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Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their
fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-
collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto
SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows
one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a
resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can
be employed in factorization theorems to make predictions for exclusive jet cross sections without
the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also
discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions.
To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction
of the operator basis, as well as results for the hard matching coefficients, for pp — H + 0,1,2
jets, pp — W/Z /v +0,1,2 jets, and pp — 2,3 jets. These operator bases are completely crossing

symmetric, so the results can easily be applied to processes with ete™ and e™p collisions.

I. INTRODUCTION

The production of hadronic jets is one of the most ba-
sic processes at particle colliders. Processes including a
vector boson (W, Z, ) or Higgs boson together with jets
provide probes of the Standard Model (SM), and are also
dominant backgrounds for many new-physics searches.
Optimizing the precision and discovery potential of these
channels requires accurate predictions of the SM back-
grounds. Furthermore, the growth of the jet substructure
field has sparked a renewed interest in the study of jets
themselves, both for an improved understanding of QCD,
and for applications to identify boosted heavy objects in
and beyond the SM.

Precise predictions for jet production require pertur-
bative calculations including both fixed-order corrections
as well as logarithmic resummation. QCD corrections to
processes with jets are typically enhanced due to phase
space restrictions. Such restrictions often introduce sen-
sitivity to low momentum scales, p, of order a few tens
of GeV, in addition to the hard scale, @}, which is of
order the partonic center-of-mass energy. In this case,
the perturbative series contains large double logarithms
a?In™(p/Q) with m < 2n. To obtain the best possi-
ble perturbative predictions, these logarithms should be
resumimed to all orders in as.

There has been tremendous progress in the calculation
of fixed-order perturbative amplitudes in QCD using the
spinor helicity formalism [1-4], color ordering techniques
[6-8] and unitarity based methods [9, 10]. NLO predic-
tions are now available for a large number of high mul-
tiplicity final states, including pp — V4 up to 5 jets
[11-21], pp — up to 5 jets [22-29], and pp — H+ up
to 3 jets [30-38], and there are many efforts [39-56] to
fully automatize the computation of one-loop corrections

to generic helicity amplitudes.

For high-multiplicity jet events, the resummation of
large logarithms is typically achieved with parton shower
Monte-Carlo programs. Here, the hard process enters
through tree-level (and also one-loop) matrix elements
and the QCD corrections due to final-state and initial-
state radiation are described by the parton shower. The
parton shower resums logarithms at the leading logarith-
mic (LL) accuracy, with some subleading improvements,
but it is difficult to reliably assess and systematically im-
prove its logarithmic accuracy.

The approach we will take in this paper is to match
onto soft-collinear effective theory (SCET) [57-60], the
effective theory describing the soft and collinear limits of
QCD. In SCET, the QCD corrections at the hard scale
are captured by process-dependent Wilson coeflicients.
The low-energy QCD dynamics does not depend on the
details of the hard scattering (other than the underlying
Born kinematics), similar to the parton shower picture.
Resummation in SCET is achieved analytically through
renormalization group evolution (RGE) in the effective
theory, allowing one to systematically improve the loga-
rithmic accuracy and assess the associated perturbative
uncertainties. For example, for dijet event shape vari-
ables in eTe~ collisions, SCET has enabled resummation
to N3LL accuracy and global fits for as(mz) [61-66]. The
analytic higher-order resummation can also be used to
improve the Monte-Carlo parton-shower description [67—
69]. Furthermore, SCET allows for the direct calculation
of exclusive jet cross sections, eliminating the need for
numerical subtraction schemes for real emissions up to
power corrections.

An important prerequisite for employing SCET is to
obtain the hard matching coefficients, which are ex-
tracted from the fixed-order QCD amplitudes. The



matching for V 4 2 parton and H + 2 parton processes is
well known from the QCD quark and gluon form factors,
and is known to three loops [63, 70, 71]. The matching
for V 4 3 partons [72-75], and H + 3 partons [76-79],
has been performed at both NLO and NNLO. Partonic
processes with four external quarks have been studied in
SCET in Refs. [80-87], and the matching for all massless
2 — 2 processes has been obtained at NLO in Ref. [88]
and recently at NNLO in Ref. [89].

For high-multiplicity processes, the usual approach to
constructing an operator basis with explicit Lorentz in-
dices and gamma matrices is laborious. In this paper, we
introduce a convenient formalism, based on helicity op-
erators, which allows for a seamless matching for higher
multiplicity processes onto SCET. A first look at the for-
malism discussed here was already given in Ref. [90]. In-
deed, results for helicity amplitudes are already employed
in the SCET matching calculations mentioned above,
though without the construction of corresponding SCET
operators.

In the spinor helicity formalism, the individual helicity
amplitudes (i.e. the amplitudes for given fixed external
helicities) are calculated, as opposed to calculating the
amplitude for arbitrary external spins in one step and
then summing over all spins at the end. One advantage
is that the individual helicity amplitudes typically yield
more compact expressions. And since they correspond to
distinct external states, they can be squared and summed
at the end. Helicity amplitudes remove the large redun-
dancies in the usual description of (external) gauge fields,
allowing for much simplified calculations particularly for
amplitudes with many external gluons.

As we will see, this helicity-based approach is also
advantageous in SCET. In SCET, as we will review in
Sec. IIB, collinear fields carry label directions corre-
sponding to the directions of jets in the process, which
provide natural lightlike vectors with which to define
fields of definite helicity. As we will demonstrate, the
construction of an appropriate operator basis becomes
simple when using operators built out of fields with defi-
nite helicity. Furthermore, using such a helicity operator
basis greatly facilitates the matching of QCD onto SCET,
because one can directly utilize the known QCD helicity
amplitudes for the matching. Together, this substantially
simplifies the study of high-multiplicity jet processes with
SCET.

A. Overview

Consider a process with IV final-state jets and L lep-
tons, photons, or other non-strongly interacting particles,
with the underlying hard Born process

Ka(qa) kb(qp) — K1(q1) - kN L(gN+L) (1)

where K, denote the colliding partons, and x; denote
the outgoing quarks, gluons, leptons, and other particles
with momenta ¢;. The incoming partons are along the

beam directions, q(’ib = xa}bevw where z,; are the mo-
mentum fractions and P(ﬁ , the (anti)proton momenta.
For definiteness, we consider two colliding partons, but
our discussion of the matching will be completely cross-
ing symmetric, so it applies equally well to ep and ee
collisions.

In SCET, the active-parton exclusive jet cross section
corresponding to Eq. (1) can be proven to factorize for
a variety of jet resolution variables.! The factorized ex-
pression for the exclusive jet cross section can be written
schematically in the form

do = / Ao dzy dOxy 1 (gt aiar .. ) M({a})  (2)

x> tr [Ho({ai})Sx] @ [B,%B,gb I1 Jm] e
" 7

Here, d®n1r(qa + qv;q1,-..) denotes the Lorentz-
invariant phase space for the Born process in Eq. (1),
and M ({g;}) denotes the measurement made on the hard
momenta of the jets (which in the factorization are ap-
proximated by the Born momenta ¢;). The dependence
on the underlying hard interaction is encoded in the hard
function H,.({g:}), where {¢;} = {q1, ..., qn+1}, the sum
over k = {Kq, Kb, - .. iN+L} 18 over all relevant partonic
processes, and the trace is over color. Any dependence
probing softer momenta, such as measuring jet masses
or low prs, as well as the choice of jet algorithm, will
affect the precise form of the factorization, but not the
hard function H,. This dependence enters through the
definition of the soft function S, (describing soft radia-
tion), jet functions J,, (describing energetic final-state
radiation in the jets) and the beam functions B; (de-
scribing energetic initial-state radiation along the beam
direction). More precisely, the beam function is given by
B, = Y, i ® fy with f; the parton distributions of
the incoming protons, and Z;;; a perturbatively calcula-
ble matching coefficient depending on the measurement
definition [94]. The ellipses at the end of Eq. (2) denote
power-suppressed corrections. All functions in the factor-
ized cross section depend only on the physics at a single
scale. This allows one to evaluate all functions at their
own natural scale, and then evolve them to a common
scale using their RGE. This procedure resums the large
logarithms of scale ratios appearing in the cross section
to all orders in perturbation theory.

The explicit form of the factorization theorem in
Eq. (2), including field-theoretic definitions for the jet,
beam, and soft functions is known for a number of exclu-
sive jet cross sections and measurements of interest. For
example, factorization theorems exist for the N-jet cross

1 Here active parton refers to initial-state quarks or gluons. Proofs
of factorization with initial-state hadrons must also account for
effects due to Glaubers [91], which may or may not cancel, and
whose relevance depends on the observable in question [92, 93].



section defined using N-jettiness [77, 94-101]. These
have also been utilized to include higher-order resumma-
tion in Monte-Carlo programs [67-69], and are the ba-
sis of the N-jettiness subtraction method for fixed-order
calculations [102, 103]. In addition, there has been a
focus on color-singlet production at small ¢r [104-108],
as well as the factorization of processes defined with jet
algorithms [76, 109-124], jet shape variables [125-136],
or fragmentation properties [137-145] for identified jets.
The same hard functions also appear in threshold resum-
mation factorization formulas, which are often used to
obtain an approximate higher order result for inclusive
cross sections. R

The focus of our paper is the hard function H,({¢;}) in
Eq. (2), which contains the process-dependent underlying
hard interaction of Eq. (1), but is independent of the
particular measurement. In SCET, the dependence on
the hard interaction is encoded in the Wilson coefficients,
6, of a basis of operators built out of SCET fields. The
Wilson coefficients can be calculated through a matching
calculation from QCD onto the effective theory. The hard
function appearing in the factorization theorem is then
given by

Aldah) = 3 O (e L as(ad) . )
{ri}

Here, the {\;} denote helicity labels and the sum runs

over all relevant helicity configurations. The C are vec-
tors in color space, and the hard function is therefore a
matrix in color space.

For processes of higher multiplicities, the construction
of a complete basis of SCET operators, and the subse-
quent matching calculation, becomes laborious due to
the proliferation of Lorentz and color structures, simi-
lar to the case of high-multiplicity fixed-order calcula-
tions using standard Feynman diagrams. The use of
SCET helicity fields introduced in this paper, combined
with analogous color management techniques as used in
the calculation of amplitudes, makes the construction of
an operator basis extremely simple, even in the case of
high-multiplicity processes. Furthermore, with this basis
choice, the SCET Wilson coefficients are precisely given
by the IR-finite parts of the color-ordered QCD helic-
ity amplitudes, rendering the matching procedure almost
trivial. Combining the results for the hard function with
known results for the soft, jet, and beam functions, then
allows for the resummation of jet observables in higher
multiplicity processes, which are ubiquitous at the LHC.

The remainder of this paper is organized as follows. In
Sec. ITA, we review the notation for the spinor-helicity
formalism. Additional useful helicity and color identities
can be found in App. A. We provide a brief summary of
SCET in Sec. II B. In Sec. III, we introduce SCET helic-
ity fields and operators, and describe the construction of
the helicity and color basis, as well as its symmetry prop-
erties. In Sec. IV, we discuss the matching from QCD
onto the SCET helicity operators, including a discussion

of the dependence on the regularization and renormal-
ization scheme. We then demonstrate the matching ex-
plicitly for H 4+ 0,1,2 jets in Sec. V, V 4+ 0,1,2 jets in
Sec. VI, and pp — 2,3 jets in Sec. VII. Explicit results
for the required helicity amplitudes are collected in the
Appendices. In Sec. VIII, we discuss the general renor-
malization group evolution of the hard coefficients, which
involves mixing between different color structures, to all
orders. We give explicit results for the anomalous di-
mensions for up to 4 colored particles plus an arbitrary
number of uncolored particles. We conclude in Sec. IX.

II. NOTATION
A. Helicity Formalism

We will use the standard notation for the spinor alge-
bra (for a review see for example Refs. [146, 147]). Con-
sider the four-component spinor u(p) of a massless Dirac
particle with momentum p, satisfying the massless Dirac
equation,

pulp) =0, 5 =0. (4)
The charge conjugate (antiparticle) spinor v(p) also sat-
isfies Eq. (4), and we can choose a representation such
that v(p) = u(p). The spinors and conjugate spinors for
the two helicity states are denoted by

1+7
lp£) = “§‘§1NP)7

LF s
. 5
g )

(p£| = sgn(p’) a(p)

For massless particles chirality and helicity agree while
for antiparticles they are opposite, so |[p+) = uy(p) =
v_(p) corresponds to positive (negative) helicity for par-
ticles (antiparticles). The spinors |p£) are defined by
Egs. (4) and (5) for both physical (p° > 0) and unphysical
(p°® < 0) momenta. Their explicit expression, including
our overall phase convention, is given in App. A 1.
The spinor products are denoted by

(rg) = (p—lg+), [pq] = (p+Ig—) - (6)

They satisfy

[pq] = —lqp],

Additional relations are collected in App. A 1. The minus
sign for p® < 0 in Eq. (5) is included so the spinor rela-
tions are invariant under inverting the signs of momenta,
p — —p, when crossing particles between the initial and
final state, e.g. ((—p)q)[a(—p)] = 2(-p) - ¢-

If there are several momenta p;, it is common to ab-
breviate

(pg) = —(ap) (rq)lqp) =2p-q. (7)

pit) = li€),  (pips) = (ig),  [pips] = [ig]. (8)



The polarization vectors of an outgoing gluon with mo-
mentum p are given in the helicity formalism by

I Ik+ p—Iv*|k—
W ) ool )
V2(kp) V2[kp] (
9)
where k is an arbitrary reference vector with k2 = 0,
which fixes the gauge of the external gluons. Using the
relations in App. A1, it is easy to check that

e (p k) =

+
ex(p. k) -ex(p,k) =0,
Ei(pv k) : Eq:(p? k) =-1 5
ei(pk) =ex(p,k), (10)

as is required for physical polarization vectors. With
p* = F(1,0,0,1), the choice k* = E(1,0,0,—1) yields
the conventional

synm:§;uLﬁm» (11)

B. SCET

Soft-collinear effective theory is an effective field the-
ory of QCD that describes the interactions of collinear
and soft particles [57-60] in the presence of a hard inter-
action.? Collinear particles are characterized by having
large energy and small invariant mass. To separate the
large and small momentum components, it is convenient
to use light-cone coordinates. We define two light-cone
vectors

nt = (1,7), nt = (1,-1n), (12)

with 7 a unit three-vector, which satisfy n? = 72 = 0 and
n-n = 2. Any four-momentum p can be decomposed as

nt nt
P=np A nep o+ (13)
An “n-collinear” particle has momentum p close to the
7l direction, so that p scales as (n-p,i-p,pni) ~ 7-p
(A2,1,)), with A < 1 a small parameter. For example,
for a jet of collinear particles in the 7 direction with total
momentum py, n-py ~ 2E; corresponds to the large
energy of the jet, while n-p; ~ m?%/E; < E;, where m
is the jet mass, so A2 ~ m?/E% < 1.
To construct the fields of the effective theory, the mo-
mentum of n-collinear particles is written as

n/”'

pu:ﬁﬂ+kﬂzﬁ.ﬁ7+ﬁﬁL+ku, (14)

2 Throughout this paper, we will for simplicity use the notation of
SCET]. The theory SCET]y [148] is required for a certain class of
observables, for example pp-dependent measurements or vetoes.
The helicity operator formalism presented here applies identically
to constructing SCETT operators. The collinear operators and
matching coefficients are the same for both cases.

where - p ~ @ and P, ~ AQ are the large momentum
components, while k ~ A2Q is a small residual momen-
tum. Here, @ is the scale of the hard interaction, and
the effective theory expansion is in powers of A.

The SCET fields for n-collinear quarks and gluons,
&n,p(x) and A, 5(z), are labeled by the collinear direction
n and their large momentum p. They are written in po-
sition space with respect to the residual momentum and
in momentum space with respect to the large momen-
tum components. Derivatives acting on the fields pick
out the residual momentum dependence, i0* ~ k ~ \2Q.
The large label momentum is obtained from the label
momentum operator PY, e.g. PHE, 5 = pH &y 5. If there
are several fields, P,, returns the sum of the label mo-
menta of all n-collinear fields. For convenience, we define
P,, = n-P,, which picks out the large momentum compo-
nent. Frequently, we will only keep the label n denoting
the collinear direction, while the momentum labels are
summed over (subject to momentum conservation) and
are suppressed in our notation.

Collinear operators are constructed out of products of
fields and Wilson lines that are invariant under collinear
gauge transformations [58, 59]. The smallest building
blocks are collinearly gauge-invariant quark and gluon
fields, defined as

Xno(®) = [ = Po) Wi () & (2)]
1 — .

Bl s () = 2[00+ Po) W(@)iDI, Wa(w)] . (15)
With this definition of x, ., we have w > 0 for an in-
coming quark and w < 0 for an outgoing antiquark. For
Brwi, w > 0 (w < 0) corresponds to an outgoing (in-
coming) gluon. In Eq. (15)

Dy, =Py, +94,, (16)

is the collinear covariant derivative and

W (z) = [Z exp(f% ﬁ~An(x)>} . an

perms

is a Wilson line of n-collinear gluons in label momentum
space. The label operators P,, in Egs. (15) and (17) only
act inside the square brackets. W,, () sums up arbitrary
emissions of n-collinear gluons from an n-collinear quark
or gluon, which are O(1) in the power counting. Since
W, (x) is localized with respect to the residual position
x, we can treat X, (z) and Bl , () like local quark and
gluon fields. For later use, we give the expansion of the
collinear gluon field

"
Bl =At - Plpa, (18)
Here the ellipses denote terms in the expansion with more
than 2 collinear gluon fields, which are not required for
our matching calculations.

In our case the effective theory contains several
collinear sectors, mi,na,... [149], where the collinear



fields for a given sector nf = (1,7;) describe a jet in

the direction 7;, and we also define 7} = (1,-7;).
A fixed-order QCD amplitude with N colored legs is
then matched onto operators in SCET with N different
collinear fields. The different collinear directions have to
be well separated, which means

ni-n; > A\ for 1#£7. (19)
The infrared singularities associated with collinear or soft
limits of legs in QCD are entirely described by the La-
grangian and dynamics of SCET itself, so the QCD am-
plitudes are only used to describe the hard kinematics
away from infrared singular limits.

Two different n; and n/, with n;-n} ~ A% both describe
the same jet and corresponding collinear physics. Thus,
each collinear sector can be labeled by any member of
a set of equivalent vectors, {n;}, which are related by
reparameterization invariance [150]. The simplest way
to perform the matching is to choose n; such that the
large label momentum is given by

o
p; = wi

S
SES

= (20)

with ﬁgi L =0.

In general, operators will have sums over distinct
equivalence classes, {n;}, and matrix elements select a
representative vector to describe particles in a particular
collinear direction. For many leading power applications
there is only a single collinear field in each sector, and we
may simply set the large label momentum of that build-
ing block field to that of the external parton using the
following simple relation,

Jasso-n i =1(npy).
where p is collinear with the i’th jet. Here the tilde on
the integration measure and delta function ensure that
the integration over equivalence classes is properly im-
plemented.? Because of this, at leading power, the issue
of equivalence classes can largely be ignored.

Particles that exchange large momentum of O(Q) be-
tween different jets are off shell by O(n; - n; Q*). They

3 The precise definition of this delta function and measure are
8(pi — p) = 8(n,y.p 0(wi — M - ),

/dﬁz Z/dwi, (22)

1
6{77'1'}»17 = {0

The Kronecker delta is nonzero if the collinear momentum p is in
the {n;} equivalence class, i.e. p is close enough to be considered
as collinear with the ith jet. The sum in the second line of
Eq. (22) runs over the different equivalence classes.

where
n;-p = 0O(\?),

. (23)
otherwise .

are integrated out by matching QCD onto SCET. Before
and after the hard interaction the jets described by the
different collinear sectors evolve independently from each
other, with only soft radiation between the jets. The cor-
responding soft degrees of freedom are described in the
effective theory by soft quark and gluon fields, gs(x) and
Ag(x), which only have residual soft momentum depen-
dence i0* ~ A2Q). They couple to the collinear sectors
via the soft covariant derivative

iDH = ig" + g A", (24)

acting on the collinear fields. At leading power in A, n-
collinear particles only couple to the n-As component of
soft gluons, so the leading-power n-collinear Lagrangian
only depends on n-D,. For example, for n-collinear
quarks [58, 59]

- 1 7
- in- + . i W, — Wi z
Ly, fn <1n Dy an A, 1$nJ_ —,P n llan_) 9 gn .

’ (25)
The leading-power n-collinear Lagrangian for gluons is
given in Ref. [60].

III. SCET OPERATOR BASIS

In this section, we describe in detail how to construct
a basis of helicity and color operators in SCET, which
greatly simplifies the construction of a complete opera-
tor basis and also facilitates the matching process. Usu-
ally, a basis of SCET operators obeying the symmetries
of the problem is constructed from the fields xy, ., Bz,wp
as well as Lorentz and color structures. This process be-
comes quite laborious due to the large number of struc-
tures which appear for higher multiplicity processes, and
the reduction to a minimal basis of operators quickly be-
comes nontrivial. Instead, we work with a basis of op-
erators with definite helicity structure constructed from
scalar SCET building blocks, which, as we will show,
has several advantages. First, this simplifies the con-
struction of the operator basis, because each indepen-
dent helicity configuration gives rise to an independent
helicity operator. In this way, we automatically obtain
the minimal number of independent operators as far as
their Lorentz structure is concerned. Second, operators
with distinct helicity structures do not mix under renor-
malization group evolution, as will be discussed in detail
in Sec. VIII. The reason is that distinct jets can only
exchange soft gluons in SCET, which at leading order
in the power counting means they can transfer color but
not spin [see Eq. (25)]. Therefore, the only nontrivial as-
pect of the operator basis is the color degrees of freedom.
The different color structures mix under renormalization
group evolution, but their mixing only depends on the
color representations and not on the specific helicity con-
figuration.



A. Helicity Fields

We start by defining quark and gluon fields of definite
helicity, out of which we can build operators with a defi-
nite helicity structure. To simplify our discussion we will
take all momenta and polarization vectors as outgoing,
and label all fields and operators by their outgoing he-
licity and momenta. Crossing symmetry, and crossing
relations are discussed in Sec. IITF.

We define a gluon field of definite helicity*

e = —egu(ni, 1) B, 1 (26)
where a is an adjoint color index. For nf = (1,0,0,1),
we have
in which case

a a,l a,2
it T \T(Bn wi L ian ,wi L @) : (28)

For an external gluon with outgoing polarization vec-
tor e(p, k) and outgoing momentum p in the n;-collinear

direction, the contraction with the field B, contributes
"
_ w Py, _
_g:FM(nhni) Ej_i(pa k) = pnl 'E(p7 k) ) (29)
(2

where we have used the expansion of the collinear gluon
field given in Eq. (18). Since ex(n;, 71;) is perpendicular
to both n; and n;, we can drop the 1; labels in brackets.
A convenient choice for the reference vector is to take
k = n;, for which the second term in brackets vanishes.
Eq. (29) then becomes

e(p i), (30)

which is equal to 0 or 1 depending on the helicity of
e(p,n;). Adopting this choice, the tree-level Feynman
rules for an outgoing gluon with polarization + (so € =
£4), momentum p (with p® > 0), and color a are

(g% (p)|BL.|0) = 6" 6(B; — 1),
{g%(p)|BlL|0y =0. (31)

781(712-, ﬁz) .

Note that BY, = B?,(0), so we do not get a phase from
the residual momentum. Similarly, for an incoming gluon
with incoming polarization F (¢ = e, so €* = 1), in-
coming momentum —p (with p® < 0), and color a, we
have

(01Blx 195 (=p)) = 6" 3(ps — ).

4 The label & on B4 refers to helicity and should not be confused
with light-cone components.

(0|BY: |9 (—p)) = 0. (32)

We define quark fields with definite helicity® as

o 1+ _a a 1F7r

Xi+ = 9 Xn,-,—w,i ’ Xi+ = Xn,,wz 2 ’

(33)

where o and & are fundamental and antifundamental
color indices respectively.

For external quarks with n;-collinear momentum p, the
fields contribute factors of the form

1475 it
2 4

up) = Ty = ), (39

where in the last equality, we have defined a short-hand
notation |pt),, for the SCET projected spinor. The
spinor |p£)y,, is proportional to |nt), see Eq. (A30).

The tree-level Feynman rules for incoming (p° < 0) and
outgoing (p° > 0) quarks with helicity +/— and color «
are then given by

(0]x, a5 (=p)) = 6°% (i — p) [(—pi)+)n, -
(0]x_|a%(=p)) = 6% (p: — p) |(—=pi) =), »
<q+ X7 [0) = 6% 55 = p) nidpirt],
(g ()| X_|0) = 6%% 6(pi — p) nilpi—|,  (35)
and similarly for antiquarks
(O[X|7% (=) = 8°7 3B = p) il (=p)+1.

< |Xz+|0> =694 bi—Pp |pz >nl7
< |Xz—|0> = 5ﬂa bi p) |pi*>n7¢ . (36)

The corresponding Feynman rules with the helicity of the
external (anti-)quark flipped vanish.

To avoid the explicit spinors in Egs. (35) and (36),
and exploit the fact that fermions come in pairs, we also
define fermionic vector currents of definite helicity

(7: — )

<0|xz [a%(=p)) = 87 6(5i = ) nd(=p1) 1.,
(7 — )
b

JE"B . \/ii‘?’i(nzwnj) X?+ ’YMX?JF
g+ / .

Wy Wj <’I’LZTLJ>
g8 _ V26l (ni,nj) Xi- WMX?L

ij= - £/ W; (.Uj [nmj]

where w; = 7;-p; from Eq. (20), as well as a scalar current

; (37)

—a B
JO‘B 2 Xi+Xj_
s \/ Wi Wj [nmJ]
—a B
2 i X5

(TH3 = X=X (38)

\/ Wi Wj <nan> .

5 Technically speaking chirality, although we work in a limit where
all external quarks can be treated as massless.



In Eqgs. (37) and (38) the flavor labels of the quarks have
not been made explicit, but in general the two quark
fields in a current can have different flavors (for example
in W production). Since we are using a basis of physical
polarization states it is not necessary to introduce more
complicated Dirac structures. For example, pseudovector
and pseudoscalar currents, which are usually introduced
using ~°, are incorporated through the relative coeffi-
cients of operators involving J;, J_ or Jg, Jg. As we
shall see, this greatly simplifies the construction of the
operator basis in the effective theory.

