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Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their
fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-
collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto
SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows
one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a
resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can
be employed in factorization theorems to make predictions for exclusive jet cross sections without
the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also
discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions.
To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction
of the operator basis, as well as results for the hard matching coefficients, for pp → H + 0, 1, 2
jets, pp → W/Z/γ + 0, 1, 2 jets, and pp → 2, 3 jets. These operator bases are completely crossing
symmetric, so the results can easily be applied to processes with e+e− and e−p collisions.

I. INTRODUCTION

The production of hadronic jets is one of the most ba-
sic processes at particle colliders. Processes including a
vector boson (W , Z, γ) or Higgs boson together with jets
provide probes of the Standard Model (SM), and are also
dominant backgrounds for many new-physics searches.
Optimizing the precision and discovery potential of these
channels requires accurate predictions of the SM back-
grounds. Furthermore, the growth of the jet substructure
field has sparked a renewed interest in the study of jets
themselves, both for an improved understanding of QCD,
and for applications to identify boosted heavy objects in
and beyond the SM.

Precise predictions for jet production require pertur-
bative calculations including both fixed-order corrections
as well as logarithmic resummation. QCD corrections to
processes with jets are typically enhanced due to phase
space restrictions. Such restrictions often introduce sen-
sitivity to low momentum scales, p, of order a few tens
of GeV, in addition to the hard scale, Q, which is of
order the partonic center-of-mass energy. In this case,
the perturbative series contains large double logarithms
αns lnm(p/Q) with m ≤ 2n. To obtain the best possi-
ble perturbative predictions, these logarithms should be
resummed to all orders in αs.

There has been tremendous progress in the calculation
of fixed-order perturbative amplitudes in QCD using the
spinor helicity formalism [1–4], color ordering techniques
[5–8] and unitarity based methods [9, 10]. NLO predic-
tions are now available for a large number of high mul-
tiplicity final states, including pp → V+ up to 5 jets
[11–21], pp → up to 5 jets [22–29], and pp → H+ up
to 3 jets [30–38], and there are many efforts [39–56] to
fully automatize the computation of one-loop corrections

to generic helicity amplitudes.

For high-multiplicity jet events, the resummation of
large logarithms is typically achieved with parton shower
Monte-Carlo programs. Here, the hard process enters
through tree-level (and also one-loop) matrix elements
and the QCD corrections due to final-state and initial-
state radiation are described by the parton shower. The
parton shower resums logarithms at the leading logarith-
mic (LL) accuracy, with some subleading improvements,
but it is difficult to reliably assess and systematically im-
prove its logarithmic accuracy.

The approach we will take in this paper is to match
onto soft-collinear effective theory (SCET) [57–60], the
effective theory describing the soft and collinear limits of
QCD. In SCET, the QCD corrections at the hard scale
are captured by process-dependent Wilson coefficients.
The low-energy QCD dynamics does not depend on the
details of the hard scattering (other than the underlying
Born kinematics), similar to the parton shower picture.
Resummation in SCET is achieved analytically through
renormalization group evolution (RGE) in the effective
theory, allowing one to systematically improve the loga-
rithmic accuracy and assess the associated perturbative
uncertainties. For example, for dijet event shape vari-
ables in e+e− collisions, SCET has enabled resummation
to N3LL accuracy and global fits for αs(mZ) [61–66]. The
analytic higher-order resummation can also be used to
improve the Monte-Carlo parton-shower description [67–
69]. Furthermore, SCET allows for the direct calculation
of exclusive jet cross sections, eliminating the need for
numerical subtraction schemes for real emissions up to
power corrections.

An important prerequisite for employing SCET is to
obtain the hard matching coefficients, which are ex-
tracted from the fixed-order QCD amplitudes. The
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matching for V + 2 parton and H + 2 parton processes is
well known from the QCD quark and gluon form factors,
and is known to three loops [63, 70, 71]. The matching
for V + 3 partons [72–75], and H + 3 partons [76–79],
has been performed at both NLO and NNLO. Partonic
processes with four external quarks have been studied in
SCET in Refs. [80–87], and the matching for all massless
2 → 2 processes has been obtained at NLO in Ref. [88]
and recently at NNLO in Ref. [89].

For high-multiplicity processes, the usual approach to
constructing an operator basis with explicit Lorentz in-
dices and gamma matrices is laborious. In this paper, we
introduce a convenient formalism, based on helicity op-
erators, which allows for a seamless matching for higher
multiplicity processes onto SCET. A first look at the for-
malism discussed here was already given in Ref. [90]. In-
deed, results for helicity amplitudes are already employed
in the SCET matching calculations mentioned above,
though without the construction of corresponding SCET
operators.

In the spinor helicity formalism, the individual helicity
amplitudes (i.e. the amplitudes for given fixed external
helicities) are calculated, as opposed to calculating the
amplitude for arbitrary external spins in one step and
then summing over all spins at the end. One advantage
is that the individual helicity amplitudes typically yield
more compact expressions. And since they correspond to
distinct external states, they can be squared and summed
at the end. Helicity amplitudes remove the large redun-
dancies in the usual description of (external) gauge fields,
allowing for much simplified calculations particularly for
amplitudes with many external gluons.

As we will see, this helicity-based approach is also
advantageous in SCET. In SCET, as we will review in
Sec. II B, collinear fields carry label directions corre-
sponding to the directions of jets in the process, which
provide natural lightlike vectors with which to define
fields of definite helicity. As we will demonstrate, the
construction of an appropriate operator basis becomes
simple when using operators built out of fields with defi-
nite helicity. Furthermore, using such a helicity operator
basis greatly facilitates the matching of QCD onto SCET,
because one can directly utilize the known QCD helicity
amplitudes for the matching. Together, this substantially
simplifies the study of high-multiplicity jet processes with
SCET.

A. Overview

Consider a process with N final-state jets and L lep-
tons, photons, or other non-strongly interacting particles,
with the underlying hard Born process

κa(qa)κb(qb)→ κ1(q1) · · ·κN+L(qN+L) , (1)

where κa,b denote the colliding partons, and κi denote
the outgoing quarks, gluons, leptons, and other particles
with momenta qi. The incoming partons are along the

beam directions, qµa,b = xa,bP
µ
a,b, where xa,b are the mo-

mentum fractions and Pµa,b the (anti)proton momenta.
For definiteness, we consider two colliding partons, but
our discussion of the matching will be completely cross-
ing symmetric, so it applies equally well to ep and ee
collisions.

In SCET, the active-parton exclusive jet cross section
corresponding to Eq. (1) can be proven to factorize for
a variety of jet resolution variables.1 The factorized ex-
pression for the exclusive jet cross section can be written
schematically in the form

dσ =

∫
dxa dxb dΦN+L(qa+ qb; q1, . . .)M({qi}) (2)

×
∑
κ

tr
[
Ĥκ({qi})Ŝκ

]
⊗
[
BκaBκb

∏
J

JκJ

]
+ · · · .

Here, dΦN+L(qa + qb; q1, . . .) denotes the Lorentz-
invariant phase space for the Born process in Eq. (1),
and M({qi}) denotes the measurement made on the hard
momenta of the jets (which in the factorization are ap-
proximated by the Born momenta qi). The dependence
on the underlying hard interaction is encoded in the hard

function Ĥκ({qi}), where {qi} ≡ {q1, . . . , qN+L}, the sum
over κ ≡ {κa, κb, . . . κN+L} is over all relevant partonic
processes, and the trace is over color. Any dependence
probing softer momenta, such as measuring jet masses
or low pT s, as well as the choice of jet algorithm, will
affect the precise form of the factorization, but not the

hard function Ĥκ. This dependence enters through the

definition of the soft function Ŝκ (describing soft radia-
tion), jet functions JκJ (describing energetic final-state
radiation in the jets) and the beam functions Bi (de-
scribing energetic initial-state radiation along the beam
direction). More precisely, the beam function is given by
Bi =

∑
i′ Iii′ ⊗ fi′ with fi the parton distributions of

the incoming protons, and Iii′ a perturbatively calcula-
ble matching coefficient depending on the measurement
definition [94]. The ellipses at the end of Eq. (2) denote
power-suppressed corrections. All functions in the factor-
ized cross section depend only on the physics at a single
scale. This allows one to evaluate all functions at their
own natural scale, and then evolve them to a common
scale using their RGE. This procedure resums the large
logarithms of scale ratios appearing in the cross section
to all orders in perturbation theory.

The explicit form of the factorization theorem in
Eq. (2), including field-theoretic definitions for the jet,
beam, and soft functions is known for a number of exclu-
sive jet cross sections and measurements of interest. For
example, factorization theorems exist for the N -jet cross

1 Here active parton refers to initial-state quarks or gluons. Proofs
of factorization with initial-state hadrons must also account for
effects due to Glaubers [91], which may or may not cancel, and
whose relevance depends on the observable in question [92, 93].
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section defined using N -jettiness [77, 94–101]. These
have also been utilized to include higher-order resumma-
tion in Monte-Carlo programs [67–69], and are the ba-
sis of the N -jettiness subtraction method for fixed-order
calculations [102, 103]. In addition, there has been a
focus on color-singlet production at small qT [104–108],
as well as the factorization of processes defined with jet
algorithms [76, 109–124], jet shape variables [125–136],
or fragmentation properties [137–145] for identified jets.
The same hard functions also appear in threshold resum-
mation factorization formulas, which are often used to
obtain an approximate higher order result for inclusive
cross sections.

The focus of our paper is the hard function Ĥκ({qi}) in
Eq. (2), which contains the process-dependent underlying
hard interaction of Eq. (1), but is independent of the
particular measurement. In SCET, the dependence on
the hard interaction is encoded in the Wilson coefficients,
~C, of a basis of operators built out of SCET fields. The
Wilson coefficients can be calculated through a matching
calculation from QCD onto the effective theory. The hard
function appearing in the factorization theorem is then
given by

Ĥκ({qi}) =
∑
{λi}

~Cλ1··(··λn)({qi}) ~C†λ1··(··λn)({qi}) . (3)

Here, the {λi} denote helicity labels and the sum runs

over all relevant helicity configurations. The ~C are vec-
tors in color space, and the hard function is therefore a
matrix in color space.

For processes of higher multiplicities, the construction
of a complete basis of SCET operators, and the subse-
quent matching calculation, becomes laborious due to
the proliferation of Lorentz and color structures, simi-
lar to the case of high-multiplicity fixed-order calcula-
tions using standard Feynman diagrams. The use of
SCET helicity fields introduced in this paper, combined
with analogous color management techniques as used in
the calculation of amplitudes, makes the construction of
an operator basis extremely simple, even in the case of
high-multiplicity processes. Furthermore, with this basis
choice, the SCET Wilson coefficients are precisely given
by the IR-finite parts of the color-ordered QCD helic-
ity amplitudes, rendering the matching procedure almost
trivial. Combining the results for the hard function with
known results for the soft, jet, and beam functions, then
allows for the resummation of jet observables in higher
multiplicity processes, which are ubiquitous at the LHC.

The remainder of this paper is organized as follows. In
Sec. II A, we review the notation for the spinor-helicity
formalism. Additional useful helicity and color identities
can be found in App. A. We provide a brief summary of
SCET in Sec. II B. In Sec. III, we introduce SCET helic-
ity fields and operators, and describe the construction of
the helicity and color basis, as well as its symmetry prop-
erties. In Sec. IV, we discuss the matching from QCD
onto the SCET helicity operators, including a discussion

of the dependence on the regularization and renormal-
ization scheme. We then demonstrate the matching ex-
plicitly for H + 0, 1, 2 jets in Sec. V, V + 0, 1, 2 jets in
Sec. VI, and pp → 2, 3 jets in Sec. VII. Explicit results
for the required helicity amplitudes are collected in the
Appendices. In Sec. VIII, we discuss the general renor-
malization group evolution of the hard coefficients, which
involves mixing between different color structures, to all
orders. We give explicit results for the anomalous di-
mensions for up to 4 colored particles plus an arbitrary
number of uncolored particles. We conclude in Sec. IX.

II. NOTATION

A. Helicity Formalism

We will use the standard notation for the spinor alge-
bra (for a review see for example Refs. [146, 147]). Con-
sider the four-component spinor u(p) of a massless Dirac
particle with momentum p, satisfying the massless Dirac
equation,

p/ u(p) = 0 , p2 = 0 . (4)

The charge conjugate (antiparticle) spinor v(p) also sat-
isfies Eq. (4), and we can choose a representation such
that v(p) = u(p). The spinors and conjugate spinors for
the two helicity states are denoted by

|p±〉 =
1± γ5

2
u(p) ,

〈p±| = sgn(p0) ū(p)
1∓ γ5

2
. (5)

For massless particles chirality and helicity agree while
for antiparticles they are opposite, so |p+〉 = u+(p) =
v−(p) corresponds to positive (negative) helicity for par-
ticles (antiparticles). The spinors |p±〉 are defined by
Eqs. (4) and (5) for both physical (p0 > 0) and unphysical
(p0 < 0) momenta. Their explicit expression, including
our overall phase convention, is given in App. A 1.

The spinor products are denoted by

〈pq〉 = 〈p−|q+〉 , [pq] = 〈p+|q−〉 . (6)

They satisfy

〈pq〉 = −〈qp〉 , [pq] = −[qp] , 〈pq〉[qp] = 2p · q . (7)

Additional relations are collected in App. A 1. The minus
sign for p0 < 0 in Eq. (5) is included so the spinor rela-
tions are invariant under inverting the signs of momenta,
p → −p, when crossing particles between the initial and
final state, e.g. 〈(−p)q〉[q(−p)] = 2(−p) · q.

If there are several momenta pi, it is common to ab-
breviate

|pi±〉 = |i±〉 , 〈pipj〉 = 〈ij〉 , [pipj ] = [ij] . (8)
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The polarization vectors of an outgoing gluon with mo-
mentum p are given in the helicity formalism by

εµ+(p, k) =
〈p+|γµ|k+〉√

2〈kp〉
, εµ−(p, k) = −〈p−|γ

µ|k−〉√
2[kp]

,

(9)
where k is an arbitrary reference vector with k2 = 0,
which fixes the gauge of the external gluons. Using the
relations in App. A 1, it is easy to check that

p · ε±(p, k) = k · ε±(p, k) = 0 ,

ε±(p, k) · ε±(p, k) = 0 ,

ε±(p, k) · ε∓(p, k) = −1 ,

ε∗±(p, k) = ε∓(p, k) , (10)

as is required for physical polarization vectors. With
pµ = E(1, 0, 0, 1), the choice kµ = E(1, 0, 0,−1) yields
the conventional

εµ±(p, k) =
1√
2

(0, 1,∓i, 0) . (11)

B. SCET

Soft-collinear effective theory is an effective field the-
ory of QCD that describes the interactions of collinear
and soft particles [57–60] in the presence of a hard inter-
action.2 Collinear particles are characterized by having
large energy and small invariant mass. To separate the
large and small momentum components, it is convenient
to use light-cone coordinates. We define two light-cone
vectors

nµ = (1, ~n) , n̄µ = (1,−~n) , (12)

with ~n a unit three-vector, which satisfy n2 = n̄2 = 0 and
n · n̄ = 2. Any four-momentum p can be decomposed as

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµn⊥ . (13)

An “n-collinear” particle has momentum p close to the
~n direction, so that p scales as (n ·p, n̄ ·p, pn⊥) ∼ n̄ ·p
(λ2, 1, λ), with λ � 1 a small parameter. For example,
for a jet of collinear particles in the ~n direction with total
momentum pJ , n̄ · pJ ' 2EJ corresponds to the large
energy of the jet, while n·pJ ' m2

J/EJ � EJ , where mJ

is the jet mass, so λ2 ' m2
J/E

2
J � 1.

To construct the fields of the effective theory, the mo-
mentum of n-collinear particles is written as

pµ = p̃µ + kµ = n̄·p̃ n
µ

2
+ p̃µn⊥ + kµ , (14)

2 Throughout this paper, we will for simplicity use the notation of
SCETI. The theory SCETII [148] is required for a certain class of
observables, for example pT -dependent measurements or vetoes.
The helicity operator formalism presented here applies identically
to constructing SCETII operators. The collinear operators and
matching coefficients are the same for both cases.

where n̄ · p̃ ∼ Q and p̃n⊥ ∼ λQ are the large momentum
components, while k ∼ λ2Q is a small residual momen-
tum. Here, Q is the scale of the hard interaction, and
the effective theory expansion is in powers of λ.

The SCET fields for n-collinear quarks and gluons,
ξn,p̃(x) and An,p̃(x), are labeled by the collinear direction
n and their large momentum p̃. They are written in po-
sition space with respect to the residual momentum and
in momentum space with respect to the large momen-
tum components. Derivatives acting on the fields pick
out the residual momentum dependence, i∂µ ∼ k ∼ λ2Q.
The large label momentum is obtained from the label
momentum operator Pµn , e.g. Pµn ξn,p̃ = p̃µ ξn,p̃. If there
are several fields, Pn returns the sum of the label mo-
menta of all n-collinear fields. For convenience, we define
Pn = n̄·Pn, which picks out the large momentum compo-
nent. Frequently, we will only keep the label n denoting
the collinear direction, while the momentum labels are
summed over (subject to momentum conservation) and
are suppressed in our notation.

Collinear operators are constructed out of products of
fields and Wilson lines that are invariant under collinear
gauge transformations [58, 59]. The smallest building
blocks are collinearly gauge-invariant quark and gluon
fields, defined as

χn,ω(x) =
[
δ(ω − Pn)W †n(x) ξn(x)

]
,

Bµn,ω⊥(x) =
1

g

[
δ(ω + Pn)W †n(x) iDµ

n⊥Wn(x)
]
. (15)

With this definition of χn,ω, we have ω > 0 for an in-
coming quark and ω < 0 for an outgoing antiquark. For
Bn,ω⊥, ω > 0 (ω < 0) corresponds to an outgoing (in-
coming) gluon. In Eq. (15)

iDµ
n⊥ = Pµn⊥ + gAµn⊥ , (16)

is the collinear covariant derivative and

Wn(x) =

[ ∑
perms

exp
(
− g

Pn
n̄·An(x)

)]
, (17)

is a Wilson line of n-collinear gluons in label momentum
space. The label operators Pn in Eqs. (15) and (17) only
act inside the square brackets. Wn(x) sums up arbitrary
emissions of n-collinear gluons from an n̄-collinear quark
or gluon, which are O(1) in the power counting. Since
Wn(x) is localized with respect to the residual position
x, we can treat χn,ω(x) and Bµn,ω(x) like local quark and
gluon fields. For later use, we give the expansion of the
collinear gluon field

Bµn,⊥ = Aµn⊥ −
pµ⊥
n̄ · p

n̄ ·An,p + · · · . (18)

Here the ellipses denote terms in the expansion with more
than 2 collinear gluon fields, which are not required for
our matching calculations.

