. Thus the final kernel used in the
numerical calculation now reads

αsNc

2π2 K1 =
αs(r)Nc

2π2 KDLAKSTL

×
[

r2

X2Y 2 +
1

X2

(
αs(X)

αs(Y )
− 1

)
+

1

Y 2

(
αs(Y )

αs(X)
− 1

)]
−Ksub +Kfin

1 . (17)

Here Ksub subtracts the α2
s part of the single transverse

logarithm KSTL which is included exactly in K2. This
subtraction term reads

Ksub =
αs(r)Nc

2π2

(
−αs(r)NcA1

π

∣∣∣∣∣ln Csubr
2

min{X2, Y 2}

∣∣∣∣∣
)

r2

X2Y 2 .

(18)

Note that we choose to use the parent dipole running cou-
pling in Ksub as we want it to cancel the corresponding
contribution originating from the kernel K2 (the MSTL

part) which uses the same parent dipole prescription.
Thus the subtraction term Ksub does not precisely cancel
the α2

s term of the expansion of KSTL times the full Bal-
itsky running coupling. Because the difference between
the running coupling schemes is of higher order in αs,
Ksub does, however, cancel the contribution from the α2

s

term in KSTL to the order α2
s , which is enough for the

purpose of this work. The other NLO terms in K1 that

are not included in the resummation are denoted by Kfin
1 ,

which reads

Kfin
1 =

αs(r)
2Nc

2

8π3

r2

X2Y 2

[
67

9
− π2

3
− 10

9

nf

Nc

]
. (19)

The subtracted α2
s contribution Ksub is a leading log-

arithm result, and it corresponds to the leading loga-
rithmic behavior of the contribution from K2. In order
to include most of the next-to-leading order corrections
into the resummation KSTL, we fix the constant Csub in
Eq. (16) by requiring that the subtraction term Ksub re-
produces as accurately as possible the small-r limit of
the other NLO terms. This procedure for determining
Csub is demonstrated in Fig. 1, where we plot the con-
tribution to the rapidity derivative of the dipole ampli-
tude ∂yN(r) from the subtraction term Ksub divided by

the contribution from kernels Kfin
1 , K2 and Kf (convo-

luted with the corresponding dipole operators). The ra-
tio is found to be close to unity within a wide range of
parent dipole sizes at the initial condition by choosing
Csub = 0.65. For another value of Csub the ratio would
approach unity only very slowly when the leading loga-
rithm of r numerically dominates the other terms. Thus,
with Csub = 0.65, KSTL includes as accurately as possi-

ble the leading small-r part of the kernels Kfin
1 , K2 and

Kf . We regard this choice as “optimal” in the sense that
it includes a maximal part of the small-r NLO contribu-
tion in the (numerically easier) resummation. Thus such
a choice minimizes the contribution of the numerically
more difficult non-logarithmic other NLO contributions
(that were neglected in Ref. [34]). The ratio is also shown
for Qs,0/ΛQCD = 2 after 10 units of rapidity evolution,
and it can be seen that the subtraction term is still cap-
turing most of the NLO corrections with the same Csub.
We have checked that modifying the value of Csub within
a factor of 2 moves contributions between the resum-
mation and α2

s terms without significantly affecting the
overall evolution.

IV. EVOLUTION OF THE DIPOLE
AMPLITUDE

The dipole amplitudes N(r) = 1 − S(r) at rapidities
y = 0, 5 and y = 10 obtained by solving the resummed
NLO BK equation are shown in Fig. 2. The amplitude
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Figure 1: Contribution to the evolution speed of the dipole
amplitude, ∂yN , originating from the subtraction of the α

2
s

part of the single logarithm resummation (Ksub) divided by

the contribution from K
fin
1 , K2 and Kf .
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N
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Qs,0/ΛQCD = 2

Figure 2: Dipole amplitude at different rapidities as a func-
tion of dipole size. The thick lines are obtained by using
a resummed initial comparison. For comparison, the corre-
sponding amplitudes obtained without resumming the initial
condition are shown as thin lines.

is found to increase at almost all dipole sizes through
the evolution. In particular, the amplitude does not turn
negative at small dipoles, which would be the case with
the NLO BK equation without resummation as shown in
Ref. [24]. In order to study the effect of the resummed
initial condition we also solve the equation with a non-
resummed dipole amplitude at y = 0 (replacing Ã by A
in Eq. (12)). The difference between the initial condi-
tions is that the resummation introduces oscillations in
the small-r part that are quickly washed out in the evo-

8 16 32
Qs/ΛQCD

0.00
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0.10

0.15

0.20

0.25

0.30

0.35

d
ln
Q

2 s/
d
y

LO
Resummation only
Total

Qs,0/ΛQCD = 2

Figure 3: Evolution speed of the saturation scale obtained
by solving the BK equation at leading order (with running
coupling), including the resummation contributions and with

full kernels with fixed order α
2
s terms.

lution. The evolution speeds and shapes of the solutions
are comparable after a few units of rapidity evolution.