At leading power, there is a single collinear field in each
collinear sector, so we can choose n!' = p! / p; to represent

the equlvalence class {n;}, so that pl' = 371 p;n which
gives
_ n; ng-p
[P, = ) = |- p o) = ni) . (39)

Since we always work at leading power in this paper, we
will always make this choice to simplify the matching.
With this choice, the tree-level Feynman rules for the
fermion currents are

(45 (p1) %2 (p2) | T35 |0)

_ saibi ghaa 6(pr — p1) 6 (P2 — p2)
(0 (p1) G52 (p2) | 75322 0)

_ 6a1ﬁ1 6ﬁ20‘2 5( —pl) S(ﬁQ _p2) )

(g5 (p1) @52 (pa)| T2 |0)

— §oaBr §B202 5( p1) 6(P2 — p2),
(0 (1) 3 (2) | (7 fé? 0)
— §oabr §B2az 5(}71 —p1) (5(172 —p2). (40)

The simplicity of these Feynman rules arises due to
the unconventional normalization of the operators in
Egs. (37) and (38). This normalization has been cho-
sen to simplify the matching of QCD amplitudes onto
SCET operators, as will be seen in Sec. IV.

We will also make use of leptonic versions of the above
currents. These are defined analogously,

V2 (ni, n;) liy Yulit
\/ Wi Wj (ninj)

I = V2el (ni,ng) lix v,l5s . (41)

YT \/ Wi Wj [nin,]

Unlike the collinear quark field x, the leptonic field £
does not carry color and so does not contain a strong-
interaction Wilson line.

All couplings in the SM, except to the Higgs boson,
preserve chirality. This limits the need for the scalar
current, especially when considering only massless ex-
ternal quarks. In the SM the scalar current can arise
through explicit couplings to the Higgs, in which case,

Jijy =

even though we still treat the external quarks as massless,
the Wilson coefficient for the scalar operator will contain
the quark Yukawa coupling. This is relevant for exam-
ple for Hbb processes. The scalar current can also arise
through off-diagonal CKM-matrix elements connecting
two massless external quarks through a massive quark
appearing in a loop. This can occur in multiple vector
boson production, or from electroweak loop corrections,
neither of which will be discussed in this paper. When
constructing an operator basis in Sec. III B, we ignore
the scalar current, as it is not relevant for the examples
that we will treat in this paper. However, it should be
clear that the construction of the basis in Sec. IITB can
be trivially generalized to incorporate the scalar current
if needed.

B. Helicity Operator Basis

Using the definitions for the gluon and quark helicity
fields in Egs. (26) and (37), we can construct operators
for a given number of external partons with definite helic-
ities and color. (As discussed at the end of the previous
section, for the processes we consider in this paper we do
not require the scalar current Jg.) In the general case
with CKM-matrix elements, we must allow for the two
quark flavors within a single current to be different. The
situation is simplified in QCD processes, where one can
restrict to currents carrying a single flavor label.

For an external state with n particles of definite helic-

ities =+, colors a;, oy, @;, and flavors f, f/, ..., a complete
basis of operators is given b
P g y
a1a2- Q104 Qpn—1Qn [~  ~ ~ ~ ~ ~
Oii...(i... ;...i) (p17p27 <oy Pi—15Pis - - 7pn717pn)
_ ai Q-1 Qp—10Qn
- SBl:I: ‘]fz 1,i+ " J 'n—1,n+t " (42)

For example, f = ¢ indicates that both quark fields in the
current have flavor g. When it is necessary to distinguish
different flavors with the same current, for example when
we consider processes involving W bosons in Sec. VI, we
use a label f = ud such as Jz412—. For simplicity, we will
also often suppress the dependence of the operator on the
label momenta p;. For the operator subscripts, we always
put the helicity labels of the gluons first and those of the
quark currents in brackets, with the labels for quark cur-
rents with different flavor labels f and f’ separated by a
semicolon, as in Eq. (42). The =+ helicity labels of the in-
dividual gluon fields and quark currents can all vary inde-
pendently. Operators with nonzero matching coefficients
are restricted to the color-conserving subspace. We will
discuss the construction of the color basis in Sec. IIID.

The symmetry factor S in Eq. (42) is included to sim-
plify the matching. It is given by

1

5= Mnftn (43)

where nljE denotes the number of fields of type i =



g,u,,d,d, ... with helicity +. We also use

n=3"(nf +n;), (44)

(2

to denote the total number of fields in the operator. Each
B; counts as one field, and each J has two fields.

For each set of external particles of definite helicities,
colors, and flavors, there is only one independent oper-
ator, since the physical external states have been com-
pletely specified. All Feynman diagrams contributing to
this specific external state will be included in the Wilson
coefficient of that specific operator. For the case of pure
QCD, quarks always appear in pairs of the same flavor
and same chirality, and therefore can be assembled into
quark currents labeled by a single flavor. In this case, to
keep track of the minimal number of independent oper-
ators, we can simply order the helicity labels, and only
consider operators of the form

OJ,_..(.._):O+...+7‘..7(+...+7...f), (45)
ngoong g g

and analogously for any additional quark currents with
different quark flavors.5

With the operator basis constructed, for a given n-
parton process we can match hard scattering processes in
QCD onto the leading-power hard-scattering Lagrangian

Loma= [T] 45 C2 (o ) O .

=1

7ﬁn)7

(46)
where a sum over all color indices is implicit. Lorentz in-
variance implies that the Wilson coefficients only depend
on Lorentz invariant combinations of the momenta. This
hard Lagrangian is used in conjunction with the collinear
and soft Lagrangians that describe the dynamics of the
soft and collinear modes, see for example Eq. (25).

We emphasize that Eq. (46) provides a complete ba-
sis in SCET for well-separated jets and additional non-
hadronic particles at leading power. We will discuss in
more detail in Sec. IV the matching and regularization
schemes, and demonstrate that no evanescent operators
are generated for this case. At subleading power, the
SCET operators would involve additional derivative op-
erators, soft fields, or multiple SCET building blocks
from the same collinear sector.

6 In the general case with off-diagonal CKM-matrix elements,
there is some more freedom in the choice of the operator ba-
sis, because quarks of the same flavor do not necessarily ap-
pear in pairs. However, it is still true that only a single oper-
ator is needed for a specific external state. For example, for
external quarks u,,({+,§+,c,, one could either use the op-
erators Jys—J.q—,or the operators Jes—J,q— (where the color
structures have been suppressed). Since different helicity combi-
nations are possible, a single flavor assignment does not suffice to
construct a complete helicity basis, and one must sum over a ba-
sis of flavor assignments. As an example explicitly demonstrating
this, we will consider the case of pp — W+ jets in Sec. VI.

C. Example with a Z-Boson Exchange

It is important to note that all kinematic dependence of
the hard process, for example, its angular distributions, is
encoded in the Wilson coefficients. Since the Wilson co-
efficients can (in principle) carry an arbitrary kinematic
dependence, our choice of helicity basis imposes no re-
striction on the possible structure or mediating particles
of the hard interaction. For example, the spin of an in-
termediate particle may modify the angular distribution
of the decay products, and hence the Wilson coefficients,
but this can always be described by the same basis of
helicity operators.

As a simple example to demonstrate this point we con-
sider ete™ — ete™ at tree level. This process can pro-
ceed through either an off-shell v or Z boson. Because
the SM couplings to both of these particles preserve chi-
rality, a basis of operators for this process is given by

O44) = 1 Je12+4 Jesat s

OG-y = Je124 Jesa—,

Oy = i e12— Jesa— (47)
where the leptonic current is defined in Eq. (41). The fact
that this is a complete basis relies only on the fact that
the couplings preserve chirality, and is independent of
e.g. the possible number of polarizations of the mediating
Z or 7.

We now consider the calculation of the Wilson coeffi-
cients for the matching to these operators (the matching
procedure is discussed in detail in Sec. IV). At tree level,
the Wilson coefficients are easily calculated, giving

2[13](24
Ciity = —€*[1 + v5v5 Pz (512)] % +(1+3),
. . 2[14](23)
C(+7) = —62 [1 + URULPZ<512)] [ 5]12 )
2(24)(13
C(__) = 762 [1 + ’Ui’t)ipz(slg)] % + (1 s 3) .
(48)

Here s12 = (p1+p2)?, Pz is the ratio of the Z and photon
propagators,

S
P, = , 49
Z(S) s—m2Z+iFZmZ ( )
and the couplings vy, r to the Z boson are
. 1—2sin?6y . 2sin? Oy (50)
Vy = ——/————— v = =,
L sin(20y) R sin(20y)

Note that the presence of the spinor factors in Eq. (48)
occur due to our normalization conventions for the cur-
rents.

Now, consider calculating the scattering amplitude in
the effective theory, for example for the case when both



electrons have positive helicity. The matrix element in
the effective theory gives,

(e (1) X (p2) €5 (p3) et (pa) [iLnara0)

i<€l(p1) e’ (p2) X (ps) ei(p4)‘ /ﬁ dpi O+ 044 ‘0>

2[13](24)

512

—ie*[1 4+ v{v{ Pz (s12)] + (14 3), (51)

using the Feynman rules of Eq. (40). The effective theory
therefore reproduces the full theory scattering amplitude.
The same is true of the other helicity configurations, so
the familiar angular distributions for eTe™ — eTe™, as
well as the different couplings of the Z to left and right
handed particles, are entirely encoded in the Wilson co-
efficients.

D. Color Basis

In addition to working with a basis of operators with
definite helicity, we can also choose a color basis that fa-
cilitates the matching. When constructing a basis of op-
erators in SCET, we are free to choose an arbitrary color
basis. With respect to color, we can think of Eq. (46) as
having a separate Wilson coefficient for each color con-
figuration. For specific processes the color structure of
the Wilson coefficients can be further decomposed as

aian k a1 Qn — a1 n oV
C+..(..,) - Z C+(7)Tk == T ! C+(_) .
k

(52)
Here, T is a row vector whose entries T/ """ are
suitable color structures that together provide a complete
basis for all allowed color structures, but which do not
necessarily all have to be independent. In other words,
the elements of T% ®» span the color-conserving sub-
space of the full color space spanned by {a; - -- . }, and
C is a vector in this subspace. Throughout this paper
we will refer to the elements of 7% %" as a color ba-
sis, although they will generically be overcomplete, since
this allows for simpler choices of color structures. As dis-
cussed below, due to the over-completeness of the bases,
some care will be required for their consistent usage.
Using Eq. (52), we can rewrite Eq. (46) as

Ehard :/Hdﬁ’b 61(7) (ﬁla cee 7ﬁn)6+--(~7)(]517 o 7ﬁn)7
i=1
(53)
where OT is a conjugate vector defined by
Ol (., = Omon T (54)

While the form Cj_l(_”) Oil”'o‘") in Eq. (46) is more con-
venient to discuss the matching and the symmetry prop-

erties of operators and Wilson coefficients, the alternative

form in Eq. (53) is more convenient to discuss the mixing
of the color structures under renormalization.

For low multiplicities of colored particles it can be con-
venient to use orthogonal color bases, e.g., the singlet-
octet basis for qgq'q is orthogonal. However, using or-
thogonal bases becomes increasingly difficult for higher
multiplicity processes, and the color bases used for many
fixed-order calculations are not orthogonal. (See e.g.
Refs. [151, 152] for a discussion of the use of orthogo-
nal bases for SU(N)). The use of a non-orthogonal color
basis implies that when written in component form in a
particular basis, the conjugate C't of the vector C is not
just given by the naive complex conjugate transpose of
the components of the vector. Instead, we have

Gt = [goen] Fuaon — TR (s5)

where

j—? _ Z (Tal"'an)TTal“'an ,

al,...,0n

(56)

is the matrix of color sums for the chosen basis. If the
basis is orthogonal (orthonormal), then T is a diagonal
matrix (identity matrix). Note that Eq. (56) implies that
by definition T =T.

Similar to Eq. (55), for an abstract matrix X in color
space, the components of its hermitian conjugate Xt
when written in a particular basis are given in terms of
the components of X as

Xt=T-1X*TT. (57)

A proper treatment of the non-orthogonality of the

color basis is also important in the factorization theo-

rem of Eq. (2). Here, the color indices of the Wilson
coefficients are contracted with the soft function as

[Coran]® Garambre B (yb1 B _ §HC¢

=CTTS.C. (58)
At tree level, the soft function is simply the color-space
identity

S.=1, (59)
which follows from its color basis independent definition
in terms of Wilson lines (see e.g. Ref. [98] or Eq. (267)).
Here we have suppressed the dependence of S on soft
momenta. The action of the identity on an element of
the color space is defined by

(1T) e — Proaiag (60)

and its matrix representation in any color basis is given
by 1 = diag(1,1,---,1). In the literature, see e.g.
Refs. [82, 88, 89, 134, 153], often a different convention is
used, where the T matrix is absorbed into the definition



of the soft function. In this convention, the soft func-
tion becomes explicitly basis dependent and is not the
same as the basis-independent color-space identity. One
should be careful to not identify the two.

As an example to demonstrate our notation for the
color basis, consider the process ggqg. A convenient
choice for a complete basis of color structures is

Fabaf _ <(TaTb)aE7 (TbTa)aB7 tr[T°T?] 5a5>
(T“T Jai \
= ( 7% 5 : (61)
tr[T2T*] 6,

For cases with many color structures we will write T as
the transpose of a column vector as above. The transpose
in this case only refers to the vector itself, not to the
individual color structures. The color-sum matrix for
this particular basis is

fggqq (Tabaﬁ)TTabaﬂ
2Cp 205 —Cy 2T
20p —Ca  2CF  2Tp |. (62)

2T oTp  2TpN

_ CpN

Our conventions for color factors are given in App. A 2.
Explicit expressions for T" for the bases used in this paper
are given in App. F for up to five partons.

Depending on the application, different choices of color
basis can be used. For example, in fixed-order QCD cal-
culations, color-ordering [5-8] is often used to organize
color information and simplify the singularity structure of
amplitudes, while the color flow basis [154] is often used
to interface with Monte Carlo generators. For a brief re-
view of the color decomposition of QCD amplitudes, see
App. A 3. Choosing a corresponding color basis in SCET
has the advantage that the Wilson coefficients are given
directly by the finite parts of the color-stripped helic-
ity amplitudes, which can be efficiently calculated using
unitarity methods. In this paper we will use color bases
corresponding to the color decompositions of the QCD
amplitudes when giving explicit results for the match-
ing coefficients, although we emphasize that an arbitrary
basis can be chosen depending on the application.

Finally, note that the color structures appearing in the
decomposition of a QCD amplitude up to a given loop
order may not form a complete basis. The color basis in
SCET must be complete even if the matching coefficients
of some color structures are zero to a given loop order,
since all structures can in principle mix under renormal-
ization group evolution, as will be discussed in Sec. VIII.
In this case, we always choose a complete basis in SCET
such that the color structures appearing in the ampli-
tudes to some fixed order are contained as a subset.
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E. Parity and Charge Conjugation

Under charge conjugation, the fields transform as

CBL T, C=—BiTh,,
CJ c—fJf;jF (63)

The minus sign on the right-hand side of the second equa-
tion comes from anticommutation of the fermion fields.
Under parity, the fields transform as

P By (i, x) P = e Bl (p; ,2")
+i n; . &
P I3 (Bi, by, ) P = e Omim o) g0 (58 58 2Py (64)

where we have made the dependence on p; and x explicit,
and the parity-transformed vectors are pf = w;f;/2,
xE = z#. The ¢,, are real phases, whose exact definition
is given in App. A 1. The phases appearing in the par-
ity transformation of the helicity operators exactly cancel
the phases appearing in the corresponding helicity ampli-
tude under a parity transformation. This overall phase is
determined by the little group scaling (see App. A1 for
a brief review).

Using the transformations of the helicity fields under
parity and charge conjugation in Egs. (63) and (64),
it is straightforward to determine how these discrete
symmetries act on the helicity operators. Parity and
charge conjugation invariance of QCD implies that the
effective Lagrangian in Eq. (46) must also be invariant.
(For amplitudes involving electroweak interactions, par-
ity and charge conjugation invariance are explicitly vi-
olated. This is treated by extracting parity and charge
violating couplings from the operators and amplitudes.
See Sec. VI for a discussion.) This then allows one to de-
rive corresponding relations for the Wilson coefficients.

To illustrate this with a nontrivial example we consider
the ggqq process. The operators transform under charge
conjugation as

C O)\l)\z(j:)(plvﬁ2;ﬁ3vﬁ4) TP C
= CS B, B, J5k T C

= —ON ) (Br i pa, ) TP (65)

where A2 denote the gluon helicities, and TabeB ig ag

given in Eq. (61). From the invariance of Eq. (46) we

can infer that the Wilson coefficients must satisfy

ab o ~ o~ o~ o~ ba o
C,\l,\2(i)(]717p2;p37p4) Cxlxz( ) (D1, P23 Pas P3) -

(66)

In the color basis of Eq. (61), we can write this as

‘76)\1)\2(1) (ﬁ17ﬁ2;ﬁ47]§3) )

0 -1 0

-1 0 0 |. (67)
0 0 -1

Cxixo(2) (D1, D2; P3, Pa) =

~

with V =



Now consider the behaviour under parity. For con-
creteness we consider the case of positive helicity gluons.
The operators transform as

aba ~ = = 1
PO++(i <p17p2;p37p4)P =P 78 82+ 34j:P (68)

: bas -~
= el(20n, +20n, E(bny — ¢"4))Oa (:F)(p1 7p2 7173 , Dy ) .
The invariance of Eq. (46) under parity then implies that
the Wilson coefficients satisfy

C++(:|:) (ﬁlaﬁQ;ﬁ?)aﬁél)

= Oy (5 55 5 e 12000 0

= C__(3)(P1, P2; P3, P1) . (69)
(el

Here we have introduced the notation (..) <+ [..] to indi-
cate that all angle and square spinors have been switched
in the Wilson coefficient. The fact that the phase appear-
ing in the parity transformation of the operator exactly
matches the phase arising from evaluating the Wilson
coeflicient with parity related momenta is guaranteed by
little group scaling, and will therefore occur generically.
See Eqgs. (A24) and (A25) and the surrounding discussion
for a review.

Below we will use charge conjugation to reduce the
number of Wilson coeflicients for which we have to carry
out the matching explicitly. We will use parity only when
it helps to avoid substantial repetitions in the matching.

F. Crossing Symmetry

Our basis is automatically crossing symmetric, since
the gluon fields B;1+ can absorb or emit a gluon and
the quark current J;;4+ can destroy or produce a quark-
antiquark pair, or destroy and create a quark or anti-
quark. We will first illustrate how to use crossing sym-
metry in an example and then describe how to technically
have crossing symmetric Wilson coefficients.

We will again consider the process ggqq as an example.
Due to our outgoing conventions, the default Wilson co-
efficient is for the unphysical processes with all outgoing
particles:

0 = g% (p1)g" (p2)45 (p3)@” (pa) : CL0, (P, o3 P, )

(70)
where we picked one specific helicity configuration for
definiteness. Crossing a particle from the final state to
the initial state flips its helicity, changes the sign of its
momentum, and changes it to its antiparticle. In addi-
tion we get a minus sign for each crossed fermion, though
in practice these can be ignored as they do not modify
the cross section. This allows one to obtain the Wilson
coefficient for any crossing. For example, for the follow-
ing possible crossings, the Wilson coefficients are given
by

ba

9% (p1)g" (p2) = 45 (p3)T° (pa) : C°F, ) (=2, —Pri P, Pa)
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(p2) = gi(ps)ﬁ(m) : —Cbaﬁ(i)(ﬁ?n —p1;Da, —P2) ,
Cbaa(li) (ﬁl% ﬁl; 7132717}4) ’
65 (P72 (p2) = 5 (p3)g" (pa) : CL2C, (B3, Pas —Pa, —1) -
(71)

Since the signs of momenta change when crossing par-
ticles between the final and initial state, care is required
in taking the proper branch cuts to maintain crossing
symmetry for the Wilson coefficients. In terms of the
Lorentz invariants

Sij = (pz +pj)2 (72)

this amounts to the choice of branch cut defined by s;; —
535 +10. In particular, we write all logarithms as

Lij=In (—M——lo) 1n(‘;’;) —inf(si;).  (73)

For spinors, crossing symmetry is obtained by defining
the conjugate spinors (p+| as was done in Eq. (5), result-
ing in the following relation

%) Ip£) - (74)

The additional minus sign for negative p° is included
to use the same branch (of the square root inside the
spinors) for both spinors and conjugate spinors, i.e., for
p% > 0 we have

[(=p)+) = ilp£),
(=p)£| = =(=i){p| = i(p£]. (75)
In this way all spinor identities are automatically valid

for both positive and negative momenta, which makes it
easy to use crossing symmetry.

(p=£| = sgn(p

G. Hard Function

In the factorized expression for the cross section given
in Eq. (2), the dependence on the underlying hard Born
process appears through the hard function a «- In terms
of the Wilson coefficients of the operator basis in the ef-
fective theory, the hard function for a particular partonic
channel k is given by

{pl Z C)\l

{Ai}

“An ) {pz}) )\1 (- An ({152})» (76)

where {p;} = {p1,P2,...}. For unpolarized experiments
we simply sum over all helicity operators, so ﬁn({ﬁi})
with its sum over helicities in Eq. (76) appears as a mul-
tiplicative factor. It is important to note that the color
indices of the Wilson coefficients are not contracted with
each other, rather they are contracted with the color

indices of the soft function through the trace seen in
Eq. (2).



As an explicit example to demonstrate the treatment
of both color and helicity indices, we consider the contri-
bution of the ggqq partonic channel to the pp — 2 jets
process. In this case, the Wilson coefficients are given by
C_”,\1 Az(A5), Where A1, A2 denote the helicities of the glu-
ons, A3 denotes the helicity of the quark current, and re-
call that the vector denotes the possible color structures,
which were given explicitly for this case in Eq. (61). The
hard function for this partonic channel is then given by

Hggqq({Pi}) ZC,\lAQ A3) {Pz}) Al/\z ,\3)({2%})
{Ai}
= Cor Oy + Comn Oyt
O+ GGt
CrrChio) + GGyt
CoyCl L +C_Ct_ . (m)
Here, exphc1t eXpI"ebbiOHb are only mneeded for

C++(+),C+ (+) and C__(+) One can obtain 6_+(+)
using Bose symmetry simply by interchanging the
gluons,

—

Cai(+)(p1,p2,p3,p4) Cia_of;_)(ﬁ%ﬁl;ﬁ&ﬁﬁl) ) (78)

or equivalently,

5—+(+)(ﬁ1,ﬁ2;ﬁ3,ﬁ4) = ‘75+—(+)(132,131;]53,]54),
N 010
with V=1100 (79)
001
As explained in Sec. VII A 2, the remaining 6A1A2(,) can

be obtained from the expressions for the other Wilson
coeflicients by charge conjugation.

In Eq. (77), the Wilson coefficients are vectors in the
color basis of Eq. (61) and thus the hard function is a
matrix in this basis. As discussed in Sec. III D, the tree-
level soft function is the color-space identity, i.e.,

Sé(;qzlb2ﬁ1ﬁ2 araza sz 6b1a1 6b2a25ﬂla16§2a2 =1 (80)

With the color trace in Eq. (2) this amounts to contract-

ing the color indices of the Wilson coefficients. In the
color basis of Eq. (61), this simply becomes
~0) 100
g0 —1=(010]. (81)
001

The tree-level soft function also has dependence on mo-
menta depending on the measurement being made, which
are not shown here.

To demonstrate a complete calculation of the cross sec-
tion using the factorization theorem of Eq. (2) together
with the hard functions computed using the helicity op-
erator formalism, it is instructive to see how the leading-
order cross section is reproduced from Eq. (2). We con-
sider the simple case of H + 0 jets in the m; — oo limit.

12

For this channel, there is a unique color structure 64, q,,
and using the results of Sec. V A and App. B 1, the lowest
order Wilson coefficients are given by

Qg 812 [12}
6(110.2

3mv 2 (12)
= - o~ o~ Qg S12 <12>
C——(p17p2§p3) = dayas 30 7@
c

=C_(p1,p2;P3) =0,  (84)

Coit (1, P23 P3) = , (82)

; (83)

+—(P1,D2; P3)
where v = (\/iGF)A/2 = 246GeV. Note that these are
simply the helicity amplitudes for the process, as will be
shown more generally in Sec. IV. Analytically continu-
ing to physical momenta, squaring, and summing over
helicities, the tree-level hard function is given by

(0) bib | s 5122
I—IggHala2 ' 2(p17p27p3) = 371_’07’ 25a1a25b1b2
2.2
Qg S7o
= 18772 2 5&1(125b1b2 . (85)

Note that only 2 of the 4 helicity configurations con-
tribute, hence the factor of 2.

The tree-level gluon beam functions are given by the
gluon PDFs. Since there are no jets in the final state,
there are no jet functions. The tree-level soft function is
the identity in color space’

Ség) bibyajaz __ 5171111 51720«2 . (87)

The leading-order cross section is then given by

1 1 dz, dx
77T 9m2 [2(N? - 1) /7 —2 fy(1) fo(22)

x / gf) 6(p) (3 —m%)

x (2m)151 (xlEcm@

2
0 b1b
x HO 2002 (5, 5o ) S

_ W;Tmngm Javh(FEe ) s (e ). 69)

The 1/(2E2,) factor is the flux factor and for each of the
incoming gluons we get a 1/[2(N? — 1)] from averaging
over its spin and color. This is followed by integrals over
the gluon PDFs, f;, and the Higgs phase space, where
we have restricted to the production of an on-shell Higgs.

n
+$2Ecm?2 7p3)

(0) b1b2 araz

7 Since there is only one color structure, the tree-level soft function
is normally defined as

1
E(I(S)I) = N2 _1 Sa1a3001by sbraigbaaz — (86)

Here we do not absorb numerical prefactors into our soft func-
tions, because this is not useful for processes with more final-state
partons.



The final expression in Eq. (88) agrees with the standard
result, where the first factor is the Born cross section.