In our case the effective theory contains several
collinear sectors, n1, n2, . . . [149], where the collinear
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fields for a given sector nµi = (1, ~ni) describe a jet in
the direction ~ni, and we also define n̄µi = (1,−~ni).
A fixed-order QCD amplitude with N colored legs is
then matched onto operators in SCET with N different
collinear fields. The different collinear directions have to
be well separated, which means

ni ·nj � λ2 for i 6= j . (19)

The infrared singularities associated with collinear or soft
limits of legs in QCD are entirely described by the La-
grangian and dynamics of SCET itself, so the QCD am-
plitudes are only used to describe the hard kinematics
away from infrared singular limits.

Two different ni and n′i with ni ·n′i ∼ λ2 both describe
the same jet and corresponding collinear physics. Thus,
each collinear sector can be labeled by any member of
a set of equivalent vectors, {ni}, which are related by
reparameterization invariance [150]. The simplest way
to perform the matching is to choose ni such that the
large label momentum is given by

p̃µi = ωi
nµi
2
, (20)

with p̃µni⊥ = 0.
In general, operators will have sums over distinct

equivalence classes, {ni}, and matrix elements select a
representative vector to describe particles in a particular
collinear direction. For many leading power applications
there is only a single collinear field in each sector, and we
may simply set the large label momentum of that build-
ing block field to that of the external parton using the
following simple relation,∫

dp̃ δ̃(p̃− p) f(p̃) = f
(
n̄i · p

ni
2

)
, (21)

where p is collinear with the i’th jet. Here the tilde on
the integration measure and delta function ensure that
the integration over equivalence classes is properly im-
plemented.3 Because of this, at leading power, the issue
of equivalence classes can largely be ignored.

Particles that exchange large momentum of O(Q) be-
tween different jets are off shell by O(ni · nj Q2). They

3 The precise definition of this delta function and measure are

δ̃(p̃i − p) ≡ δ{ni},p δ(ωi − n̄i · p) ,∫
dp̃ ≡

∑
{ni}

∫
dωi , (22)

where

δ{ni},p =

{
1 ni · p = O(λ2) ,

0 otherwise .
(23)

The Kronecker delta is nonzero if the collinear momentum p is in
the {ni} equivalence class, i.e. p is close enough to be considered
as collinear with the ith jet. The sum in the second line of
Eq. (22) runs over the different equivalence classes.

are integrated out by matching QCD onto SCET. Before
and after the hard interaction the jets described by the
different collinear sectors evolve independently from each
other, with only soft radiation between the jets. The cor-
responding soft degrees of freedom are described in the
effective theory by soft quark and gluon fields, qs(x) and
As(x), which only have residual soft momentum depen-
dence i∂µ ∼ λ2Q. They couple to the collinear sectors
via the soft covariant derivative

iDµ
s = i∂µ + gAµs , (24)

acting on the collinear fields. At leading power in λ, n-
collinear particles only couple to the n·As component of
soft gluons, so the leading-power n-collinear Lagrangian
only depends on n ·Ds. For example, for n-collinear
quarks [58, 59]

Ln = ξ̄n

(
in·Ds + g n·An + iD/n⊥Wn

1

Pn
W †n iD/n⊥

) n̄/
2
ξn .

(25)
The leading-power n-collinear Lagrangian for gluons is
given in Ref. [60].

III. SCET OPERATOR BASIS

In this section, we describe in detail how to construct
a basis of helicity and color operators in SCET, which
greatly simplifies the construction of a complete opera-
tor basis and also facilitates the matching process. Usu-
ally, a basis of SCET operators obeying the symmetries
of the problem is constructed from the fields χn,ω, Bµn,ω⊥,
as well as Lorentz and color structures. This process be-
comes quite laborious due to the large number of struc-
tures which appear for higher multiplicity processes, and
the reduction to a minimal basis of operators quickly be-
comes nontrivial. Instead, we work with a basis of op-
erators with definite helicity structure constructed from
scalar SCET building blocks, which, as we will show,
has several advantages. First, this simplifies the con-
struction of the operator basis, because each indepen-
dent helicity configuration gives rise to an independent
helicity operator. In this way, we automatically obtain
the minimal number of independent operators as far as
their Lorentz structure is concerned. Second, operators
with distinct helicity structures do not mix under renor-
malization group evolution, as will be discussed in detail
in Sec. VIII. The reason is that distinct jets can only
exchange soft gluons in SCET, which at leading order
in the power counting means they can transfer color but
not spin [see Eq. (25)]. Therefore, the only nontrivial as-
pect of the operator basis is the color degrees of freedom.
The different color structures mix under renormalization
group evolution, but their mixing only depends on the
color representations and not on the specific helicity con-
figuration.
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A. Helicity Fields

We start by defining quark and gluon fields of definite
helicity, out of which we can build operators with a defi-
nite helicity structure. To simplify our discussion we will
take all momenta and polarization vectors as outgoing,
and label all fields and operators by their outgoing he-
licity and momenta. Crossing symmetry, and crossing
relations are discussed in Sec. III F.

We define a gluon field of definite helicity4

Bai± = −ε∓µ(ni, n̄i)Baµni,ωi⊥i , (26)

where a is an adjoint color index. For nµi = (1, 0, 0, 1),
we have

εµ±(ni, n̄i) =
1√
2

(0, 1,∓i, 0) , (27)

in which case

Bai± =
1√
2

(
Ba,1ni,ωi⊥i ± iBa,2ni,ωi⊥i

)
. (28)

For an external gluon with outgoing polarization vec-
tor ε(p, k) and outgoing momentum p in the ni-collinear
direction, the contraction with the field Bai± contributes

−ε∓µ(ni, n̄i)
[
εµ⊥i(p, k)−

pµ⊥i
n̄i · p

n̄i · ε(p, k)
]
, (29)

where we have used the expansion of the collinear gluon
field given in Eq. (18). Since ε∓(ni, n̄i) is perpendicular
to both ni and n̄i, we can drop the ⊥i labels in brackets.
A convenient choice for the reference vector is to take
k = n̄i, for which the second term in brackets vanishes.
Eq. (29) then becomes

−ε∓(ni, n̄i) · ε(p, n̄i) , (30)

which is equal to 0 or 1 depending on the helicity of
ε(p, n̄i). Adopting this choice, the tree-level Feynman
rules for an outgoing gluon with polarization ± (so ε =
ε±), momentum p (with p0 > 0), and color a are〈

ga±(p)
∣∣Bbi±∣∣0〉 = δab δ̃(p̃i − p) ,〈

ga∓(p)
∣∣Bbi±∣∣0〉 = 0 . (31)

Note that Bbi± = Bbi±(0), so we do not get a phase from
the residual momentum. Similarly, for an incoming gluon
with incoming polarization ∓ (ε = ε∓, so ε∗ = ε±), in-
coming momentum −p (with p0 < 0), and color a, we
have 〈

0
∣∣Bbi±∣∣ga∓(−p)

〉
= δab δ̃(p̃i − p) ,

4 The label ± on B± refers to helicity and should not be confused
with light-cone components.

〈
0
∣∣Bbi±∣∣ga±(−p)

〉
= 0 . (32)

We define quark fields with definite helicity5 as

χαi± =
1± γ5

2
χαni,−ωi , χ̄ᾱi± = χ̄ᾱni,ωi

1∓ γ5

2
, (33)

where α and ᾱ are fundamental and antifundamental
color indices respectively.

For external quarks with ni-collinear momentum p, the
fields contribute factors of the form

1± γ5

2

n/in̄/i
4

u(p) =
n/in̄/i

4
|p±〉 = |p±〉ni , (34)

where in the last equality, we have defined a short-hand
notation |p±〉ni for the SCET projected spinor. The
spinor |p±〉ni is proportional to |n±〉, see Eq. (A30).

The tree-level Feynman rules for incoming (p0 < 0) and
outgoing (p0 > 0) quarks with helicity +/− and color α
are then given by〈

0
∣∣χβi+∣∣qᾱ+(−p)

〉
= δβᾱ δ̃(p̃i − p) |(−pi)+〉ni ,〈

0
∣∣χβi−∣∣qᾱ−(−p)

〉
= δβᾱ δ̃(p̃i − p) |(−pi)−〉ni ,〈

qα+(p)
∣∣χ̄β̄i+∣∣0〉 = δαβ̄ δ̃(p̃i − p) ni〈pi+| ,〈

qα−(p)
∣∣χ̄β̄i−∣∣0〉 = δαβ̄ δ̃(p̃i − p) ni〈pi−| , (35)

and similarly for antiquarks〈
0
∣∣χ̄β̄i+∣∣q̄α−(−p)

〉
= δαβ̄ δ̃(p̃i − p) ni〈(−pi)+| ,〈

0
∣∣χ̄β̄i−∣∣q̄α+(−p)

〉
= δαβ̄ δ̃(p̃i − p) ni〈(−pi)−| ,〈

q̄ᾱ−(p)
∣∣χβi+∣∣0〉 = δβᾱ δ̃(p̃i − p) |pi+〉ni ,〈

q̄ᾱ+(p)
∣∣χβi−∣∣0〉 = δβᾱ δ̃(p̃i − p) |pi−〉ni . (36)

The corresponding Feynman rules with the helicity of the
external (anti-)quark flipped vanish.

To avoid the explicit spinors in Eqs. (35) and (36),
and exploit the fact that fermions come in pairs, we also
define fermionic vector currents of definite helicity

J ᾱβij+ =

√
2 εµ−(ni, nj)√

ωi ωj

χ̄ᾱi+ γµχ
β
j+

〈ninj〉
,

J ᾱβij− = −
√

2 εµ+(ni, nj)√
ωi ωj

χ̄ᾱi− γµχ
β
j−

[ninj ]
, (37)

where ωi = n̄i ·p̃i from Eq. (20), as well as a scalar current

J ᾱβijS =
2√
ωi ωj

χ̄ᾱi+χ
β
j−

[ninj ]
,

(J†)ᾱβijS =
2√
ωi ωj

χ̄ᾱi−χ
β
j+

〈ninj〉
. (38)

5 Technically speaking chirality, although we work in a limit where
all external quarks can be treated as massless.



7

In Eqs. (37) and (38) the flavor labels of the quarks have
not been made explicit, but in general the two quark
fields in a current can have different flavors (for example
in W production). Since we are using a basis of physical
polarization states it is not necessary to introduce more
complicated Dirac structures. For example, pseudovector
and pseudoscalar currents, which are usually introduced
using γ5, are incorporated through the relative coeffi-

cients of operators involving J+, J− or JS , J†S . As we
shall see, this greatly simplifies the construction of the
operator basis in the effective theory.

At leading power, there is a single collinear field in each
collinear sector, so we can choose nµi = pµi /p

0
i to represent

the equivalence class {ni}, so that pµi = 1
2 n̄ · pi n

µ
i which

gives

|p±〉ni = |p±〉 =
∣∣∣n̄i · p ni

2
±
〉

=

√
n̄i · p

2
|ni±〉 . (39)

Since we always work at leading power in this paper, we
will always make this choice to simplify the matching.
With this choice, the tree-level Feynman rules for the
fermion currents are〈

qα1
+ (p1) q̄ᾱ2

− (p2)
∣∣J β̄1β2

12+

∣∣0〉
= δα1β̄1 δβ2ᾱ2 δ̃(p̃1 − p1) δ̃(p̃2 − p2) ,〈

qα1
− (p1) q̄ᾱ2

+ (p2)
∣∣J β̄1β2

12−
∣∣0〉

= δα1β̄1 δβ2ᾱ2 δ̃(p̃1 − p1) δ̃(p̃2 − p2) ,〈
qα1
+ (p1) q̄ᾱ2

+ (p2)
∣∣J β̄1β2

12S

∣∣0〉
= δα1β̄1 δβ2ᾱ2 δ̃(p̃1 − p1) δ̃(p̃2 − p2) ,〈

qα1
− (p1) q̄ᾱ2

− (p2)
∣∣(J†)β̄1β2

12S

∣∣0〉
= δα1β̄1 δβ2ᾱ2 δ̃(p̃1 − p1) δ̃(p̃2 − p2) . (40)

The simplicity of these Feynman rules arises due to
the unconventional normalization of the operators in
Eqs. (37) and (38). This normalization has been cho-
sen to simplify the matching of QCD amplitudes onto
SCET operators, as will be seen in Sec. IV.

We will also make use of leptonic versions of the above
currents. These are defined analogously,

Jij+ =

√
2 εµ−(ni, nj)√

ωi ωj

¯̀
i+ γµ`j+
〈ninj〉

,

Jij− = −
√

2 εµ+(ni, nj)√
ωi ωj

¯̀
i± γµ`j±
[ninj ]

. (41)

Unlike the collinear quark field χ, the leptonic field `
does not carry color and so does not contain a strong-
interaction Wilson line.

All couplings in the SM, except to the Higgs boson,
preserve chirality. This limits the need for the scalar
current, especially when considering only massless ex-
ternal quarks. In the SM the scalar current can arise
through explicit couplings to the Higgs, in which case,

even though we still treat the external quarks as massless,
the Wilson coefficient for the scalar operator will contain
the quark Yukawa coupling. This is relevant for exam-
ple for Hbb̄ processes. The scalar current can also arise
through off-diagonal CKM-matrix elements connecting
two massless external quarks through a massive quark
appearing in a loop. This can occur in multiple vector
boson production, or from electroweak loop corrections,
neither of which will be discussed in this paper. When
constructing an operator basis in Sec. III B, we ignore
the scalar current, as it is not relevant for the examples
that we will treat in this paper. However, it should be
clear that the construction of the basis in Sec. III B can
be trivially generalized to incorporate the scalar current
if needed.

B. Helicity Operator Basis

Using the definitions for the gluon and quark helicity
fields in Eqs. (26) and (37), we can construct operators
for a given number of external partons with definite helic-
ities and color. (As discussed at the end of the previous
section, for the processes we consider in this paper we do
not require the scalar current JS .) In the general case
with CKM-matrix elements, we must allow for the two
quark flavors within a single current to be different. The
situation is simplified in QCD processes, where one can
restrict to currents carrying a single flavor label.

For an external state with n particles of definite helic-
ities ±, colors ai, αi, ᾱi, and flavors f , f ′, ..., a complete
basis of operators is given by

O
a1a2···ᾱi−1αi···ᾱn−1αn
±±···(±··· ;···±) (p̃1, p̃2, . . . , p̃i−1, p̃i, . . . , p̃n−1, p̃n)

= S Ba1
1± B

a2
2± · · · J

ᾱi−1αi
f i−1,i± · · · J

ᾱn−1αn
f ′ n−1,n± . (42)

For example, f = q indicates that both quark fields in the
current have flavor q. When it is necessary to distinguish
different flavors with the same current, for example when
we consider processes involving W bosons in Sec. VI, we
use a label f = ūd such as Jūd12−. For simplicity, we will
also often suppress the dependence of the operator on the
label momenta p̃i. For the operator subscripts, we always
put the helicity labels of the gluons first and those of the
quark currents in brackets, with the labels for quark cur-
rents with different flavor labels f and f ′ separated by a
semicolon, as in Eq. (42). The ± helicity labels of the in-
dividual gluon fields and quark currents can all vary inde-
pendently. Operators with nonzero matching coefficients
are restricted to the color-conserving subspace. We will
discuss the construction of the color basis in Sec. III D.

The symmetry factor S in Eq. (42) is included to sim-
plify the matching. It is given by

S =
1∏

i

n+
i !n−i !

, (43)

where n±i denotes the number of fields of type i =
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g, u, ū, d, d̄, . . . with helicity ±. We also use

n =
∑
i

(n+
i + n−i ) , (44)

to denote the total number of fields in the operator. Each
Bi counts as one field, and each J has two fields.

For each set of external particles of definite helicities,
colors, and flavors, there is only one independent oper-
ator, since the physical external states have been com-
pletely specified. All Feynman diagrams contributing to
this specific external state will be included in the Wilson
coefficient of that specific operator. For the case of pure
QCD, quarks always appear in pairs of the same flavor
and same chirality, and therefore can be assembled into
quark currents labeled by a single flavor. In this case, to
keep track of the minimal number of independent oper-
ators, we can simply order the helicity labels, and only
consider operators of the form

O+··(··−) = O+ · · ·+︸ ︷︷ ︸ − · · ·−︸ ︷︷ ︸ (+ · · ·+︸ ︷︷ ︸ − · · ·−︸ ︷︷ ︸) , (45)

n+
g n−g n+

q n−q

and analogously for any additional quark currents with
different quark flavors.6

With the operator basis constructed, for a given n-
parton process we can match hard scattering processes in
QCD onto the leading-power hard-scattering Lagrangian

Lhard =

∫ n∏
i=1

dp̃i C
a1···αn
+··(··−)(p̃1, . . . , p̃n)Oa1···αn

+··(··−)(p̃1, . . . , p̃n),

(46)
where a sum over all color indices is implicit. Lorentz in-
variance implies that the Wilson coefficients only depend
on Lorentz invariant combinations of the momenta. This
hard Lagrangian is used in conjunction with the collinear
and soft Lagrangians that describe the dynamics of the
soft and collinear modes, see for example Eq. (25).

We emphasize that Eq. (46) provides a complete ba-
sis in SCET for well-separated jets and additional non-
hadronic particles at leading power. We will discuss in
more detail in Sec. IV the matching and regularization
schemes, and demonstrate that no evanescent operators
are generated for this case. At subleading power, the
SCET operators would involve additional derivative op-
erators, soft fields, or multiple SCET building blocks
from the same collinear sector.

6 In the general case with off-diagonal CKM-matrix elements,
there is some more freedom in the choice of the operator ba-
sis, because quarks of the same flavor do not necessarily ap-
pear in pairs. However, it is still true that only a single oper-
ator is needed for a specific external state. For example, for
external quarks u−, d̄+, s̄+, c−, one could either use the op-
erators Jus−Jcd−, or the operators Jcs−Jud− (where the color
structures have been suppressed). Since different helicity combi-
nations are possible, a single flavor assignment does not suffice to
construct a complete helicity basis, and one must sum over a ba-
sis of flavor assignments. As an example explicitly demonstrating
this, we will consider the case of pp→W+ jets in Sec. VI.

C. Example with a Z-Boson Exchange

It is important to note that all kinematic dependence of
the hard process, for example, its angular distributions, is
encoded in the Wilson coefficients. Since the Wilson co-
efficients can (in principle) carry an arbitrary kinematic
dependence, our choice of helicity basis imposes no re-
striction on the possible structure or mediating particles
of the hard interaction. For example, the spin of an in-
termediate particle may modify the angular distribution
of the decay products, and hence the Wilson coefficients,
but this can always be described by the same basis of
helicity operators.

As a simple example to demonstrate this point we con-
sider e+e− → e+e− at tree level. This process can pro-
ceed through either an off-shell γ or Z boson. Because
the SM couplings to both of these particles preserve chi-
rality, a basis of operators for this process is given by

O(++) =
1

4
Je 12+ Je 34+ ,

O(+−) = Je 12+ Je 34− ,

O(−−) =
1

4
Je 12− Je 34− , (47)

where the leptonic current is defined in Eq. (41). The fact
that this is a complete basis relies only on the fact that
the couplings preserve chirality, and is independent of
e.g. the possible number of polarizations of the mediating
Z or γ.