The evolution of the saturation scale is studied in
more detail in Fig. 3 where we show its evolution speed
d lnQ2

s/dy. The saturation scale Qs is defined here by

N(r2 = 2/Q2
s ) = 1− e−1/2, (20)

and it should be seen as the scale at which non-linear
phenomena become important. The resummed NLO BK

equation (Eq. (2) with KBC
1 replace by Eq. (17), labeled

as Total) is found to evolve roughly 30% slower than the
leading order running coupling BK equation at very large
saturation scales with the running coupling prescription
used here. The fixed order α2

s terms are important close
to the initial condition, increasing the evolution speed
significantly. This can be seen by comparing the full re-
summed NLO BK result to the result obtained by solving
the leading order BK equation improved as in Ref. [34]
by including the resummation of single and double loga-
rithms without the other NLO terms (Resummation only
in Fig. 3). Later in the rapidity evolution (at large sat-
uration scales) these pure NLO terms have a negligible
effect. Note that we have here chosen an initial satura-
tion scale Qs ∼ 1 GeV, which can be expected to be in
the phenomenologically relevant regime.

The evolution speed of the dipole amplitude as a func-
tion of dipole size is analyzed in more detail in Fig. 4,
where the contributions to ∂yN(r)/N(r) from the differ-
ent terms are shown. The resummation contribution is



6

10−4 10−3 10−2 10−1 100 101

rQs

−0.4

−0.2

0.0

0.2

0.4

0.6
(∂
y
N

)/
N

Total
LO

resummation
other α2

s

(a) Qs,0/ΛQCD = 2

10−4 10−3 10−2 10−1 100 101

rQs

−0.4

−0.2

0.0

0.2

0.4

0.6

(∂
y
N

)/
N

Total
LO

resummation
other α2

s

(b) Qs,0/ΛQCD = 10

Figure 4: Evolution speed of the dipole amplitude at the initial condition y = 0 as a function of dipole size. The contributions
from the leading order BK equation, resummation and the fixed order α

2
s terms are shown separately.
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Figure 5: Evolution speed of the dipole amplitude after the evolution at y = 10 as a function of dipole size. The contributions
from the leading order BK equation, resummation and the fixed order α

2
s terms are shown separately.

defined as

Kresum =
αs(r)Nc

2π2 (KDLAKSTL − 1)

×
[

r2

X2Y 2 +
1

X2

(
αs(X)

αs(Y )
− 1

)
+

1

Y 2

(
αs(Y )

αs(X)
− 1

)]
,

(21)

which is convoluted with the dipole part D1. This corre-
sponds to the contribution of the resummed NLO equa-
tion of [34] on top of the usual running coupling LO

equation. The fixed order α2
s contribution consists of

the additional contribution of the kernels Ksub, Kfin
1 ,

K2 and Kf . We find that the fixed order NLO terms
give a very small positive contribution to the evolution

speed at small dipoles, and the resummed large loga-
rithms significantly slow down the evolution speed. Note
that while K2 and Ksub separately have a large single log-
arithmic contribution at small parent dipoles, this cancels
in the total fixed order α2

s term (“other α2
s ” in Fig. 4).

At larger dipoles r ∼ 1/Qs the resummation and the
other NLO contributions are numerically equally impor-
tant and mostly cancel each other, and the total evolu-
tion speed is close to the evolution of speed of the leading
order BK equation in this regime.

When the calculation is done at larger saturation scales
by increasing the value of Qs,0, the relative importance

of fixed order α2
s terms compared to the resummation

around r ∼ 1/Qs is decreased. The same effect is ob-
served when the contributions are studied after 10 units
of rapidity evolution in Fig. 5. This corressponds to sat-
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Figure 6: Contribution to the evolution speed of the dipole amplitude from the α
2
s terms normalized by the corresponding

contribution from the resummation.

uration scales Qs/ΛQCD ≈ 19 and Qs/ΛQCD ≈ 66 for
Qs,0/ΛQCD = 2 and Qs,0/ΛQCD = 10, respectively. The
oscillations visible at y = 0, that originate from the re-
summation of the initial condition, are washed out in the
evolution. It can also be seen that the MV model ini-
tial condition is closer to the asymptotic solution of the
resummed NLO BK equation than it is for the leading
order equation, as ∂yN/N is roughly constant in a much
larger range of parent dipole sizes.