We now briefly discuss our choice of normalization.
The currents in Eq. (37) were normalized such that the
Wilson coefficients are simply given by the finite part
of the QCD helicity amplitudes (see Sec. IV). This is
distinct from the normalization typically used for SCET
operators, e.g. x;v"X;, which is chosen to facilitate the
matching to QCD operators. We now show that the ex-
tra factors in Eq. (37) arrange themselves to produce
the standard normalization for the jet function (or beam
function). Starting from the current and its conjugate,

ngj:(‘]zji) (89)
_ f5¢(ni7nj) Y?i%X?i ﬁé‘i(ni,nj) )_(?i ’YuX?i

Vwiw;  (aFngE) (wiwy)” (i nF)
AT il o) b
o N N QTLZ"TZJ‘ |wiwj\ G 4
X (Xii%xz'i) ()Zji%)(ji) +...
L1 11 :
= 207057 (- s ) (5 Donis),

where we have rearranged the expression in a factorized
form using the SCET Fierz formula in spin

Vg _ b Rivs _ s ﬁiiVjL_ ViﬂqL
11l==]|=® = — —
® 2 { 2 ® 2 2 ® 2 2 ® 2 ’
(90)
which applies for the SCET projected spinors. In the

last line of Eq. (89) we have dropped the color nonsin-
glet terms and terms which vanish when averaging over
helicities, which are indicated by ellipses. The delta func-
tions in color space highlight that the jet function does
not modify the color structure. The factor 1/w; ;, which
arises from the normalization of the helicity currents, is
part of the standard definition of the jet function and en-
sures that this operator has the correct mass dimension.

IV. MATCHING AND SCHEME DEPENDENCE

In this section, we discuss the matching of QCD
onto the SCET helicity operator basis introduced in the
previous section. We start with a discussion of the
matching for generic helicity operators in Sec. IVA. In
Sec. IVB we discuss in detail the subject of renormal-
ization schemes, and the issue of converting between reg-
ularization /renormalization schemes commonly used in
spinor-helicity calculations, and those used in SCET. We
also demonstrate that evanescent operators are not gen-
erated in our basis.
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A. Generic Matching

In this paper, we work to leading order in the power
counting, which means we only require operators that
contain exactly one field per collinear sector. That is,
different n; in Eq. (42) are implicitly restricted to be-
long to different equivalence classes, {n;} # {n;} for
i # j. Operators with more than one field per collinear
direction are power-suppressed compared to the respec-
tive leading-order operators that have the same set of
collinear directions and the minimal number of fields.

At leading order, the Wilson coefficients can thus be
determined by computing matrix elements of Eq. (46),
with all external particles assigned well-separated mo-
menta, so that they belong to separate collinear sectors.
The only helicity operator that contributes in this case is
the one that matches the set of external helicities, picking
out the corresponding Wilson coefficient. Since we only
have one external particle per collinear sector, we can
simply choose n; = p;/p} in the matching calculation to
represent the equivalence class {n;}.

To compute the matrix element of Ly,.q4, we first note
that the helicity operators are symmetric (modulo mi-
nus signs from fermion anticommutation) under simulta-
neously interchanging the label momenta and indices of
identical fields, and the same is thus also true for their
Wilson coefficients. For example, at tree level

<g+ (pl)g+ p2 ’Ob1b2‘0>tree

_ 5 [5a1b1 5a2b25<1§1 _ p1) 5(152 _ p2)
+ §a1b2 §92b1 551 — o) 6 (g — p)].  (91)

so the tree-level matrix element of Ly,.q gives

<gil (pl) giz (p2)|£hard|0>tmc (92)
= 5[ T2 (Pr, P2) + CLI (P2, P1)] = CL* (Pr, P2) -

By choosing n; = p;/p?, the label momenta p; on the
right-hand side simply become p; = 7 - p; n; /2 = p;.

Taking into account the symmetry factor in Eq. (43),
one can easily see that this result generalizes to more
than two gluons or quark currents with the same helic-
ity. In the case of identical fermions, the various terms
in the operator matrix element have relative minus signs
due to fermion anticommutation which precisely match
the (anti-)symmetry properties of the Wilson coefficients.
Hence, the tree-level matrix element of Lya.q is equal to
the Wilson coefficient that corresponds to the configura-
tion of external particles,

(9192~ an— 1(jn|£hard’0>tree

=C 1“(2_())% e (plaan"'af)n—laﬁn)- (93)

Here and below, g; = ¢%'(p;) stands for a gluon with
helicity 4, momentum p;, color a;, and analogously for



(anti-)quarks. From Eq. (93) we obtain the generic tree-
level matching equation

.. 7ﬁn) = 71Atree(gl e gn) ) (94>
where A'°® denotes the tree-level QCD helicity ampli-
tude. Intuitively, since all external particles are ener-
getic and well-separated, we are away from any soft or
collinear limits and so all propagators in the QCD tree-
level diagram are far off shell and can be shrunk to a
point. Hence, the tree-level diagram simply becomes the
Wilson coefficient in SCET.

The above discussion can be extended to higher orders
in perturbation theory. In pure dimensional regulariza-
tion (where € is used to simultaneously regulate UV and
IR divergences) all bare loop graphs in SCET are scale-
less and vanish. Here the UV and IR divergences pre-
cisely cancel each other, and the bare matrix elements
are given by their tree-level expressions, Eq. (93). In-
cluding the counter term dp (eyv) due to operator renor-
malization removes the UV divergences and leaves the IR
divergences. Schematically, the renormalized loop ampli-
tude computed in SCET using Lyapq iS

Ascrr = [((01)7=+(01)9)iC = [1+ So e,

(95)
where we used that the loop contribution is a pure coun-
terterm and thus proportional to the tree-level expres-
sion. In general, the counterterm Jp is a matrix in color
space, as we will see explicitly in Sec. VIII and App. G.
By construction, the 1/e IR divergences in the effective
theory, Cdo(er), have to exactly match those of the
full theory. Therefore, beyond tree level the matching
coefficients in MS are given by the infrared-finite part of
the full-theory amplitude, Ag,, computed in pure dimen-
sional regularization. Thus, including loop corrections
Eq. (94) becomes

-3 Pn) = —iAan(g1- @) . (96)

In Sec. IVB we will discuss in more detail the case of
different renormalization schemes.

If the same color decomposition is used for the QCD
amplitude as for the Wilson coefficients in Eq. (52), we
can immediately read off the coefficients C' in this color
basis from Eq. (96). As an example, consider for simplic-
ity the leading color n gluon amplitude, which has the
color decomposition (see App. A 3)

=ign—? Z tr[T% @ .

o€S,/Zy,
x> giAD(o(1)

where the first sum runs over all permutations o of n
objects (S,) excluding cyclic permutations (Z,). The

An(gl .. Taﬂ(")]

a(n)),  (97)

Agf ) are the color-ordered or partial amplitudes at ¢ loops.
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Each is separately gauge invariant and only depends on
the external momenta and helicities (p;+) = (i*). If we
choose

T = [Tk - Tk ]| (98)
as the color basis in Eq. (52), where oy, is the kth per-
mutation in S,,/Z,,, then the Wilson coeflicients in this
color basis are given directly by

Cf\:l"')\g (]517 e 7ﬁn) =

2295 nﬁn 1)\1)"‘7

where the subscript “fin” denotes the IR-finite part of the
helicity amplitude, as discussed. This is easily extended
beyond leading color, given a valid choice of subleading
color basis. Our basis therefore achieves seamless match-
ing from QCD helicity amplitudes onto SCET operators.

ox(n?)), (99)

B. Renormalization Schemes

In this section we discuss in more detail the issue of
renormalization /regularization schemes in QCD and in
SCET. In particular, the construction of a basis of helic-
ity operators discussed in Sec. III relied heavily on mass-
less quarks and gluons having two helicity states, which
is a feature specific to 4 dimensions. We clarify this issue
here and discuss the conversion between various schemes.

In dimensional regularization, divergences are regular-
ized by analytically continuing the particle momenta to d
dimensions. In a general scheme, the helicities of quarks
and gluons live in d9, d? dimensional spaces respectively.
We shall here restrict ourselves to schemes where quarks
have two helicities, but d¢ is analytically continued. This
is true of most commonly used regularization schemes,
but is not necessary [155]. Different schemes within di-
mensional regularization differ in their treatment of d9 for
internal (unobserved) and external (observed) particles.
In the conventional dimensional regularization (CDR), 't
Hooft-Veltman (HV) [156], and four-dimensional helicity
(FDH) [157, 158] schemes the internal/external polariza-
tions are treated in d/d (CDR), d/4 (HV), 4/4 (FDH)
dimensions.

For helicity-based computations, the FDH scheme has
the advantage of having all helicities defined in 4 dimen-
sions, where the spinor-helicity formalism applies, as well
as preserving supersymmetry. Indeed, most of the recent
one-loop computations of helicity amplitudes utilize on-
shell methods and therefore employ the FDH scheme.
However, most existing calculations of SCET matrix ele-
ments (jet, beam, and soft functions) use d-dimensional
internal gluons, corresponding to the CDR/HV schemes.®

8 Recently while this paper was being finalized, a calculation of



As we will discuss below, CDR and HV are identical for
matching onto SCET.

Although the FDH scheme is convenient for helicity
amplitude computations, it leads to subtleties beyond
NLO [161, 162]. As explained in Ref. [162], this discrep-
ancy arises due to the different number of dimensions
for the momenta in the loop integral and the spin space,
leading to components of the gluon field whose couplings
to quarks are not protected by gauge invariance and re-
quire separate renormalization. Nevertheless, it has been
shown that FDH is a consistent regularization scheme
to NNLO [160]. The presence of these extra degrees of
freedom in the FDH scheme is quite inconvenient in the
formal construction of SCET, especially when working
to subleading power. Because of this fact, and because
most SCET calculations are performed in CDR/HV, our
discussion of SCET schemes will focus on regularization
schemes where the dimension of the gluon field and the
momentum space are analytically continued in the same
manner. We will also discuss how full-theory helicity am-
plitudes in the FDH scheme are converted to CDR/HV
for the purposes of matching to SCET.

We will now describe how helicity amplitudes in the
FDH scheme can be converted to CDR/HV. To get a
finite correction from the O(¢) part of the gluon polar-
ization requires a factor from either ultraviolet (UV) or
infrared (IR) 1/e divergences. Although the regulariza-
tion of UV and IR divergences is coupled in pure dimen-
sional regularization schemes by use of a common ¢, they
can in principle be separately regulated, and we discuss
their role in the scheme conversion separately below.

When matching to SCET, the UV regulators in the
full and effective theory need not be equal. Indeed,
the effective theory does not reproduce the UV of the
full theory. In massless QCD, scheme dependence due
to the UV divergences only affects the coupling con-
stant through virtual (internal) gluons. Therefore, the
CDR and HV schemes have the same standard MS
coupling, as(p), while FDH has a different coupling,
afPH(1).  The conversion between these couplings is
achieved by a perturbatively calculable shift, known to
two loops [23, 158, 163]

aEPH () = a1+ G 4L

+ (293 C4 — 20k Teny ) (Oﬁﬂ . (100)

This replacement rule for the coupling captures the ef-
fect of the scheme choice from UV divergences. One can
therefore perform a matching calculation, treating a in
the full and effective theories as independent parameters

the inclusive jet and soft functions in both FDH and dimensional
reduction (DRED) [159] appeared in Ref. [160]. The conclusions
of this section agree with their study of the regularization scheme
dependence of QCD amplitudes.
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that can be defined in different schemes. A conversion
between schemes can then be used to ensure that the
matching coefficients are written entirely in terms of
defined in one scheme, for example using Eq. (100). The
issue of UV regularization is therefore simple to handle
in the matching.

The structure of 1/e? and 1/e IR divergences in one-
loop QCD amplitudes is well known, and allows one
to determine their effect on converting amplitudes from
FDH to CDR/HV. For a QCD amplitude involving n,
(anti)quarks and ng gluons the FDH and HV one-loop
amplitudes A™) are related by [23, 155]

as (n n
Al(ql\)/ = ARy - I (;CF + EgC’A>A(O) , (101)

where A©) denotes the tree-level amplitude, and the pre-
cise scheme of the « entering here is a two-loop effect. At
one loop, the FDH scheme can therefore be consistently
used when calculating full-theory helicity amplitudes and
results can easily be converted to HV with Egs. (100) and
(101) for use in SCET Wilson coefficients.

We will now compare CDR and HV schemes for SCET
calculations and the construction of the operator basis.
In the HV scheme, all external polarizations are 4 di-
mensional, so that one can use a basis of helicity oper-
ators, as was constructed in Sec. III. However, in CDR
external polarizations are d dimensional, with the limit
d — 4 taken. In particular, this implies that one must
work with d—2 gluon polarizations at intermediate steps,
potentially allowing for the presence of evanescent oper-
ators corresponding to operators involving the additional
components of the gluon field, so called e-helicities. How-
ever, we will now argue that there is no real distinction
between the two schemes, and that one does not need to
consider evanescent operators in SCET at leading power.

First consider the Wilson coefficients and matching.
In the case of CDR, the operator basis must be extended
to include operators involving the e-helicities. However,
their presence does not affect the matching coefficients for
operators with physical helicities, since they do not con-
tribute at tree level and all loop corrections are scaleless
and vanish. Additionally, in Sec. VIII, we will discuss
the fact that the SCET renormalization of the opera-
tors is spin independent at leading power, and therefore
there is no mixing under renormalization group evolu-
tion between the physical and evanescent operators. For
the beam and jet functions, azimuthal symmetry implies
that the difference between a field with 2 or 2 — 2¢ po-
larizations is simply an overall factor of 1 — € and thus
can be easily taken into account. The independence of
the soft function to the differences in the CDR/HV reg-
ularization schemes follows from the insensitivity of the
soft emission to the polarization of the radiating parton,
which is made manifest by the SCET Lagrangian and the
fact that the soft function can be written as a matrix ele-
ment of Wilson lines. Thus there is no difference between
CDR and HV and the helicity operator basis suffices.



V. HIGGS + JETS

In this section, we consider the production of an on-
shell Higgs + jets. We give the helicity operator basis
and matching relations for H + 0, 1,2 jets, and the cor-
responding helicity amplitudes are collected in App. B.

A. H 40 Jets

The ggH and qgH processes contribute to the H + 0
jets process. For qgH, the scalar current in Eq. (38) is
required, and the helicity operator basis is given by

0?5 = Jldfs Hi,

057 = (JN5s Hs, (102)
with the unique color structure
T = (6,5) - (103)

These operators are relevant when considering Higgs de-
cays to massive quarks, for example H — bb. However,
we will not consider this case further since for Higgs pro-
duction the bbH and tfH contributions are much smaller
than the dominant gluon-fusion hard scattering process.
For ggH, the basis of helicity operators is given by

1

2
1

o = 5 Bi- BS_ Hs.

ab __ a b
O++_ +82+H3’

(104)

The operator O, _ is not allowed by angular momentum
conservation. Similar helicity operators, extended to in-
clude the decay of the Higgs, were used in Ref. [164].
There is again a unique color structure for this process,

o = (59Y) . (105)
Writing the QCD helicity amplitudes as
A(g192H3s) =16"** A(1,2;3m), (106)
the Wilson coefficients for ggH are given by
Cos (Brs 2 Bs) = Asn(17,2%:31).
C__(p1,52:P3) = Asn(17,27:3) . (107)

The subscript “fin” in Eq. (107) denotes the IR-finite part
of the helicity amplitudes, as discussed in Sec. IV. Note
that the two amplitudes appearing in Eq. (107) are re-
lated by parity. The results for the gluon amplitudes up
to NNLO are given in App. B1. They correspond to the
usual gluon-fusion process, where the Higgs couples to a
(top) quark loop at leading order. The LO amplitude in-
cluding the dependence on the mass of the quark running
in the loop is well known. The NLO amplitudes are also
known including the full quark-mass dependence [165—
169], while the NNLO [170-172] and N3LO [70, 71] am-
plitudes are known in an expansion in mg/m;.
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B. H+1Jet

The gqqgH and gggH processes contribute to the H + 1
jet process. For gqq, the basis of helicity operators is
given by

Oi((m = Bi J;ﬁHb
0"} =Bi_Jgy. H
—(+ 23+ 4>
0‘15‘5 =B, Jsy Hi,

O‘“‘B =By J H (108)

Note that we consider only QCD corrections to the ggH
process, so the ¢q pair is described by J;;+. For ggg, the
helicity operator basis is

Oibi+ - % i+ B’2’+ Byy Ha,
Ot — 5 B1, B, 55 Ha,
o, = % By BS_BS Hy,
o — % ¢ BS BS Hy. (109)

For both cases the color space is one-dimensional and we
use the respective color structures as basis elements

(Tas) - (ife) -

In principle, there could be another independent color
structure, d®°, for gggH. The gggH operators transform
under charge conjugation as

Toob — T = (110)

C Oilljg\z)\s (ﬁluﬁ% ﬁS; 154) Tabc C

= —O%% 0 (P1s P2, Ps; Pa) T (111)

Charge conjugation invariance of QCD thus leads to

Cglfi?xg (D1, D2, P35 Ppa) = —Cilgg,\g (P1, P2, P35 Pa), (112)
which implies that the d**¢ color structure cannot arise
to all orders in perturbation theory, so it suffices to con-
sider if®¢ as in Eq. (110). This also means that the
d®* color structure cannot be generated by mixing un-
der renormalization group evolution, which will be seen
explicitly in Eq. (259).

Using Eq. (110), we write the QCD helicity amplitudes
as

A(919293Hs) =1 (1f"1"2%) A(1,2,3;4m),

Al9192G3Ha) = iT555, A(1;24,34;4m) - (113)

The Wilson coefficients for gggH are then given by

5+(+)(]31;]527133;Z34) = Asn (17527, 37 540)

Co ) (P Pos Bas Pa) = Ann (17525375 4m) 4



C () (B1; P2y b33 Pa) = Crp (o) (Brs B3, Pa; Pa) »

C(—y (P13 P2, P3; Pa) = C— 4y (Brs B3, Pas pa) . (114)

where the last two coefficients follow from charge conju-
gation invariance. The Wilson coefficients for gggH are
given by

= Apn(17,27,37:45),

- Aﬁn(1+, 2+; 37; 4H) s

Coiit (P, P2y P33 Pa)
Cori—(p1, P2, P33 Pa)
C_ 4 (P1. P2, P33 Pa) = é++f(ﬁ1’ﬁ2’ﬁ3;ﬁ4)‘< Yol
C___(pr, P2, Ps; Pa) = 5+++(131713277535ﬁ4)‘< vl
(115)

where the last two relations follow from parity invariance.
As before, the subscript “fin” in Eqgs. (114) and (115) de-
notes the finite part of the IR divergent amplitudes. The
NLO helicity amplitudes were calculated in Ref. [32], and
are given in App. B2, and the NNLO helicity amplitudes
were calculated in Ref. [173]. Both calculations were per-
formed in the m; — oo limit. At NLO, the first correc-
tions in m?2, /m? were obtained in Ref. [174].

C. H + 2 Jets

For H + 2 jets, the ¢7¢'q'H, qqqqH, ggqqH, and
gg9ggH processes contribute, each of which we discuss
in turn. Again, we consider only QCD corrections to the
ggH process, so qq pairs are described by the helicity cur-
rents Jj;+. The LO helicity amplitudes for H + 2 jets in
the m; — oo limit were calculated in Refs. [31, 175] and
are collected in App. B3 for each channel. The LO am-
plitudes including the m; dependence were calculated in
[176] (but explicit expressions for ggggH were not given
due to their length). The NLO helicity amplitudes were
computed in Refs. [33, 34, 177-180].

1. qGq'7H and qGq7H

For the case of distinct quark flavors, qgq'qd H, the
helicity basis consists of four 1ndependent operators,

apys _
O++) q12+Jq/34+H5v
08P = Jor,, J0%, H
(+5—) — Yq12+ q/34 5
apys _ gap 4
OfP = Jos T, Hs |

é(++)(ﬁlaﬁ2;ﬁ3aﬁ4;ﬁ5) = ( Bﬁ (1

Aﬁn(13_72q 73(—;7411 75H)

q’ ‘I’ q” ‘Z’
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5 6 B 5
Oa = J;m J"’, 34 Hs, (116)
where the additional labels on the quark currents indi-
cate the quark flavors. For the case of identical quark
flavors, qq qGH, the basis only has three independent he-

licity operators,

apys _ 1 jap 156
Ozf;_: = szﬁ-);- J;4+ Hs,
0 = Jf;i Jae_ Hs,
apys _ 1
O(,BZ) = 4 J _Hs, (117)

since both quark currents have the same flavor. In both
cases we use the color basis

ToBYe — 9Ty, <5a5 5.5, bag 575) . (118)

The QCD helicity amplitudes for ¢q7 ¢’q’ H can be color-
decomposed in the basis of Eq. (118) as

Alq132q304Hs) = 2iTp [5%5445%@2 A(14,24;34,4q:5m)

1
+ N 60(15(25&35(43(1(]7 26; 3(1,7 4‘(7” 5H) )
(119)

where we have included a factor of 1/N for convenience.
The amplitude vanishes when the quark and antiquark
of the same flavor have the same helicity, in accordance
with the fact that the operators of Eq. (116) provide a
complete basis of helicity operators. For identical quark
flavors, qq qGH, the amplitudes can be obtained from the
qq q¢'q H amplitudes using the relation

— A(q1q44505Hs) .
(120)

Alq1G2q3q4Hs) = A(q132453, Hs)

The Wilson coefficients for qq¢'¢’ H are then given by

Asn(15,27537,4

()
N Pfinltq s 4g q’ a»
Agsn(1 q,2q,3q,,4g, H) )
*Ban(17,27:3,,4%:54)
Cioipy(Br, D23 D3, a3 Ps) = Cyomy (P2, B1; Pa, P33 Ps)

Ci_imy(P1, D2: B3, pa: Ps) = Co it

Cts+) (P1, D23 D3, Pa; Ps) = (

Ci—y (1, P2 Ps, Pa; Bs) = (

)(ﬁ?vﬁl;ﬁ47ﬁ3;ﬁ5) )
(121)

and for qq qgH they are given in terms of the amplitudes
Agn and By, for q7¢'qd H by

L Ban (17,4737
4

q’
135,47 :55) — Aﬁn( 3+



Cis (P, P2; B3, Pa; P :(
(+-) (D1, D2; D3, P43 Ps) 1 B (1F

C——)(P1,P2; P3, Pa; P5) =

The relations for é(_;i) and é(__) follow from charge
conjugation invariance. Note that there is no exchange
term for é(+_), since the amplitude vanishes when the
quark and antiquark of the same flavor have the same
helicity (both + or both —). Also, recall that the sym-
metry factors of 1/4 in Eq. (117) already take care of
the interchange of identical (anti)quarks, so there are no
additional symmetry factors needed for 6(++)' Explicit
expressions for the required amplitudes at tree level are
given in App. B3a.

2. ggqqH

For ggqqH, the helicity basis consists of a total of six
independent operators,

Oibﬁ(i) = ; 1+ B§+ Jf?ﬁr Hs ,

00 = Bl By JG, Hs,

0l = fBa_ BS_ JSL. Hs,

0L, = ; L B3, J5i Hs,

Oaba,@) = Be, By JSP Hy,

Oﬁ”_"f) = fBa_ BS_JSP Hj (123)

We use the color basis already given in Eq. (61),
T = (T°T°) 5, (T'T%), 0[T°T)5,5) . (124)

Using Eq. (124), the color decomposition of the QCD
helicity amplitudes into partial amplitudes is

A(9192 4302 Hs)

S Y [reeeTe], A,
g€ESs

+itr[TT?] §pya, B(1,2;34,45;5m) -

0(2);3¢,44;51)
(125)

The B amplitudes vanish at tree level. From Eq. (125)
we can read off the Wilson coefficients,

Aﬁn“*’? 3¢ .47:5m)
Cy_(4)(P1,P2: D3, PaiP5) = | Aan(27,17F; q+4§_ 5 |
Brin(17,27:37,4755m)
o (e MgsH)
Cii(4)(Prs P2 D3, PaiPs) = n(2 st ) |
Bin (17,2337, 4555m)

C(44) (P2, P15 Pa, P33 Ps) -
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Aﬁn(1q+,2q ;3 ,4345,{) )
q 72q a3q 74q a5H)

(122)
[
Agn(17,273 35,45 511)
C__(1)(P1,P2; D3, Pa;P5) = | Aan(27,17;3F,45;50)
Bﬁn(l_,2_ 3 4q_ H)
(126)

The Wilson coefficients of the last three operators in
Eq. (123) are obtained by charge conjugation as discussed
in Sec. III E. Under charge conjugation, the operators
transform as

. S
C0§1A2(i)(p1,p2;p37p4;p5)T“baﬁC

Oba af

s (127)

)(ﬁ1,ﬁ2;ﬁ4,ﬁ3;ﬁ5)fabaﬂ7

so charge conjugation invariance of QCD implies

VO ag(+) (D1, D2; Das P35 Ps5)
0 -1 0

-1 0 O
0 0 -1

Cxina(—) (D1, D23 D3, Pa; P5) =

with V= (128)

Explicit expressions for the required amplitudes at tree
level are given in App. B3b.

3. 9999H

For ggggH, the helicity basis consists of five indepen-
dent operators,

1
abed a b c d
OF¥4+ = 4y B B2y B3y Byy Hs
abed a b c d
OY¥y- = 31 1482 Bs, Bi_ Hs,

1
ot = - 1 B L BS. BS_Bi_ Hs,
ored | = 5 B_BY_BS_B{, Hs,
oed = I B%_Bg_Bg_ij_ Hs. (129)
We use the basis of color structures
tr[abed] + tr[debal -
tr[acdb] + tr[bdeal
- 1 tr[adbc] + tr]cbdal
abed __
™= 2. 2Tp 2tr[ab] tr[cd] ’ (130)
2tr[ac] tr[db]
2tr[ad] tr[bc]
where we have used the shorthand notation
tr[ab] = tr[T°T"], trlabed] = tr[TT*TT]. (131)



Note that the three independent color structures with a
minus sign instead of the plus sign in the first three lines
in Eq. (130) can be eliminated using charge conjugation
invariance, see Sec. VII A 3.