We now consider the calculation of the Wilson coeffi-
cients for the matching to these operators (the matching
procedure is discussed in detail in Sec. IV). At tree level,
the Wilson coefficients are easily calculated, giving

C(++) = −e2
[
1 + veRv

e
RPZ(s12)

]2[13]〈24〉
s12

+ (1↔ 3) ,

C(+−) = −e2
[
1 + veRv

e
LPZ(s12)

]2[14]〈23〉
s12

,

C(−−) = −e2
[
1 + veLv

e
LPZ(s12)

]2[24]〈13〉
s12

+ (1↔ 3) .

(48)

Here s12 = (p1+p2)2, PZ is the ratio of the Z and photon
propagators,

PZ(s) =
s

s−m2
Z + iΓZmZ

, (49)

and the couplings vL,R to the Z boson are

veL =
1− 2 sin2 θW

sin(2θW )
, veR = −2 sin2 θW

sin(2θW )
. (50)

Note that the presence of the spinor factors in Eq. (48)
occur due to our normalization conventions for the cur-
rents.

Now, consider calculating the scattering amplitude in
the effective theory, for example for the case when both
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electrons have positive helicity. The matrix element in
the effective theory gives,〈
e−+(p1) e+

−(p2) e−+(p3) e+
−(p4)

∣∣iLhard

∣∣0〉
= i
〈
e−+(p1) e+

−(p2) e−+(p3) e+
−(p4)

∣∣∣ ∫ n∏
i=1

dp̃i C++O++

∣∣∣0〉
= −ie2

[
1 + veRv

e
RPZ(s12)

]2[13]〈24〉
s12

+ (1↔ 3) , (51)

using the Feynman rules of Eq. (40). The effective theory
therefore reproduces the full theory scattering amplitude.
The same is true of the other helicity configurations, so
the familiar angular distributions for e+e− → e+e−, as
well as the different couplings of the Z to left and right
handed particles, are entirely encoded in the Wilson co-
efficients.

D. Color Basis

In addition to working with a basis of operators with
definite helicity, we can also choose a color basis that fa-
cilitates the matching. When constructing a basis of op-
erators in SCET, we are free to choose an arbitrary color
basis. With respect to color, we can think of Eq. (46) as
having a separate Wilson coefficient for each color con-
figuration. For specific processes the color structure of
the Wilson coefficients can be further decomposed as

Ca1···αn
+··(··−) =

∑
k

Ck+··(··−)T
a1···αn
k ≡ T̄ a1···αn ~C+··(··−) .

(52)
Here, T̄ a1···αn is a row vector whose entries T a1···αn

k are
suitable color structures that together provide a complete
basis for all allowed color structures, but which do not
necessarily all have to be independent. In other words,
the elements of T̄ a1···αn span the color-conserving sub-
space of the full color space spanned by {a1 · · ·αn}, and
~C is a vector in this subspace. Throughout this paper
we will refer to the elements of T̄ a1···αn as a color ba-
sis, although they will generically be overcomplete, since
this allows for simpler choices of color structures. As dis-
cussed below, due to the over-completeness of the bases,
some care will be required for their consistent usage.

Using Eq. (52), we can rewrite Eq. (46) as

Lhard =

∫ n∏
i=1

dp̃i ~O
†
+··(··−)(p̃1, . . . , p̃n)~C+··(··−)(p̃1, . . . , p̃n),

(53)

where ~O† is a conjugate vector defined by

~O†+··(··−) = Oa1···αn
+··(··−) T̄

a1···αn . (54)

While the form Ca1···αn
+··(··−)O

a1···αn
+··(··−) in Eq. (46) is more con-

venient to discuss the matching and the symmetry prop-
erties of operators and Wilson coefficients, the alternative

form in Eq. (53) is more convenient to discuss the mixing
of the color structures under renormalization.

For low multiplicities of colored particles it can be con-
venient to use orthogonal color bases, e.g., the singlet-
octet basis for qq̄q′q̄′ is orthogonal. However, using or-
thogonal bases becomes increasingly difficult for higher
multiplicity processes, and the color bases used for many
fixed-order calculations are not orthogonal. (See e.g.
Refs. [151, 152] for a discussion of the use of orthogo-
nal bases for SU(N)). The use of a non-orthogonal color
basis implies that when written in component form in a

particular basis, the conjugate ~C† of the vector ~C is not
just given by the naive complex conjugate transpose of
the components of the vector. Instead, we have

~C† = [Ca1···αn ]
∗
T̄ a1···αn = ~C∗T T̂ , (55)

where

T̂ =
∑

a1,...,αn

(T̄ a1···αn)†T̄ a1···αn , (56)

is the matrix of color sums for the chosen basis. If the
basis is orthogonal (orthonormal), then T̂ is a diagonal
matrix (identity matrix). Note that Eq. (56) implies that

by definition T̂ ∗T = T̂ .

Similar to Eq. (55), for an abstract matrix X̂ in color

space, the components of its hermitian conjugate X̂†

when written in a particular basis are given in terms of

the components of X̂ as

X̂† = T̂−1 X̂∗T T̂ . (57)

A proper treatment of the non-orthogonality of the
color basis is also important in the factorization theo-
rem of Eq. (2). Here, the color indices of the Wilson
coefficients are contracted with the soft function as

[Ca1···αn ]
∗
Sa1···αnb1···βn
κ Cb1···βn = ~C† Ŝκ ~C

= ~C∗T T̂ Ŝκ ~C . (58)

At tree level, the soft function is simply the color-space
identity

Ŝκ = 1 , (59)

which follows from its color basis independent definition
in terms of Wilson lines (see e.g. Ref. [98] or Eq. (267)).

Here we have suppressed the dependence of Ŝ on soft
momenta. The action of the identity on an element of
the color space is defined by

(1T̄ )···ai···αj ··· = T̄ ···ai···αj ··· , (60)

and its matrix representation in any color basis is given
by 1 = diag(1, 1, · · · , 1). In the literature, see e.g.
Refs. [82, 88, 89, 134, 153], often a different convention is

used, where the T̂ matrix is absorbed into the definition
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of the soft function. In this convention, the soft func-
tion becomes explicitly basis dependent and is not the
same as the basis-independent color-space identity. One
should be careful to not identify the two.

As an example to demonstrate our notation for the
color basis, consider the process ggqq̄. A convenient
choice for a complete basis of color structures is

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
≡

 (T aT b)αβ̄
(T bT a)αβ̄

tr[T aT b] δαβ̄

T . (61)

For cases with many color structures we will write T̄ as
the transpose of a column vector as above. The transpose
in this case only refers to the vector itself, not to the
individual color structures. The color-sum matrix for
this particular basis is

T̂ggqq̄ = (T̄ abαβ̄)†T̄ abαβ̄

=
CFN

2

 2CF 2CF − CA 2TF
2CF − CA 2CF 2TF

2TF 2TF 2TFN

 . (62)

Our conventions for color factors are given in App. A 2.

Explicit expressions for T̂ for the bases used in this paper
are given in App. F for up to five partons.

Depending on the application, different choices of color
basis can be used. For example, in fixed-order QCD cal-
culations, color-ordering [5–8] is often used to organize
color information and simplify the singularity structure of
amplitudes, while the color flow basis [154] is often used
to interface with Monte Carlo generators. For a brief re-
view of the color decomposition of QCD amplitudes, see
App. A 3. Choosing a corresponding color basis in SCET
has the advantage that the Wilson coefficients are given
directly by the finite parts of the color-stripped helic-
ity amplitudes, which can be efficiently calculated using
unitarity methods. In this paper we will use color bases
corresponding to the color decompositions of the QCD
amplitudes when giving explicit results for the match-
ing coefficients, although we emphasize that an arbitrary
basis can be chosen depending on the application.

Finally, note that the color structures appearing in the
decomposition of a QCD amplitude up to a given loop
order may not form a complete basis. The color basis in
SCET must be complete even if the matching coefficients
of some color structures are zero to a given loop order,
since all structures can in principle mix under renormal-
ization group evolution, as will be discussed in Sec. VIII.
In this case, we always choose a complete basis in SCET
such that the color structures appearing in the ampli-
tudes to some fixed order are contained as a subset.

E. Parity and Charge Conjugation

Under charge conjugation, the fields transform as

CBai± T aαβ̄ C = −Bai±T aβᾱ ,

C J ᾱβij±C = −J β̄αji∓ . (63)

The minus sign on the right-hand side of the second equa-
tion comes from anticommutation of the fermion fields.

Under parity, the fields transform as

PBai±(p̃i, x) P = e±2iφniBai∓(p̃P
i , x

P) ,

P J ᾱβij±(p̃i, p̃j , x) P = e±i(φni−φnj )J ᾱβij∓(p̃P
i , p̃

P
j , x

P) , (64)

where we have made the dependence on p̃i and x explicit,
and the parity-transformed vectors are p̃P

i = ωi n̄i/2,
xP
µ = xµ. The φni are real phases, whose exact definition

is given in App. A 1. The phases appearing in the par-
ity transformation of the helicity operators exactly cancel
the phases appearing in the corresponding helicity ampli-
tude under a parity transformation. This overall phase is
determined by the little group scaling (see App. A 1 for
a brief review).

Using the transformations of the helicity fields under
parity and charge conjugation in Eqs. (63) and (64),
it is straightforward to determine how these discrete
symmetries act on the helicity operators. Parity and
charge conjugation invariance of QCD implies that the
effective Lagrangian in Eq. (46) must also be invariant.
(For amplitudes involving electroweak interactions, par-
ity and charge conjugation invariance are explicitly vi-
olated. This is treated by extracting parity and charge
violating couplings from the operators and amplitudes.
See Sec. VI for a discussion.) This then allows one to de-
rive corresponding relations for the Wilson coefficients.

To illustrate this with a nontrivial example we consider
the ggqq̄ process. The operators transform under charge
conjugation as

COab ᾱβλ1λ2(±)(p̃1, p̃2; p̃3, p̃4) T̄ abαβ̄ C

= CS Ba1λ1
Bb2λ2

J ᾱβ34± T̄
abαβ̄ C

= −Oba ᾱβλ1λ2(∓)(p̃1, p̃2; p̃4, p̃3) T̄ abαβ̄ , (65)

where λ1,2 denote the gluon helicities, and T̄ abαβ is as
given in Eq. (61). From the invariance of Eq. (46) we
can infer that the Wilson coefficients must satisfy

Cabαβ̄λ1λ2(±)(p̃1, p̃2; p̃3, p̃4) = −Cbaαβ̄λ1λ2(∓)(p̃1, p̃2; p̃4, p̃3) .

(66)
In the color basis of Eq. (61), we can write this as

~Cλ1λ2(±)(p̃1, p̃2; p̃3, p̃4) = V̂ ~Cλ1λ2(∓)(p̃1, p̃2; p̃4, p̃3) ,

with V̂ =

 0 −1 0
−1 0 0
0 0 −1

 . (67)
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Now consider the behaviour under parity. For con-
creteness we consider the case of positive helicity gluons.
The operators transform as

POab ᾱβ++(±)(p̃1, p̃2; p̃3, p̃4) P = P
1

2
Ba1+Bb2+J

ᾱβ
34± P (68)

= ei(2φn1
+2φn2

±(φn3
−φn4

))Oab ᾱβ−−(∓)(p̃
P
1 , p̃

P
2 ; p̃P3 , p̃

P
4 ) .

The invariance of Eq. (46) under parity then implies that
the Wilson coefficients satisfy

~C++(±)(p̃1, p̃2; p̃3, p̃4)

= ~C−−(∓)(p̃
P
1 , p̃

P
2 ; p̃P3 , p̃

P
4 )e−i(2φn1

+2φn2
±(φn3

−φn4
))

= ~C−−(∓)(p̃1, p̃2; p̃3, p̃4)
∣∣∣
〈..〉↔[..]

. (69)

Here we have introduced the notation 〈..〉 ↔ [..] to indi-
cate that all angle and square spinors have been switched
in the Wilson coefficient. The fact that the phase appear-
ing in the parity transformation of the operator exactly
matches the phase arising from evaluating the Wilson
coefficient with parity related momenta is guaranteed by
little group scaling, and will therefore occur generically.
See Eqs. (A24) and (A25) and the surrounding discussion
for a review.

Below we will use charge conjugation to reduce the
number of Wilson coefficients for which we have to carry
out the matching explicitly. We will use parity only when
it helps to avoid substantial repetitions in the matching.

F. Crossing Symmetry

Our basis is automatically crossing symmetric, since
the gluon fields Bi± can absorb or emit a gluon and
the quark current Jij± can destroy or produce a quark-
antiquark pair, or destroy and create a quark or anti-
quark. We will first illustrate how to use crossing sym-
metry in an example and then describe how to technically
have crossing symmetric Wilson coefficients.

We will again consider the process ggqq̄ as an example.
Due to our outgoing conventions, the default Wilson co-
efficient is for the unphysical processes with all outgoing
particles:

0→ ga+(p1)gb−(p2)qα+(p3)q̄β̄−(p4) : Cabαβ̄+−(+)(p̃1, p̃2; p̃3, p̃4) ,

(70)
where we picked one specific helicity configuration for
definiteness. Crossing a particle from the final state to
the initial state flips its helicity, changes the sign of its
momentum, and changes it to its antiparticle. In addi-
tion we get a minus sign for each crossed fermion, though
in practice these can be ignored as they do not modify
the cross section. This allows one to obtain the Wilson
coefficient for any crossing. For example, for the follow-
ing possible crossings, the Wilson coefficients are given
by

ga+(p1)gb−(p2)→ qα+(p3)q̄β̄−(p4) : Cbaαβ̄+−(+)(−p̃2,−p̃1; p̃3, p̃4) ,

ga+(p1)qᾱ+(p2)→ gb+(p3)qβ+(p4) : −Cbaβᾱ+−(+)(p̃3,−p̃1; p̃4,−p̃2) ,

ga+(p1)q̄α−(p2)→ gb+(p3)q̄β̄−(p4) : −Cbaαβ̄+−(+)(p̃3,−p̃1;−p̃2, p̃4) ,

qᾱ+(p1)q̄β−(p2)→ ga+(p3)gb−(p4) : Cabβᾱ+−(+)(p̃3, p̃4;−p̃2,−p̃1) .

(71)

Since the signs of momenta change when crossing par-
ticles between the final and initial state, care is required
in taking the proper branch cuts to maintain crossing
symmetry for the Wilson coefficients. In terms of the
Lorentz invariants

sij = (pi + pj)
2 (72)

this amounts to the choice of branch cut defined by sij →
sij + i0. In particular, we write all logarithms as

Lij ≡ ln
(
−sij
µ2
− i0

)
= ln

(sij
µ2

)
− iπθ(sij) . (73)

For spinors, crossing symmetry is obtained by defining
the conjugate spinors 〈p±| as was done in Eq. (5), result-
ing in the following relation

〈p±| = sgn(p0) |p±〉 . (74)

The additional minus sign for negative p0 is included
to use the same branch (of the square root inside the
spinors) for both spinors and conjugate spinors, i.e., for
p0 > 0 we have

|(−p)±〉 = i|p±〉 ,
〈(−p)±| = −(−i)〈p±| = i〈p±| . (75)

In this way all spinor identities are automatically valid
for both positive and negative momenta, which makes it
easy to use crossing symmetry.

G. Hard Function

In the factorized expression for the cross section given
in Eq. (2), the dependence on the underlying hard Born

process appears through the hard function Ĥκ. In terms
of the Wilson coefficients of the operator basis in the ef-
fective theory, the hard function for a particular partonic
channel κ is given by

Ĥκ({p̃i}) =
∑
{λi}

~Cλ1··(··λn)({p̃i}) ~C†λ1··(··λn)({p̃i}) , (76)

where {p̃i} ≡ {p̃1, p̃2, . . .}. For unpolarized experiments

we simply sum over all helicity operators, so Ĥκ({p̃i})
with its sum over helicities in Eq. (76) appears as a mul-
tiplicative factor. It is important to note that the color
indices of the Wilson coefficients are not contracted with
each other, rather they are contracted with the color
indices of the soft function through the trace seen in
Eq. (2).
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As an explicit example to demonstrate the treatment
of both color and helicity indices, we consider the contri-
bution of the ggqq̄ partonic channel to the pp → 2 jets
process. In this case, the Wilson coefficients are given by
~Cλ1λ2(λ3), where λ1, λ2 denote the helicities of the glu-
ons, λ3 denotes the helicity of the quark current, and re-
call that the vector denotes the possible color structures,
which were given explicitly for this case in Eq. (61). The
hard function for this partonic channel is then given by

Ĥggqq̄({p̃i}) =
∑
{λi}

~Cλ1λ2(λ3)({p̃i}) ~C†λ1λ2(λ3)({p̃i})

= ~C++(+)
~C†++(+) + ~C+−(+)

~C†+−(+)+

~C−+(+)
~C†−+(+) + ~C−−(+)

~C†−−(+)+

~C++(−)
~C†++(−) + ~C+−(−)

~C†+−(−)+

~C−+(−)
~C†−+(−) + ~C−−(−)

~C†−−(−) . (77)

Here, explicit expressions are only needed for
~C++(+), ~C+−(+) and ~C−−(+). One can obtain ~C−+(+)

using Bose symmetry simply by interchanging the
gluons,

~Cabαβ̄−+(+)(p̃1, p̃2; p̃3, p̃4) = ~Cbaαβ̄+−(+)(p̃2, p̃1; p̃3, p̃4) , (78)

or equivalently,

~C−+(+)(p̃1, p̃2; p̃3, p̃4) = V̂ ~C+−(+)(p̃2, p̃1; p̃3, p̃4) ,

with V̂ =

0 1 0
1 0 0
0 0 1

 . (79)

As explained in Sec. VII A 2, the remaining ~Cλ1λ2(−) can
be obtained from the expressions for the other Wilson
coefficients by charge conjugation.

In Eq. (77), the Wilson coefficients are vectors in the
color basis of Eq. (61) and thus the hard function is a
matrix in this basis. As discussed in Sec. III D, the tree-
level soft function is the color-space identity, i.e.,

S
(0) b1b2β1β̄2 a1a2α1ᾱ2

ggqq̄ = δb1a1δb2a2δβ1α1
δβ̄2ᾱ2

≡ 1 . (80)

With the color trace in Eq. (2) this amounts to contract-
ing the color indices of the Wilson coefficients. In the
color basis of Eq. (61), this simply becomes

Ŝ
(0)
ggqq̄ = 1 =

1 0 0
0 1 0
0 0 1

 . (81)

The tree-level soft function also has dependence on mo-
menta depending on the measurement being made, which
are not shown here.

To demonstrate a complete calculation of the cross sec-
tion using the factorization theorem of Eq. (2) together
with the hard functions computed using the helicity op-
erator formalism, it is instructive to see how the leading-
order cross section is reproduced from Eq. (2). We con-
sider the simple case of H + 0 jets in the mt →∞ limit.