Let us then demonstrate the importance of the fixed
order α2

s contributions at r ∼ 1/Qs relative to the re-
summation effects in more detail. In Fig. 6 we show
the contribution to the rapidity derivative of the dipole
amplitude, ∂yN(r), originating from the α2

s terms, nor-
malized by the contribution of the resummation terms.
That is, we show the ratio

−Ksub +Kfin
1 +K2 +Kf

Kresum

, (22)

where the resummation contribution Kresum is defined
in Eq. (21), and all the kernels are convoluted with the
corresponding dipole parts. As can be seen from Fig. 6
the resummation of single and double logarithms cap-
tures most of the higher-order corrections only at small
dipoles. The fixed order α2

s corrections become compa-
rable to the resummation terms around r ∼ 1/Qs, and
their relative importance decreases in the evolution, as
can be seen by comparing the calculations done at the
initial condition and after 10 units of rapidity evolution.

As shown previously in Ref. [24] the NLO BK equation
without resummation is very sensitive to the behaviour
of the dipole amplitude at small dipoles, and with suffi-
ciently steep small-r slope the evolution turns unstable.
To study this, we have solved the evolution equation with

a set of initial conditions

N(r) = 1− exp

[
−(r2Q2

s,0)γ ln

(
1

rQs,0

+ e

)]
(23)

varying the parameter γ that controls the small-r be-
havior. This parametrization is close to the MVγ model
successfully fit to HERA deep inelastic scattering data
with γ ∼ 1.1 in Ref. [2]. Note that the value γ ∼ 1.1 is
a result of a LO fit, and the phenomenologically relevant
parameters for the NLO BK evolution are not necessarily
the same. In Ref. [24] it was shown that the NLO BK
equation becomes unstable at γ & 0.8 . . . 1.

The stability of the resummed NLO BK equation is
studied by solving the equation using Eq. (23) as an ini-
tial condition with anomalous dimensions γ = 0.8, 1.0
and γ = 1.2. As we are interested in the stability
of the evolution equation only, the initial condition is
not resummed. The obtained evolution speeds for the
dipole amplitude N(r) at the initial condition are shown
in Fig. 7. We find that with the resummed evolution
equation a positive evolution speed at small dipoles is
obtained with all values for the anomalous dimension
γ, in contrast to the NLO BK equation without resum-
mation of large logarithms. Note that we use the same
Csub = 0.65 when solving the NLO BK equation with an
anomalous dimension in the initial condition even tough
it is not exactly an optimal value for γ 6= 1.

To study how the shape of the dipole amplitude
changes during the evolution we also calculate the
anomalous dimension γ(r) as a function of the parent
dipole size. It is defined as

γ(r) =
d lnN(r)

d ln r2 . (24)

The obtained anomalous dimension at the initial condi-
tion and after 5 units of rapidity evolution are shown in
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γ

parametrization, see Eq. (23).
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Figure 8: Anomalous dimension γ(r) = d lnN(r)/d ln r
2

as
a function of dipole size at the initial condition (solid lines)
and after 5 units of rapidity evolution (dotted lines). The
initial conditions are the same as in Fig. 7. For comparison,
the leading order result at y = 5 is shown as a dashed-dotted
line.

Fig. 8. For comparison the corresponding anomalous di-
mension obtained by solving the leading order BK equa-

tion with running coupling is shown. We find that the
resummed NLO BK equation preserves the anomalous di-
mension of the initial condition, which suggest that the
MVγ model parametrization is close to the asymptotic
solution of the equation. On the other hand with leading
order BK equation a significant rapidity evolution of γ(r)
is seen, especially with large anomalous dimension in the
initial condition.

V. CONCLUSIONS

We have included the fixed order α2
s corrections to the

resummed Balitsky-Kovchegov evolution equation. The
main results of this work are presented in Figs. 3 and 6,
where we show that at large saturation scales and at small
dipoles the most important next-to-leading order correc-
tions can be included in the BK equation by resumming
large transverse logarithms. We have numerically found
an optimal value for the constant inside the resummed
logarithm that minimizes the effect of the other NLO
terms. The fixed order α2

s terms are numerically impor-
tant close to the phenomenologically relevant initial con-
ditions for large dipoles, r ∼ 1/Qs, and significantly in-
crease the evolution speed of the saturation scale. These
terms become negligible at larger saturation scales (later
in the evolution) and at small parent dipoles.

The resummed evolution equation is also shown to be
stable and to generate physically meaningful evolution
for the dipole amplitude even if an anomalous dimension
γ > 1 is used in the initial condition. This was not the
case with the original NLO BK equation without resum-
mation, as it was previously shown in Ref. [24] to cause
the dipole amplitude to turn negative with physically rel-
evant initial conditions.

A logical next step towards the NLO CGC phe-
nomenology would be to combine the resummed NLO
BK evolution with the NLO photon impact factor [22, 23]
and calculate the structure functions. In particular, the
NLO CGC picture should be tested against the precise
HERA deep inealstic scattering data [53, 54].
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