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using the color basis in
Eq. (130) is

Z (A0 (1) A0 (2) G0 (3) Qo (4)]
0€S4/Zy

x A(o(1),0(2),0(3),0(4);51)

—+ Z tr[ao(l)ao(g)]‘ur[ao(:},)a0(4)]
U€S4/Z§’

x B(o(1),

1
A(91929394Hs) = 2TF[

0(2),0(3),0(4);5H) ,
(132)

where the B amplitudes vanish at tree level. From

Eq. (132) we obtain the Wilson coefficients,

Cii——(P1,D2,P3,P4;D5) =

2Aﬁn(1+, 2+,3+, 4—; 5H)
246, (17,3%,47,27;5y)
2Aﬁn(]~+7477 2+7 3+; 5H)
Bﬁn(l+,2+,3+,4_;5H) ’
Bﬁn(1+73+, 4=, 2+; 5H)
Bgn(17,47,27,3%;55)
2Aﬁn(1+, 2+,3+, 4+; 5H)
246, (17,3%, 47 2T:5y)
246, (17,4%, 27 3T:5y)
Bﬁn(1+, 2+, 3+,4+; 5H)
Bﬁn(1+73+, 4+, 2+; 5H>
Bgn(17,47,2% 3%, 5y)

Cyyv—(P1,D2,P3, D15 P5) =

C++++(ﬁ17ﬁ27[537ﬁ4;ﬁ5) =

C__i(pr,...;P5) = é+++—(ﬁ17~~~;ﬁ5)‘ ,
(el
Coe_(pro--1P5) = é++++(ﬁ1,---;ﬁ5)‘ .
(ol
(133)

The last two coefficients follow from parity invariance.
The factors of two in the first three entries of the coef-
ficients come from combining the two traces in the first
three entries in Eq. (130) using charge conjugation invari-
ance. Because of the cyclic symmetry of the traces, the
partial amplitudes are invariant under the corresponding
cyclic permutations of their first four arguments, which
means that most of the amplitudes in Eq. (133) are not
independent. Explicit expressions for the necessary am-
plitudes at tree level are given in App. B3c.
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VI. VECTOR BOSON + JETS

In this section, we give the helicity operator basis and
the corresponding matching for the production of a =,
Z, or W vector boson in association with up to two jets.
The corresponding helicity amplitudes are collected in
App. C.

We work at tree level in the electroweak coupling and
consider only QCD corrections, so any external ¢g pairs
are described by the helicity vector currents J;;4+ in
Eq. (37). We always include the subsequent leptonic de-
cays v/Z — 00, W+ — vi/tp. In the following, for v/Z
processes, £ stands for any charged lepton or neutrino fla-
vor, and ¢ stands for any quark flavor. For W processes,
we use ¢ to denote any charged lepton flavor and v the
corresponding neutrino flavor. Similarly, we use u and
d to denote any up-type or down-type quark flavor (i.e.
not necessarily first generation quarks only).

The operators in the helicity bases satisfy the trans-
formation properties under C and P as discussed in
Sec. IITE. However, the weak couplings in the ampli-
tudes explicitly violate C and P. Therefore, to utilize the
C and P transformations of the operators and minimize
the number of required amplitudes and Wilson coeffi-
cients, it is useful to separate the weak couplings from
the amplitudes.

We define Pz and Py as the ratios of the Z and W
propagators to the photon propagator,

S

Pzw(s) = (134)

2 : .
§— My + lrzywmzyw

The left- and right-handed couplings vy r of a particle
to the Z boson are, as usual,

;2T —2Qsin® Oy

. 2Q sin? Oy
- i— T SLOW 35
L sin(20) 0 R sy )

where T4 is the third component of weak isospin, Q¢ is
the electromagnetic charge in units of |e|, and 6y is the
weak mixing angle.

The «y/Z amplitudes can then be decomposed as

A D)

- { [QQY + vl v nPa(5,)] Ayl )
+Zp@

UQR 7 _
WPZ(SN) Aa(' c éé)} .

W, ()| At

(136)

Here, A, corresponds to the usual contribution where the
vector boson couples directly to the external quark line
with flavor ¢. (There is one such contribution for each
external ¢q pair, and this contribution is absent for pure
gluonic amplitudes like gggZ.) For A,, the v/Z couples
to an internal quark loop through a vector current and



the sum runs over all considered internal quark flavors.
For A,, the Z boson couples to an internal quark loop
through the axial-vector current. This means that when
using parity and charge conjugation we have to include
an additional relative minus sign for this contribution.
We have also made the assumption in Eq. (136) that all
quarks, except for the top, are massless. Since A, van-
ishes when summed over a massless isodoublet, this has
the consequence that only the b, ¢ isodoublet contributes
to Ag, hence the lack of sum over flavors. We have made
this simplification following the one-loop calculation of
Ref. [14], which calculated the amplitude in an expan-
sion in 1/m?, assuming all other kinematic invariants to
be smaller than the top mass. From the point of view
of constructing a basis these assumptions are trivial to
relax.
The W¥ amplitudes can be written as

S eQVud — =+
A(é U ):72PW(84,;)A¢](£ v )a
2sin” Oy
B €2VT _
A("‘I/7€+) = fudpw(suz) Aq("'ying)? (137)
2sin” Oy

where V4 is the appropriate CKM-matrix element. The
A, amplitudes are the same in Egs. (136) and (137),
since all electroweak couplings have been extracted, but
we have explicitly included the helicity labels (not to be
mistaken as charge labels) to emphasize that these are
the only possible helicities. The analogues of A, and A,
do not exist for W production.

We note again that Eqs. (136) and (137) hold at tree
level in the electroweak coupling, which is what we con-
sider in this paper. At this level, the leptons always
couple to the vector boson through the currents [see
Eq. (A19)]

(PeE[y IpeE) = (PeF |V [peTF) - (138)

This allows us to obtain the Wilson coefficients for oppo-
site lepton helicities simply by interchanging the lepton
momenta.

A. V +0 Jets

For «/Z + 0 jets, the partonic process is qg¢/, and the
basis of helicity operators is

ap
Offe) =

O?ﬁi) = J(?g_ Jr3a+

J5182+ Jozax
(139)

In principle, the process ggff is allowed through the ax-
ial anomaly, but its contribution vanishes because in the
matching calculation the gluons are taken to be on shell,
and we neglect lepton masses.

For W¥ 4 0 jets, the partonic processes are udlv and
duvl, respectively. Since the W only couples to left-
handed fields, the helicity basis simplifies to

O((lvﬁf = J3§127 Jov 34—
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Ofirey = I3 Jotsa— . (140)
Here, we have explicitly written out the flavor structure
of the currents. However, we use the shorthand subscript
(WT) on the operators and Wilson coefficients, since we
will not focus any further on the flavor structure. In
an explicit calculation, one must of course sum over all
relevant flavor combinations.
The unique color structure for V + 0 jets is

7% = (8,5), (141)
and extracting it from the amplitudes, we have
Agv,a(@1320302) = 10018, Agv,a(les 24330, 47) . (142)

Here, A, and A, first appear at two loops. In addition,
A, is proportional to the top and bottom mass splitting
due to isodoublet cancellations. It drops out when both
top and bottom are treated as massless (e.g., when the
matching scale is much larger than the top mass).

We use the same electroweak decomposition as in
Egs. (136) and (137) to write the Wilson coefficients. For
v/Z + 0 jets, we have

C()‘q§)\i)(ﬁ17ﬁ2;ﬁ37p~4)

— (32 { [QKQQ + vﬁevg\qPZ(sM)] C:q(/\q;kg)(~ .. )

i vy 4+t =
+Z{Q6Q +U§£%pz(s34)}cmm)(...)
i=1

i

* WPZ(SW Caprginn) (- )} ) (143)

where the weak couplings are determined by the helicity
labels of the quark and lepton currents,

L L l

_ _ 0 q qa _ 49
'U_,'_f'UR, 'U_*'UL, 'U+

q
VR, VI =vp.

(144)

For W + 0 jets, we simply have

= 62‘/ud =
Cw-y(D1,D2; P3, ——— Pw Cou=(.),
(w—)(P1,P2; D3, Pa) = 2sin2 Oy (s34) Co(—— ()
Cow+y(Br, P2 s, Ba) Vi Py (s34) Cy(—iy (-
R 7 s = —— S ).
(w+)(P1,D2;P3, P4 2sin? § 34) “q(—;-)

(145)

In all cases, the momentum arguments on the right-hand
slde are the same as on the left-hand side. Note that the
Cy(—;—) coefficient is the same in all cases. The Wilson
coefficients are given by

+)(P1, P2 D3, Pa) = Awin(17,2533),47),
z(+ ) (D1, P2; D3, Pa) = 6z (+:+) (P1, D23 P4, P3)
q,v(— 1) (B1. P23 P35 1) = Coohim) (P2, P1s B3, Ba)
+)(P1, P25 P3,Pa) = a(+i)(P27p1;P37 1),
(146)



where x = ¢, v, a and as discussed in Sec. I'V the subscript
“fin” denotes the IR-finite part of the helicity amplitudes.
The second relation follows from Eq. (138). The last two
relations follow from charge conjugation invariance. At
tree level and one loop only C, receives a nonvanishing
contribution. The A, amplitude is given in App. C1.

B. V41Jet

1. gqqV

For v/Z + 1 jet, the partonic process is gqgf/, and the
basis of helicity operators is

ada
O+(+ e = Biy Jg. q23+ Jesst
s _ B
Oi((l,; = B%+ ;23_ JZ 45+

af
Oa,(();,:’ a Jq 23+ Jf 45+

Oa,((l,ﬂ;i) =Bi_ J;éag, Joa5+ - (147)
For W¥ +1 jet, the partonic processes are gudlv and
gduvl, respectively, and the helicity operator basis is

Oio(lgv ) T Jgfz?,— a5
Oio(éwﬂ By du o3 Joeas— . (148)
The unique color structure for gqgqV is
TP = (T¢), (149)

and extracting it from each of the amplitudes, we have

Ar(9192G30a05) = 1 Tals, Au(1;24,35340,57),  (150)

where the subscript x stands for one of ¢, v, a.

As for V40 jets, we write the Wilson coefficients using
the electroweak decomposition in Egs. (136) and (137).
For v/Z + 1 jet, we have

Cx(xgire) (P15 P2, D3; P4, Ps)

— 62 { [Qqu —+ ’Uievg\qu(845)] éqA(Aq;A@)(' . )
nyg

JrZ[QZQZ +v Ag (ULt RPZ(545)}CM(,\Q,A4)( )
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v -
+ #)PZ(S%) Carx(rgire) (- )} )

sin (20w (151)

where the weak couplings are determined by the helicity
labels of the quark and lepton currents,

vl =vfh, vl =0l vl =vf, vl =0]. (152)
For W + 1 jet, we have

. 62V(T) .

Caxws)(--) = “d— Py (s45) Cor(—s—) (), (153)

2sin? Oy
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The Wilson coefficients are given by

o ) (P13 P2, D3 Pas Ps) = Awin(17520,37545,57)
Con(ti—) (P13 P2y B33 4, B5) = Coon(gt) (13 P2, B3 Ps, Pa) »
Clgron(—s) (P13 D2, Psi Pas Ps) = —Clg on(t) (Brs Bs, Pos Pas Ps)

C'a,\(— +)(P1; D2, D3; Pa, Ps5) = éa,\(+;i)(151;ﬁ3,ﬁ2;ﬁ4,175)-

(154)

The second relation follows from Eq. (138), and the last
two relations follow from charge conjugation invariance.
The Wilson coefficients with a negative helicity gluon fol-
low from parity invariance,

Coo—(+;%) (P13 P2, P3; Pa, Ps)
q,v+(_;¢)(]51;ﬁ2,133;ﬁ4,ﬁ5)’(HMH ;
Ca—(+s%) (P13 P2, P3; P4, Ps)

= ~Cot () (B3 B2, B P s | 155
+( ,:F)(pl D2, P35 Pa, Ps) (ol ] ( )
The helicity amplitudes for ¢gqg¢¢ were calculated in
Ref. [11, 12, 181]. We provide the tree-level and one-
loop results in App. C2. The two-loop amplitudes were
computed in Refs. [182, 183].

2. gggV

The partonic process gggll first appears at one loop,
and thus contributes only at relative O(a?) to y/Z+1 jet.
Nevertheless, for the sake of completeness (and curiosity)
we briefly discuss it here. The helicity operator basis is

OibiJr(i 31 6?4* BS+ By Jeas,
o (o = 5 Bis B3, B Jrsss
O () = 5 Bl BY By Jisss
o, = %Bg_ BY_BS Jiae.  (156)

The color space is two-dimensional. We use the basis

abe _ (ifabc’ dabc) ’ (157)

in terms of which we can write the gggf¢ amplitudes as

Ay (9192930405) = 1d* "% A, (1,2, 3;44,57) ,

Aa (919293€4Z5) =i (ifaIGZGS)Aa(la 27 37 45) 5[) . (158)

We will justify shortly that to all orders, only a single
color structure appears for each of A,, A,. This process
can only occur via a closed quark loop, so there is no
A, contribution. The gggV operators transform under
charge conjugation as

COLS  as () (1, P2, P33 Pa, Ps) T C



K}i‘f\z,\g(g (Pr, P2, P3: Ps, Pa) T . (159)

Charge conjugation invariance of QCD thus leads to

Cgf)\f,\QAS(i)(13171327153;254,155)

= 51;\?)\2A3(¥)(ﬁ17ﬁ27ﬁ3;ﬁ55ﬁ4)

= C53 s () (P1, P2, P Pa, Ps) (160)
where we used Eq. (138) in the last line. This implies
that to all orders in the strong coupling, only the fully
symmetric color structure d®*° can contribute to A, and
C,. For C, the same relation holds but with an addi-
tional minus sign on the right-hand side due to the weak
axial-vector coupling in A,. This implies that for A,
and C, only the fully antisymmetric color structure i
contributes, as given in Eq. (158).

We decompose the gggl¢ Wilson coefficients as

(7A1A2A3(A£)

nf . .
i vy 4+ vl =
=’ {Z [QZQ + Uie%Pz(S%)]leAZ,\S(M)
=1
¢

v —
Ar )PZ(345) Ca,\1>\2>\3(A£)} )

+ sin (20w (161)

where
(162)
and we have

Corrors(+) (D1, P2 P35 Pa, Ps)

0
- (Av,ﬁn(w X2 3As. 4;,5e)>’
Corirars (1) (B1s 2, Pa; Pa, Ds)

_ <Aa7ﬁn(1*1 2X2 3As. 4},5Z)>
0 )

Co,arirors(—) (D1, P2, P35 P4, Ps)

= qv,a,\l,\z,\g(Jr)(13171327153;1557154)- (163)

For brevity, we have not written out the various gluon he-
licity combinations. The one-loop amplitudes for gggZ
were calculated in Ref. [184], and the two-loop ampli-
tudes were computed in Ref. [185]. Since their contribu-
tion is very small we do not repeat them here.

C. V 42 Jets

Here we consider the processes ¢'¢'qqV, qgqqV, and
g9qqV. The ggggV process is allowed as well, but only
arises at one loop, so we do not explicitly consider here. It
can be treated similarly to gggV', but using the gggg color
basis analogous to that for ggggH given in Eq. (130).

The NLO helicity amplitudes for V' 42 jets were calcu-
lated in Refs. [14, 186] assuming that all kinematic scales
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are smaller than the top mass m; and including the 1/m?
corrections. We give the full expressions for the LO re-
sults in App. C3. Since the NLO results are rather long,
we do not repeat them, but we show how to convert the
results of Refs. [14, 186] to our notation.

1. ¢'qqqV and qGqqV

For ¢'q qq 00, the helicity operator basis is

apByo a
O(fl +) J '€2+ Jq34+ Juset
apByo a 56
O L) = Johay Jq34 Jese+
0P = geB gt
(=;1) — Yo' 12— q34+ £56+L
0P L) = Jghs Ji5a I (164)
(—;— q' 12— Yq34— JL56=E -

For identical quark flavors, ¢g ¢g €2, the basis reduces to
1

apyé
Ol fin) = 4Jq12+Jq34+J€56iv
afyé
O(+ +) T q12+']q34 Jesex

Oaw _ 1 ap

o = 1 Tee (165)

J 34 J£56:i:

For W + 2 jets, the corresponding partonic processes are
qqud v and qq duvl, and the helicity operator basis is

apve
O(f}yxv—) = q12:|: ‘]ﬂd34 Jou 56— 5
afByo af
0 fWWJr) = T 10 Jouse— - (166)
We use the color basis
By _ 2T (5a5 5,),5 , 5a5 575) . (167)

For distinct quark flavors, the color decomposition of the
amplitudes in this basis is

Az (41 3593G10506) (168)

= 2TF1 50116(460136(2 Aw(lq/7 2(7/; 3q, 4q—, 5@7 6[)

1
Bw(lq'a 2@'; 3q74(i; 5¢ 65) :

+ 277100, 650056, N

For identical quark flavors the amplitudes can be ob-
tained from the distinct flavor amplitudes using

= Au (q135q3G40506)
— A (0130493324506)

A (013293G10506)
(169)
where it is to be understood that the electroweak cou-
plings of ¢’ must also be replaced by those of q.

Writing the Wilson coefficients in the decomposition
in Eqs. (136) and (137), we have for the ¢’q'qg £¢ channel

Cxyirgine) (P1, D25 D3, Pa; Ps, Do)

— 2 { [Qqu + Uﬁévg\q Py (856)]
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X éq(Aq,;Aq;Ae)(ﬁl,ﬁg;ﬁ3,ﬁ4;ﬁ5,ﬁ6) The same decomposition is used for the case of identi-
O ¢ ¢ cal flavors, qgqq/¢¢. For the WT channels, qqud (v and
+QQT + UAeU(}{q/ Py(s50)] qq diivl, we have

X Cy(rgirg ire) (P35 D3 D1, D23 D5, Do)

v+ =
. Z[Qte o MPZ(SE)G)}CU()\ i () B 2y B
2 ’ c () = 53— Pw(ss5) C (--2)
AGWF)\-) = 924i 26 W=56 q(Ags—3=)\ 0 )
) sm”- Uy (172)
vy, -
—=t P C o), 170
+ S (20m) 7(856) Ca(r,irgire) ( )} (170)
with the weak couplings
vl =0, vt =0l vl =0%, 0 =01, (171 The coefficients for q'q'qq V' are given by
+ R L + R L
J
- 5 22335,4755/,67)
Co(45+14) (D1, P23 D3, Pa; Ps, D) = < ’q”’”q’e’e—
x(+7+7+)( ) ) ) ) ) % /,2(1/7 3q 74(1 ’52-7 6£ ) 5
- 5223354755/ ,67)
c . ~’~;~’~;~7 _ wﬁn 7qaq7qa4a5_ 7
z(+; ,+)(P1 P2;P3,P4;P5 ps <1{[ mﬁn /’Qq”?)q ,4;,52,6”
Cootrot ) (Pr, o3 Py Pa; s, o) = Cig (i) y (D1, P25 P3, Pa; Do, Ds) »
q,v(— —+; i)( aﬁ?;ﬁfﬂa[u;ﬁ&pﬁ) q,v(-‘r7 ,i)(PQaPlaP4aP37P57p6)
a(f +54) (D1, D23 D3, Da; D5, P6) = a(+ .+ (P2, P1; Pa, D3; D5, D) »
q,'u( ,—,i)( D23 B3, Da; s P6) = —Cou(itst) (P2 Brs Pa, Psi Ps Bo) »
—i—i4) (D1, D2; P3, Pas Ps, Pe) = Ca(+;+;i)(p27p1;p4,p3;p5»p6) , (173)
and for ¢qg qq V' they are given in terms of the amplitudes A, s, and B, an for ¢'d'qqV by
5 o Aﬁn(1+2 1345,47355,67) — % Buan(15,47535,27:57,67)
Coo(s+; (pl,pa;pz,p4;p5,p6)< miinl g Sa 0 Da s T 0 e N ANANC R AN ARCER
alt+it) *Boan(17.27535,47:57.67) — Apan(17,45335,27:5/,6,)
5 Apan(17,2753- 45:55 67)
Co(4—i1)(P1, Po; B3, Pa; Ps, Pe) = (1 e S S S TS ey |9
a(t=5t) ¥ Bean(15,2753,,45:57,67)
Co(4+5—) (D1, D2; D3, Da; P5, P6) = Co(+:4) (D1, D2; D3, Pa; Do Ps)
Cyo(——i4) (D1, P25 P35 Pa; D5y De) = —Coqv(+:+) (P2, P15 Pas P3; D5, Ds) »
Co(——i+)(P1,P2; D3, P45 P5, P6) = Ca(4+5+) (P2, D1 Pa, D3; Ps Pe) - (174)
[
The various relations for the coefficients with flipped he- Oab a  _ 1 B, JeB g
oy = 34— J056+
licities follow from Eq. (138) and charge conjugation in- A 2+7 g34- UE86%>
variance. The tree-level helicity amplitudes are given in Oj_b O‘(é_ 4= i BS_ Jq“éil +Jes6t
App. C3a. abafB a ap
O+_(_;i) = Biy Ba_ Jq34— Jos6+
bap 1 b ap
2. 9947V Oy = 3 Bi- Bo- Jqaas Jusos
abap Lo b a8
- 077(7;i) =3 BY_Bs_ Jy s34 Jeses - (175)
For ggqq¢¢, the helicity operator basis consists of 12
independent operators,
1 _ For W, the corresponding partonic processes are

bap B _ €
Oif(Jr ) = 1+ By J:;l34+ Jiset ggud v and ggduvl, and the helicity operator basis re-



duces to six independent operators,

Oibf(wf) = % 1+ Bg+ Jgdﬂu_ Jou 56—

Oib—a(ﬁwf) = Biy B;_ Jgdﬁ34— S 56—

O = LB B T T

Oib+&fW+) - % iy Bas ‘]55347 Joese—,

Oib,&fwﬂ = (11+ Bg— J?fM, Joes6—

Oafbf&fwﬂ = % ‘B3 Jng, Joe56— - (176)

We use the color basis
T8 — (1T, (T"T) o5, 0[TT"] 8,05) , (177)
and the amplitudes are color-decomposed as

A (9192q332¢506)

=iy [TemTee] A(a(1),0(2); 3¢, 4q; 5, 67)
g€Ss

i tr[TT%) 6anas Ba(1,2:34,44:50,67) . (178)

Writing the Wilson coefficients in the decomposition
in Egs. (136) and (137), we have for the gg ¢g ¢¢ channel

Cxixa(0gine) (D1, D2; D3, Pas Ps, Po)

= ¢ { [QfQ(I + Uf\evglxqu(‘%ﬁ)] C_:qA1>\2(>\q;>\£)(' . )

ny . .
. vy 4+t —
+ Z [QZQ’L + Uf\g%PZ(SSG)} CU}\1)\2()\{1;)\[)(' . )

i=1
+ Uif\lpz(%ﬁ)é A A2 (Ags (~-)} (179)
sin(26w) aA1A2(Agide) ’
with the weak couplings
i =k, vl =0l vl =vf, vl =0]. (180)

For the W7 channels ggud v and gg divl, we have

er(T) .
——24 Py (556) Cyagan(—im) (- ) s

(181)

Crinew)(---) = 2sin? Oy

The coefficients for gg qG V' are then given by

éxxlx2(+;+)(151,152;153,]54;]55,]56)
Az,ﬁn(l:\\172i2; 3447 5? 67)
= Aw,ﬁn(z;‘,1;;3%,46_;5&,%)
Bm,ﬁn(]- 132 2;3q 7417 ;55 76[)

)

—

Cauxiro(+:—) (D1, P25 P3, Pa; Ps, Do)

= qac/\1/\2(+;+)(ﬁlvﬁ%ﬁ&ﬁéﬁﬁ&]%)~ (182)
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The remaining Wilson coefficients are obtained by charge
conjugation invariance as follows,

Cyrorro(—:+) (D1, P25 P3, Pa; Ps, Do)
= VCquoara(+:+) (D1, D2; Pa, P33 Ps5, P6) »

C_;a)\l&(f;:l:)(ﬁlaﬁZ?ﬁBaﬁ4?ﬁ57ﬁ6)
= —VCax,n(4:4) (Brs Do Pas D3 Ps, o)
R 010
with V=1100 (183)
001
The tree-level helicity amplitudes are given in App. C3b.

VII. pp — JETS

In this section, we give the operator basis and matching
relations for pp — 2,3 jets. We consider only the QCD
contributions, so that quarks only appear in same-flavor
quark-antiquark pairs with the same chirality, and so are
described by the currents J;;+. The helicity amplitudes
for each channel are given in App. D.

A. pp — 2 Jets

For pp — 2 jets, the partonic channels ¢7q'q’, qqqq,
qqgg, and gggg contribute. We will discuss each in turn.
The one-loop helicity amplitudes for all partonic chan-
nels were first calculated in Ref. [23]. The tree-level and
one-loop results are given in App. D 1. The two-loop am-
plitudes have also been calculated, and can be found in
Refs. [187, 188] for qggg, Refs. [189-192] for ¢4 4’7, q7 97
and in Refs. [193, 194] for gggg.

1. q4q'q and qGqq

In the case of distinct quark flavors, qq ¢'q’, the helicity
basis consists of four independent operators,
apys _ japB 36
Oty = Jorar Jysas s
apys _ japB 36
O(+;7) - Jq 12+ Jq/ 34—
aB7 _ 7af 136
O = Janz- Jysar
& B0 af 50
orr? i J;,34_.