For this channel, there is a unique color structure δa1a2
,

and using the results of Sec. V A and App. B 1, the lowest
order Wilson coefficients are given by

~C++(p̃1, p̃2; p̃3) = δa1a2

αs
3πv

s12

2

[12]

〈12〉
, (82)

~C−−(p̃1, p̃2; p̃3) = δa1a2

αs
3πv

s12

2

〈12〉
[12]

, (83)

~C+−(p̃1, p̃2; p̃3) = ~C−+(p̃1, p̃2; p̃3) = 0 , (84)

where v =
(√

2GF
)−1/2

= 246GeV. Note that these are
simply the helicity amplitudes for the process, as will be
shown more generally in Sec. IV. Analytically continu-
ing to physical momenta, squaring, and summing over
helicities, the tree-level hard function is given by

H
(0) a1a2 b1b2
ggH (p̃1, p̃2; p̃3) =

∣∣∣ αs
3πv

s12

2

∣∣∣2 2 δa1a2δb1b2

=
α2
ss

2
12

18π2v2
δa1a2

δb1b2 . (85)

Note that only 2 of the 4 helicity configurations con-
tribute, hence the factor of 2.

The tree-level gluon beam functions are given by the
gluon PDFs. Since there are no jets in the final state,
there are no jet functions. The tree-level soft function is
the identity in color space7

S(0) b1b2 a1a2
gg = δb1a1δb2a2 . (87)

The leading-order cross section is then given by

σ =
1

2E2
cm

1

[2(N2 − 1)]2

∫
dx1

x1

dx2

x2
fg(x1)fg(x2)

×
∫

d4p3

(2π)3
θ(p0

3) δ(p2
3−m2

H)

× (2π)4δ4
(
x1Ecm

n1

2
+x2Ecm

n2

2
−p3

)
×H(0) a1a2 b1b2

ggH (p̃1, p̃2; p̃3)S(0) b1b2 a1a2
gg

=
α2
sm

2
H

576πv2E2
cm

∫
dY fg

(mH

Ecm
eY
)
fg

(mH

Ecm
e−Y

)
. (88)

The 1/(2E2
cm) factor is the flux factor and for each of the

incoming gluons we get a 1/[2(N2 − 1)] from averaging
over its spin and color. This is followed by integrals over
the gluon PDFs, fg, and the Higgs phase space, where
we have restricted to the production of an on-shell Higgs.

7 Since there is only one color structure, the tree-level soft function
is normally defined as

S
(0)
gg =

1

N2 − 1
δa1a2δb1b2 δ

b1a1δb2a2 = 1 . (86)

Here we do not absorb numerical prefactors into our soft func-
tions, because this is not useful for processes with more final-state
partons.



13

The final expression in Eq. (88) agrees with the standard
result, where the first factor is the Born cross section.

We now briefly discuss our choice of normalization.
The currents in Eq. (37) were normalized such that the
Wilson coefficients are simply given by the finite part
of the QCD helicity amplitudes (see Sec. IV). This is
distinct from the normalization typically used for SCET
operators, e.g. χ̄iγ

µχj , which is chosen to facilitate the
matching to QCD operators. We now show that the ex-
tra factors in Eq. (37) arrange themselves to produce
the standard normalization for the jet function (or beam
function). Starting from the current and its conjugate,

J ᾱβij±(J γ̄δij±)† (89)

=

√
2εµ∓(ni, nj)√

ωi ωj

χ̄ᾱi±γµχ
β
j±

〈ni∓ |nj±〉

√
2εν±(ni, nj)(√
ωi ωj

)∗ χ̄δ̄j± γνχ
γ
i±

〈nj± |ni∓〉

= 4
δγᾱ

N

δβδ̄

N

εν±(ni, nj) ε
µ
∓(ni, nj)

2ni ·nj |ωi ωj |
tr
[
γν
n/i
4
γµ
n/j
4

]
×
(
χ̄i±

n̄/i
2
χi±

)(
χ̄j±

n̄/j
2
χj±

)
+ . . .

= 2 δγᾱδβδ̄
( 1

2N

1

|ωi|
χ̄i±

n̄/i
2
χi±

)( 1

2N

1

|ωj |
χ̄j±

n̄/j
2
χj±

)
,

where we have rearranged the expression in a factorized
form using the SCET Fierz formula in spin

1⊗ 1 =
1

2

[
n̄/i
2
⊗ n/i

2
− n̄/iγ5

2
⊗ n/iγ5

2
−
n̄/iγ

µ
⊥

2
⊗ n/iγ⊥µ

2

]
,

(90)

which applies for the SCET projected spinors. In the
last line of Eq. (89) we have dropped the color nonsin-
glet terms and terms which vanish when averaging over
helicities, which are indicated by ellipses. The delta func-
tions in color space highlight that the jet function does
not modify the color structure. The factor 1/ωi,j , which
arises from the normalization of the helicity currents, is
part of the standard definition of the jet function and en-
sures that this operator has the correct mass dimension.

IV. MATCHING AND SCHEME DEPENDENCE

In this section, we discuss the matching of QCD
onto the SCET helicity operator basis introduced in the
previous section. We start with a discussion of the
matching for generic helicity operators in Sec. IV A. In
Sec. IV B we discuss in detail the subject of renormal-
ization schemes, and the issue of converting between reg-
ularization/renormalization schemes commonly used in
spinor-helicity calculations, and those used in SCET. We
also demonstrate that evanescent operators are not gen-
erated in our basis.

A. Generic Matching

In this paper, we work to leading order in the power
counting, which means we only require operators that
contain exactly one field per collinear sector. That is,
different ni in Eq. (42) are implicitly restricted to be-
long to different equivalence classes, {ni} 6= {nj} for
i 6= j. Operators with more than one field per collinear
direction are power-suppressed compared to the respec-
tive leading-order operators that have the same set of
collinear directions and the minimal number of fields.

At leading order, the Wilson coefficients can thus be
determined by computing matrix elements of Eq. (46),
with all external particles assigned well-separated mo-
menta, so that they belong to separate collinear sectors.
The only helicity operator that contributes in this case is
the one that matches the set of external helicities, picking
out the corresponding Wilson coefficient. Since we only
have one external particle per collinear sector, we can
simply choose ni = pi/p

0
i in the matching calculation to

represent the equivalence class {ni}.
To compute the matrix element of Lhard, we first note

that the helicity operators are symmetric (modulo mi-
nus signs from fermion anticommutation) under simulta-
neously interchanging the label momenta and indices of
identical fields, and the same is thus also true for their
Wilson coefficients. For example, at tree level〈

ga1
+ (p1) ga2

+ (p2)
∣∣Ob1b2++

∣∣0〉tree

=
1

2

[
δa1b1 δa2b2 δ̃(p̃1 − p1) δ̃(p̃2 − p2)

+ δa1b2 δa2b1 δ̃(p̃1 − p2) δ̃(p̃2 − p1)
]
. (91)

so the tree-level matrix element of Lhard gives〈
ga1

+ (p1) ga2
+ (p2)

∣∣Lhard

∣∣0〉tree
(92)

=
1

2

[
Ca1a2

++ (p̃1, p̃2) + Ca2a1
++ (p̃2, p̃1)

]
= Ca1a2

++ (p̃1, p̃2) .

By choosing ni = pi/p
0
i , the label momenta p̃i on the

right-hand side simply become p̃i ≡ n̄ · pi ni/2 = pi.
Taking into account the symmetry factor in Eq. (43),

one can easily see that this result generalizes to more
than two gluons or quark currents with the same helic-
ity. In the case of identical fermions, the various terms
in the operator matrix element have relative minus signs
due to fermion anticommutation which precisely match
the (anti-)symmetry properties of the Wilson coefficients.
Hence, the tree-level matrix element of Lhard is equal to
the Wilson coefficient that corresponds to the configura-
tion of external particles,〈

g1g2 · · · qn−1q̄n
∣∣Lhard

∣∣0〉tree

= C
a1a2···αn−1ᾱn
+··(··−) (p̃1, p̃2, . . . , p̃n−1, p̃n) . (93)

Here and below, gi ≡ gai± (pi) stands for a gluon with
helicity ±, momentum pi, color ai, and analogously for
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(anti-)quarks. From Eq. (93) we obtain the generic tree-
level matching equation

Ca1···ᾱn
+··(··−)(p̃1, . . . , p̃n) = −iAtree(g1 · · · q̄n) , (94)

where Atree denotes the tree-level QCD helicity ampli-
tude. Intuitively, since all external particles are ener-
getic and well-separated, we are away from any soft or
collinear limits and so all propagators in the QCD tree-
level diagram are far off shell and can be shrunk to a
point. Hence, the tree-level diagram simply becomes the
Wilson coefficient in SCET.

The above discussion can be extended to higher orders
in perturbation theory. In pure dimensional regulariza-
tion (where ε is used to simultaneously regulate UV and
IR divergences) all bare loop graphs in SCET are scale-
less and vanish. Here the UV and IR divergences pre-
cisely cancel each other, and the bare matrix elements
are given by their tree-level expressions, Eq. (93). In-
cluding the counter term δO(εUV) due to operator renor-
malization removes the UV divergences and leaves the IR
divergences. Schematically, the renormalized loop ampli-
tude computed in SCET using Lhard is

ASCET =

∫
(〈 ~O†〉tree+〈 ~O†〉loop) i~C =

[
1 + δO(εIR)

]
i~C,

(95)
where we used that the loop contribution is a pure coun-
terterm and thus proportional to the tree-level expres-
sion. In general, the counterterm δO is a matrix in color
space, as we will see explicitly in Sec. VIII and App. G.
By construction, the 1/ε IR divergences in the effective
theory, C δO(εIR), have to exactly match those of the
full theory. Therefore, beyond tree level the matching
coefficients in MS are given by the infrared-finite part of
the full-theory amplitude, Afin, computed in pure dimen-
sional regularization. Thus, including loop corrections
Eq. (94) becomes

Ca1···ᾱn
+··(··−)(p̃1, . . . , p̃n) = −iAfin(g1 · · · q̄n) . (96)

In Sec. IV B we will discuss in more detail the case of
different renormalization schemes.

If the same color decomposition is used for the QCD
amplitude as for the Wilson coefficients in Eq. (52), we

can immediately read off the coefficients ~C in this color
basis from Eq. (96). As an example, consider for simplic-
ity the leading color n gluon amplitude, which has the
color decomposition (see App. A 3)

An(g1 · · · gn) = ign−2
s

∑
σ∈Sn/Zn

tr[T aσ(1) · · ·T aσ(n) ]

×
∑
i

gisA
(i)
n (σ(1), . . . , σ(n)) , (97)

where the first sum runs over all permutations σ of n
objects (Sn) excluding cyclic permutations (Zn). The

A
(i)
n are the color-ordered or partial amplitudes at i loops.

Each is separately gauge invariant and only depends on
the external momenta and helicities (pi±) ≡ (i±). If we
choose

T a1···an
k = tr[T aσk(1) · · ·T aσk(n) ] , (98)

as the color basis in Eq. (52), where σk is the kth per-
mutation in Sn/Zn, then the Wilson coefficients in this
color basis are given directly by

Ckλ1···λ2
(p̃1, . . . , p̃n) =

gn−2
s

∑
i

gisA
(i)
n,fin(σk(1λ1), . . . , σk(nλ2)) , (99)

where the subscript “fin” denotes the IR-finite part of the
helicity amplitude, as discussed. This is easily extended
beyond leading color, given a valid choice of subleading
color basis. Our basis therefore achieves seamless match-
ing from QCD helicity amplitudes onto SCET operators.

B. Renormalization Schemes

In this section we discuss in more detail the issue of
renormalization/regularization schemes in QCD and in
SCET. In particular, the construction of a basis of helic-
ity operators discussed in Sec. III relied heavily on mass-
less quarks and gluons having two helicity states, which
is a feature specific to 4 dimensions. We clarify this issue
here and discuss the conversion between various schemes.

In dimensional regularization, divergences are regular-
ized by analytically continuing the particle momenta to d
dimensions. In a general scheme, the helicities of quarks
and gluons live in dgs , d

q
s dimensional spaces respectively.

We shall here restrict ourselves to schemes where quarks
have two helicities, but dgs is analytically continued. This
is true of most commonly used regularization schemes,
but is not necessary [155]. Different schemes within di-
mensional regularization differ in their treatment of dgs for
internal (unobserved) and external (observed) particles.
In the conventional dimensional regularization (CDR), ’t
Hooft-Veltman (HV) [156], and four-dimensional helicity
(FDH) [157, 158] schemes the internal/external polariza-
tions are treated in d/d (CDR), d/4 (HV), 4/4 (FDH)
dimensions.

For helicity-based computations, the FDH scheme has
the advantage of having all helicities defined in 4 dimen-
sions, where the spinor-helicity formalism applies, as well
as preserving supersymmetry. Indeed, most of the recent
one-loop computations of helicity amplitudes utilize on-
shell methods and therefore employ the FDH scheme.
However, most existing calculations of SCET matrix ele-
ments (jet, beam, and soft functions) use d-dimensional
internal gluons, corresponding to the CDR/HV schemes.8

8 Recently while this paper was being finalized, a calculation of
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As we will discuss below, CDR and HV are identical for
matching onto SCET.

Although the FDH scheme is convenient for helicity
amplitude computations, it leads to subtleties beyond
NLO [161, 162]. As explained in Ref. [162], this discrep-
ancy arises due to the different number of dimensions
for the momenta in the loop integral and the spin space,
leading to components of the gluon field whose couplings
to quarks are not protected by gauge invariance and re-
quire separate renormalization. Nevertheless, it has been
shown that FDH is a consistent regularization scheme
to NNLO [160]. The presence of these extra degrees of
freedom in the FDH scheme is quite inconvenient in the
formal construction of SCET, especially when working
to subleading power. Because of this fact, and because
most SCET calculations are performed in CDR/HV, our
discussion of SCET schemes will focus on regularization
schemes where the dimension of the gluon field and the
momentum space are analytically continued in the same
manner. We will also discuss how full-theory helicity am-
plitudes in the FDH scheme are converted to CDR/HV
for the purposes of matching to SCET.

We will now describe how helicity amplitudes in the
FDH scheme can be converted to CDR/HV. To get a
finite correction from the O(ε) part of the gluon polar-
ization requires a factor from either ultraviolet (UV) or
infrared (IR) 1/ε divergences. Although the regulariza-
tion of UV and IR divergences is coupled in pure dimen-
sional regularization schemes by use of a common ε, they
can in principle be separately regulated, and we discuss
their role in the scheme conversion separately below.

When matching to SCET, the UV regulators in the
full and effective theory need not be equal. Indeed,
the effective theory does not reproduce the UV of the
full theory. In massless QCD, scheme dependence due
to the UV divergences only affects the coupling con-
stant through virtual (internal) gluons. Therefore, the
CDR and HV schemes have the same standard MS
coupling, αs(µ), while FDH has a different coupling,
αFDH
s (µ). The conversion between these couplings is

achieved by a perturbatively calculable shift, known to
two loops [23, 158, 163]

αFDH
s (µ) = αs(µ)

[
1 +

CA
3

αs(µ)

4π

+
(22

9
C2
A − 2CFTFnf

)(αs(µ)

4π

)2]
. (100)

This replacement rule for the coupling captures the ef-
fect of the scheme choice from UV divergences. One can
therefore perform a matching calculation, treating αs in
the full and effective theories as independent parameters

the inclusive jet and soft functions in both FDH and dimensional
reduction (DRED) [159] appeared in Ref. [160]. The conclusions
of this section agree with their study of the regularization scheme
dependence of QCD amplitudes.

that can be defined in different schemes. A conversion
between schemes can then be used to ensure that the
matching coefficients are written entirely in terms of αs
defined in one scheme, for example using Eq. (100). The
issue of UV regularization is therefore simple to handle
in the matching.

The structure of 1/ε2 and 1/ε IR divergences in one-
loop QCD amplitudes is well known, and allows one
to determine their effect on converting amplitudes from
FDH to CDR/HV. For a QCD amplitude involving nq
(anti)quarks and ng gluons the FDH and HV one-loop

amplitudes A(1) are related by [23, 155]

A(1)
HV = A(1)

FDH −
αs
4π

(nq
2
CF +

ng
6
CA

)
A(0) , (101)

where A(0) denotes the tree-level amplitude, and the pre-
cise scheme of the αs entering here is a two-loop effect. At
one loop, the FDH scheme can therefore be consistently
used when calculating full-theory helicity amplitudes and
results can easily be converted to HV with Eqs. (100) and
(101) for use in SCET Wilson coefficients.

We will now compare CDR and HV schemes for SCET
calculations and the construction of the operator basis.
In the HV scheme, all external polarizations are 4 di-
mensional, so that one can use a basis of helicity oper-
ators, as was constructed in Sec. III. However, in CDR
external polarizations are d dimensional, with the limit
d → 4 taken. In particular, this implies that one must
work with d−2 gluon polarizations at intermediate steps,
potentially allowing for the presence of evanescent oper-
ators corresponding to operators involving the additional
components of the gluon field, so called ε-helicities. How-
ever, we will now argue that there is no real distinction
between the two schemes, and that one does not need to
consider evanescent operators in SCET at leading power.

First consider the Wilson coefficients and matching.
In the case of CDR, the operator basis must be extended
to include operators involving the ε-helicities. However,
their presence does not affect the matching coefficients for
operators with physical helicities, since they do not con-
tribute at tree level and all loop corrections are scaleless
and vanish. Additionally, in Sec. VIII, we will discuss
the fact that the SCET renormalization of the opera-
tors is spin independent at leading power, and therefore
there is no mixing under renormalization group evolu-
tion between the physical and evanescent operators. For
the beam and jet functions, azimuthal symmetry implies
that the difference between a field with 2 or 2 − 2ε po-
larizations is simply an overall factor of 1 − ε and thus
can be easily taken into account. The independence of
the soft function to the differences in the CDR/HV reg-
ularization schemes follows from the insensitivity of the
soft emission to the polarization of the radiating parton,
which is made manifest by the SCET Lagrangian and the
fact that the soft function can be written as a matrix ele-
ment of Wilson lines. Thus there is no difference between
CDR and HV and the helicity operator basis suffices.
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V. HIGGS + JETS

In this section, we consider the production of an on-
shell Higgs + jets. We give the helicity operator basis
and matching relations for H + 0, 1, 2 jets, and the cor-
responding helicity amplitudes are collected in App. B.

A. H + 0 Jets

The ggH and qq̄H processes contribute to the H + 0
jets process. For qq̄H, the scalar current in Eq. (38) is
required, and the helicity operator basis is given by

Oᾱβ1 = J ᾱβ12S H3 ,

Oᾱβ2 = (J†)ᾱβ12S H3 , (102)

with the unique color structure

T̄αβ̄ =
(
δαβ̄
)
. (103)

These operators are relevant when considering Higgs de-
cays to massive quarks, for example H → b̄b. However,
we will not consider this case further since for Higgs pro-
duction the bb̄H and tt̄H contributions are much smaller
than the dominant gluon-fusion hard scattering process.