(=) — (184)

For identical quark flavors, ¢ qq, the helicity basis only
has three independent operators,

asys 1 cap 35
oY = 1 Tisy T3
8576 a8 196
O(OfZ) = Jlazﬁ- T
asys 1 cap 75
O = T T (185)



Here we have not made the flavor label explicit, since
both quark currents have the same flavor. In both cases
we use the color basis

e

TP = oTp (5a5 0055 0af (5,),5) . (186)

The QCD helicity amplitudes for qg ¢’ can be color-
decomposed in the basis of Eq. (186) as

A(qlquéqﬁl) = 2TFi {60&0745013542‘4(1117 217; 311” 4@' (187)

+ % 5a1@26a3&4B(IQ’ 25; 3q/7 417) )
where we have included a factor of 1/N for convenience.
The amplitude vanishes in the case that the quark and
antiquark of the same flavor have the same helicity. This
is equivalent to the fact that the operators of Eq. (184)
provide a complete basis of helicity operators. For iden-
tical quark flavors, the QCD amplitudes can be written

J

q77q77q>

é ]5 vﬁ ;ﬁ ,ﬁ = ( - =
(++) (D1, P2; P3, Pa) %Bﬁn(lj,2g;3;74§)_Aﬁn(l )

_ ( Ann(1F,2753;,47) )
)
=C

Agn(1F,27:35,47) — % Ban (17,47
;.4

C4+—)(P1, P2; P3, Pa)
q b

6(__) (P1,P2; D3, P4)

The relations for C_"(,;i) and é(,,) follow from charge
conjugation invariance. The Wilson coefficient C_"(Jr,) is

equal to 6(+;,), since the amplitude vanishes when the
quark and antiquark of the same flavor have the same
helicity (both 4+ or both —), so there is no exchange
term. The subscript “fin” in Eqgs. (189) and (190) de-
notes the IR-finite part of the helicity amplitudes as dis-
cussed in Sec. IV. Recall that the symmetry factors of
1/4 in Eq. (185) already take care of the interchange of
identical (anti)quarks, so there are no additional symme-
try factors needed for 6<++). Explicit expressions for all
required partial amplitudes at tree level and one loop are
given in App. D1a.

2. g99q9q

For ggqq, the helicity basis has a total of six indepen-
dent operators,

_ 1 _
abaf __ a b ap
O++(+) - 5 1+ 82+ J34+ ’

abaf a b aB
0L (4 =B1y By Jayy
_ 1 _
abaf a b af
0™ = LBy By IS

(++) (P2, P13 Pa, P3) -
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in terms of the amplitudes for the distinct flavor case as

Alq1324304) = A(1329503) — A1 046532) - (188)

The Wilson coefficients for q7¢’'q’ are then given by

. o Asn(1F,27:34,42)
C414) (D1, P25 P3, D ( A N
G Prp2ibon i) = {4 g (14 27158, 47)
- Agn(1F,27:37,45)
C ;= ﬁ 7252;2537254 = ( 4] ql q—7 a )
(+; )( 1 ) %Bﬁn(l(j,%;?)q,,él;)

Cipy (Pr, P23 B3, Ba) = Com) (B2 1 Pas a) »
Clesmy (Pr, D2 B, 9a) = Cly (P2 13 Pass) . (189)
and for ¢qqq they are given in terms of the amplitudes
Aﬁn and Bﬁn for qqq/ql by

~Ban(175,2753,,4F

319¢ %
(190)
[
Oabaﬁ _ 1 a Bb J‘iﬁ
++(7)_§ 1+ ~24 “34—>
aba a a
0l =B By J5)
aba 1 a a
0%l = 5B By T3 (191)

Note that the use of a helicity basis has made it easy to
count the number of required operators. ? For the color
structure, we use the basis

Taba[‘} — ((TaTb)aB’ (TbTa)OAB s tr[TaTb] 50‘6) . (192)

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using the color basis of
Eq. (192) is

A(9192 430)

9 This should be contrasted with the more complicated basis given
in equation (126) of Ref. [195] which is built from fields xn;
and B,t.“ and standard Dirac structures. It can be reduced to a
minimal basis using identities such as O2 = —01, Og = O7 +
4t0O3 —4t04 and Og = O5—201 +O(€) where t = —wiwsning/2,
and then can be related to the basis used here.



=1 Z [T"lcr(1>fz—'llcr(2)]0‘3(LL A(O’(]_)7 0'(2); 3q’ 417)
g€Sy

+itr[T T §pya, B(1,2;34,45) , (193)
from which we can read off the Wilson coefficients,
Aﬁn(1+,2*,3;,4g)
C+7(+)(ﬁlaﬁ2;ﬁ3al~)4) = Aﬁn(2_71+73;74g) )
Bgn(17,27:31,47)
Aﬁn(1+,2+;32_,4qj)
C++(+)(ﬁlaﬁ2;ﬁ3aﬁ4) = Aﬁn(2+a 1+; 33—745) s
Bﬁn(1+,2+;3;,4g)
Aﬁn(l_,2_;3;}_,4q_)
C__()(P1,P2;P3,P4) = | Aan(27,17;37,47) | - (194)
Bﬁn(1_7 27 33_7 4;)

The remaining coefficients follow from charge conjugation
as discussed in Sec. I E,

Cﬂ,\1>\2(7)(1517152;153,254) = V6A1A2(+)(ﬁ17ﬁ2§ﬁ47ﬁ3)7
0 -1 0
-1 0 O
0O 0 -1

with V= (195)

At tree level, the partial amplitudes are well known, and
only the first two entries in C_”+_(i) are nonzero. Explicit
expressions for all amplitudes at tree level and one loop
are given in App. D1b.

3. 9999

For gggg, the helicity basis has five independent oper-
ators,

Oi”ji+ = % ‘1’+B§+B§+B§f+ J
Oibﬁk— = % ‘11+BS+B§+BZ_ )
Oibid—— = % (11+812)+B§—BZ_ )
Oubed | — %Bg_gg_zsg_sﬁ ,

1
obed = 1 B¢ BS BS BY . (196)
We use the color basis
tr{abed] + tr[dcbal
trlacdb] + tr[bdca]
= 1 tr[adbc] + tr[cbdal
abed __
™= 2.2Tp 2tr[ab]tr[cd] ’ (197)
2tr[ac]tr]db]
2tr[ad]tr[bc]

where we have used the shorthand notation

trfab] = tr[T°T"],  tr[abed] = tr[T*TPTTY]. (198)
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Under charge conjugation, the operators transform as

C OIS A 0, T C = OB, 0 T (199)

Thus, charge conjugation invariance of QCD leads to

C«abcd

__ vdeba
A1 A2 A3y C

A1A2A3Ag (200)

In principle, there are three more color structures with a
minus sign instead of the plus sign in the first three lines
in Eq. (197). Since charge conjugation is a symmetry
of QCD, Eq. (200) holds to all orders, so these addi-
tional color structures cannot contribute. In particular,
the color structures in Eq. (197) cannot mix into these
additional structures at any order. Hence, it is sufficient
to consider the reduced basis in Eq. (197) instead of the
9 different color structures, which was used for example
in Ref. [88]. Note that for N = 3 it is possible to further
reduce the color basis by one using the relation

tr[abed + deba) 4 trlacdb + bdcea) + tr[adbe 4 cbdal
= tr[ab|tr[cd] + tr[ac]tr[db] + tr[ad]tr[bc]. (201)

We refrain from doing so, since it makes the structure of
the anomalous dimension matrix less visible, and because
there are no such relations for N > 3.

The color decomposition of the QCD amplitude into
partial amplitudes using the color basis in Eq. (197) is

i
_— E tr[a0 (1) 00 (2) 00 (3) Ao (4)]
2T
0c€S4/Zy

x A(o(1),0(2),0(3),0(4))

+ ) trfae)to)]trlaes) de)
UGS4/Z23

A(91gzg3g4) =

x B(o(1),0(2),0(3),0(4)) |, (202)

from which we obtain the Wilson coeflicients

2A46,(17,2%,37,47)
246,(17,37,47,27)
2A6,(1F,47,27,37)
Ban(17,27,37,47) |
Ban(11,37,47,2%)
Ban(17,47,2%,37)
2A8,(17,2F,3%7,47)
2A6,(17,3%,47,27)
2A6,(17,47,27,3T)
Ban(11,27,3%47) |7
Ban(11,37,47,27)
Ban(17,47,2%37)
2A8,(17,2F, 3% 47)
246, (17,3%, 47, 27)
246, (17,47, 27, 37)
Ban(11,27,3%47T)
Ban(1F,37,4% 27T)
Bgn(17,47,2% 37)

C++——(ﬁ17ﬁ2,ﬁ3,ﬁ4) =

Cy iy~ (P1,P2,P3,P4) =

Ciyy+(P1, D2, P3,Pa) =




C___ (P12, 3, Pa) = é+++,(ﬁ1,ﬁ2,ﬁ37ﬁ4)‘< yol]

C____(P1, P2, D3, P1) = 6++++(ﬁ1,ﬁ2,ﬁ3,ﬁ4)‘< ol

1. gqqqd
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7 and gqdqq

For the case of distinct quark flavors, g q7¢'q, the he-
licity basis consists of eight independent operators,

(203)
. . . . o By o o7
The last two coefficients follow from parity invariance. Oi?fl) =By J3§3+ I 54 s
The factors of two in the first three entries of the coef- 08B _ ga gaB 738
ficients come from combining the two color structures in +(+5-) 1+ “q23+ Yg' 45—

the first three entries in Eq. (197) using charge conjuga-
tion invariance in Eq. (200).

The tree-level amplitudes are well known. At tree level,
only the A amplitudes with two positive and two nega-
tive helicity gluons are nonzero. Because the A ampli-
tudes correspond to a single-trace color structure, which
possesses a cyclic symmetry, the corresponding partial

apys B o
Ol )y =Bl Jyas Sy a5t

+(—+

Oi(_

dﬁ’?(; o aB K/(S
=) Btlli Jq23— Jq/ 45— *

(204)

For identical quark flavors, gqqqq, the basis reduces to
six independent helicity operators,

amplitudes are invariant under the corresponding cyclic 08B _ 1o JaB s
permutations of their arguments. Explicit expressions (+4) T4 TR U284 A5
for the required amplitudes at tree level and one loop are 0BT _ pa  gab g78
. . +(+-) 1+ Y234 Ja5- 5
given in App. D1c. ]
apys a8 176
O35 = 7 Bl J53 Ji._. (205)

B. pp — 3 Jets

The four partonic channels gq3q¢'q, 9q93qq, 999 qq,
and ggggg contribute to pp — 3 jets, which we discuss
in turn. The one-loop partial amplitudes for the differ-
ent partonic channels were calculated in Refs. [22, 24, 25].
Tree-level results for the helicity amplitudes for each par-
tonic process are given in App. D 2.

In both cases we use the color basis

Fa affys a

5 0a5: T 05: T 0as ).
(206)

The QCD helicity amplitudes for g ¢ ¢'g can be color-
decomposed into partial amplitudes in the color basis of

Eq. (206) as

A(QIQQ%(A%) = 2TFi [Tg;(’xs 50¢4&3A(1; 211’ 36; 4(1/7 56’) + Tgiagéaz&sA(l; 4q” 56’; 2(1’ 36)

1, o Lo
+ NTa2&35014565B(1; 2qv 3‘7; 4(1'7 517’) + NTa4&550625¢3‘B(1; 4¢I'7 5‘7/; 2‘17 317)] ’

(207)

where we have used the symmetry ¢G <> ¢’q’, and inserted the factors of 1/N for later convenience. The amplitude
vanishes when the quark and antiquark of the same flavor have the same helicity (both 4+ or both —), in accordance
with the fact that the operators of Eq. (204) provide a complete basis of helicity operators. For identical quark flavors,
the amplitudes can be written in terms of the amplitudes for the distinct flavor case as

A9102030435) = A(9192039435) — A(91423544G3) - (208)
The Wilson coefficients for g q7 ¢’q are then given by
Aﬁn(1+72;a3374;a5;’)
5 o Agn(17547,57:2F37)
C (454 (P13 D2, P33 PasPs) = | 1 I S TR RN I
(+5+) yBﬁnuI,zz,?)z,zl%,@z)
~ Ban(1 4,552 ,37)
Aﬁn(1+a2;a3ga4;a5;)
~ ~ o~ o~~~ Aﬁn(1+;47/75t;2+73j)
Cy (45— (P1; P2, P35 Pas Ps5) = 1p (1+,§+ Ay g+) , (209)
N n 1 g rYq o FghH Vg
%Bﬁn(1+;4;,5;,;2;,3,;)
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and for g qG qq they are given in terms of the amplitudes Ag, and Bg, for gq7q'q by

Aﬁn(l+ 2+,37:4F 57) — Bﬁn(l+ 2+ 5-;4%.3

A ( k) 3_7 q 3_7 q ) B ( ’4(] 9, q) ?,’_ (j_g
= T n(1754% 5-,2% 32 fin 37;27,5-
Ci(4+)(P1; D2, P35 P4y P5) = 1ﬁ O PN A LG I
(++) yBﬁn( ,2;1:3(1 ,4%,5(1_) Aﬁn(l ;;,5(1 ,4;+r 3(2)
NBﬁn( 74q,5q72q, q) Aﬁn( ;4q33qa2q 5@)
Aﬁﬂ(1+7 23_7 3q 74q ’5§ )
5 o Agn(1F;47,57;2F,37
Cy(4-)(P1; P2, P3; Par P5) = iBﬁ(( ot 4-. 4 gl) (210)
N Dfinll 52,9 5% 597
%Bﬁn( 74q a52_72;73¢j_)
[
Charge conjugation invariance of QCD relates the Wilson and we use the color basis
coefficients, .
(T°T"T7), 5
S~ ~ o~ o~~~ bpepal  _
Cx(— ity (D1 P2 P3; as ) = VO (g (Br; s, i s, ) gcgagb%ﬁ
~ - o of
CA(W>(p1;p2,p3;p4,p5) = VCi(4+)(P1; D3, P2; s, Pa) [TeT T, 5
(211) [TaTch}oéB
, pabeel — | [TPT°T )5 | | (215)
with tr[TcTa]TabB
0 10 0 tr[TaTb]Tc
- be
7= -1 0 0 O (212) tr[T 7; ]Ts
“lo 0o -1 0 te[TT TC]%B
0 0 0 -1 tr[T°T°T]0,3

The remaining Wilson coefficients for a negative helicity
gluon follow from parity invariance,

C_(45+) (P13 P2, P3; D4, Ps)

= Gy oy (PP BosBusis)| |
+(—s7) (P1; D2, P3; Pa, Ps) ol
C_(44)(P1; P2, P3; Pa, Ps5)
(213)

:é —_— ~;~7~(;~7~’
+(——) (D13 P2, P33 Pa, P5) el

Explicit expressions for all required partial amplitudes at
tree level are given in App. D 2a.

2. 999q9q

For ggg, qG, we have a basis of eight independent he-
licity operators,

beapf c a8
Oj__:+ i) 3 1+ B2+ B§+ J25i ’
b b
oean — Lpe By By g,
1
b
0(1__63_[&) 3 T BY_BS, ik

Oabc ap

= 3 (214)

a b c
1— BQ— 83 J45:|: )

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using Eq. (215) is

=i Z [Ter T T ]
oc€Ss
X A(U(1)7U(2)70(3);4Q7 5(1)
i)Y [T @ | T
0c€S3/Z>
x B(o(1),0(2),0(3);44,57)
+i0) | [T T @ T 5, 5,
0€S3/Z3

x C(o(1),0(2),

A(919293 Q4t?5)

[ 7N %

(3);44,5q), (216)

from which we can read off the Wilson coefficients,

Agn(17,27,3F;47,57)
Agn(2F,3F,11; 4+ ,57)
Agn (37, 1+ 2+ 4+ ,57)
Agn(3F, 21,11, 4 ,57)
) Agn(17,3F, 2% 4q+ 57)
Coir+)Pr,--5Pa,05) = | Asn(27, 1+ 3:F ;4d,57)
Bgn (37, ~4;;,5q?)
Ban (1% ,2+ 33F 45,57)
Bﬁn(2+73 ti4r,57)
Crn (17, -4;,5;)
Cin (37, 2+ 1t545,57)
(217)



Charge conjugation invariance of QCD relates the coeffi-
cients with opposite quark helicities,

Cixors(—) (D1, D2, P35 Pa, Ps5) =
03x3 13x3
N 13x3 O3x3
with V= ].3><3 5
0
1

(218)
1
0

where 1,4, denotes the n-dimensional identity matrix
and the empty entries are all zero. The remaining coeffi-
cients follow from parity invariance

C__ 4 (4) (1, P2, Psi Pa, Bs)
= C_; — D ) D 9 D ) D ’ D ) ?
'+ +—(3) (D1, P2 P3; Pa, Ps) ol

C,,, y (D1, P2, P3; Pa, Ds)

= C+++(¢)(251>]52»ﬁ3;ﬁ4,ﬁ5)‘ (219)

()

At tree level, the partial amplitudes are well known, and
only the A amplitudes are nonzero. Furthermore, the
partial amplitudes with all negative or all positive he-
licity gluons vanish. Combining the charge and par-
ity relations of Egs. (218) and (219), there are only
three independent amplitudes at tree level, which we
take to be A(1%,2%,37;4F,57), A(2+,37, 1*,4;,5q)
and A(37,17,27;4F,5;). These amplitudes are given
in App. D2b

3. 99999

For ggggg, the basis consists of six independent helicity
operators,

O?ff++ 5! B%+BS+B§+BZ+B§+ )
O, = 5 BY BB BLB;
Oibﬁ:ff 9.3 ?+BS+B§+BZI*B§7 )

obede | = ! 33 By_BS_Bs_Bi, Bg.
obede_ | = o Bg_Bg_Bg_Bg_B§+ :

osbede = o B‘f_Bg_Bg_Bff_Bg_ . (220)

VO xars(+) (D1, D2, D3; D5y Pa) 5
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As before, we only need one operator for each number of
positive and negative helicities. We use the color basis
trlabede] — trledcbal r
tr[acdeb] — tr[bedca]
tr[acbed] — tr[debca]
tr[abced] — tr[decbal)
trlabdec] — tr[cedbal
tr[acbde] — tr[edbca]
tr[adceb] — tr[becda]
trladcbe] — trlebedal
tr[aebdc] — tr[cdbed]
tr[abdce] — tr[ecdba]
tr[aecbd] — tr[dbcea]
tr[acebd] |

Tebett = 2.2Tp acebd] — tr[dbeca , (221

(tr[ced] — tr[dec])tr[ab)

(trabe] — tr[eba])tr|cd]

(tr[acd] — tr[dca])tr[be]

(tr[bec] — tr[ceb])tr[ad]

(tr[adb] — tr[bda])tr|ce]

(tr[ace] — tr[eca])tr[bd]

(tr[bdc] — tr]cdb))tr[ae]

(tr[aed] — tr[dea])tr[bc]

(tr[acb] — tr[bea))tr|de]

(tr[bed] — tr[deb])tr[ac]

where we have used the shorthand notation
trfab - - - cd] = te[TT° - - - T°TY]. (222)

A priori, there are twice as many color structures as in
Eq. (221) with a relative plus sign instead of a minus sign
between the two traces. Under charge conjugation, the
operators transform as
bede Fabede cdch Fabede

CO§1&2(3\3)\4)\5 T C = _031&2(1)\3)\4)\5 (Ta ¢ P) . (223)
Therefore, charge conjugation invariance implies for the
Wilson coeflicients

C«abcde _ Cedcba

A1 A2 A3A4 A5 T 7 Y A1 A2A304 50 (224)

and hence these additional color structures cannot ap-
pear at any order in perturbation theory, either through
matching or renormalization group evolution.

The color decomposition of the QCD amplitude into
partial amplitudes using the color basis of Eq. (221) is

A(9192939495)
i

_2TF{ Z tr(ag(1)0o(2) 00 (3) 00 (4) to (5)]
UESE,/ZE,

x A(o(1),0(2),0(3),0(4),0(5))

+ Y r[e0(1)0(2)Ge )] [0 (1) do(s)]
0 €85/ (Zs % 2>)

x B(o(1),0(2),0(3),0(4),0()) |,  (225)



from which we obtain the Wilson coefficients

Agn(1F,2+,3% 47 57)

Aﬁn(1+a3+747a57a2+)

Aﬁn(1+73+72+,57747)

Agn(17,27,3%,57,47)

Agn(17,27,47,57,3%)

Aﬁn(1+a3+72+747757)

Aﬁn(1+747a3+75ia2+)

Agn(11,47,3% 2% 57)

Aﬁn(1+a5_72+a4_73+)

Aﬁn(1+32+74ia3+757)

o + 5— 2+ 9+ g4—
Coromlprneis) =2 | 4005020200 |

Bgn(31,57,47,1F,2%)

Bgn(17,27,57,3% 47)

Bgn(17,3%,47,2% 57)

Ban(2%,57,37,17,47)

Bgn(11,47,27,3%,57)

Bgn(17,37,57,21 47)

Bgn(27,47,3%,17,57)

Bgn(17,57,47,27,3%)

Bﬁ11(1+53+a2+747a57)

Bgn(27,57,47,1%,3T)
C*f*fi(ﬁla"wﬁf)) = C++++q:(ﬁ1;"'7ﬁ5)‘ )

(el

C———++(Z~)17--~7ﬁ5) = C+++——(ﬁ17--~7ﬁ5)‘< Yol

(226)

For brevity, we have not written out the coefficients
6++++_ and C_"+++++. They have exactly the same
structure as é+++__ with the replacements 4= — 4T
and 47,57 — 47,57, respectively, in the arguments of
the helicity amplitudes. The remaining Wilson coeffi-
cients are given by parity invariance as shown. The over-
all factor of two comes from combining the two color
structures in Eq. (221), which are related by charge con-
jugation.

At tree level, all the B amplitudes vanish, as do all
the amplitudes in C_"++++i and é,,,,¥. By the par-
ity relations given in Eq. (226), only the A amplitudes
in Cy4,__ are then required for the tree-level match-
ing. Since these amplitudes correspond to single trace
color structures, which posses a cyclic symmetry, the re-
quired partial amplitudes are invariant under the corre-
sponding cyclic permutations of their arguments. There-
fore, at tree level, there are only two independent ampli-
tudes, which we take to be Ag,(17,2%7,3%,47,57) and
Agn (11,2747 37, 57). These are given in App. D2c.
Simplifications also occur at one loop, since the B ampli-
tudes can be expressed in terms of sums of permutations
of the A amplitudes [8, 9].
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VIII. RENORMALIZATION GROUP

EVOLUTION

In this section, we discuss the renormalization group
evolution (RGE) of the Wilson coefficients. We start with
a general discussion and give the solution of the RGE to
all orders in perturbation theory. For completeness, we
also explicitly derive the (known) anomalous dimension
at one loop. To discuss the RGE, it is convenient to
consider the operators O in Eq. (54), which are vec-
tors in color space. Lastly, we give explicit results, in
a manifestly crossing symmetric form, for the relevant
color mixing matrices for the color bases we have used
in the previous sections. Since the operators’ renormal-
ization is independent of their helicity structure, we drop
all helicity labels throughout this section for notational
simplicity.

A. General Discussion

The renormalization of the hard scattering in SCET
can either be carried out as operator renormalization,
where the relation between bare and renormalized ma-
trix elements is (Of)bare — ZgTLQ/QZZ7L9/2(6T>renZo, or

with coefficient renormalization where (OT)bareCbare —

Zg“/QZX"/Q<6T>barcfcércn. The relationship between
the two is 20 = 251. Here Z; and Z4 are the wave-
function renormalizations of the SCET collinear quark
and gluon fields &, and A,,, defined in Sec. II B, and
ng =nt +n, , ng =ng +ny,, (227)

are the total number of quark and gluon helicity fields
in the operator (Recall that there are two quark fields in
each of the fermionic helicity currents). The UV diver-
gences for (OT)P2r are given in terms of a local product
(as opposed to a convolution over label momenta), since
we are working at leading power where the operators con-
tain a single field per collinear sector.

Let us consider more explicitly how the renormaliza-
tion works at one loop. The counterterm Feynman rule
at this order is

(Otytree (qu/ 272 Ze - 1) . (228)

At one loop, the UV divergences of (6T>bare are pro-

portional to the tree-level matrix element as (OT)tree D,

where D is a matrix in color space, which denotes the
1/€? and 1/e UV divergences (with u defined in the MS
scheme) of the bare matrix element. The counter term
has to cancel these UV divergences so

~

(O (702 2502 o = 1) = ~(0N)™ D, (229)

which fixes 20 at one loop.



Next consider the renormalization group equations,
working to all orders in «a,. As usual, the p indepen-
dence of the bare operator implies the renormalization
group equation for the Wilson coefficient

(231)

The solution of the RGE in Eq. (230) can be written as

C(p) = U(pao, 1) Cpo) (232)
with the evolution matrix
R Inp
U(po, ) = P exp [/ dln y/ %(u’)] - (233)
In pio

Here, P denotes path-ordering along increasing p, and
1 > po. The path-ordering is necessary since 7o (u) is a
matrix in color space.
The anomalous dimension matrix has the general form
Yo (1) = Teusplas ()] A(?) +Flos ()] (234)
where I'cygp is the cusp anomalous dimension and 3(;3)
is a process-dependent mixing matrix in color space,

which does not depend on ay. Its p dependence is given
by

~

B) = 1nyCa +ngCr)in(T2) + AG).  (239)

which will be demonstrated explicitly at one loop
in Sec. VIIIB. We can then perform the integral
in Eq. (233) by using the running of the coupling,
dag(pu)/dInp = B(as), to switch variables from In u to
as. We find

~

Ulpo, p) = €~
X Pa, €xp [nr(uo, 1) A(p2) + K (o, u)} ,

(ngCa+nqCr)Kr(po,p) (236)

where P,. now denotes path-ordering along decreasing
o, with as(p) < as(po), and

@) Tougp(as) [ 1

Kr(po, p) = / das M/ dals YOV
as(po) ﬁ(as) as(po) /B(O/s)
as(”)

1—‘cus (as)
nr(pos =/ day —P222
(ko 1) o (j10) Bles)

as(p) %

7> y(as)

K. Ko, H) = / da .
’Y( ) as(po) ﬁ(as)

Up to two loops, the noncusp piece ¥(ay) in Eq. (234) is
proportional to the identity operator [196, 197]

(237)

A(as) = (ngvg +ngvé) 1. (238)
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FIG. 1. (a) Collinear one-loop diagrams. (b) Soft one-loop
diagrams connecting two fields ¢ and j in the operator.

In this case, the evolution factor simplifies to

~

U(Mo, ,U) — e*(nycAJanCF)KF(NOM)‘FKW(NO’N)

x exp [ (10, 1) )| (239)
Starting at three loops the noncusp anomalous dimension
is not color diagonal, and starts to depend on a conformal
cross ratio built from factors of p; - p; [198]. (For earlier
work beyond two loops see Refs. [199-207]. The result
of Ref. [198] implies that the conjectured all-order dipole
color structure in Refs. [202, 203] is violated.)

The evolution factors Kt (o, 1), and nr(po, 1) are uni-
versal. Explicit expressions for the integrals in Eq. (237)
to NNLL order, together with the required coefficients
for I'cysp and the 5 function to three loops, are given for
reference in App. E.

B. One-loop Anomalous Dimension

The anomalous dimension J¢(p) is process dependent.
In this subsection, we derive its general form at one loop.
The anomalous dimension of the operators is determined
from the UV divergences in the effective theory. The rel-
evant one-loop diagrams in SCET are shown in Fig. 1.
In pure dimensional regularization the UV and IR di-
vergences cancel such that the bare results for the loop
diagrams vanish. To extract the UV divergences, we reg-
ulate the IR divergences by taking the external particles
off shell with p? = p? # 0.

Since all fields in the operators correspond to dis-
tinct collinear directions, the collinear loop diagrams in
Fig. 1(a) only involve one external line at a time. Differ-
ent external lines can only interact through the exchange
of a soft gluon, shown by the diagrams in Fig. 1(b).

When expressing our results, we use the notation [see
Eq. (73)]

Lil = hl(iplé_) )
1

Lij = ln(f% —i ) . (240)



where s;; = 2p; - p;.
First, we recall the wave function renormalization con-
stants. In Feynman gauge at one loop,

ag 1
Ze=1—22(Cp+---
£ 471'6( r+ )a
ag 1
Za=14+—~(Bo—2C4+---), (241)
47 €

where By = 11/3C4 — 4/3Tpn; is the one-loop beta
function coefficient [see Eq. (E1)], and ny is the number
of considered quark flavors. Here and below, the ellipses
denote possible UV-finite terms, which are irrelevant for
our discussion here. (Using the on-shell scheme for wave
function renormalization, the Z; contain UV-finite pieces,
see App. G.)
The collinear diagrams in Fig. 1(a) contribute

- asC 2 2 2 .
1= 1= S (G O
asCar2 1 2 <1 tree

1=t (G el o,

(242)

where I! denotes the result of the diagram for an external
leg of type i, either quark or gluon.

The soft diagrams in Fig. 1(b) differ from each other
only in their color structure. The result of the diagram
connecting particles i and j (with @ # j) is given by

i Qg2 2 2 2 = e
I7 = ﬁ(:z ELij_zLiJ__ELJ‘J_"F"') (OT>treet§t§,
. . (243)
where ¢ and t¢ are matrices in color space. From

Egs. (242) and (243) we see explicitly that the opera-
tors only mix with respect to the color structure, with
no mixing between operators with distinct helicities.

The action of the matrix ¢ on the color space is to
insert a generator acting on the color index of the ith
particle, i.e.,

;B )
(T "g)...ai... _ _TﬂL Tciai ,
(T#5) i =qfachi i (244)

for quarks, antiquarks, and gluons, respectively. Our ff is
identical to what is usually denoted as T; in the notation
of Refs. [208, 209].

To give an explicit example, consider gg gG. Then, for
quark ¢ = 3 and antiquark j = 4 we have

6T £§ sz — 128304 (T fg Ei)ala2a35l4

— Oa1a26¢30¢4 Toi353 (_T§4&4)Ta1a25354 , (245)
while for gluon ¢ = 1 and quark j = 3,
ol {fli tAg — QM azd3aq ifa1cb1 T;363Tb1a2ﬁ3&4 ) (246)

Plugging in the explicit basis in Eq. (192) and using the
relations in App. A 2, we can rewrite the resulting color
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structures above in terms of the basis in Eq. (192), which
yields

Cr— %C’ A 0 0
515 =— 0 Cr—3Ca 0 |,
Tr Tr Cr
. 3Ca 0 Tp
it =— 0 0 -Tr (247)
0 —-TIr O
The other combinations are computed analogously.
In general, one can easily see that for i = j
Tov o et = ;T o (248)

where C; = Cp for quarks and C; = Cy4 for gluons.
By construction, the color basis 7% “» conserves color,
because each index corresponds to an external particle.
Since ff measures the color charge of the ith particle,
color conservation implies

n

T (38) =0.

=1

(249)

As a simple example, consider gqq for which T%1®2%3 =
T3 ... In this case, Eq. (249) gives

a3

if(llcblTbl + C a1 _ a1 (&

az@s @Bz Baas Tazﬁs Baas

— (it 4 1o, 7)), = 0.

20

(250)

The total bare one-loop matrix element is given
by summing Eq. (242) for each external particle and
Eq. (243) for each pair of distinct particles. The infrared
logarithms L;; have to drop out in the sum of all UV-
divergent contributions. To see that this is indeed the
case, we can use Eq. (248) to rewrite the collinear contri-
butions. Then, the sum of all L;; terms is proportional
to

<6T>tree[z LzltAf tAlc + Z(LlL -+ LJL) ff tA;:|

1<j

= (O (S Lo+ Y Lo )

i#]

_ (Gytree (Z Luff) (Z 55) —0,

where in the last step we used Eq. (249). For the same
reason the 1/¢2 poles in the soft diagrams cancel against
half of the 1/€? poles in the collinear diagrams. The
remaining UV-divergent part of the matrix element is
given by

(251)

Qs

o ~ - 1 1
T\ tree _ t\tree s 7 _
(ON)™D = (07) 4ﬂ[ngCA<e2+e>
1 2y 2+
+ nqCF<§ + E) — —A(u )] . (252)

€



where the color mixing matrix is given by

=D B Ly

1<j

(253)

Combining this result with the identities in Eqs. (248)
and (249), we can easily check that the p dependence of
A(p?) is as in Eq. (235):

722t5t61n< ) Ztctcln( )

1<J

1(ngCa + nyCr) ln(;) .

A(p?) — A(ud)

(254)

We can now compute the anomalous dimension of the
operators. From Egs. (229) and (252), we find at one
loop

> A Ny Nq

Zc:1—D—1[?(ZA—1)+?(Z5—1)}, (255)
which using Eq. (231) yields the one-loop anomalous di-
mension

o (u) = 21

[4A(12) — 1(ngBo +ng3CF)].  (256)

The coefficient of 4 in front of 3(;12) is the one-loop cusp
anomalous dimension coefficient [see Eq. (E2)]. The re-
maining terms determine the noncusp (o) in Eq. (234)

J
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at one loop,

Aas) = == (ngfo + 1y 3Ck) 1 (257)

C. Mixing Matrices

In this section, we give explicit expressions for the mix-
ing matrices for the color bases used in Secs. V, VI, and
VII. For simplicity, we only give explicit expressions for
up to four partons, but allow for additional colorless par-
ticles, such as a Higgs or vector boson. The matrices are
straightforward to evaluate using the color relations in
App. A2, but become rather lengthy for more than four
partons, due to the large number of allowed color struc-
tures, and are more easily evaluated in an automated
way (see for example Ref. [210]). For convenience, we in-
troduce the following short-hand notation for sums and
differences of logarithms L;;,

1. Pure Gluon Mixing Matrices

For gg and ggg in the bases used in Eq. (105) and Eqgs. (110) and (157), we have

3gg(NQ) =Cy L2,

ﬁggg(MQ) =

For gggg in the basis used in Egs. (130) and (197), we have

Agggg(ﬂz)
$CaL12.14.23.34 0 0
0 $CaL12.13.24.34 0
_ 0 0 3CaLi314.93.4

TrLi2.34/(14-23) 0

TrLi2.34/(13-24)
0 TrL13.24/(14-23)
0

TrL14.23/(13-24)

TrLi3.24/(1234)
TrLi4.23/(12-34)

Lijp... =Liyj + L+ ...,
Lij... ki) = (Lij...) = (Lwa....) (258)
with L;; = In(—s;;/p? — i0) as defined in Eq. (73).
1 10
50,4 Li2.13.23 (O 1) . (259)
2TrL14.23/(13-24) 0 217 L12.34/(13-24)
2TrLy3.94/(14-23) 2TFL12.34/(14.23)
0 2017 L14.23/(12.34) 217 L13.24/(12-34)
Calig.34 0 0
0 CaLi3.04 0
0 0 Calig23
(260)

For our color bases formed from multi-trace color structures, the structure of the mixing matrices is simple. Since the
mixing matrices are determined by single gluon exchange, cyclicity is maintained, and all that can occur in the mixing
is that a single trace splits into two or two traces recombine into one. For example, the color structure tr[T*T*TT]
can only mix with

te[TOTPTeTY], [T te[T°T), and  tr[T9T) tr[T°T°]. (261)

Therefore, although the mixing matrices quickly get large as the number of color structures grows, their structure
remains relatively simple. (An alternative approach to the organization of the anomalous dimensions for a large



34

number of partons has been given in Ref. [211].) For the dijet case, i.e., in the absence of additional colorless particles,
the kinematics simplifies to

5 =512 = 534, L =513 =52, U = 514 = 523, (262)
and these matrices were given in Ref. [153], which also gives their eigenvectors and eigenvalues.
2.  Mixing Matrices Involving qq Pairs
For ¢G and gqq in the bases used in Eq. (141) and Egs. (110) and (149), we have
~ ~ 1
Aqq(,uQ) =Cp Lys, Ag qg(uZ) = 5 Calqo.43 + (20}7‘ — CA)L23 . (263)

For qGq'q in the basis used in Egs. (118), (186), and (167), we have

Tr Lyg. 23/(13-24)

< N Cr Ligo3 + (Cp — 1Ca) Lys. :
A 2= A (2 = (CF P23 2 12:34/(13-24) (264
() (") ( Cr L1234 + (Cr — CA) Ly4.23/(13.24) (264)

Tr L13.34/(13-24)
For ggqq in the basis used in Eqgs. (124), (192), and (177), we have

. 3Ca L12.13.24 + (Cr — Ca) L3y 0

) Tr L13.24/(14-23)
Aggea(p”) = 0

(265)

Tr L13.34/(14.23)

Again, these simplify in the dijet case, for which they
were given along with their eigenvectors and eigenvalues
in Ref. [153].

D. Soft Function Evolution

In this section, we review the renormalization group
evolution of the soft function, focusing on our use of the
color basis notation of Sec. III D for nonorthogonal bases.
We will consider the particular case of the IN-jettiness
event shape [95], which allows for a definition of exclu-
sive N-jet production with a factorization theorem of the
form of Eq. (2).

The color mixing matrices of the previous section are
in general complex-valued for physical kinematics. For a
physical channel, some of the appearing s;; are positive,
giving rise to imaginary terms from the logarithms, as in
Eq. (73). Since the cross section is real, these imaginary
terms generated by the renormalization group evolution
must drop out of the final result. We start by describing
the properties of the soft function that ensure that this
is the case. R

Recall that the hard function H for a particular par-
tonic channel k has its color indices contracted with those
of the soft function. Explicitly,
th--'anby--ﬁnsbr"ﬂnm'"an

tr(H,S,) = (266)

b1-Bn b Q1 Qi (YA1 Oy
{Z}[Cl B Siteencgrey
A

1Ca Lizaa23 + (Cp — 3CA) Lya Tr Liaoz)(13.20)

Tr L13.34/(13.24) Ca L2 +CF L3y

(

The soft function is defined as a vacuum matrix element
of a product of soft Wilson lines Y as

Se(M, ni}) = (0| T ¥ ({ni}) 6(M — 31) T ({n:})]0).

(267)

where Y ({n;}) is a product of soft Wilson lines in the
n; directions. It is a matrix in color space, and Yiis
its hermitian conjugate. Here T and T denote time-
ordering and anti-time-ordering respectively. The matri-
ces Y and Y1 are multiplied with each other, i.e. one
of the color indices of the corresponding Wilson lines
are contracted, and the external indices correspond to
1-++Bn and aqp - - - ay, respectively. Thus, for example
Y1y = §ubi... gonbn, The dependence of the soft func-
tion on the particular measurement, as well as the details
of the jet algorithm, are encoded in the measurement
function M, whose precise form is not relevant for the
current discussion.

From the definition of the soft function in Eq. (267)
we see that it is hermitian, namely (Sbl'“ﬁ"“l'“a") =
Sai--anby- “An. In abstract notation, this means SJf =

S,.i, which implies that the product CTS c appearing in
the cross section is real, so imaginary terms that appear
in the Wilson coefficients due to renormalization group
evolution drop out in the final cross section.

While this argument is trivial in a basis independent
form, it is important to emphasize that in a nonorthog-
onal basis it takes a slightly more complicated form. As
discussed in Sec. IIID, in a specific nonorthogonal color



basis, BEq. (266) takes the form CT 5.0 =C*TT §,C as
in Eq. (58), where the matrix 7' is defined in Eq. (56).
Similarly, the matrix representation of §N is not hermi-
tian with respect to the naive conjugate transpose of its
components. Instead, the condition on the reality of the
cross section is given by [see Eq. (57)]

S, =8 =T15TT. (268)

The invariance of the cross section under the RGE

nw—on =0, (269)

i
implies relations between the anomalous dimensions of
the SCET functions appearing in the factorization the-
orem of Eq. (2). In particular, it allows the anomalous
dimension of the soft function to be determined from the
anomalous dimensions of the Wilson coefficients, along
with the anomalous dimensions of the beam and jet func-
tions. The anomalous dimensions of the jet and beam
functions are proportional to the color-space identity.
The anomalous dimensions of the beam and jet func-
tions appearing in the N-jettiness factorization theorem
are equal to all orders in perturbation theory [212] allow-
ing us to use only the jet function anomalous dimension
in the following discussion. Renormalization group con-
sistency then implies that the contributions of the soft
function anomalous dimension not proportional to the
identity, including the color off-diagonal components, are
completely determined by the anomalous dimensions of
the Wilson coefficients.

The soft function for N-jettiness can be written in the
general form of Eq. (267), but with an explicit measure-
ment function

~

Si(kay ko k1, - kn, {ni}) (270)
_ <0’T V() H(S(ki —7) Tf/({ni})’0> .

Here 7; picks out the contribution to the N -jettiness ob-
servable from the momentum region i, whose precise def-
inition can be found in Ref. [98]. The soft function for
N-jettiness was first presented to NLO in Ref. [98], and
more recently analyzed to NNLO in Ref. [213].

The all-orders structure of the renormalization group
evolution for the soft function can be derived from
Eq. (269), and is given by [88, 98]

d ~
Sl )
= [ TLake] 3 sttt - k0 Buttitdon)
+ Se (Kb ALk — K] @7

The soft anomalous dimension 7g, and its conjugate ﬁg,
are given in terms of the anomalous dimension ~y; of the
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jet function and the anomalous dimension of the Wilson
coefficients, 7o defined in Eqs. (230) and (231), as

Fs({ki} ) = =1 Qi (Qiki, ) [T 6(k))
i o

=235 () T T o(ks) (272)

(Here, the Q; are related to the precise N-jettiness defini-
tion, see Ref. [98]). The hermitian conjugates of ¢ and
75 above again refer to the abstract hermitian conjugate
in color space. In a nonorthogonal color basis, they are
given in terms of the complex conjugate transpose com-
ponents according to Eq. (57) as

(273)

IX. CONCLUSIONS

In this paper, we have presented a helicity operator ap-
proach to SCET. Helicities are naturally defined with re-
spect to the external lightlike reference vectors specifying
the jet directions in the effective theory, eliminating the
need to consider complicated Lorentz and gamma matrix
structures in the operator basis. The helicity operators
correspond directly to physical states of definite helicity
and color, which when combined with color organization
techniques, greatly simplifies the construction of a min-
imal operator basis. Furthermore, the helicity operators
are automatically crossing symmetric, and make mani-
fest parity and charge conjugation symmetries, making
it simple to determine relations amongst Wilson coeffi-
cients.

We demonstrated the utility of the helicity operator
approach by explicitly constructing the basis valid to
all orders in perturbation theory for a number of key
processes at the LHC involving jets, and then determin-
ing the matching coefficients. In particular we consid-
ered pp — H + 0,1 jets, pp — W/Z/v 4+ 0,1 jets, and
pp — 2 jets at next-to-leading order, and pp — H + 2
jets, pp = W/Z/v+2 jets, and pp — 3 jets at leading or-
der. We also discussed the dependence of this matching
on the regularization scheme, considering schemes with
helicities in 4 and d dimensions. An important and well-
known simplification of the SCET approach is that when
dimensional regularization is used for both IR and UV
divergences, all loop graphs in the effective theory are
scaleless, and thus vanish. As a result, the hard SCET
Wilson coefficients in the MS scheme, determined from
matching QCD to SCET, are given directly by the IR-
finite parts of color-ordered helicity amplitudes. The use
of our helicity operator basis therefore makes it simple to
combine analytic resummation in SCET with fixed-order
calculations of helicity amplitudes.

The all-orders structure for the renormalization group
evolution of the helicity operator basis was discussed in
detail. At leading power, distinct helicity structures do



not mix, with renormalization group evolution causing
mixing only in color space. This feature is made man-
ifest at the level of the SCET Lagrangian due to the
expansion in the soft and collinear limits. Subtleties as-
sociated with the use of nonorthogonal color bases were
carefully treated, and expressions for the color sum ma-
trix T are given for the used color bases for all processes
considered in the paper. Explicit results are also given
for the one-loop mixing matrices describing the renor-
malization group evolution in color space for the case of
pp — up to 2 jets with an arbitrary number of uncolored
external particles and in a manifestly crossing symmetric
form.

Combining the methods of this paper with known ex-
pressions for jet, beam, and soft functions for particu-
lar exclusive jet cross sections, or jet shapes/observables,
should facilitate analytic resummation for a large number
of processes for which fixed-order amplitudes are known,
or are soon to be calculated.
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Appendix A: Spinor and Color Identities
1. Spinor Algebra

The overall phase of the spinors |p+£) is not determined
by the Dirac equation, p|pt) = 0, and so can be chosen
freely. In the Dirac representation,

o_(1 0 i_ (0 o (01
V= 0 —-1)° Y= _O.i 0 y 5= 10/
(A1)

and taking n}' = (1,0,0,1), we have the standard solu-
tions [146]

\ /p* p+e*i¢p

1 pt el¥r 1 —\/p~

+ = — s —) = —— .
|p > \/i /p_ |p > \/5 _ p+€ 1¢p

pFeior Vo

(A2)
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where

+

1 12
: p tip
p*=p"Fp°, =7

exp(£ig,) = = (A3)
p'p

For negative p® and p* we use the usual branch of the
square root, such that for p® > 0

[(=p)%) =ilpt). (Ad)
The conjugate spinors, (pt|, are defined as
(p£] = sgn(p°) [pL) - (A5)

The additional minus sign for negative p° is included to
use the same branch of the square root for both types of
spinors, i.e., for p® > 0

(=p)E| = =|(=p)%) = = (=) {pt| = i(p£|.

In this way all spinor identities are automatically valid
for both positive and negative momenta, which makes
it easy to use crossing symmetry. The additional signs
only appear in relations which involve explicit complex
conjugation. The most relevant is

(A6)

(p—lg+)* = sgn(®’¢") (g+[p—). (A7)
The spinor products are denoted by
(rq) = (p—lg+), [pq] = (p+lg—) - (AB)

Similarly, for products involving additional gamma ma-
trices, we write

[p"lg) = (p+[v"[g+), (A9)
[plklg) = (p+IKlg+),  (Al0)
[plgk|l] = (p+|dkll—), (A11)

(p*"lgl = (p—|7v"[g—)
(plklg] = (p—Klg—),
(plak|l) = (p—|dk|l+) ,
etc.

Some useful identities, that follow directly from the
definition of the spinors, are

(pa) = —(ap),  [pd] = —lapl, (A12)
[plv*|p) = (p|v*[p] = 2p". (A13)
From the completeness relations
o] = =, (A14)
P = |pl(p| + p)[pl, (A15)
one finds
(pa)la] = 5 tr{(L—e)fd} =20 (AL6)

Combining this with Eq. (A7), it follows that

l(pg)| = |lpgll = V/I2p - ql.

(A7)



The completeness relation is also useful to reduce typical
expressions like

[plqlk) =

to spinor products.
Charge conjugation invariance of the current, the Fierz
identity and the Schouten identity are

[pal{qk) , (A18)

(pIv"lal = lalv"[p) » (A19)
[plvula) k(1) = 2[pk](lq), (A20)
(pq) (k) = (pk){ql) + (pl){kq) - (A21)

Finally, momentum conservation Z?:l p; = 0 implies

S ljil(ik) = 0.

i=1

(A22)

From Eq. (A2), we see that under parity the spinors
transform as

" +) = £eF0 pF) (A23)

and therefore
(p"q") = =€t pq] (A24)
PFq") = —e (@) (pg) . (A25)

When applying the above result to a helicity ampli-
tude, the phases which appear are determined by the
little group scaling (see e.g. Refs. [146, 147, 214] for a
review). The little group is the subgroup of the Lorentz
transformations that fixes a particular momentum. In
terms of the spinor helicity variables, the action of the
little group, which preserves the momentum vector p, is
given by

lp) = z|p), (A26)

1

ol > <.
In the case that the particle with momentum p has he-
licity h, the corresponding helicity amplitude scales as
272" under the little group scaling. This property of the
helicity amplitudes then predicts the phases that appear
in the amplitude under a parity transformation.

The following completeness relation for the polariza-
tion vectors is also useful

* Pulv + Puvq
Z Eﬁ(pa Q) (Ei\(paQ)) = —Yuv + L B #~
A=+ p-q

(A27)

In SCET the collinear quark fields produce projected
spinors

s Ipi>

[pE)n = (A28)

The projected spinor trivially satisfies the relation

i (W \pi>) =0, (A29)
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so it is proportional to |n4).
Eq. (A2), we have

o () (1)

Working in the basis in

) =P [

i (%) i (%)]

Here 0,,, ¢,, and 0, ¢,,, are the polar and azimuthal angle
of the n and p vectors, respectively. In particular, we see
that choosing n* = p*/p°, which can always be done at
leading power since there is a single particle per collinear
sector, we have ¢, = ¢,,, 0, = 0,,, and the simple relation

) = /2 ).

2. Color Algebra

(A30)

(A31)

The generators t? of a general irreducible representa-
tion r of SU(N) satisfy

[t th) =ifebete ) 1242 = C,1, tr[t®td] = T, 6%,

(A32)
where f?¢ are completely antisymmetric, and C, is the
quadratic Casimir of the representation r. The normal-
ization T, is given by T, = C.d,/d, where d, is the di-
mension of the representation and d the dimension of the
Lie algebra.

We denote the generators in the fundamental repre-
sentation by t% = 7%, and the overall normalization is
fixed by choosing a specific value for Tr. The adjoint
representation is given by (t%)p. = —if¢, which implies

facdfbcd 5ab (A33)

We also define the symmetric structure constants as
1
dobe = ——tr[T*{T°, T°}]. (A34)
Tr

For the fundamental and adjoint representations we have
dp =N,d4s=d=N?—-1, and so

N2 -1
CF 2N ) CA I ( 35)
where we have chosen the standard normalization
1
Tg = 3 (A36)

Throughout the text, and for the amplitudes in the ap-
pendices, we have kept T arbitrary. This can be done
using Cr = Tp(N? —1)/N, Ca = 2TrN. The strong
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coupling constant, gs, can be kept convention indepen- We also have
dent, by using g; — gs/vV2TF. o
Thiftee e = AT, (A40)
Some additional useful color identities are 2 o
c: rcad; ere a A qa
T ifeadi fdber =T§5b1+7T T®. (A41)
Ca
aba b
trtpt, = (OT - 7) by, (A37) 3. QCD Color Decompositions

: : Ca :
TTTT" = T 0"1+ (CF - 7) 7", (A38) Here we briefly review a common color decomposition
for QCD NLO amplitudes [5-8]. The color bases used for
the processes discussed in the text are specific examples
of the decompositions given below, and were chosen to
where the second relation is equivalent to the complete-  facilitate the extraction of the matching coefficients from
ness relation the amplitudes literature. For a pedagogical introduc-

tion to color decompositions in QCD amplitudes see for
example Refs. [146, 147].
1 For an n gluon process, a one-loop color decomposition

T5:T0s =Tk ((5ag dy5 — N(SQB 573) . (A39)  in terms of fundamental generators T is given by
J

An(gl e 'gn) = 92_2 Z tr[TaUm T Taa(n)] [A:Lree (0(1)’ e ',U(n)) + gf CAATL;l(U(l)? ) 0’(’17,))}
oc€Sn/Zn
ln/2)+1
+ g5 Z Z tr[T% W o T e=Dgr[T%@ - .. T%] A, (0(1),- -+, 0(n)), (A42)

¢=3 0€Sn/Sc—1,n—ct+1

where A,,.1, A'°° are primitive amplitudes, which can be efficiently calculated using unitarity methods, and the 4,,..
are partial amplitudes which can be written as sums of permutations of the primitive amplitudes. The amplitudes
appearing in this decomposition are separately gauge invariant. In this formula, S,, is the permutation group on n
elements, and §; ; is the subgroup of S;;; which leaves the given trace structure invariant. At tree level, only the
single trace color structure appears.

In the case that additional noncolored particles are also present, an identical decomposition exists, since the color
structure is unaffected. For example, for a process involving n gluons and a Higgs particle, the amplitude satisfies the
same decomposition as in Eq. (A42), but with the partial and primitive amplitudes in Eq. (A42) simply replaced by
A((b, a(l), -, U(n)), where ¢ denotes the Higgs particle [177].

A similar decomposition exists for processes involving ¢g pairs. For example, the one-loop decomposition for a
process with a ¢g pair and n — 2 gluons is given by [25]

-An ((?111293 cee gn) = 9272 Z (T‘a(’(3> e Tad(n))ag {A%ree(lq’ 2q; 0(3)7 Tt O’(Tl)) + 93 CAAn;l (1173 2!1; 0(3)3 ) J(TL)):I

oc€ESH_2

n—3
+ g Z Z tr[T% @ - . T ern] (T2 .. 'T%("))aBAmCu@ 24;0(3), -, a(n))
c=3 Uesn—2/Zc—1

+ gg Z tr[TaU(S) T Taa(nil)] (Taa(m)aBAnm—Z (lq; 2q§ 0(3)7 ) a(n))
0€Sn—2/Zn_3

+ gy Z tr[T%® - T8 5 A1 (1g,24;0(3), -+, 0(n)) . (A43)
ﬂesn—2/Zn—2

This decomposition is easily extended to the case of additional ¢ pairs. As with the gluon case, the same color
decomposition also applies if additional uncolored particles are included in the amplitude.