For ggH, the basis of helicity operators is given by

Oab++ =
1

2
Ba1+ Bb2+H3 ,

Oab−− =
1

2
Ba1− Bb2−H3 . (104)

The operator O+− is not allowed by angular momentum
conservation. Similar helicity operators, extended to in-
clude the decay of the Higgs, were used in Ref. [164].
There is again a unique color structure for this process,

T̄ ab =
(
δab
)
. (105)

Writing the QCD helicity amplitudes as

A(g1g2H3) = iδa1a2 A(1, 2; 3H) , (106)

the Wilson coefficients for ggH are given by

~C++(p̃1, p̃2; p̃3) = Afin(1+, 2+; 3H) ,

~C−−(p̃1, p̃2; p̃3) = Afin(1−, 2−; 3H) . (107)

The subscript “fin” in Eq. (107) denotes the IR-finite part
of the helicity amplitudes, as discussed in Sec. IV. Note
that the two amplitudes appearing in Eq. (107) are re-
lated by parity. The results for the gluon amplitudes up
to NNLO are given in App. B 1. They correspond to the
usual gluon-fusion process, where the Higgs couples to a
(top) quark loop at leading order. The LO amplitude in-
cluding the dependence on the mass of the quark running
in the loop is well known. The NLO amplitudes are also
known including the full quark-mass dependence [165–
169], while the NNLO [170–172] and N3LO [70, 71] am-
plitudes are known in an expansion in mH/mt.

B. H + 1 Jet

The gqq̄H and gggH processes contribute to the H+1
jet process. For gqq̄, the basis of helicity operators is
given by

Oa ᾱβ+(+) = Ba1+ J
ᾱβ
23+H4 ,

Oa ᾱβ−(+) = Ba1− J
ᾱβ
23+H4 ,

Oa ᾱβ+(−) = Ba1+ J
ᾱβ
23−H4 ,

Oa ᾱβ−(−) = Ba1− J
ᾱβ
23−H4 . (108)

Note that we consider only QCD corrections to the ggH
process, so the qq̄ pair is described by Jij±. For ggg, the
helicity operator basis is

Oabc+++ =
1

3!
Ba1+ Bb2+ Bc3+H4 ,

Oabc++− =
1

2
Ba1+ Bb2+ Bc3−H4 ,

Oabc−−+ =
1

2
Ba1− Bb2− Bc3+H4 ,

Oabc−−− =
1

3!
Ba1− Bb2− Bc3−H4 . (109)

For both cases the color space is one-dimensional and we
use the respective color structures as basis elements

T̄ aαβ̄ =
(
T a
αβ̄

)
, T̄ abc =

(
ifabc

)
. (110)

In principle, there could be another independent color
structure, dabc, for gggH. The gggH operators transform
under charge conjugation as

COabcλ1λ2λ3
(p̃1, p̃2, p̃3; p̃4) T̄ abc C

= −Ocbaλ1λ2λ3
(p̃1, p̃2, p̃3; p̃4) T̄ abc . (111)

Charge conjugation invariance of QCD thus leads to

Cabcλ1λ2λ3
(p̃1, p̃2, p̃3; p̃4) = −Ccbaλ1λ2λ3

(p̃1, p̃2, p̃3; p̃4) , (112)

which implies that the dabc color structure cannot arise
to all orders in perturbation theory, so it suffices to con-
sider ifabc as in Eq. (110). This also means that the
dabc color structure cannot be generated by mixing un-
der renormalization group evolution, which will be seen
explicitly in Eq. (259).

Using Eq. (110), we write the QCD helicity amplitudes
as

A(g1g2g3H4) = i (ifa1a2a3)A(1, 2, 3; 4H) ,

A(g1q2q̄3H4) = iT a1
α2ᾱ3

A(1; 2q, 3q̄; 4H) . (113)

The Wilson coefficients for gqq̄H are then given by

~C+(+)(p̃1; p̃2, p̃3; p̃4) = Afin(1+; 2+
q , 3

−
q̄ ; 4H) ,

~C−(+)(p̃1; p̃2, p̃3; p̃4) = Afin(1−; 2+
q , 3

−
q̄ ; 4H) ,
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~C+(−)(p̃1; p̃2, p̃3; p̃4) = ~C+(+)(p̃1; p̃3, p̃2; p̃4) ,

~C−(−)(p̃1; p̃2, p̃3; p̃4) = ~C−(+)(p̃1; p̃3, p̃2; p̃4) , (114)

where the last two coefficients follow from charge conju-
gation invariance. The Wilson coefficients for gggH are
given by

~C+++(p̃1, p̃2, p̃3; p̃4) = Afin(1+, 2+, 3+; 4H) ,

~C++−(p̃1, p̃2, p̃3; p̃4) = Afin(1+, 2+, 3−; 4H) ,

~C−−+(p̃1, p̃2, p̃3; p̃4) = ~C++−(p̃1, p̃2, p̃3; p̃4)
∣∣∣
〈..〉↔[..]

,

~C−−−(p̃1, p̃2, p̃3; p̃4) = ~C+++(p̃1, p̃2, p̃3; p̃4)
∣∣∣
〈..〉↔[..]

,

(115)

where the last two relations follow from parity invariance.
As before, the subscript “fin” in Eqs. (114) and (115) de-
notes the finite part of the IR divergent amplitudes. The
NLO helicity amplitudes were calculated in Ref. [32], and
are given in App. B 2, and the NNLO helicity amplitudes
were calculated in Ref. [173]. Both calculations were per-
formed in the mt → ∞ limit. At NLO, the first correc-
tions in m2

H/m
2
t were obtained in Ref. [174].

C. H + 2 Jets

For H + 2 jets, the qq̄ q′q̄′H, qq̄ qq̄H, ggqq̄H, and
ggggH processes contribute, each of which we discuss
in turn. Again, we consider only QCD corrections to the
ggH process, so qq̄ pairs are described by the helicity cur-
rents Jij±. The LO helicity amplitudes for H + 2 jets in
the mt →∞ limit were calculated in Refs. [31, 175] and
are collected in App. B 3 for each channel. The LO am-
plitudes including the mt dependence were calculated in
[176] (but explicit expressions for ggggH were not given
due to their length). The NLO helicity amplitudes were
computed in Refs. [33, 34, 177–180].

1. qq̄ q′q̄′H and qq̄ qq̄H

For the case of distinct quark flavors, qq̄ q′q̄′H, the
helicity basis consists of four independent operators,

Oᾱβγ̄δ(+;+) = J ᾱβq 12+ J
γ̄δ
q′ 34+H5 ,

Oᾱβγ̄δ(+;−) = J ᾱβq 12+ J
γ̄δ
q′ 34−H5 ,

Oᾱβγ̄δ(−;+) = J ᾱβq 12− J
γ̄δ
q′ 34+H5 ,

Oᾱβγ̄δ(−;−) = J ᾱβq 12− J
γ̄δ
q′ 34−H5 , (116)

where the additional labels on the quark currents indi-
cate the quark flavors. For the case of identical quark
flavors, qq̄ qq̄H, the basis only has three independent he-
licity operators,

Oᾱβγ̄δ(++) =
1

4
J ᾱβ12+ J

γ̄δ
34+H5 ,

Oᾱβγ̄δ(+−) = J ᾱβ12+ J
γ̄δ
34−H5 ,

Oᾱβγ̄δ(−−) =
1

4
J ᾱβ12− J

γ̄δ
34−H5 , (117)

since both quark currents have the same flavor. In both
cases we use the color basis

T̄αβ̄γδ̄ = 2TF

(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (118)

The QCD helicity amplitudes for qq̄ q′q̄′H can be color-
decomposed in the basis of Eq. (118) as

A(q1q̄2q
′
3q̄
′
4H5) = 2iTF

[
δα1ᾱ4

δα3ᾱ2
A(1q, 2q̄; 3q′ , 4q̄′ ; 5H)

+
1

N
δα1ᾱ2

δα3ᾱ4
B(1q, 2q̄; 3q′ , 4q̄′ ; 5H)

]
,

(119)

where we have included a factor of 1/N for convenience.
The amplitude vanishes when the quark and antiquark
of the same flavor have the same helicity, in accordance
with the fact that the operators of Eq. (116) provide a
complete basis of helicity operators. For identical quark
flavors, qq̄ qq̄H, the amplitudes can be obtained from the
qq̄ q′q̄′H amplitudes using the relation

A(q1q̄2q3q̄4H5) = A(q1q̄2q
′
3q̄
′
4H5)−A(q1q̄4q

′
3q̄
′
2H5) .

(120)

The Wilson coefficients for qq̄ q′q̄′H are then given by

~C(+;+)(p̃1, p̃2; p̃3, p̃4; p̃5) =

(
Afin(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′ ; 5H)

1
NBfin(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′ ; 5H)

)
,

~C(+;−)(p̃1, p̃2; p̃3, p̃4; p̃5) =

(
Afin(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′ ; 5H)

1
NBfin(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′ ; 5H)

)
,

~C(−;+)(p̃1, p̃2; p̃3, p̃4; p̃5) = ~C(+;−)(p̃2, p̃1; p̃4, p̃3; p̃5) ,

~C(−;−)(p̃1, p̃2; p̃3, p̃4; p̃5) = ~C(+;+)(p̃2, p̃1; p̃4, p̃3; p̃5) ,

(121)

and for qq̄ qq̄H they are given in terms of the amplitudes
Afin and Bfin for qq̄ q′q̄′H by

~C(++)(p̃1, p̃2; p̃3, p̃4; p̃5) =

(
Afin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ ; 5H)− 1

NBfin(1+
q , 4

−
q̄ ; 3+

q , 2
−
q̄ ; 5H)

1
NBfin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ ; 5H)−Afin(1+

q , 4
−
q̄ ; 3+

q , 2
−
q̄ ; 5H)

)
,
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~C(+−)(p̃1, p̃2; p̃3, p̃4; p̃5) =

(
Afin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ ; 5H)

1
NBfin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ ; 5H)

)
,

~C(−−)(p̃1, p̃2; p̃3, p̃4; p̃5) = ~C(++)(p̃2, p̃1; p̃4, p̃3; p̃5) . (122)

The relations for ~C(−;±) and ~C(−−) follow from charge
conjugation invariance. Note that there is no exchange

term for ~C(+−), since the amplitude vanishes when the
quark and antiquark of the same flavor have the same
helicity (both + or both −). Also, recall that the sym-
metry factors of 1/4 in Eq. (117) already take care of
the interchange of identical (anti)quarks, so there are no

additional symmetry factors needed for ~C(++). Explicit
expressions for the required amplitudes at tree level are
given in App. B 3 a.

2. ggqq̄H

For ggqq̄H, the helicity basis consists of a total of six
independent operators,

Oab ᾱβ++(+) =
1

2
Ba1+ Bb2+ J

ᾱβ
34+H5 ,

Oab ᾱβ+−(+) = Ba1+ Bb2− J
ᾱβ
34+H5 ,

Oab ᾱβ−−(+) =
1

2
Ba1− Bb2− J

ᾱβ
34+H5 ,

Oab ᾱβ++(−) =
1

2
Ba1+ Bb2+ J

ᾱβ
34−H5 ,

Oab ᾱβ+−(−) = Ba1+ Bb2− J
ᾱβ
34−H5 ,

Oab ᾱβ−−(−) =
1

2
Ba1− Bb2− J

ᾱβ
34−H5 . (123)

We use the color basis already given in Eq. (61),

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (124)

Using Eq. (124), the color decomposition of the QCD
helicity amplitudes into partial amplitudes is

A
(
g1g2 q3q̄4H5

)
= i

∑
σ∈S2

[
T aσ(1)T aσ(2)

]
α3ᾱ4

A(σ(1), σ(2); 3q, 4q̄; 5H)

+ i tr[T a1T a2 ] δα3ᾱ4
B(1, 2; 3q, 4q̄; 5H) . (125)

The B amplitudes vanish at tree level. From Eq. (125)
we can read off the Wilson coefficients,

~C+−(+)(p̃1, p̃2; p̃3, p̃4; p̃5) =

Afin(1+, 2−; 3+
q , 4

−
q̄ ; 5H)

Afin(2−, 1+; 3+
q , 4

−
q̄ ; 5H)

Bfin(1+, 2−; 3+
q , 4

−
q̄ ; 5H)

 ,

~C++(+)(p̃1, p̃2; p̃3, p̃4; p̃5) =

Afin(1+, 2+; 3+
q , 4

−
q̄ ; 5H)

Afin(2+, 1+; 3+
q , 4

−
q̄ ; 5H)

Bfin(1+, 2+; 3+
q , 4

−
q̄ ; 5H)

 ,

~C−−(+)(p̃1, p̃2; p̃3, p̃4; p̃5) =

Afin(1−, 2−; 3+
q , 4

−
q̄ ; 5H)

Afin(2−, 1−; 3+
q , 4

−
q̄ ; 5H)

Bfin(1−, 2−; 3+
q , 4

−
q̄ ; 5H)

 .

(126)

The Wilson coefficients of the last three operators in
Eq. (123) are obtained by charge conjugation as discussed
in Sec. III E. Under charge conjugation, the operators
transform as

COab ᾱβλ1λ2(±)(p̃1, p̃2; p̃3, p̃4; p̃5) T̄ abαβ̄ C

= −Oba ᾱβλ1λ2(∓)(p̃1, p̃2; p̃4, p̃3; p̃5) T̄ abαβ̄ , (127)

so charge conjugation invariance of QCD implies

~Cλ1λ2(−)(p̃1, p̃2; p̃3, p̃4; p̃5) = V̂ ~Cλ1λ2(+)(p̃1, p̃2; p̃4, p̃3; p̃5)

with V̂ =

 0 −1 0
−1 0 0
0 0 −1

 . (128)

Explicit expressions for the required amplitudes at tree
level are given in App. B 3 b.

3. ggggH

For ggggH, the helicity basis consists of five indepen-
dent operators,

Oabcd++++ =
1

4!
Ba1+Bb2+Bc3+Bd4+H5 ,

Oabcd+++− =
1

3!
Ba1+Bb2+Bc3+Bd4−H5 ,

Oabcd++−− =
1

4
Ba1+Bb2+Bc3−Bd4−H5 ,

Oabcd−−−+ =
1

3!
Ba1−Bb2−Bc3−Bd4+H5 ,

Oabcd−−−− =
1

4!
Ba1−Bb2−Bc3−Bd4−H5 . (129)

We use the basis of color structures

T̄ abcd =
1

2 · 2TF


tr[abcd] + tr[dcba]
tr[acdb] + tr[bdca]
tr[adbc] + tr[cbda]

2tr[ab] tr[cd]
2tr[ac] tr[db]
2tr[ad] tr[bc]



T

, (130)

where we have used the shorthand notation

tr[ab] = tr[T aT b] , tr[abcd] = tr[T aT bT cT d] . (131)
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Note that the three independent color structures with a
minus sign instead of the plus sign in the first three lines
in Eq. (130) can be eliminated using charge conjugation
invariance, see Sec. VII A 3.

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using the color basis in
Eq. (130) is

A(g1g2g3g4H5) =
i

2TF

[ ∑
σ∈S4/Z4

tr[aσ(1)aσ(2)aσ(3)aσ(4)]

×A
(
σ(1), σ(2), σ(3), σ(4); 5H

)
+

∑
σ∈S4/Z3

2

tr[aσ(1)aσ(2)]tr[aσ(3)aσ(4)]

×B
(
σ(1), σ(2), σ(3), σ(4); 5H

)]
,

(132)

where the B amplitudes vanish at tree level. From
Eq. (132) we obtain the Wilson coefficients,

~C++−−(p̃1, p̃2, p̃3, p̃4; p̃5) =


2Afin(1+, 2+, 3−, 4−; 5H)
2Afin(1+, 3−, 4−, 2+; 5H)
2Afin(1+, 4−, 2+, 3−; 5H)
Bfin(1+, 2+, 3−, 4−; 5H)
Bfin(1+, 3−, 4−, 2+; 5H)
Bfin(1+, 4−, 2+, 3−; 5H)

,

~C+++−(p̃1, p̃2, p̃3, p̃4; p̃5) =


2Afin(1+, 2+, 3+, 4−; 5H)
2Afin(1+, 3+, 4−, 2+; 5H)
2Afin(1+, 4−, 2+, 3+; 5H)
Bfin(1+, 2+, 3+, 4−; 5H)
Bfin(1+, 3+, 4−, 2+; 5H)
Bfin(1+, 4−, 2+, 3+; 5H)

,

~C++++(p̃1, p̃2, p̃3, p̃4; p̃5) =


2Afin(1+, 2+, 3+, 4+; 5H)
2Afin(1+, 3+, 4+, 2+; 5H)
2Afin(1+, 4+, 2+, 3+; 5H)
Bfin(1+, 2+, 3+, 4+; 5H)
Bfin(1+, 3+, 4+, 2+; 5H)
Bfin(1+, 4+, 2+, 3+; 5H)

,
~C−−−+(p̃1, . . . ; p̃5) = ~C+++−(p̃1, . . . ; p̃5)

∣∣∣
〈..〉↔[..]

,

~C−−−−(p̃1, . . . ; p̃5) = ~C++++(p̃1, . . . ; p̃5)
∣∣∣
〈..〉↔[..]

.

(133)

The last two coefficients follow from parity invariance.
The factors of two in the first three entries of the coef-
ficients come from combining the two traces in the first
three entries in Eq. (130) using charge conjugation invari-
ance. Because of the cyclic symmetry of the traces, the
partial amplitudes are invariant under the corresponding
cyclic permutations of their first four arguments, which
means that most of the amplitudes in Eq. (133) are not
independent. Explicit expressions for the necessary am-
plitudes at tree level are given in App. B 3 c.

VI. VECTOR BOSON + JETS

In this section, we give the helicity operator basis and
the corresponding matching for the production of a γ,
Z, or W vector boson in association with up to two jets.
The corresponding helicity amplitudes are collected in
App. C.

We work at tree level in the electroweak coupling and
consider only QCD corrections, so any external qq̄ pairs
are described by the helicity vector currents Jij± in
Eq. (37). We always include the subsequent leptonic de-
cays γ/Z → `¯̀, W± → ν ¯̀/`ν̄. In the following, for γ/Z
processes, ` stands for any charged lepton or neutrino fla-
vor, and q stands for any quark flavor. For W processes,
we use ` to denote any charged lepton flavor and ν the
corresponding neutrino flavor. Similarly, we use u and
d to denote any up-type or down-type quark flavor (i.e.
not necessarily first generation quarks only).

The operators in the helicity bases satisfy the trans-
formation properties under C and P as discussed in
Sec. III E. However, the weak couplings in the ampli-
tudes explicitly violate C and P. Therefore, to utilize the
C and P transformations of the operators and minimize
the number of required amplitudes and Wilson coeffi-
cients, it is useful to separate the weak couplings from
the amplitudes.

We define PZ and PW as the ratios of the Z and W
propagators to the photon propagator,

PZ,W (s) =
s

s−m2
Z,W + iΓZ,WmZ,W

. (134)

The left- and right-handed couplings vL,R of a particle
to the Z boson are, as usual,

viL =
2T i3 − 2Qi sin2 θW

sin(2θW )
, viR = −2Qi sin2 θW

sin(2θW )
, (135)

where T i3 is the third component of weak isospin, Qi is
the electromagnetic charge in units of |e|, and θW is the
weak mixing angle.