For more than five particles, the one-loop color decompositions given above do not give a complete basis of color
structures beyond one loop, since color structures with more than two traces can appear. A complete basis of color
structures is required for the SCET basis to guarantee a consistent RGE. A convenient basis of color structures for
one-loop matching is then given by extending the one-loop decomposition to involve all higher trace structures.
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Appendix B: Helicity Amplitudes for Higgs + Jets

In this appendix we give explicit results for the hard matching coefficients for H + 0,1,2 jets. We only explicitly
consider gluon-fusion processes, where the Higgs couples to two gluons through a top-quark loop, and additional
jets correspond to additional gluons, or quark anti-quark pairs. When matching onto SCET we perform a one-step
matching and directly match full QCD onto SCET, as was done for H 4 0 jets in Ref. [97]. Most QCD results are
obtained in the limit of infinite top quark mass, by first integrating out the top quark and matching onto an effective
ggH interaction,

Lhara = 151 HGS,GM™ e, (B1)

which is then used to compute the QCD amplitudes. Here v = (v/2Gr)~Y/? = 246 GeV. From the point of view
of the one-step matching from QCD onto SCET, using Eq. (B1) is just a convenient way to compute the full QCD
amplitude in the m; — oo limit. In particular, the a; corrections to Cy in Eq. (B1) are included in the amplitudes
below, and therefore also in the SCET Wilson coefficients. In this way, if higher-order corrections in 1/m; or the
exact m; dependence for a specific amplitude are known, they can easily be included in the QCD amplitudes and the
corresponding SCET Wilson coefficients. We illustrate this for the case of H + 0 jets below.

We separate the QCD amplitudes into their IR-divergent and IR-finite parts

A= Adiv + Aﬁn ’
B = Bgiv + Bfin (B2)

where Ag,, Bga, enter the matching coefficients in Sec. V. For simplicity, we drop the subscript “fin” for those
amplitudes that have no divergent parts, i.e. for Ag;y, = 0 we have Ag, = A. For the logarithms we use the notation

2
_ Sij . _ Sij . my .
LZJ—III(_E_IO), L”/H—ln(—?_lo) —ln(—?_l())

1. H + 0 Jets

We expand the amplitudes in powers of a,(p) as

A= 2TFO‘S 2 ( )" (B3)

The amplitudes with opposite helicity gluons vanish to all orders because of angular momentum conservation,
A(1%,2F;3) = 0, (B4)

corresponding to the fact that the helicity operators for these helicity configurations were not included in the basis of
Eq. (104). The lowest order helicity amplitudes including the full m; dependence are given by

0027 - B (2 3
AV 258 = P PO () < PO () o, 3
where the function F(©)(z) is defined as
F(O)(Z):i‘i\l‘lﬂ{ag[sij%lmn, o (56)
For simplicity, we have extracted the (irrelevant) overall phases
el — 12 eP--t = {12) (B7)

(12)” TR



40

Since the two helicity amplitudes for ggH cannot interfere and are equal to each other by parity up to an overall
phase, their higher-order corrections are the same as for the spin-summed ggH form factor. The divergent part of the
NLO amplitudes is given by

2 1
AW (1%, 2%:3,) = AO (1% 2%, 3,) [—62 Ca+—(20aLnz 30)} : (B8)
The IR-finite parts entering the matching coefficients in Eq. (107) at NLO are [97]

2
A0 2553 = A0 253 a1+ ) + 7O ()
t
38 1289 155 5385047
FO@) =, (5 - 22 22 _ 3_ 4
(2) A( 45° T 47257 T 11347 65488500 - )
307 25813 3055907 659504801
C _3 - 2 3 4 O 5 .
+ F( 90 “ T 18900 % T 3969000 © T 1309770000 ) (%)

(B9)

The full analytic expression for F’ (1)(,2) is very long, so we only give the result expanded in z. Since the additional my
dependence coming from F(l)(z) is small and the expansion converges quickly, the expanded result is fully sufficient
for on-shell studies of Higgs production. The IR-finite parts at NNLO are [97]

2
() (1% 9%.3,) = AO)(1* 9%, 1 3 AL TN U 5s py (812 ]2
A (1%,2%:3) = AO (1% 2 ){ CiL1, +3CAﬂoL12+CA[CA( i 6) 3ho—F <4mt)}L12

(3 -2) +ean(y - 5) -t (2] - 0 (25) .

419 7% ot
F®(2) = (7C3 + 11C4Cr — 6CrBo) In(—4z — i0) + Ci(—2—7 + % + % - 44g3)
2255 5% 23¢y

+ CACF(—7 -5 +44g5) +0Aﬁo( o T) - gCATF

4
+ ?c% n CF50(5 - 12@) ~ 3CrTr +0(2). (B10)

217 «?

Here we only give the leading terms in the m; — oo limit. The first few higher-order terms in z in F®)(2) can be
obtained from the results of Refs. [171, 172].

2. H4+1 Jet
The amplitudes for H + 1 jet were calculated in Ref. [32] in the m; — oo limit. Ref. [32] uses Tr = 1 and

gsT/\/2 for the qGg coupling. Thus, we can convert to our conventions by replacing 7% — /27%, and identifying
1/N =Cs —2Cp and N = Cy in the results of Ref. [32]. We expand the amplitudes in powers of o, (1) as

A= M ZA("< ) : (B11)

a. gggH

The tree-level amplitudes entering the matching coefficient Cy = in Eq. (115) are

1 mi ma .
A0 (1t 2t 3t4y) = — H__ H I
V3 (22331 \/2srasnasan]
1 12]3 2 .
AO 1+ 2% 37 4y) = — [12] _ 512 LA (B12)

V2 [13][23] | /2]s19513523]

where we have extracted the (irrelevant) overall phases

G VIs12] V[s13] v/]s23] i _ 112 VIs12] V/s13] V/]s2s] . (B13)

o (12)  (31)  (23) C(12) (12)  [13]  [23]
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The divergent parts of the one-loop amplitudes are

A

v

3 1 3
(1%,2%,3% 4y) = A<°>(1+,2+7?F24H>{—62 Ca+ = |Ca (Lia + Lus + Lus) = 5o } :

(B14)
The finite parts of the gggH amplitudes, which enter the matching coefficient 6++i at one loop are

1
Al (1F,2%, 3% 4) = A0 (17, 27, 3+;4H){f(slz, $13, 828, My, ) + 5(Ca = 2Tpny)

$12813 + S12823 + S13523
mi ’
- _ 1 513523
Aéln)(l"" 2+’ 3 ;4H) = A(O)(l""7 2+, 3 ;4H){f(812, S13, S23, m%q,u) + *(CA — QTFTLf) ST R (B15)
12
where we have extracted the common function

1
f(s12, 813, 823, mFy, 1) = —Cy {2@%2 + Lig + L33) + LiayuLas/m + Loy Losy i + LisjmLos

2
+2Lip (1= 253 ) 4 2Ly (1= 25 ) + 2Lip (1 - 25 ) 5 - 3”] —3Ck. (B16)
miy mi my 4
b. gqqH
The tree-level amplitudes entering the matching coefficient éi(+) in Eq. (114) are
_ 1 [12]2 512
AT 28 35 4y) = —— e +enH
U520 30540 == 5 o] = ool
_ _ 1 <13>2 513 ;
AO (1728 375 4y) = —— — et B17
( q q H) 2 <23> 2|823| ( )
where the (irrelevant) overall phases are given by
ei<I>+(+)H _ [12] V |823| , ei<I>,(+)H _ <13> |823| ) (B18)
(12) [23] [13] (23)
The divergent parts of the one-loop amplitudes are

AN (1F; 28,355 4y) = AQ (1% 2 31

1 1
4H){—62(0A+2OF>+ ~[Ca(Lro+ Lis—Lag)+Cr(2L0-3)

—%} } (B19)

The finite parts of the gqgH amplitudes, which enter the matching coefficient éi(+) at one loop are

AL (1F52F,3754) = AQ (128 37

S
4H){9(5127 $13, 593, M3, j1) + (Cp — Ca) =2 } )
AN (17528 37

S12
_ _ s
23 5m) = 4007520 354 {oCsizosuasmami ) + Ce —Co 2L @)
13
where we have extracted the common function
2 Lo 2 2 . 523
9(s12, 813, 523, My, p) = Ca *§(L12 + Li3 — L33) + Liayu Laz/m — (Lizym + Lizym) Los/m — 2Li2 (1 - miz)
H
22 2 9 . 512 . S13
+5+ 4] +Cp [L23 +3Los — 2L1a i Las/pr — 2L12(1 — m—%{) - 2L12(1 - m—%{)
2 5
1+ = (—L 7) :
+ 5 ] + Bo 23 + 3

(B21)
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3. H + 2 Jets

The full set of tree-level helicity amplitudes for H 4 2 jets in the m; — oo limit were calculated in Ref. [31], and all
amplitudes below are taken from there. We expand the amplitudes A, B, in the decomposition of Eq. (119), Eq. (124),
and Eq. (130), as

A= 2Tpas(p) g5 (12)]2 E:A(n)(o‘sw))"7
n=0

3mv 4m
B= ZT%U(“) (g5 (10))? ;B(n) (aTgf))n (B22)

For simplicity, we only give explicit results for the tree-level amplitudes in this appendix. To reduce the length of
expressions, we use the kinematic variables s;j;, defined by

sijk = (i + D+ pr)® = sij + Sik + Sjk - (B23)

The H + 2 jets process is nonplanar, which means that we cannot remove all the relative phases in the amplitudes.
It is therefore most convenient to keep all expressions in spinor helicity notation. We will explicitly demonstrate an
example of the phases which appear in Egs. (B28) and (B29).

a. qdq'qH and qqqqH

The tree-level amplitudes entering the Wilson coefficients é(+;i) and 5(+i) in Egs. (121) and (122) are

_ _ _ _ 1 (24)2 [13]?
AO(1F 27,37 47 5) = —BO(1F,27:3% 47 5y) = =
(q7 G 2q 2q H) (qa g °q > g H) 2 <12><34>+[12H34] )

AT 2737 4%:55) = —BO(1F,27:3,4%,:55) = LT (23 + (14" (B24)
47747 %" "a" 9774 %" 7" 2 (12)(34) " [12][34] |

b. gg9qqH

The tree-level amplitudes entering the Wilson coefficients é+_(+), é++(+), and é__(+) in Eq. (126) are

SN - 1k 13
AT 2550 40550) = T3, Ty ~ (o)
e e P (e
AT TS50 = 3~ T2)08)68
et sy (124319223 1 1y [21+34)213)  [3[1+2)4)2
A(O)(1+’2+,3q+,4q,5H)77W<g Q)Jr S130534(14) *<12><14><24>[34],

A(O)(l_, 2=.3+ 4= 5H) _

rEq q)

(21 + 4|3]3(14) (L N L) (12 4+ 437(24) (42 +1/3]2
5134[13] $234534(23] [12][13](23](34) °
In these expressions we have eliminated the Higgs momentum, ps, using momentum conservation, so that all momenta
appearing in the above expressions are lightlike. We have also used an extended spinor-helicity sandwich, defined by
[il7 + K|I) = [i]7]1) + [i]k|l) to simplify notation.
All the B amplitudes vanish at tree level,

B25
S14 534 ( )

BO T, 27:3F 4-:5,) = BOF, 2435 47:5,) = BO (17,2737 ,4-:54) = 0. (B26)
c. g9999H

The tree-level amplitudes entering the Wilson coefficients Cy __, Co 4y _, and Co 444 in Eq. (133) are

—2M},

A+ 2% 3% 4ti5,) = (12)(23)(34)(41) ’
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r 2 2 2 2 2 2
AQ(1+ 9+ 3+ 4= 5,) = 2 (112 +314)%[23] | [21 +314)[13]*  [3]1+ 2]4)*[12]

59234523534 5134514534 5124512514
[13] s12[112 + 3|4)  s23[3|1 + 2|4)
T2 23) 34 ( 34) (a) “318123)] ’

. I BT (34)*
AVOT2037475m) = 2| o + <12><23><34><41>} ’

0 - N (34)*
A 47,2575 50) =2 [ 53y ) (8 ) (B27)

To illustrate the relative phases that appear in these amplitudes, we can rewrite the amplitude
A©)(1F 2+ 37 47;5y) in terms of the Lorentz invariants Sij

] 2 2
AL, 27,37, 47;5p) = 26T L2 et ] (B28)

vV |512523534514| \/ |512523534514

with

o= 28 arg{ i 823[_81283% + 813824 + 514523 — i(\/af 2\/5\/@31.4)] }
—s12534(y/513 — 1y/523) + (13524 — s14823 + 1v/@) (/513 + 11/523)
o= 16(€MVp0p/1Lp5p§pZ)2 = 4513514523524 — (S12534 — S13524 — 514823)2 >0,
B = sgn(€eupop PsP5D]) - (B29)

The branch cut of the square root is given by the usual prescription, \/s;j = (/si; +10 = iy/ |si;| if si; < 0. Our
convention for the anti-symmetric Levi-Civita tensor is €103 = —1. For thls process we can choose a frame where all
but one of the momenta p; through py lie in a plane (with ps determined by momentum conservation). The phase ¢
is needed to determine the momentum of the nonplanar momentum and the sign [ resolves which side of the plane
this particle is on, which is not captured by the s;; (because they are symmetric with respect to a reflection about
the plane). We note the simplicity of the spinor-helicity expression as compared with the explicit expression for the
phases.

Appendix C: Helicity Amplitudes for Vector Boson + Jets

In this appendix we give all required partial amplitudes for the vector boson + jets processes discussed in Sec. VI.
For each of the amplitudes Ag 44, Bg,v,o defined in Sec. VI, we split the amplitude into its IR-divergent and IR-finite
parts,

X = Xdiv + Xﬁna (Cl)

where X stands for any of Ay, . and By, . For the logarithms we use the notation

Lij=In (‘% - 10) Liji = Ly — Ly = ln(—% - 10) In (_AT - 0) (C2)

1. V 40 Jets

In this section we give the amplitudes Ag 4 o for V 4 0 jets. For each partonic channel, we expand the amplitudes
as

X2 ©)

where X stands for any of A, ,. The tree-level and one-loop helicity amplitudes entering the matching coefficient in
Eq. (146) are given by
[13](24)

)

0)(1+ + :
A( )(1q,2q,3e,4£) —2i p_
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(1) — gt 4= — —at 4- z2 1
A (A 27535 40y = AV (1F 27537 47) Cr [—62 +- (2L12 — 3)} ,
2
1) - -y _ - - s
At(z,ﬁn(lja%j 732_74[) - A((JO)(lgvzq 732_74[)017 |:_L%2 +3L12 — 8+ 6:| )

AP =AM = 4O = AW = 0. (C4)

2. V41 Jet

In this section we give the amplitudes Ag . for V 41 jets. Each amplitude is expanded as
- as(w)\"
X =g, x® (7) . C5
(0 3 X (%5 (C5)

where X stands for any of A, , 4. The tree-level and one-loop helicity amplitudes for V 4 1 jets were calculated in
Refs. [11, 12, 14, 181]. We use the results given in Ref. [14], which uses T = 1 and g,7/+/2 for the ¢gg coupling. We
can thus convert to our conventions by replacing 7% — v/2T?, and identifying 1/N = C4 — 2Cp and N = C4. The
one-loop amplitudes are given in the FDH scheme in Ref. [14], which we convert to the HV scheme using Eqs. (100)
and (101).

The tree-level amplitudes entering the matching coefficient C_"IJF(JHH in Eq. (154) is given by

2
A((IO)(1+.2+ 3j.4+ 5—) — _2\/5 <35>

'TerTar ety (12)(13)(45)
Ag)O) — A((IO) =0. (C6)
The divergent part of the one-loop helicity amplitude is given by
AN (28 30548 57) = AV (1% 2F, 3734/ ,57)
1 1
X {—62(CA +2CF) + - [CA(LH + L1z — Laz) + Cp(2L23 — 3) — %} } (C7)
The finite parts entering the matching coefficients at one loop are
1 - _ _ _
AN (ot 304 57) = AD(F 2k 35041 57)
C 2 C 2
x QA (L~ Dl +3Lis =T+ 5 ) + (Cr = =2 (~ L3 +3Lss — 8+ =)
2 3 2 6
S12 S13 <3|24|5> S13 1 <3‘24‘5>2 S13
Cy|—Ls_{|—,— Lo(— ) — =~——5—5-Li(—
+ A|: S 1(5457 545) + <35>545 (845> 2 <35>2535 1(545)
S12 823 <25>2<13>2 <15><23> + <13><25> S13 S23
Cx—2Cp)|Ls1| —,— — Ls_ . (283 223
+( 4 F)|: S 1(545’ 545) + <<12>2<35>2 <12><35> S 1(845’ 545)
2|12](25)(13 s 25)2[2|1]3)(13 S 3|2115)(25)(13 S
4 212]25) >Lo(£’)+< >[||2>< >L(ﬁ)_<| |><2>< >L<£)
<35>S45 S45 <12><35> S13 S13 <12><35> S923 S23
13)2[1]2]5)2 S 112|3)[4]1]5)(45) (13 S
B UL T T BT
2<35> S13 513 <35> S53 $23
o L4)([12)[34] + [13][24]){13) (45)
2(35)2[13][23][45] ’
1 s 1
A 1+ 24 3-:4F 57) = 4v/2Tx [12][14 L () - ——
D12, 37:47.57) = VAT a5) | 1 (2) - o
AWM =0. (C8)

The contributions from virtual top quark loops are calculated in an expansion in 1/m; to order 1/m? in Ref. [14],
hence the divergent behavior of A((ll) as my — 0. To reduce the length of the expressions, we have used the commonly
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defined functions
Inr Lo(r)+1 . . w2
Lo(r) = T Ll(r):%, Ls_1(r1,7r2) = Lig(1 —71) + Liz(1 — r2) + Inry lnrg—g. (C9)
The proper branch cut of logarithms follows from the prescriptions s;; — s;; + i0. The proper branch cut of the
dilogarithm follows from that of the logarithm through the identity

Im[Liz(1 —r)] = —=In(1 —r) Im[Inr] . (C10)

3. V 4+ 2 Jets

In this section, we give the amplitudes Ag 4,4, Bgv,a for V 4+ 2 jets. Each amplitude is expanded as

X = g ()2 3 X (2U)", (c11)

where X stands for any of Ag 4 ¢ Or By v.q. We also define the kinematic variables s;;;, as
Sijk = (Di +pj + Pe)® = Sij + Sik + Sjk - (C12)

The one-loop helicity amplitudes for ¢'¢’qqV and qgqqV were calculated in Ref. [186]. The one-loop helicity ampli-
tudes for ggqqV were calculated in Ref. [14], which also gives compact expressions for the four-quark amplitudes,
which we use here. The contributions from virtual top quark loops are calculated in an expansion in 1/m; to order
1/m? in Ref. [14].

Ref. [14] uses Tr = 1 and g,T%/ V2 for the qGg coupling. We can thus convert to our conventions by replacing
T* — +/2T°, and identifying 1/N = C4 — 2Cr and N = C4. The one-loop amplitudes are given in the FDH scheme
in Ref. [14], which we convert to the HV scheme using Egs. (100) and (101).

a. ¢'qqqV and qGqqV

The tree-level amplitudes for ¢'q'qq V and ¢qqqV entering the Wilson coefficients in Egs. (173) and (174) are given
by

AP (1] 20535 47:57,6,) = =B (1), 2:35F, 47157 ,6;)
2 {[13} (46) ((12)[15] — (23)[35]) n (24)[35]([12](26) + [14]<46>)}
512556 5123 5124
AP (128535 47:57,67) = =B (1,,,28:3F, 47157 ,6;)
2 [[23] (46) ((12)[25] + (13)[35]) n (14)[35]([12](16) — [24]<46>)} 7

)

512556

S123 5124
A = A0 = B0 = BO) — ¢ (C13)

Due to the length of the one-loop ¢’qq@V amplitudes, we only show how to translate the decomposition of the
amplitude in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes
Aij (34,20, 1q,4q) of Ref. [14] as

Bo
€

Bo

AD (L, 24334, 44567,57) = —i327° N A1 (30,20, 10, 4g) —

1 —
¢ +QCF7gCA)A((IO)(]'q/v2(7’;3‘1’4'1;62_’5[7)’

BO (141, 24134443 67,57 ) = —1327° N Ag2(34, 20, 10, 4q) — <?
AN (1g,24334,44:6/,5;) = =B (1gr, 243 34,4416/ ,5; ) = —1327° Agi3(34. 20, 1, 4q) »
AN =B =0, (C14)

1
+2Cfp — §CA)B§O)(1q’a26’%3q’4q?62’5€?)’

The overall factor —i 3272 is due to our different normalization conventions. We have not included helicity labels, as
these relations are true for all helicity combinations. Note that the partial amplitudes A;.; do not include labels for

the lepton momenta, which are implicitly taken as 6;, 5; . The terms in the first two lines proportional to AEIO) and

B§°> come from the UV renormalization and switching from FDH to HV.
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b. ggqqV

The tree-level amplitudes for gg ¢g§V entering the matching coefficients in Eq. (182) are given by

L (46)?
AO(1F, 27535 47557 6,) = T3y 113 (2B (56)
4 [[13](23)(46)((23)[35] — (12)[15])  (24)[35][14]([12](26) + [14](46))
AéO)(1+,2 ,3;,4q,54,6z) o | (13)5123 + 2415121
4 ([121(26) + [14](46))((23)(35] — (12)[15])
(13)[24] ’
©) (- _y_ 4 [[232(46)((12)[25] + (13)[35]) | (14)*[35]([12](16) — [24](46))
AO (1 2+’3;74q 57 67) = 812856 | [13]s5123 - (24)s124
[23](14)[35](46) ]
13](24) ’
AP =AY =B = B® =B = 0. (C15)

Due to the length of the one-loop gg qg V' amplitudes, we again only show how to translate the decomposition of
the amplitude in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes
Aii(3¢,1,2,47), AY ;34,47 1,2), and A% (34,44 1,2) of Ref. [14] as

—i647T2NA6;1(3q,1,274q)—(%—i-CF)AgO)( 1,2;34,44;67,57),

A (1,2:34,44;67,57) .5,

B{V(1,2;34,44:6,5; ) = —1647° Ag;3(34,44:1,2) ,

A (1,2:3,,44;6],5;) = —i64m” AY,(34,44;1,2)

B{V(1,2;34,44;6F .5, ) = +i647” 3Ag#l(z>,q,4@;1,2),

A (1,2:34,44:6/,5;) = —i64m” AT (34, 44;1,2)

BWM(1,2;3,,44 65,5 ;) =—i64n? N [A%5 (34,445 1,2) — A% (34,44:1,2) — A (34,44:2,1)] - (C16)

The overall factor —i 6472 is due to our different normalization conventions. We have not included helicity labels, as
these relations are true for all helicity combinations. Note that the partial amplitudes A;.; do not include labels for

the lepton momenta, which are implicitly taken as 6}, 57 . The term in the first line proportional to A,(ZO) comes from
the UV renormalization and switching from FDH to HV.

Appendix D: Helicity Amplitudes for pp — Jets
1. pp — 2 Jets

In this appendix we give explicit expressions for all partial amplitudes that are required in Eqgs. (189), (190), (194),
and (203), for the various partonic channels of the pp — 2 jets process. Since this process is planar, we can write all
amplitudes for a given set of helicities with a common overall phase extracted, which is determined by the phases of
the external particles. In this way, we do not need to worry about relative phases between the Wilson coefficients for
different color structures when they mix under renormalization. The cross section does not depend on this overall
phase. This simplifies the numerical implementation considerably for this process, as it avoids having to implement
the complex spinor algebra. To extract the overall phase from the amplitudes, the following relations for the relative
phases between the spinor products are useful,

(12)  (34) (14) (23) (13) (24)

IR R T I T R TE T (b1)

These relations follow from Eq. (A22) with n = 4.
We split the partial amplitudes into their IR-divergent and IR-finite parts,

A= Adiv + Aﬁn ) B = Bdiv + Bﬁn y (D2)
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where the IR-finite parts enter the matching coefficients. We expand the amplitudes and Wilson coefficients in powers
of ag(u) as

X = [gu(w)? 3 X0 (2)", (D3)
n=0

where X stands for any of Agiy fin, Bdiv,fin, and X 0 and X@) are the tree-level and one-loop contributions, respec-
tively. For simplicity, we drop the subscript “fin” for those amplitudes that have no divergent parts, e.g., for the

tree-level amplitudes Aé?‘), =0 and Agl)]) = A, For the logarithms we use the notation

_ Sijg . _ _ Sij . Skl .
Lij = ln(—ﬁ - 10) . Lijm=Lij— Ly = ln(—ﬁ - 10) - 1n(—P - 10) . (D4)

a. qGq'q and qGqq

Here we list all partial amplitudes up to one loop entering the Wilson coefficients in Eqgs. (189) and (190). The
one-loop helicity amplitudes for ¢q7 ¢'7 and qq g7 were first calculated in Ref. [23], and the two-loop helicity amplitudes
were computed in Refs. [191, 192]. We find agreement between the one-loop results of Ref. [191] and Ref. [192], from
which we take our results.!® Our one-loop matching coefficients agree with the calculation of Ref. [88].

The tree-level amplitudes are

(4)[13] 51

A0t 2-.3% 47) = —BO(1F 2-:3% 45) = — - PO
(15237 47) = ~BO1; 2537, 45) = -2 2w
0) /14 o—.o0— A4+\ 0)(14+ o9—.a— 4+\ _ <23>[14} _ 814 e,
A( )(1q72673q/74(j’)—_B( )(lquqvgq’v4tj/)__ 1o _876 =), (D5)
12
where the phases are given by
. 24) ; (23)
@) — 7< @4y — 1297 D
e 13 e Ok (D6)

We have chosen to express all the one-loop amplitudes in terms of A(O)(lj, 255 3;5, 4;,) and A©) (1?{, 2733, 4?{,). The
divergent parts of the one-loop amplitudes are

g% %¢" g q2%3° %) g

_ _ _ 4 2
Afiliz/(1+ 2753%,42) = AD 1}, 275354 ){—62 Cr+ E[CF(QLH —4Lq3/14 — 3) + Ca(L13/14 — L1213 } ;

D1+ 9o—.9+ 4—
Bio(15,2433,. 45 02533447

)]
_ _ 4 2
)=AO(1F 2738 4-) {@CF — < [Cp(2L12 — 2Ly3/14 — 3) + Ca(Ly3/14 — L12/13)]} ;

q°9q3 ¢ =g q°q ¢ g €

4 2
A (1 2753,,45) = A (1F, 2733, 4+){—62 Cr+ =[Cp(2L1a — 4L13/14 — 3) + Ca(L13/14 — L12/13)] } ;

div(q7q7q’7 q’ qreq g *q

- _ o 4 2
B(l) 1+ 2?' 3 4:'_) = A(O)(1+ 27 . 3 4j_) {EQCF - E [CF(2L12 - 2L13/14 - 3) + CA(L13/14 - L12/13)]} . (D?)