The γ/Z amplitudes can then be decomposed as

A(· · · `¯̀)

= e2

{[
Q`Qq + v`L,Rv

q
L,RPZ(s`¯̀)

]
Aq(· · · `¯̀)

+

nf∑
i=1

[
Q`Qi + v`L,R

viL + viR
2

PZ(s`¯̀)
]
Av(· · · `¯̀)

+
v`L,R

sin(2θW )
PZ(s`¯̀)Aa(· · · `¯̀)

}
. (136)

Here, Aq corresponds to the usual contribution where the
vector boson couples directly to the external quark line
with flavor q. (There is one such contribution for each
external qq̄ pair, and this contribution is absent for pure
gluonic amplitudes like gggZ.) For Av, the γ/Z couples
to an internal quark loop through a vector current and
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the sum runs over all considered internal quark flavors.
For Aa, the Z boson couples to an internal quark loop
through the axial-vector current. This means that when
using parity and charge conjugation we have to include
an additional relative minus sign for this contribution.
We have also made the assumption in Eq. (136) that all
quarks, except for the top, are massless. Since Aa van-
ishes when summed over a massless isodoublet, this has
the consequence that only the b, t isodoublet contributes
to Aa, hence the lack of sum over flavors. We have made
this simplification following the one-loop calculation of
Ref. [14], which calculated the amplitude in an expan-
sion in 1/m2

t , assuming all other kinematic invariants to
be smaller than the top mass. From the point of view
of constructing a basis these assumptions are trivial to
relax.

The W∓ amplitudes can be written as

A(· · · `−ν̄+) =
e2Vud

2 sin2 θW
PW (s`ν̄)Aq(· · · `−ν̄+) ,

A(· · · ν− ¯̀+) =
e2V †ud

2 sin2 θW
PW (sν ¯̀)Aq(· · · ν− ¯̀+) , (137)

where Vud is the appropriate CKM-matrix element. The
Aq amplitudes are the same in Eqs. (136) and (137),
since all electroweak couplings have been extracted, but
we have explicitly included the helicity labels (not to be
mistaken as charge labels) to emphasize that these are
the only possible helicities. The analogues of Av and Aa
do not exist for W production.

We note again that Eqs. (136) and (137) hold at tree
level in the electroweak coupling, which is what we con-
sider in this paper. At this level, the leptons always
couple to the vector boson through the currents [see
Eq. (A19)]

〈p`±|γµ|p¯̀±〉 = 〈p¯̀∓|γµ|p`∓〉 . (138)

This allows us to obtain the Wilson coefficients for oppo-
site lepton helicities simply by interchanging the lepton
momenta.

A. V + 0 Jets

For γ/Z + 0 jets, the partonic process is qq̄`¯̀, and the
basis of helicity operators is

Oᾱβ(+;±) = J ᾱβq 12+ J` 34± ,

Oᾱβ(−;±) = J ᾱβq 12− J` 34± . (139)

In principle, the process gg`¯̀ is allowed through the ax-
ial anomaly, but its contribution vanishes because in the
matching calculation the gluons are taken to be on shell,
and we neglect lepton masses.

For W∓ + 0 jets, the partonic processes are ud̄`ν̄ and
dūν ¯̀, respectively. Since the W only couples to left-
handed fields, the helicity basis simplifies to

Oᾱβ(W−) = J ᾱβūd 12− J¯̀ν 34− ,

Oᾱβ(W+) = J ᾱβ
d̄u 12− Jν̄` 34− . (140)

Here, we have explicitly written out the flavor structure
of the currents. However, we use the shorthand subscript
(W∓) on the operators and Wilson coefficients, since we
will not focus any further on the flavor structure. In
an explicit calculation, one must of course sum over all
relevant flavor combinations.

The unique color structure for V + 0 jets is

T̄αβ̄ =
(
δαβ̄
)
, (141)

and extracting it from the amplitudes, we have

Aq,v,a(q1q̄2`3 ¯̀
4) = i δα1ᾱ2

Aq,v,a(1q, 2q̄; 3`, 4¯̀) . (142)

Here, Av and Aa first appear at two loops. In addition,
Aa is proportional to the top and bottom mass splitting
due to isodoublet cancellations. It drops out when both
top and bottom are treated as massless (e.g., when the
matching scale is much larger than the top mass).

We use the same electroweak decomposition as in
Eqs. (136) and (137) to write the Wilson coefficients. For
γ/Z + 0 jets, we have

~C(λq ;λ`)(p̃1, p̃2; p̃3, p̃4)

= e2

{[
Q`Qq + v`λ`v

q
λq
PZ(s34)

]
~Cq(λq ;λ`)(. . . )

+

nf∑
i=1

[
Q`Qi + v`λ`

viL + viR
2

PZ(s34)
]
~Cv(λq ;λ`)(. . . )

+
v`λ`

sin(2θW )
PZ(s34) ~Ca(λq ;λ`)(. . . )

}
, (143)

where the weak couplings are determined by the helicity
labels of the quark and lepton currents,

v`+ = v`R , v`− = v`L , vq+ = vqR , vq− = vqL . (144)

For W + 0 jets, we simply have

~C(W−)(p̃1, p̃2; p̃3, p̃4) =
e2Vud

2 sin2 θW
PW (s34) ~Cq(−;−)(. . .) ,

~C(W+)(p̃1, p̃2; p̃3, p̃4) =
e2V †ud

2 sin2 θW
PW (s34) ~Cq(−;−)(. . .) .

(145)

In all cases, the momentum arguments on the right-hand
side are the same as on the left-hand side. Note that the
~Cq(−;−) coefficient is the same in all cases. The Wilson
coefficients are given by

~Cx(+;+)(p̃1, p̃2; p̃3, p̃4) = Ax,fin(1+
q , 2

−
q̄ ; 3+

` , 4
−
¯̀ ) ,

~Cx(+;−)(p̃1, p̃2; p̃3, p̃4) = ~Cx(+;+)(p̃1, p̃2; p̃4, p̃3) ,

~Cq,v(−;±)(p̃1, p̃2; p̃3, p̃4) = ~Cq,v(+;±)(p̃2, p̃1; p̃3, p̃4) ,

~Ca(−;±)(p̃1, p̃2; p̃3, p̃4) = −~Ca(+;±)(p̃2, p̃1; p̃3, p̃4) ,

(146)
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where x = q, v, a and as discussed in Sec. IV the subscript
“fin” denotes the IR-finite part of the helicity amplitudes.
The second relation follows from Eq. (138). The last two
relations follow from charge conjugation invariance. At

tree level and one loop only ~Cq receives a nonvanishing
contribution. The Aq amplitude is given in App. C 1.

B. V + 1 Jet

1. gqq̄V

For γ/Z + 1 jet, the partonic process is gqq̄`¯̀, and the
basis of helicity operators is

Oa ᾱβ+(+;±) = Ba1+ J
ᾱβ
q 23+ J` 45± ,

Oa ᾱβ+(−;±) = Ba1+ J
ᾱβ
q 23− J` 45± ,

Oa ᾱβ−(+;±) = Ba1− J
ᾱβ
q 23+ J` 45± ,

Oa ᾱβ−(−;±) = Ba1− J
ᾱβ
q 23− J` 45± . (147)

For W∓ + 1 jet, the partonic processes are gud̄`ν̄ and
gdūν ¯̀, respectively, and the helicity operator basis is

Oa ᾱβ± (W−) = Ba1± J
ᾱβ
ūd 23− J¯̀ν 45− ,

Oa ᾱβ± (W+) = Ba1± J
ᾱβ

d̄u 23− Jν̄` 45− . (148)

The unique color structure for gqq̄V is

T̄ aαβ̄ =
(
T a
αβ̄

)
, (149)

and extracting it from each of the amplitudes, we have

Ax(g1q2q̄3`4 ¯̀
5) = iT a1

α2ᾱ3
Ax(1; 2q, 3q̄; 4`, 5¯̀) , (150)

where the subscript x stands for one of q, v, a.
As for V +0 jets, we write the Wilson coefficients using

the electroweak decomposition in Eqs. (136) and (137).
For γ/Z + 1 jet, we have

~Cλ(λq ;λ`)(p̃1; p̃2, p̃3; p̃4, p̃5)

= e2

{[
Q`Qq + v`λ`v

q
λq
PZ(s45)

]
~Cqλ(λq ;λ`)(. . .)

+

nf∑
i=1

[
Q`Qi + v`λ`

viL + viR
2

PZ(s45)
]
~Cvλ(λq ;λ`)(. . .)

+
v`λ`

sin(2θW )
PZ(s45) ~Caλ(λq ;λ`)(. . .)

}
, (151)

where the weak couplings are determined by the helicity
labels of the quark and lepton currents,

v`+ = v`R , v`− = v`L , vq+ = vqR , vq− = vqL . (152)

For W + 1 jet, we have

~Cλ(W∓)(. . .) =
e2V

(†)
ud

2 sin2 θW
PW (s45) ~Cqλ(−;−)(. . .) , (153)

The Wilson coefficients are given by

~Cx+(+;+)(p̃1; p̃2, p̃3; p̃4, p̃5) = Ax,fin(1+; 2+
q , 3

−
q̄ ; 4+

` , 5
−
¯̀ ) ,

~Cxλ(+;−)(p̃1; p̃2, p̃3; p̃4, p̃5) = ~Cxλ(+;+)(p̃1; p̃2, p̃3; p̃5, p̃4) ,

~Cq,vλ(−;±)(p̃1; p̃2, p̃3; p̃4, p̃5) = −~Cq,vλ(+;±)(p̃1; p̃3, p̃2; p̃4, p̃5) ,

~Caλ(−;±)(p̃1; p̃2, p̃3; p̃4, p̃5) = ~Caλ(+;±)(p̃1; p̃3, p̃2; p̃4, p̃5) .

(154)

The second relation follows from Eq. (138), and the last
two relations follow from charge conjugation invariance.
The Wilson coefficients with a negative helicity gluon fol-
low from parity invariance,

~Cq,v−(+;±)(p̃1; p̃2, p̃3; p̃4, p̃5)

= ~Cq,v+(−;∓)(p̃1; p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

,

~Ca−(+;±)(p̃1; p̃2, p̃3; p̃4, p̃5)

= −~Ca+(−;∓)(p̃1; p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

. (155)

The helicity amplitudes for gqq̄`¯̀ were calculated in
Ref. [11, 12, 181]. We provide the tree-level and one-
loop results in App. C 2. The two-loop amplitudes were
computed in Refs. [182, 183].

2. gggV

The partonic process ggg`¯̀ first appears at one loop,
and thus contributes only at relative O(α2

s) to γ/Z+1 jet.
Nevertheless, for the sake of completeness (and curiosity)
we briefly discuss it here. The helicity operator basis is

Oabc+++(±) =
1

3!
Ba1+ Bb2+ Bc3+ J` 45± ,

Oabc++−(±) =
1

2
Ba1+ Bb2+ Bc3− J` 45± ,

Oabc+−−(±) =
1

2
Ba1+ Bb2− Bc3− J` 45± ,

Oabc−−−(±) =
1

3!
Ba1− Bb2− Bc3− J` 45± . (156)

The color space is two-dimensional. We use the basis

T̄ abc =
(

ifabc , dabc
)
, (157)

in terms of which we can write the ggg`¯̀ amplitudes as

Av(g1g2g3`4 ¯̀
5) = i da1a2a3Av(1, 2, 3; 4`, 5¯̀) ,

Aa(g1g2g3`4 ¯̀
5) = i (ifa1a2a3)Aa(1, 2, 3; 4`, 5¯̀) . (158)

We will justify shortly that to all orders, only a single
color structure appears for each of Av, Aa. This process
can only occur via a closed quark loop, so there is no
Aq contribution. The gggV operators transform under
charge conjugation as

COabcλ1λ2λ3(±)(p̃1, p̃2, p̃3; p̃4, p̃5) T̄ abc C
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= Ocbaλ1λ2λ3(∓)(p̃1, p̃2, p̃3; p̃5, p̃4) T̄ abc . (159)

Charge conjugation invariance of QCD thus leads to

Cabcvλ1λ2λ3(±)(p̃1, p̃2, p̃3; p̃4, p̃5)

= Ccbavλ1λ2λ3(∓)(p̃1, p̃2, p̃3; p̃5, p̃4)

= Ccbavλ1λ2λ3(±)(p̃1, p̃2, p̃3; p̃4, p̃5) , (160)

where we used Eq. (138) in the last line. This implies
that to all orders in the strong coupling, only the fully
symmetric color structure dabc can contribute to Av and
~Cv. For ~Ca the same relation holds but with an addi-
tional minus sign on the right-hand side due to the weak
axial-vector coupling in Aa. This implies that for Aa
and ~Ca only the fully antisymmetric color structure ifabc

contributes, as given in Eq. (158).
We decompose the ggg`¯̀ Wilson coefficients as

~Cλ1λ2λ3(λ`)

= e2

{ nf∑
i=1

[
Q`Qi + v`λ`

viL + viR
2

PZ(s45)
]
~Cvλ1λ2λ3(λ`)

+
v`λ`

sin(2θW )
PZ(s45) ~Caλ1λ2λ3(λ`)

}
, (161)

where

v`+ = v`R , v`− = v`L , (162)

and we have

~Cvλ1λ2λ3(+)(p̃1, p̃2, p̃3; p̃4, p̃5)

=

(
0

Av,fin(1λ1 , 2λ2 , 3λ3 ; 4+
` , 5

−
¯̀ )

)
,

~Caλ1λ2λ3(+)(p̃1, p̃2, p̃3; p̃4, p̃5)

=

(
Aa,fin(1λ1 , 2λ2 , 3λ3 ; 4+

` , 5
−
¯̀ )

0

)
,

~Cv,aλ1λ2λ3(−)(p̃1, p̃2, p̃3; p̃4, p̃5)

= ~Cv,aλ1λ2λ3(+)(p̃1, p̃2, p̃3; p̃5, p̃4) . (163)

For brevity, we have not written out the various gluon he-
licity combinations. The one-loop amplitudes for gggZ
were calculated in Ref. [184], and the two-loop ampli-
tudes were computed in Ref. [185]. Since their contribu-
tion is very small we do not repeat them here.

C. V + 2 Jets

Here we consider the processes q′q̄′qq̄ V , qq̄ qq̄ V , and
gg qq̄ V . The ggggV process is allowed as well, but only
arises at one loop, so we do not explicitly consider here. It
can be treated similarly to gggV , but using the gggg color
basis analogous to that for ggggH given in Eq. (130).

The NLO helicity amplitudes for V +2 jets were calcu-
lated in Refs. [14, 186] assuming that all kinematic scales

are smaller than the top mass mt and including the 1/m2
t

corrections. We give the full expressions for the LO re-
sults in App. C 3. Since the NLO results are rather long,
we do not repeat them, but we show how to convert the
results of Refs. [14, 186] to our notation.

1. q′q̄′qq̄ V and qq̄ qq̄ V

For q′q̄′qq̄ `¯̀, the helicity operator basis is

Oᾱβγ̄δ(+;+;±) = J ᾱβq′ 12+ J
γ̄δ
q 34+ J` 56± ,

Oᾱβγ̄δ(+;−;±) = J ᾱβq′ 12+ J
γ̄δ
q 34− J` 56± ,

Oᾱβγ̄δ(−;+;±) = J ᾱβq′ 12− J
γ̄δ
q 34+ J` 56± ,

Oᾱβγ̄δ(−;−;±) = J ᾱβq′ 12− J
γ̄δ
q 34− J` 56± . (164)

For identical quark flavors, qq̄ qq̄ `¯̀, the basis reduces to

Oᾱβγ̄δ(++;±) =
1

4
J ᾱβq 12+ J

γ̄δ
q 34+ J` 56± ,

Oᾱβγ̄δ(+−;±) = J ᾱβq 12+ J
γ̄δ
q 34− J` 56± ,

Oᾱβγ̄δ(−−;±) =
1

4
J ᾱβq 12− J

γ̄δ
q 34− J` 56± . (165)

For W + 2 jets, the corresponding partonic processes are
qq̄ ud̄ `ν̄ and qq̄ dū ν ¯̀, and the helicity operator basis is

Oᾱβγ̄δ(±;W−) = J ᾱβq 12± J
γ̄δ
ūd 34− J¯̀ν 56− ,

Oᾱβγ̄δ(±;W+) = J ᾱβq 12± J
γ̄δ

d̄u 34− Jν̄` 56− . (166)

We use the color basis

T̄αβ̄γδ̄ = 2TF

(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (167)

For distinct quark flavors, the color decomposition of the
amplitudes in this basis is

Ax(q′1q̄
′
2q3q̄4`5 ¯̀

6) (168)

= 2TF i δα1ᾱ4
δα3ᾱ2

Ax(1q′ , 2q̄′ ; 3q, 4q̄; 5`, 6¯̀)

+ 2TF i δα1ᾱ2δα3ᾱ4

1

N
Bx(1q′ , 2q̄′ ; 3q, 4q̄; 5`, 6¯̀) .

For identical quark flavors the amplitudes can be ob-
tained from the distinct flavor amplitudes using

Ax(q1q̄2q3q̄4`5 ¯̀
6) = Ax(q′1q̄

′
2q3q̄4`5 ¯̀

6)

−Ax(q′1q̄
′
4q3q̄2`5 ¯̀

6) , (169)

where it is to be understood that the electroweak cou-
plings of q′ must also be replaced by those of q.

Writing the Wilson coefficients in the decomposition
in Eqs. (136) and (137), we have for the q′q̄′qq̄ `¯̀ channel

~C(λq′ ;λq ;λ`)
(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

= e2

{[
Q`Qq + v`λ`v

q
λq
PZ(s56)

]
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× ~Cq(λq′ ;λq ;λ`)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

+
[
Q`Qq

′
+ v`λ`v

q′

λq′
PZ(s56)

]
× ~Cq(λq ;λq′ ;λ`)(p̃3, p̃4; p̃1, p̃2; p̃5, p̃6)

+

nf∑
i=1

[
Q`Qi + v`λ`

viL + viR
2

PZ(s56)
]
~Cv(λq′ ;λq ;λ`)

(. . .)

+
v`λ`

sin(2θW )
PZ(s56) ~Ca(λq′ ;λq ;λ`)

(. . .)