The finite parts entering the Wilson coefficients are
Ai(:iln)(lj;7 2;7 3;_/7 4(7_/) = A(O)(lja 237 3;_/a 4(;/) [f(5127 513, S14, :u) + (4CF - CA) 9(812a 513, 814)] 5

B&)(1+ 2-:30 47) = A(O)(IJr 2-:3%4.47) [4OF LiaL13/14 — f(812, 513, 514, ) + (Ca — 2CF) g(512, 513, 814)] )

q°43 9% g q14359%¢ *g

Ai(aln)(ﬁ 27:3.,48) = ADF, 27:3,,40) [f(s12, 513, 514, 1) + 2(Ca — 2CF) g(s12, $14, 513) ] ,

q°°q1%q" >q q°q°q g

10 Note that there is a minor disagreement here with the earlier Eqgs. (5.10) and (5.12) respectively, must be swapped to achieve
.calculation in Ref. 23], prezugrllfbly %ue to typosQ. gi})eciﬁgall.y, agreement with the results of Refs. [88, 191, 192]. Ref. [192]
in Ref. [23] the factors (log s T ) and (log S T ) in also has a minor typo, having a flipped overall sign for the IR~

divergent terms.
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Bf(iil)(lg_v 275 3;74;) = A0} 27:3,,4%) [4CF L12L13/14 — f(s12, 513, 14, 1) + 2(Cr — Ca) g(s12, 514, 513)]

q°q <9 g
2

s 10
f(s12,513, 814, 1) = CF |:_2L%2 +2L12(3 +4L13/14) — 16 + ?] +Cy <2L12(L12/13 — Lizj14) + 3t 7r2)
5
—Bo <L12 - g) ;
s 1 s
g(s12, 513, 514) = — [ (1 - j) (L?Q/M + 7r2) + L12/14] . (D8)
s13 |2 S13

b. 9943

The one-loop helicity amplitudes for gg qg were first calculated in Ref. [23], and the two-loop helicity amplitudes
were computed in Refs. [187, 188]. We take our results from Ref. [187], converted to our conventions.!!

Here we list all partial amplitudes up to one loop entering the Wilson coefficients in Eq. (194). We start with
the partial amplitudes where the gluons have opposite helicity, which are the only ones having a nonzero tree-level
contribution. The tree-level amplitudes are given by

A(O)(lJr’ 2= 3+ 4j) - _9 <23><24>3 9 \/m ei(b**(*) 7

T (12)(24)(43)(31) S12
A©) (9= 1%,3% 47) = —2 (23)(24)°  _ suvIsissul e, 7
a’74 (21)(14)(43)(32) 512 514
0)(1+ 9—.3+ 4=) —
BO1t, 2735 47) =0. (DY)
In the second step we extracted a common overall phase from the amplitudes, which is given by
. 24) [13][14
i _ (24) [13][14] (D10)

[24] vV |313 814| '

The divergent parts of the corresponding one-loop amplitudes are
_ _ _ _ 2 1
Aéli\)/(1+72 ;3;,4(?):14(0)(1""2 ;3;,46)[—62(014—}—0}7')—1—G(QCFL12+ZCAL13—3CF—B()):| ,

2 1
A((ili‘),(2_, 1+;3;—,4g) = A(O)(2_, 1%:3F 4?) [_62 (CA + CF) + E (QCF Lis+2C4 L1y —3CF — 50):| R

7Yq 0 g
_ _ _ .1 S
B (17,2735 ,47) = A (12 ;3;,4(7)24TF(L12/14+ iLu/lg). (D11)

The corresponding finite parts entering the Wilson coefficient 5+_(+) at one loop are

7 2 2
Aplat 2 37,47) = A0 (1F, 27 3;74(7_){6% (_L%S + L+ 1+ %) + CF(—L%Q +3L1s — 8+ %)
512
+ (0= On) 22 (L + 7).
S14
(L) (9= 1+.9+ 4= ©0) (9 1+.2+ 4] CA 2 | 72 4r?
AW (27, 17;35,47) = A© (27, 1%; 35, 47) 7(—2L14+L12/14—3L12/14+1+T)
72 Cy s s 2 52
13 513 513
C 2 2
+ <7A — CF) o1 (1 422 L12/14) — Lig/1a + S% il I
2 S13 S13 513

Il We find a slight disagreement with the earlier results of Ref. [23]
for their subleading color amplitude in Eq. (5.24). This ampli-
tude appears to have typos since it does not have the correct IR

structure, as determined by the general formula [215] or by the
SCET result in Eq. (G4). Comparing with the matching calcula-
tion of Ref. [88], we find a typo in the 72 term in Wy in Eq. (54),
which should have 3w2u2/(2ts) — —3n2u/(4t).
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s 3 s
BN (17,273, 47) = AO (17,27, 3%, 47 ) 4T | —LisLyg us + £L14L12/13 -1 Slj (L +72)|.  (D12)

The partial amplitudes where both gluons have the same helicity vanish at tree level,

+ 9+.a+ _ + 9+.9+
AO* 238 47) = BOOT 2%:35 47) =0,
0)(1— + — - + —
AO(17 27:3F 47) = BO(17,27;3F,47) = 0. (D13)

The corresponding one-loop amplitudes entering the Wilson coefficients é++(+) and 6__(+) are IR finite. They are

. 11 1
A (AT, 27:3F 47) = 24/[s1s s14] ¥4+ [(CA ~ Cp) =+ 5(Ca = 2Tpng) — } :
13 12

. 1 1 1
A @ 1+:3F 47) = —2¢/[s13 51] €040 {(CA—CF)—+7(CA—2Tan) ]
S14 3 512
+ 9+.9+
BT, 2735 47) =0, (D14)

and
. 1 1 1
AD(17,2753547) = 2¢/[s13 s14] P 0 [(CA —Cr)—+3(Ca = 2T nf)sf} ,
13 12

. 1 1 1
A(l)( N 17 3+ 7) = 72 |513 814| 61<I>,,(+) |:(CA - CF)Q + *(CA — 2TF nf)£:| ,

q’7q 3
BMW(17,27;3,47) =0, (D15)

with the overall phases

i - [12] [13](14) el = 12 _UEE (D16)

(12) \/Js13514] (12] \/Js13514]

¢ 9999

The one-loop helicity amplitudes for gggg were first calculated in Ref. [23], and the two-loop amplitudes were
computed in Refs. [193, 194]. The results given here are taken from Ref. [194], and converted to our conventions. We
also find complete agreement with the expressions given in Ref. [23].12

The amplitudes inherit the cyclic symmetry of the traces, which means that many of the amplitudes appearing in
Eq. (203) are related, for example

A(1T,37,47,27) = A(2T,17,37,47). (D17)

For the convenience of the reader, we will explicitly give all amplitudes needed in Eq. (203). We start with the partial
amplitudes with two positive-helicity and two negative-helicity gluons, which are the only nonvanishing amplitudes
at tree level. We have

A(O)(1+72+,3*74*) = 4& — 432 eiPas—— ’
<12><23><34><41> S14
i 34>4 S12
A(O) 1+73 4 ’2+ :4<— — 4222 1<I>++__’
( )= e
4)4 2 .
A(O)(1+74—’2+73—) —4 (34) 4 S19 P 7 (D18)

(14)(42)(23)(31)  s13514

12 ; : :
We have also compared with the matching calculation of Also as noted in Ref. [89], the last column of Table 5 in Ref. [88]

Ref. [88], which has a minor typo. In particular, in F(s,?,u) in applies to helicities 7, 8, while the second-to-last column applies
Eq. (61) the ny terms must be dropped and So set to 11C4/3. to helicities 9-16.
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with the common overall phase

wre . _ 12 (30 b1
¢ (12) [34] (D19)
The corresponding B(©) all vanish,

BO1* 27 37,47y = BO1*,37,47,2%) = BO (1T 47,27, 37) =0. (D20)

At one loop the B amplitudes can be expressed in terms of the n s-independent part of the AWM

2T
BW @t 27 37,47) = CF [AW (1 27,37, 47) + AW (1F,37,47,27) 4 AW (1,47 27, 37)] (D21)
A ny=0

The same relation also holds for the other helicity assignments. Using the cyclic symmetries of the amplitudes, it
follows that the last three entries in the Wilson coefficients in Eq. (203) at one loop are all equal to each other and are
given by 2T /C4 times the sum of the first three entries at ny = 0. The divergent parts of the one-loop amplitudes
are

AL (1t 2% 37 47)

A(l)

aiv(17,37,47,2%) =

AR (1F,47 2% 37)

= AO (1t 2+ 37 47)

A(0)<1+,3—74—’ 2+)

=A@t 47 2% 37)

4 2 i
—:QCA+ E(CALH +CaLis—Bo)|,

4 2 )
—:QCA + E(CALU +CaLis—Bo)|,

4 2
_*QCA'F*
€

(CaLis+CaLis—Po)l,

8Tk

B 1+, 24,37 ,47) = AQ 1+, 2% 37 47y | =E

(L12/13 + L12/14)

8T
B§}3(1+737,47,2+) = A(O)(1+72+537’47) TF (214L13/14 + 812L13/12>] ’
M) 1+ + 3- 0)(1+ o9+ a— ——STF |
B, (17,47,27,37) = AW(17,27,37,47) . Ly + L14/12 (D22)
The finite parts entering the Wilson coefficient C_”++__ at one loop are

4 4r? )
Aé1r1)(1+’2+737’47) = A(O)(1+72+a37747) |:CA( 2L12L14 N g + %) * BO (L14 B 3):| ’

4 4r? )
ARl0T 374727 = A<°>(1+,374,2+>{CA( Lizlis =5+ 75 ) + o (s - 3)} |

4 4 5
A1(21111)(1+74772+737) = A(O)(1+7472+73){C‘4 <2L14L13 + gﬂz B 3) —Bo (3 + SELM + Sll;lLlB)
—(Ca —2Tpn f)slSSM {1 + (813 — SM) Ly3/14 + (2 - 5132814> <L§3/14 + 7r2>]
512 12 S12 S12
3T, 18514 813814 (L§3/14 n 7r2)} :
1
B (17,25.37.47) = Béi’(lﬂ?) 47,2%) = B{)(1%,47,2%,37)
s S14 (S s
= —4Tp A0 (1F,2%,37,47) [ 2L13 Ligj1a + 2L1a Ligjis + — + = (ﬁ - g)L13/14
S1 S12 S12 \S12 512
514 513 814
+S—(2— . )(L13/14+7r )] (D23)
12 512

Due to Eq. (D17), the first two amplitudes in Eq. (D18), as well as the first two in Eq. (D23), can be obtained from
each other by interchanging 17 «» 2% which corresponds to s13 <+ s14 without an effect on the overall phase.

The amplitudes with only one or no gluon with negative helicity vanish at tree level,
= AO(1F, 37 4% 27)

A(O)(1+72+73+,4i) :A(O)(1+74i72+73+):0,
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BO(1+ 2% 3% 4F) = BO (1T 3T 4% 2F) = BO (1t 4% 2+ 3%) = 0. (D24)
The corresponding one-loop amplitudes are infrared finite. Those entering C_"+++_ are given by
_ 13]2 1 : 513 513
AO* o gty a8 Lo op = 4+ Z(Cy — 2T, ( )
( 3 ) ) ) [41]<12><23>[34] 3( A F Tlf) (514 + 534) € ( A F nf 512 814
AW (1t 3t 47 21) = 4¢1(CA — 2Trng) (513 + s12) = 4P+ L ~(Ca —2Tpn (814 514)
%% [42](21)(13)[34] 3 f 3 P\s12 " 513
AW+ 47 2% 31) = 4¢1(CA —2Tpng) (513 + 514) = 4P+ (CA —2Trny) (812 )
SRR [42](23)(31)[14] 3 f P\sia " 513
BW (1t 2% 37 47) = BW @At 3+ 47 21) = BW A+ 47 2% 3%) = —16T% ei‘1>+++— , (D25)
and those for é++++ are
: 1
AD* ot 3t at) = AW AT 3T 4T 2F) = AW (1F 4F 2% 3F) = 4Pt g(CA —2Trny),
BW(1+, 2%, 3% 4) = BW (11,3 4%, 27) = BW 1+ 4% 2% 3F) = 16Tp el P++++ (D26)
where for convenience we have extracted the overall phases
o _ D808 12 [34) D)
(12) (13) [14] - (12) 34)

2. pp — 3 Jets

In this appendix we give explicit expressions for all partial amplitudes that are required in Egs. (209), (210), (217),
and (226), for the various partonic channels for the pp — 3 jets process. The one-loop amplitudes for these processes
were calculated in Refs. [22, 24, 25], respectively. These papers use Tr = 1 and g,7%/+/2 for the ¢Gg coupling. Thus,
we can convert to our conventions by replacing 7% — v/27%, and identifying 1/N =Cy —2CF and N = C4. Below
we restrict ourselves to giving explicit expressions for the tree-level amplitudes, since the one-loop expressions are
fairly lengthy.

For each partonic channel, we expand the amplitude as

5% () (@s()\"
};X (47T ) (D28)

where X stands for any of Agiv fin, Badiv,fin-

_ oy _o_
a. 99997 and gqqqq

The tree-level amplitudes entering the Wilson coefficients in Egs. (209) and (210) are given by,

A(O)(1+,2;,3q,4;,5;)—ﬁm7 A 45, 55:27,37) = ﬂm’
AO (195 304 5%) = \/§<12><<2155>><<324;)>>2<45>, A(0(1+,4q,,5i,2;,3;)_\/§<13><1g4<>2;<45>7
BO(1+2F, 375 4%,57) = ﬁm, BO(*T 4k 5528 37) = ﬁm,
BO(1+;2F,37; 4 55) = \@<12><<2133>><<3243>>2<45>’ B(O)(1+,4q,,5;,2;,3;)—\/§m. (D29)

Of these helicity amplitudes only 4 are independent. The one-loop amplitudes were computed in Ref. [24].
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b. g9949q

The three independent tree-level partial amplitudes which enter the Wilson coefficients in Eq. (217) are given by,

A1+ ot 37 4T 57) = 22 (34)(35)%

; q q W ’
. N (34)(35)°
AO(2+ 37 1+4F 50) = —2‘/§<13><15><23><24><45> ’

©)(3- 1+ 9+ 4+ _ (35)°
AR AT 24T 50) = =22 ey

BO =c® =9, (D30)
At tree level, the partial amplitudes for the other color structures vanish, B(?) = C(®©) = 0. The one-loop amplitudes
were computed in Ref. [25].

¢ 99999

The two independent partial amplitudes that enter the Wilson coefficients in Eq. (226) are given by the Parke-Taylor
formula [216]

AO(1F 2% 3% 47 57) = 4v2 i
27,3747, (12)(23)(34) (45)(51) ’
i N (45)*
A1+ o+ 4= 3% 5 )—4\/§<12><15><24><34><35>’
oy (D31)

All other amplitudes can be obtained by cyclic permutations. The double-trace color structure does not appear at
tree level, so B(®) = 0. The one-loop amplitudes were calculated in Ref. [22].

Appendix E: RGE Ingredients

In this appendix, we collect explicit results required for the running of the hard matching coefficients required to
NNLL order. We expand the § function and cusp anomalous dimension in powers of «; as

QaSZBn( )”H, Tousp () Zr( )”H. (E1)

Up to three-loop order in the MS scheme, the coefficients of the 3 function are [217, 218]

34 20
Bo = *CA— Tan, 5123031—(*014 +4CF)Tan7

2857 205 1415
b= Ch+ (c% - S5 CrCa— CA> 9Ty + ( Cp+ 22 CA) ATEn?, (E2)

and for the cusp anomalous dimension they are [219, 220]

268 4 80
ro—4, 1= (220, -V,

9 3 9

490 53672 4d4rt 88 8072 836 112( 110 64
r:(—— ) 2 ( SR ) 2T (2 ——) OTpny — - T2n2.
2 3 27 + 15 + 3 Ci o7 o7 Ca2Tpng + (32¢3 3 Cr2Tpng o7 F(I’;L;)

Note that here I'c,sp does not include an overall color factor, it differs from the usual gg case by a factor of Cr.
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For the noncusp anomalous dimension of the Wilson coefficient, which is color diagonal to two loops, we write

F(as) = (angj + nng’)l + O(ai’) ) (E4)

as in Eq. (238). The quark and gluon noncusp anomalous dimensions,

i Qg Qg 2 Qg Qg 2
o= (E>730+ (4 )1 = (E)%ﬁ (E) Ve (E5)

have the following coefficients

Y& = —3CF,

V&, = _CF[<491 - 26(3)0,4 + <g — 2n? +24¢3>0F + (fg ”2>50} ,

&0 = —bo,

"%, = (—599+2<3)Oi+ (—f#ﬁ)cAﬁo—m (E6)

The evolution kernels required for the resummation were defined in Eq. (237) by the integrals

as(p) T (a) o
ot [0, Bl [
as (ko) Blas) (o)

s (1) Ceusp (s
771“(,“0»#) = / das = )
as(po) B(O‘s)

o) %
= o y(as)
f(v(uo,u)-—‘/isum)das o (E7)

Up to two loops, we can simplify the noncusp evolution kernel as

1
Blaf)

Ko (po, 12) = (ng K2 (1o, 12) + g K9 (po, 1)) 1. (E8)

Explicit results to NNLL order are given by

I 4 T
KF(MO7M):_41I%{O<S(Z()) (1_ 1 —lnr) + (F(l)_g(lj(l—r—i-lnr)-i-fﬂoln r

r
s 1-— r r I\ (1—r)2
T (- o (- 57
dm 33 Bolo B3 Lo Bolo 2
I'o I B aZ(po) (T2 BTy BT Be\rP-—-1
i (pos 1) = = [ (—) —1)+ (2) T + - :
280 o Bo 16m2 \TI'o  Bol'o B Bo 2
q
'Yco s (po) To1
Kqu07 = |:Il’l”+ ) _1:|7
7( 2639 ’Ygo )
K9 (1o, 1) = 'Vco [ (7%1 _ Bl) (r — 1)] (E9)
s 260 o Po 7
with 7 = a5 (1) /as(po). The running coupling in the above equations is given by the three-loop expression
X B s (po) {52 1 Bi/mX 1
- In X + —(1——)+—(—+——1) : E10
)~ e T ok o e\ x) T rlx tx (E10)
with X =14 as(po)Bo In(p/ o)/ (2).
[
Appendix F: Color Sum Matrices where T % ig a row vector of color structures which
form a complete basis of the allowed color structures for
For each specific process considered in the text we de-  the particular process. Since convenient color bases are

composed the Wilson coefficients in a color basis as

Ciﬂ<..‘“">—ZC+..<-- JIiren = TGy,

(F1)



generically not orthogonal, the scalar product between
Wilson coefficients is nontrivial. The C' is given by

G = [guonf poron — TR (F2)
where

T= 3 (Toen)iToen, (F3)

A1,...,0p

is the matrix of color sums. R

In this appendix we give explicit expressions for 1" for
all the processes in this paper, both for general SU(N),
as well as a numerical result for the specific case of N = 3.
For simplicity, in this section we restrict ourselves to the
normalization convention Tp = 1/2, and C4 = N, and
write the results for general SU(N) in terms of only Cy4
and Cp.

For ¢G and gg in the basis in Eq. (105), we have

Tyg=Ca=3, T,y=204Cp=38. (F4)

For g qq and ggg in the basis Eq. (110), we have

faqé =CaCp =4,

-~ C? 0 8/90

Togg =2CF ( 0 o3 4) =3 (0 5) - (5
For ¢Gqq and ¢4 ¢'q in the basis Eq. (186), we have
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Togqa = Toqqq = (Ci 02) = (3 9) : (F6)

For gg qq in the basis Eq. (192), we have

2CF 20 —Cy 1

. CAC
g = —LE 20 —Cs  20F 1
1 1 Ca
o [8 —13
—Z1-1 8 3], (F7)
313 39

and for gggg in the basis Eq. (197), we have

abbcdec
babccd
=~ CaCr b badecc
9999 = T g4 cede f [l (F8)
dccecfelf
cdc f fe
where
9 1 23
a:ci—icAchc%JrZ:ﬁ,
1
bZCi—5CACF+6CIQ;‘=—§,
4 (2CF — Ca) 1

C:CF:§’ d:72 :_6’

54
1
6:CFCA:4, fz? (Fg)

For g q3qqd and ¢ ¢4 q'q in the basis Eq. (206) we have

Cs O 1 1
EN 0 Cy 1 1
qut?qf?:CACF 1 1 Cs O
1 1 0 Cyu
3011
0311
=4 1130 (F10)
1103
For ggg qq in the basis Eq. (215) we have
abbcddelf fiyj
babdcdifefij
bbaddecif feiiyj
cddabbeffiji
N c dcdbabd felfiji
nggqqu ddecbbaffeyjil, (F11)
e f feffghhOO
feffefhghoo
ffeffehhgOO
i1 1§ 434500074 j
jjji it i1 000j1
where
64 1
a:4CACIQ;~:§, b:CA_2CF:§7
10 8
c=(Ci+1)(Ca—20r) =5, d=-20r=-7,
e=—1, f=204Cr =38, g=20%Cr =24,
h=Cx=3, i=C3-2=7, j=-2. (F12)
For ggggg in the basis Eq. (221) we have
~ Cr (X, X
Ty9999 = 32 ()A(gl" Xi) ) (F13)
where
a —b—-c-b c -b—-c b —c-b--cc 0
b a b —<cb ¢ -b-—-<cb —ccO0 ¢
—c b a -b—-cc-b-c—-b--c 0 ¢ —b
-b—--c-ba b —<cb —0cO0 ¢ b ¢
c b —-cb a -b-—-0cO0 ¢ —-bc b
3, - b c -b—-c—-ba 0 ¢c b ¢ —-b c
Y= l—c=b—c b - 0 a =b ¢ =b—c—b|"’
b —¢c-b—-—-0c 0 ¢ —ba b ¢ b —c
—c b -0 ¢ b ¢ b a—-b c —b
-b—-—0c 0 ¢ —-b ¢c =b c -ba b ¢
—c 0 ¢ b ¢ -b—cb ¢ b a —b

¢c —b—-c-b ¢c —b a



—d d —e e e —e —d—d—-d e

—d—-d d e —e—e e e d —d
—e—e d d e —e —e d d d
d —e —e —d—-d—-e e d —d —e
—d —e e —e —d—-d—-e e —d —d
<, e —e—e—e e d d —d d —d
27 ld -d-d—-d d —e —e e —e ¢ |’
—e d —d d —e —e d —d —e —e
—e—-d-d e e —d d —e e —d
d d e e —d d d e e e
e e —e d —d—-d d d —e e
—e e d —d-d d —e —e —e —d
S0 -9-90 g g g 0 g
0 f 0 g -9 9 0-9g-9 g
-9 0 f 0 -9 g -9 9 g 0
-9 9 0 f 0 -9 g 0 g ¢
=0 990 f 0-9-99 9
g 9 g -9 0 f 0 -9 g 0|
g 0 -9 g -9 0 f 0 g —g
9 -9 9 0-g9g-9g 0 f 0 g
0 -9 g 9 9 9 g 0 f 0
g g 0 g g 0-g g 0 f
(F14)
and
a=C% —4C% +10 =755, b=20% —4 =14,
c=2, d=2C3Cp =24, e=C4 =3,
f=2C%Cr =172, g=0C%=9 (F15)

Appendix G: IR Divergences

In this appendix, we explicitly check that the IR diver-
gences of QCD are reproduced by SCET. This ensures
that they drop out in the one-loop matching, and that

J

(GHDE©

47

- g 1 1
= (0H = {—62 (ngCa +ngCr) + p (—5

— <6T>(0) {(ZQQ/Q Z;ng/Z ZC . 1) + (1%211/2]%7;51/2

%)

the resulting Wilson coefficients are IR finite. They also
provide a very useful cross check when converting from
the different conventions used in the literature to ours.

The one-loop matching equation relating the SCET
operators and their Wilson coefficients to the QCD am-
plitude is

<(j”r>(0)é(1) + <O’T>(1)(j’(0) = iAW (G1)

First we determine the residues of the propagators en-
tering the LSZ reduction formula. Regulating both UV
and IR divergences in dimensional regularization, all bare
loop integrals in SCET are scaleless and vanish, i.e. the
UV and IR divergences cancel. In particular, for the self-
energy diagrams, we have

Y=Yyv+Xir=0. (G2)
The UV divergences Yyv plus possible additional UV
finite terms X, (as dictated by the renormalization
scheme) determine the wave function renormalization Z.
The remainder g — X, enters the residue R

Zo =1 d(Zuv +25) ’
dp 4=0
d(Xr — X2
Rgl —1_ d(Er — %s) ) (G3)
B o

At one loop in pure dimensional regularization, we then
have Re = Z ~!, and similarly for gluons Ry = Z;l. In
the on-shell scheme Y, = ¥R, so with pure dimensional
regularization Ze = R¢ = Z4 = Ry = 1.

Since all loop diagrams contributing to (6T>(1) vanish,
the only nonzero contributions come from the counter
term in Eq. (229) and the one-loop residues. At one loop
we find

1)]E© = (GHO(Ze - 1A

1

3 - .
o~ SnaCr -+ 280)) |6 ()

where we used the explicit expression for 20 derived in Sec. VIIIB. One can easily check that this exactly reproduces
the IR-divergent parts of the QCD amplitudes. For example, for gg qq, we have

1 1 x
—G—Q(QCA +2CF) + . (—ﬂo —3Cr +284g43(1t ))]

Hence, the IR divergences in <6T>(1)6(0)

Agr (14,2737 47)

’Q’q
O o1 paipa,pa) = | AL (27, 1%:3F,47) (G5)
Bl (1,27 37.47)

and AM cancel each other and do not enter in 6(1), as must be the case.
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