}
, (170)

with the weak couplings

v`+ = v`R , v`− = v`L , vq+ = vqR , vq− = vqL . (171)

The same decomposition is used for the case of identi-
cal flavors, qq̄ qq̄ `¯̀. For the W∓ channels, qq̄ ud̄ `ν̄ and
qq̄ dū ν ¯̀, we have

~C(λq ;W∓)(. . . ) =
e2V

(†)
ud

2 sin2 θW
PW (s56) ~Cq(λq ;−;−)(. . .) ,

(172)

The coefficients for q′q̄′qq̄ V are given by

~Cx(+;+;+)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) =

(
Ax,fin(1+

q′ , 2
−
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )

1
NBx,fin(1+

q′ , 2
−
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )

)
,

~Cx(+;−;+)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) =

(
Ax,fin(1+

q′ , 2
−
q̄′ ; 3−q , 4

+
q̄ ; 5+

` , 6
−
¯̀ )

1
NBx,fin(1+

q′ , 2
−
q̄′ ; 3−q , 4

+
q̄ ; 5+

` , 6
−
¯̀ )

)
,

~Cx(+;±;−)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = ~Cx(+;±;+)(p̃1, p̃2; p̃3, p̃4; p̃6, p̃5) ,

~Cq,v(−;+;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = −~Cq,v(+;−;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) ,

~Ca(−;+;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = ~Ca(+;−;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) ,

~Cq,v(−;−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = −~Cq,v(+;+;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) ,

~Ca(−;−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = ~Ca(+;+;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) , (173)

and for qq̄ qq̄ V they are given in terms of the amplitudes Ax,fin and Bx,fin for q′q̄′qq̄ V by

~Cx(++;+)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) =

(
Ax,fin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )− 1

NBx,fin(1+
q , 4

−
q̄ ; 3+

q , 2
−
q̄ ; 5+

` , 6
−
¯̀ )

1
NBx,fin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )−Ax,fin(1+

q , 4
−
q̄ ; 3+

q , 2
−
q̄ ; 5+

` , 6
−
¯̀ )

)
,

~Cx(+−;+)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) =

(
Ax,fin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ ; 5+

` , 6
−
¯̀ )

1
NBx,fin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ ; 5+

` , 6
−
¯̀ )

)
,

~Cx(+±;−)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = ~Cx(+±;+)(p̃1, p̃2; p̃3, p̃4; p̃6, p̃5) ,

~Cq,v(−−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = −~Cq,v(++;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) ,

~Ca(−−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6) = ~Ca(++;±)(p̃2, p̃1; p̃4, p̃3; p̃5, p̃6) . (174)

The various relations for the coefficients with flipped he-
licities follow from Eq. (138) and charge conjugation in-
variance. The tree-level helicity amplitudes are given in
App. C 3 a.

2. gg qq̄ V

For gg qq̄ `¯̀, the helicity operator basis consists of 12
independent operators,

Oab ᾱβ++(+;±) =
1

2
Ba1+ Bb2+ J

ᾱβ
q 34+ J` 56± ,

Oab ᾱβ++(−;±) =
1

2
Ba1+ Bb2+ J

ᾱβ
q 34− J` 56± ,

Oab ᾱβ+−(+;±) = Ba1+ Bb2− J
ᾱβ
q 34+ J` 56± ,

Oab ᾱβ+−(−;±) = Ba1+ Bb2− J
ᾱβ
q 34− J` 56± ,

Oab ᾱβ−−(+;±) =
1

2
Ba1− Bb2− J

ᾱβ
q 34+ J` 56± ,

Oab ᾱβ−−(−;±) =
1

2
Ba1− Bb2− J

ᾱβ
q 34− J` 56± . (175)

For W∓, the corresponding partonic processes are
gg ud̄ `ν̄ and gg dū ν ¯̀, and the helicity operator basis re-
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duces to six independent operators,

Oab ᾱβ++ (W−) =
1

2
Ba1+ Bb2+ J

ᾱβ
ūd 34− J¯̀ν 56− ,

Oab ᾱβ+− (W−) = Ba1+ Bb2− J
ᾱβ
ūd 34− J¯̀ν 56− ,

Oab ᾱβ−− (W−) =
1

2
Ba1− Bb2− J

ᾱβ
ūd 34− J¯̀ν 56− ,

Oab ᾱβ++ (W+) =
1

2
Ba1+ Bb2+ J

ᾱβ

d̄u 34− Jν̄` 56− ,

Oab ᾱβ+− (W+) = Ba1+ Bb2− J
ᾱβ

d̄u 34− Jν̄` 56− ,

Oab ᾱβ−− (W+) =
1

2
Ba1− Bb2− J

ᾱβ

d̄u 34− Jν̄` 56− . (176)

We use the color basis

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
, (177)

and the amplitudes are color-decomposed as

Ax(g1g2q3q̄4`5 ¯̀
6)

= i
∑
σ∈S2

[
T aσ(1)T aσ(2)

]
α3ᾱ4

Ax(σ(1), σ(2); 3q, 4q̄; 5`, 6¯̀)

+ i tr[T a1T a2 ] δα3ᾱ4 Bx(1, 2; 3q, 4q̄; 5`, 6¯̀) . (178)

Writing the Wilson coefficients in the decomposition
in Eqs. (136) and (137), we have for the gg qq̄ `¯̀ channel

~Cλ1λ2(λq ;λ`)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

= e2

{[
Q`Qq + v`λ`v

q
λq
PZ(s56)

]
~Cqλ1λ2(λq ;λ`)(. . .)

+

nf∑
i=1

[
Q`Qi + v`λ`

viL + viR
2

PZ(s56)
]
~Cvλ1λ2(λq ;λ`)(. . .)

+
v`λ`

sin(2θW )
PZ(s56) ~Caλ1λ2(λq ;λ`)(. . .)

}
, (179)

with the weak couplings

v`+ = v`R , v`− = v`L , vq+ = vqR , vq− = vqL . (180)

For the W∓ channels gg ud̄ `ν̄ and gg dū ν ¯̀, we have

~Cλ1λ2(W∓)(. . . ) =
e2V

(†)
ud

2 sin2 θW
PW (s56) ~Cqλ1λ2(−;−)(. . .) ,

(181)

The coefficients for gg qq̄ V are then given by

~Cxλ1λ2(+;+)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

=

Ax,fin(1λ1 , 2λ2 ; 3+
q , 4

−
q̄ ; 5+

` , 6
−
¯̀ )

Ax,fin(2λ2 , 1λ1 ; 3+
q , 4

−
q̄ ; 5+

` , 6
−
¯̀ )

Bx,fin(1λ1 , 2λ2 ; 3+
q , 4

−
q̄ ; 5+

` , 6
−
¯̀ )

 ,

~Cxλ1λ2(+;−)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

= ~Cxλ1λ2(+;+)(p̃1, p̃2; p̃3, p̃4; p̃6, p̃5) . (182)

The remaining Wilson coefficients are obtained by charge
conjugation invariance as follows,

~Cq,vλ1λ2(−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

= V̂ ~Cq,vλ1λ2(+;±)(p̃1, p̃2; p̃4, p̃3; p̃5, p̃6) ,

~Caλ1λ2(−;±)(p̃1, p̃2; p̃3, p̃4; p̃5, p̃6)

= −V̂ ~Caλ1λ2(+;±)(p̃1, p̃2; p̃4, p̃3; p̃5, p̃6) ,

with V̂ =

0 1 0
1 0 0
0 0 1

 . (183)

The tree-level helicity amplitudes are given in App. C 3 b.

VII. pp → JETS

In this section, we give the operator basis and matching
relations for pp → 2, 3 jets. We consider only the QCD
contributions, so that quarks only appear in same-flavor
quark-antiquark pairs with the same chirality, and so are
described by the currents Jij±. The helicity amplitudes
for each channel are given in App. D.

A. pp → 2 Jets

For pp → 2 jets, the partonic channels qq̄ q′q̄′, qq̄ qq̄,
qq̄gg, and gggg contribute. We will discuss each in turn.
The one-loop helicity amplitudes for all partonic chan-
nels were first calculated in Ref. [23]. The tree-level and
one-loop results are given in App. D 1. The two-loop am-
plitudes have also been calculated, and can be found in
Refs. [187, 188] for qq̄gg, Refs. [189–192] for qq̄ q′q̄′, qq̄ qq̄
and in Refs. [193, 194] for gggg.

1. qq̄ q′q̄′ and qq̄ qq̄

In the case of distinct quark flavors, qq̄ q′q̄′, the helicity
basis consists of four independent operators,

Oᾱβγ̄δ(+;+) = J ᾱβq 12+ J
γ̄δ
q′ 34+ ,

Oᾱβγ̄δ(+;−) = J ᾱβq 12+ J
γ̄δ
q′ 34− ,

Oᾱβγ̄δ(−;+) = J ᾱβq 12− J
γ̄δ
q′ 34+ ,

Oᾱβγ̄δ(−;−) = J ᾱβq 12− J
γ̄δ
q′ 34− . (184)

For identical quark flavors, qq̄ qq̄, the helicity basis only
has three independent operators,

Oᾱβγ̄δ(++) =
1

4
J ᾱβ12+ J

γ̄δ
34+ ,

Oᾱβγ̄δ(+−) = J ᾱβ12+ J
γ̄δ
34− ,

Oᾱβγ̄δ(−−) =
1

4
J ᾱβ12− J

γ̄δ
34− . (185)
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Here we have not made the flavor label explicit, since
both quark currents have the same flavor. In both cases
we use the color basis

T̄αβ̄γδ̄ = 2TF

(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (186)

The QCD helicity amplitudes for qq̄ q′q̄′ can be color-
decomposed in the basis of Eq. (186) as

A(q1q̄2q
′
3q̄
′
4) = 2TF i

[
δα1ᾱ4δα3ᾱ2A(1q, 2q̄; 3q′ , 4q̄′ (187)

+
1

N
δα1ᾱ2δα3ᾱ4B(1q, 2q̄; 3q′ , 4q̄′)

]
,

where we have included a factor of 1/N for convenience.
The amplitude vanishes in the case that the quark and
antiquark of the same flavor have the same helicity. This
is equivalent to the fact that the operators of Eq. (184)
provide a complete basis of helicity operators. For iden-
tical quark flavors, the QCD amplitudes can be written

in terms of the amplitudes for the distinct flavor case as

A(q1q̄2q3q̄4) = A(q1q̄2q
′
3q̄
′
4)−A(q1q̄

′
4q
′
3q̄2) . (188)

The Wilson coefficients for qq̄ q′q̄′ are then given by

~C(+;+)(p̃1, p̃2; p̃3, p̃4) =

(
Afin(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)

1
NBfin(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)

)
,

~C(+;−)(p̃1, p̃2; p̃3, p̃4) =

(
Afin(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)

1
NBfin(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)

)
,

~C(−;+)(p̃1, p̃2; p̃3, p̃4) = ~C(+;−)(p̃2, p̃1; p̃4, p̃3) ,

~C(−;−)(p̃1, p̃2; p̃3, p̃4) = ~C(+;+)(p̃2, p̃1; p̃4, p̃3) , (189)

and for qq̄ qq̄ they are given in terms of the amplitudes
Afin and Bfin for qq̄ q′q̄′ by

~C(++)(p̃1, p̃2; p̃3, p̃4) =

(
Afin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ )− 1

NBfin(1+
q , 4

−
q̄ ; 3+

q , 2
−
q̄ )

1
NBfin(1+

q , 2
−
q̄ ; 3+

q , 4
−
q̄ )−Afin(1+

q , 4
−
q̄ ; 3+

q , 2
−
q̄ )

)
,

~C(+−)(p̃1, p̃2; p̃3, p̃4) =

(
Afin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ )

1
NBfin(1+

q , 2
−
q̄ ; 3−q , 4

+
q̄ )

)
,

~C(−−)(p̃1, p̃2; p̃3, p̃4) = ~C(++)(p̃2, p̃1; p̃4, p̃3) . (190)

The relations for ~C(−;±) and ~C(−−) follow from charge

conjugation invariance. The Wilson coefficient ~C(+−) is

equal to ~C(+;−), since the amplitude vanishes when the
quark and antiquark of the same flavor have the same
helicity (both + or both −), so there is no exchange
term. The subscript “fin” in Eqs. (189) and (190) de-
notes the IR-finite part of the helicity amplitudes as dis-
cussed in Sec. IV. Recall that the symmetry factors of
1/4 in Eq. (185) already take care of the interchange of
identical (anti)quarks, so there are no additional symme-

try factors needed for ~C(++). Explicit expressions for all
required partial amplitudes at tree level and one loop are
given in App. D 1 a.

2. ggqq̄

For ggqq̄, the helicity basis has a total of six indepen-
dent operators,

Oab ᾱβ++(+) =
1

2
Ba1+ Bb2+ J

ᾱβ
34+ ,

Oab ᾱβ+−(+) = Ba1+ Bb2− J
ᾱβ
34+ ,

Oab ᾱβ−−(+) =
1

2
Ba1− Bb2− J

ᾱβ
34+ ,

Oab ᾱβ++(−) =
1

2
Ba1+ Bb2+ J

ᾱβ
34− ,

Oab ᾱβ+−(−) = Ba1+ Bb2− J
ᾱβ
34− ,

Oab ᾱβ−−(−) =
1

2
Ba1− Bb2− J

ᾱβ
34− . (191)

Note that the use of a helicity basis has made it easy to
count the number of required operators. 9 For the color
structure, we use the basis

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (192)

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using the color basis of
Eq. (192) is

A
(
g1g2 q3q̄4

)

9 This should be contrasted with the more complicated basis given
in equation (126) of Ref. [195] which is built from fields χni
and B⊥µni and standard Dirac structures. It can be reduced to a
minimal basis using identities such as O2 = −O1, O8 = O7 +
4tO3−4tO4 and O6 = O5−2O1+O(ε) where t = −ω1ω3n1·n3/2,
and then can be related to the basis used here.
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= i
∑
σ∈S2

[
T aσ(1)T aσ(2)

]
α3ᾱ4

A(σ(1), σ(2); 3q, 4q̄)

+ i tr[T a1T a2 ] δα3ᾱ4 B(1, 2; 3q, 4q̄) , (193)

from which we can read off the Wilson coefficients,

~C+−(+)(p̃1, p̃2; p̃3, p̃4) =

Afin(1+, 2−; 3+
q , 4

−
q̄ )

Afin(2−, 1+; 3+
q , 4

−
q̄ )

Bfin(1+, 2−; 3+
q , 4

−
q̄ )

 ,

~C++(+)(p̃1, p̃2; p̃3, p̃4) =

Afin(1+, 2+; 3+
q , 4

−
q̄ )

Afin(2+, 1+; 3+
q , 4

−
q̄ )

Bfin(1+, 2+; 3+
q , 4

−
q̄ )

 ,

~C−−(+)(p̃1, p̃2; p̃3, p̃4) =

Afin(1−, 2−; 3+
q , 4

−
q̄ )

Afin(2−, 1−; 3+
q , 4

−
q̄ )

Bfin(1−, 2−; 3+
q , 4

−
q̄ )

 . (194)

The remaining coefficients follow from charge conjugation
as discussed in Sec. III E,

~Cλ1λ2(−)(p̃1, p̃2; p̃3, p̃4) = V̂ ~Cλ1λ2(+)(p̃1, p̃2; p̃4, p̃3) ,

with V̂ =

 0 −1 0
−1 0 0
0 0 −1

 . (195)

At tree level, the partial amplitudes are well known, and

only the first two entries in ~C+−(±) are nonzero. Explicit
expressions for all amplitudes at tree level and one loop
are given in App. D 1 b.

3. gggg

For gggg, the helicity basis has five independent oper-
ators,

Oabcd++++ =
1

4!
Ba1+Bb2+Bc3+Bd4+ ,

Oabcd+++− =
1

3!
Ba1+Bb2+Bc3+Bd4− ,

Oabcd++−− =
1

4
Ba1+Bb2+Bc3−Bd4− ,

Oabcd−−−+ =
1

3!
Ba1−Bb2−Bc3−Bd4+ ,

Oabcd−−−− =
1

4!
Ba1−Bb2−Bc3−Bd4− . (196)

We use the color basis

T̄ abcd =
1

2 · 2TF


tr[abcd] + tr[dcba]
tr[acdb] + tr[bdca]
tr[adbc] + tr[cbda]

2tr[ab]tr[cd]
2tr[ac]tr[db]
2tr[ad]tr[bc]



T

, (197)

where we have used the shorthand notation

tr[ab] = tr[T aT b] , tr[abcd] = tr[T aT bT cT d] . (198)

Under charge conjugation, the operators transform as

COabcdλ1λ2λ3λ4
T̄ abcd C = Odcbaλ1λ2λ3λ4

T̄ abcd . (199)

Thus, charge conjugation invariance of QCD leads to

Cabcdλ1λ2λ3λ4
= Cdcbaλ1λ2λ3λ4

. (200)

In principle, there are three more color structures with a
minus sign instead of the plus sign in the first three lines
in Eq. (197). Since charge conjugation is a symmetry
of QCD, Eq. (200) holds to all orders, so these addi-
tional color structures cannot contribute. In particular,
the color structures in Eq. (197) cannot mix into these
additional structures at any order. Hence, it is sufficient
to consider the reduced basis in Eq. (197) instead of the
9 different color structures, which was used for example
in Ref. [88]. Note that for N = 3 it is possible to further
reduce the color basis by one using the relation

tr[abcd+ dcba] + tr[acdb+ bdca] + tr[adbc+ cbda]

= tr[ab]tr[cd] + tr[ac]tr[db] + tr[ad]tr[bc] . (201)

We refrain from doing so, since it makes the structure of
the anomalous dimension matrix less visible, and because
there are no such relations for N > 3.

The color decomposition of the QCD amplitude into
partial amplitudes using the color basis in Eq. (197) is

A(g1g2g3g4) =
i

2TF

[ ∑
σ∈S4/Z4

tr[aσ(1)aσ(2)aσ(3)aσ(4)]

×A
(
σ(1), σ(2), σ(3), σ(4)

)
+

∑
σ∈S4/Z3

2

tr[aσ(1)aσ(2)]tr[aσ(3)aσ(4)]

×B
(
σ(1), σ(2), σ(3), σ(4)

)]
, (202)

from which we obtain the Wilson coefficients

~C++−−(p̃1, p̃2, p̃3, p̃4) =


2Afin(1+, 2+, 3−, 4−)
2Afin(1+, 3−, 4−, 2+)
2Afin(1+, 4−, 2+, 3−)
Bfin(1+, 2+, 3−, 4−)
Bfin(1+, 3−, 4−, 2+)
Bfin(1+, 4−, 2+, 3−)

 ,

~C+++−(p̃1, p̃2, p̃3, p̃4) =


2Afin(1+, 2+, 3+, 4−)
2Afin(1+, 3+, 4−, 2+)
2Afin(1+, 4−, 2+, 3+)
Bfin(1+, 2+, 3+, 4−)
Bfin(1+, 3+, 4−, 2+)
Bfin(1+, 4−, 2+, 3+)

 ,

~C++++(p̃1, p̃2, p̃3, p̃4) =


2Afin(1+, 2+, 3+, 4+)
2Afin(1+, 3+, 4+, 2+)
2Afin(1+, 4+, 2+, 3+)
Bfin(1+, 2+, 3+, 4+)
Bfin(1+, 3+, 4+, 2+)
Bfin(1+, 4+, 2+, 3+)

 ,
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~C−−−+(p̃1, p̃2, p̃3, p̃4) = ~C+++−(p̃1, p̃2, p̃3, p̃4)
∣∣∣
〈..〉↔[..]

,

~C−−−−(p̃1, p̃2, p̃3, p̃4) = ~C++++(p̃1, p̃2, p̃3, p̃4)
∣∣∣
〈..〉↔[..]

.

(203)

The last two coefficients follow from parity invariance.
The factors of two in the first three entries of the coef-
ficients come from combining the two color structures in
the first three entries in Eq. (197) using charge conjuga-
tion invariance in Eq. (200).

The tree-level amplitudes are well known. At tree level,
only the A amplitudes with two positive and two nega-
tive helicity gluons are nonzero. Because the A ampli-
tudes correspond to a single-trace color structure, which
possesses a cyclic symmetry, the corresponding partial
amplitudes are invariant under the corresponding cyclic
permutations of their arguments. Explicit expressions
for the required amplitudes at tree level and one loop are
given in App. D 1 c.

B. pp → 3 Jets

The four partonic channels g qq̄ q′q̄′, g qq̄ qq̄, ggg qq̄,
and ggggg contribute to pp → 3 jets, which we discuss
in turn. The one-loop partial amplitudes for the differ-
ent partonic channels were calculated in Refs. [22, 24, 25].
Tree-level results for the helicity amplitudes for each par-
tonic process are given in App. D 2.

1. g qq̄ q′q̄′ and g qq̄ qq̄

For the case of distinct quark flavors, g qq̄ q′q̄′, the he-
licity basis consists of eight independent operators,

Oa ᾱβγ̄δ±(+;+) = Ba1± J
ᾱβ
q 23+ J

γ̄δ
q′ 45+ ,

Oa ᾱβγ̄δ±(+;−) = Ba1± J
ᾱβ
q 23+ J

γ̄δ
q′ 45− ,

Oa ᾱβγ̄δ±(−;+) = Ba1± J
ᾱβ
q 23− J

γ̄δ
q′ 45+ ,

Oa ᾱβγ̄δ±(−;−) = Ba1± J
ᾱβ
q 23− J

γ̄δ
q′ 45− . (204)

For identical quark flavors, g qq̄ qq̄, the basis reduces to
six independent helicity operators,

Oa ᾱβγ̄δ±(++) =
1

4
Ba1± J

ᾱβ
23+ J

γ̄δ
45+ ,

Oa ᾱβγ̄δ±(+−) = Ba1± J
ᾱβ
23+ J

γ̄δ
45− ,

Oa ᾱβγ̄δ±(−−) =
1

4
Ba1± J

ᾱβ
23− J

γ̄δ
45− . (205)

In both cases we use the color basis

T̄ aαβ̄γδ̄ = 2TF

(
T aαδ̄ δγβ̄ , T

a
γβ̄ δαδ̄, T

a
αβ̄ δγδ̄, T

a
γδ̄ δαβ̄

)
.

(206)

The QCD helicity amplitudes for g qq̄ q′q̄′ can be color-
decomposed into partial amplitudes in the color basis of
Eq. (206) as

A(g1q2q̄3q
′
4q̄
′
5) = 2TF i

[
T a1
α2ᾱ5

δα4ᾱ3
A(1; 2q, 3q̄; 4q′ , 5q̄′) + T a1

α4ᾱ3
δα2ᾱ5

A(1; 4q′ , 5q̄′ ; 2q, 3q̄)

+
1

N
T a1
α2ᾱ3

δα4ᾱ5
B(1; 2q, 3q̄; 4q′ , 5q̄′) +

1

N
T a1
α4ᾱ5

δα2ᾱ3
B(1; 4q′ , 5q̄′ ; 2q, 3q̄)

]
, (207)

where we have used the symmetry qq̄ ↔ q′q̄′, and inserted the factors of 1/N for later convenience. The amplitude
vanishes when the quark and antiquark of the same flavor have the same helicity (both + or both −), in accordance
with the fact that the operators of Eq. (204) provide a complete basis of helicity operators. For identical quark flavors,
the amplitudes can be written in terms of the amplitudes for the distinct flavor case as

A(g1q2q̄3q4q̄5) = A(g1q2q̄3q
′
4q̄
′
5)−A(g1q2q̄

′
5q
′
4q̄3) . (208)

The Wilson coefficients for g qq̄ q′q̄′ are then given by

~C+(+;+)(p̃1; p̃2, p̃3; p̃4, p̃5) =


Afin(1+; 2+

q , 3
−
q̄ ; 4+

q′ , 5
−
q̄′)

Afin(1+; 4+
q′ , 5

−
q̄′ ; 2+

q , 3
−
q̄ )

1
NBfin(1+; 2+

q , 3
−
q̄ ; 4+

q′ , 5
−
q̄′)

1
NBfin(1+; 4+

q′ , 5
−
q̄′ ; 2+

q , 3
−
q̄ )

 ,

~C+(+;−)(p̃1; p̃2, p̃3; p̃4, p̃5) =


Afin(1+; 2+

q , 3
−
q̄ ; 4−q′ , 5

+
q̄′)

Afin(1+; 4−q′ , 5
+
q̄′ ; 2+

q , 3
−
q̄ )

1
NBfin(1+; 2+

q , 3
−
q̄ ; 4−q′ , 5

+
q̄′)

1
NBfin(1+; 4−q′ , 5

+
q̄′ ; 2+

q , 3
−
q̄ )

 , (209)
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and for g qq̄ qq̄ they are given in terms of the amplitudes Afin and Bfin for g qq̄ q′q̄′ by

~C+(++)(p̃1; p̃2, p̃3; p̃4, p̃5) =


Afin(1+; 2+

q , 3
−
q̄ ; 4+

q , 5
−
q̄ )− 1

NBfin(1+; 2+
q , 5

−
q̄ ; 4+

q , 3
−
q̄ )

Afin(1+; 4+
q , 5

−
q̄ ; 2+

q , 3
−
q̄ )− 1

NBfin(1+; 4+
q , 3

−
q̄ ; 2+

q , 5
−
q̄ )

1
NBfin(1+; 2+

q , 3
−
q̄ ; 4+

q , 5
−
q̄ )−Afin(1+; 2+

q , 5
−
q̄ ; 4+

q , 3
−
q̄ )

1
NBfin(1+; 4+

q , 5
−
q̄ ; 2+

q , 3
−
q̄ )−Afin(1+; 4+

q , 3
−
q̄ ; 2+

q , 5
−
q̄ )

 ,

~C+(+−)(p̃1; p̃2, p̃3; p̃4, p̃5) =


Afin(1+; 2+

q , 3
−
q̄ ; 4−q , 5

+
q̄ )

Afin(1+; 4−q , 5
+
q̄ ; 2+

q , 3
−
q̄ )

1
NBfin(1+; 2+

q , 3
−
q̄ ; 4−q , 5

+
q̄ )

1
NBfin(1+; 4−q , 5

+
q̄ ; 2+

q , 3
−
q̄ )

 . (210)

Charge conjugation invariance of QCD relates the Wilson
coefficients,

~Cλ(−;±)(p̃1; p̃2, p̃3; p̃4, p̃5) = V̂ ~Cλ(+;∓)(p̃1; p̃3, p̃2; p̃5, p̃4) ,

~Cλ(−−)(p̃1; p̃2, p̃3; p̃4, p̃5) = V̂ ~Cλ(++)(p̃1; p̃3, p̃2; p̃5, p̃4) ,

(211)

with

V̂ =

 0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

 . (212)

The remaining Wilson coefficients for a negative helicity
gluon follow from parity invariance,

~C−(+;±)(p̃1; p̃2, p̃3; p̃4, p̃5)

= ~C+(−;∓)(p̃1; p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

,

~C−(++)(p̃1; p̃2, p̃3; p̃4, p̃5)

= ~C+(−−)(p̃1; p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

. (213)

Explicit expressions for all required partial amplitudes at
tree level are given in App. D 2 a.

2. ggg qq̄

For ggg, qq̄, we have a basis of eight independent he-
licity operators,

Oabc ᾱβ+++(±) =
1

3!
Ba1+ Bb2+ Bc3+ J

ᾱβ
45± ,

Oabc ᾱβ++−(±) =
1

2
Ba1+ Bb2+ Bc3− J

ᾱβ
45± ,

Oabc ᾱβ−−+(±) =
1

2
Ba1− Bb2− Bc3+ J

ᾱβ
45± ,

Oabc ᾱβ−−−(±) =
1

3!
Ba1− Bb2− Bc3− J

ᾱβ
45± , (214)

and we use the color basis

T̄ abc αβ̄ =



[T aT bT c]αβ̄
[T bT cT a]αβ̄
[T cT aT b]αβ̄
[T cT bT a]αβ̄
[T aT cT b]αβ̄
[T bT aT c]αβ̄
tr[T cT a]T b

αβ̄

tr[T aT b]T c
αβ̄

tr[T bT c]T a
αβ̄

tr[T aT bT c]δαβ̄
tr[T cT bT a]δαβ̄



T

. (215)

The color decomposition of the QCD helicity ampli-
tudes into partial amplitudes using Eq. (215) is

A
(
g1g2g3 q4q̄5

)
= i
∑
σ∈S3

[
T aσ(1)T aσ(2)T aσ(3)

]
α4ᾱ5

×A(σ(1), σ(2), σ(3); 4q, 5q̄)

+ i
∑

σ∈S3/Z2

tr
[
T aσ(1)T aσ(2)

]
T
aσ(3)

α4ᾱ5

×B(σ(1), σ(2), σ(3); 4q, 5q̄)

+ i
∑

σ∈S3/Z3

tr
[
T aσ(1)T aσ(2)T aσ(3)

]
δα4ᾱ5

× C(σ(1), σ(2), σ(3); 4q, 5q̄) , (216)

from which we can read off the Wilson coefficients,

~C++∓(+)(p̃1, . . . ; p̃4, p̃5) =



Afin(1+, 2+, 3∓; 4+
q , 5

−
q̄ )

Afin(2+, 3∓, 1+; 4+
q , 5

−
q̄ )

Afin(3∓, 1+, 2+; 4+
q , 5

−
q̄ )

Afin(3∓, 2+, 1+; 4+
q , 5

−
q̄ )

Afin(1+, 3∓, 2+; 4+
q , 5

−
q̄ )

Afin(2+, 1+, 3∓; 4+
q , 5

−
q̄ )

Bfin(3∓, 1+, 2+; 4+
q , 5

−
q̄ )

Bfin(1+, 2+, 3∓; 4+
q , 5

−
q̄ )

Bfin(2+, 3∓, 1+; 4+
q , 5

−
q̄ )

Cfin(1+, 2+, 3∓; 4+
q , 5

−
q̄ )

Cfin(3∓, 2+, 1+; 4+
q , 5

−
q̄ )


.

(217)
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Charge conjugation invariance of QCD relates the coeffi-
cients with opposite quark helicities,

~Cλ1λ2λ3(−)(p̃1, p̃2, p̃3; p̃4, p̃5) = V̂ ~Cλ1λ2λ3(+)(p̃1, p̃2, p̃3; p̃5, p̃4) ,

with V̂ =


03×3 13×3

13×3 03×3

13×3

0 1
1 0

 , (218)

where 1n×n denotes the n-dimensional identity matrix
and the empty entries are all zero. The remaining coeffi-
cients follow from parity invariance

~C−−+(±)(p̃1, p̃2, p̃3; p̃4, p̃5)

= ~C++−(∓)(p̃1, p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

,

~C−−−(±)(p̃1, p̃2, p̃3; p̃4, p̃5)

= ~C+++(∓)(p̃1, p̃2, p̃3; p̃4, p̃5)
∣∣∣
〈..〉↔[..]

. (219)

At tree level, the partial amplitudes are well known, and
only the A amplitudes are nonzero. Furthermore, the
partial amplitudes with all negative or all positive he-
licity gluons vanish. Combining the charge and par-
ity relations of Eqs. (218) and (219), there are only
three independent amplitudes at tree level, which we
take to be A(1+, 2+, 3−; 4+

q , 5
−
q̄ ), A(2+, 3−, 1+; 4+

q , 5
−
q̄ ),

and A(3−, 1+, 2+; 4+
q , 5

−
q̄ ). These amplitudes are given

in App. D 2 b.

3. ggggg

For ggggg, the basis consists of six independent helicity
operators,

Oabcde+++++ =
1

5!
Ba1+Bb2+Bc3+Bd4+Be5+ ,

Oabcde++++− =
1

4!
Ba1+Bb2+Bc3+Bd4+Be5− ,

Oabcde+++−− =
1

2 · 3!
Ba1+Bb2+Bc3+Bd4−Be5− ,

Oabcde−−−++ =
1

2 · 3!
Ba1−Bb2−Bc3−Bd4+Be5+ ,

Oabcde−−−−+ =
1

4!
Ba1−Bb2−Bc3−Bd4−Be5+ ,

Oabcde−−−−− =
1

5!
Ba1−Bb2−Bc3−Bd4−Be5− . (220)

As before, we only need one operator for each number of
positive and negative helicities. We use the color basis

T̄ abcde =
1

2 · 2TF



tr[abcde]− tr[edcba]
tr[acdeb]− tr[bedca]
tr[acbed]− tr[debca]
tr[abced]− tr[decba]
tr[abdec]− tr[cedba]
tr[acbde]− tr[edbca]
tr[adceb]− tr[becda]
tr[adcbe]− tr[ebcda]
tr[aebdc]− tr[cdbea]
tr[abdce]− tr[ecdba]
tr[aecbd]− tr[dbcea]
tr[acebd]− tr[dbeca]

(tr[ced]− tr[dec])tr[ab]
(tr[abe]− tr[eba])tr[cd]
(tr[acd]− tr[dca])tr[be]
(tr[bec]− tr[ceb])tr[ad]
(tr[adb]− tr[bda])tr[ce]
(tr[ace]− tr[eca])tr[bd]
(tr[bdc]− tr[cdb])tr[ae]
(tr[aed]− tr[dea])tr[bc]
(tr[acb]− tr[bca])tr[de]
(tr[bed]− tr[deb])tr[ac]



T

, (221)

where we have used the shorthand notation

tr[ab · · · cd] = tr[T aT b · · ·T cT d] . (222)

A priori, there are twice as many color structures as in
Eq. (221) with a relative plus sign instead of a minus sign
between the two traces. Under charge conjugation, the
operators transform as

COabcdeλ1λ2λ3λ4λ5
T̄ abcde C = −Oedcbaλ1λ2λ3λ4λ5

(T̄ abcde) . (223)

Therefore, charge conjugation invariance implies for the
Wilson coefficients

Cabcdeλ1λ2λ3λ4λ5
= −Cedcbaλ1λ2λ3λ4λ5

, (224)

and hence these additional color structures cannot ap-
pear at any order in perturbation theory, either through
matching or renormalization group evolution.

The color decomposition of the QCD amplitude into
partial amplitudes using the color basis of Eq. (221) is

A(g1g2g3g4g5)

=
i

2TF

[ ∑
σ∈S5/Z5

tr[aσ(1)aσ(2)aσ(3)aσ(4)aσ(5)]

×A
(
σ(1), σ(2), σ(3), σ(4), σ(5)

)
+

∑
σ∈S5/(Z3×Z2)

tr[aσ(1)aσ(2)aσ(3)] tr[aσ(4)aσ(5)]

×B
(
σ(1), σ(2), σ(3), σ(4), σ(5)

)]
, (225)
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from which we obtain the Wilson coefficients

~C+++−−(p̃1, . . . , p̃5) = 2



Afin(1+, 2+, 3+, 4−, 5−)
Afin(1+, 3+, 4−, 5−, 2+)
Afin(1+, 3+, 2+, 5−, 4−)
Afin(1+, 2+, 3+, 5−, 4−)
Afin(1+, 2+, 4−, 5−, 3+)
Afin(1+, 3+, 2+, 4−, 5−)
Afin(1+, 4−, 3+, 5−, 2+)
Afin(1+, 4−, 3+, 2+, 5−)
Afin(1+, 5−, 2+, 4−, 3+)
Afin(1+, 2+, 4−, 3+, 5−)
Afin(1+, 5−, 3+, 2+, 4−)
Afin(1+, 3+, 5−, 2+, 4−)
Bfin(3+, 5−, 4−, 1+, 2+)
Bfin(1+, 2+, 5−, 3+, 4−)
Bfin(1+, 3+, 4−, 2+, 5−)
Bfin(2+, 5−, 3+, 1+, 4−)
Bfin(1+, 4+, 2−, 3+, 5−)
Bfin(1+, 3+, 5−, 2+, 4−)
Bfin(2+, 4−, 3+, 1+, 5−)
Bfin(1+, 5−, 4−, 2+, 3+)
Bfin(1+, 3+, 2+, 4−, 5−)
Bfin(2+, 5−, 4−, 1+, 3+)



,

~C−−−−±(p̃1, . . . , p̃5) = ~C++++∓(p̃1, . . . , p̃5)
∣∣∣
〈..〉↔[..]

,

~C−−−++(p̃1, . . . , p̃5) = ~C+++−−(p̃1, . . . , p̃5)
∣∣∣
〈..〉↔[..]

.

(226)

For brevity, we have not written out the coefficients
~C++++− and ~C+++++. They have exactly the same

structure as ~C+++−− with the replacements 4− → 4+

and 4−, 5− → 4+, 5+, respectively, in the arguments of
the helicity amplitudes. The remaining Wilson coeffi-
cients are given by parity invariance as shown. The over-
all factor of two comes from combining the two color
structures in Eq. (221), which are related by charge con-
jugation.

At tree level, all the B amplitudes vanish, as do all

the amplitudes in ~C++++± and ~C−−−−∓. By the par-
ity relations given in Eq. (226), only the A amplitudes

in ~C+++−− are then required for the tree-level match-
ing. Since these amplitudes correspond to single trace
color structures, which posses a cyclic symmetry, the re-
quired partial amplitudes are invariant under the corre-
sponding cyclic permutations of their arguments. There-
fore, at tree level, there are only two independent ampli-
tudes, which we take to be Afin(1+, 2+, 3+, 4−, 5−) and
Afin(1+, 2+, 4−, 3+, 5−). These are given in App. D 2 c.
Simplifications also occur at one loop, since the B ampli-
tudes can be expressed in terms of sums of permutations
of the A amplitudes [8, 9].

VIII. RENORMALIZATION GROUP
EVOLUTION

In this section, we discuss the renormalization group
evolution (RGE) of the Wilson coefficients. We start with
a general discussion and give the solution of the RGE to
all orders in perturbation theory. For completeness, we
also explicitly derive the (known) anomalous dimension
at one loop. To discuss the RGE, it is convenient to

consider the operators ~O† in Eq. (54), which are vec-
tors in color space. Lastly, we give explicit results, in
a manifestly crossing symmetric form, for the relevant
color mixing matrices for the color bases we have used
in the previous sections. Since the operators’ renormal-
ization is independent of their helicity structure, we drop
all helicity labels throughout this section for notational
simplicity.

A. General Discussion

The renormalization of the hard scattering in SCET
can either be carried out as operator renormalization,
where the relation between bare and renormalized ma-
trix elements is 〈 ~O†〉bare = Z

−nq/2
ξ Z

−ng/2
A 〈 ~O†〉renẐO, or

with coefficient renormalization where 〈 ~O†〉bare ~Cbare =

Z
nq/2
ξ Z

ng/2
A 〈 ~O†〉bareẐC ~C

ren. The relationship between

the two is ẐC = Ẑ−1
O . Here Zξ and ZA are the wave-

function renormalizations of the SCET collinear quark
and gluon fields ξn and An, defined in Sec. II B, and

ng = n+
g + n−g , nq = n+

q + n−q , (227)

are the total number of quark and gluon helicity fields
in the operator (Recall that there are two quark fields in
each of the fermionic helicity currents). The UV diver-

gences for 〈 ~O†〉bare are given in terms of a local product
(as opposed to a convolution over label momenta), since
we are working at leading power where the operators con-
tain a single field per collinear sector.

Let us consider more explicitly how the renormaliza-
tion works at one loop. The counterterm Feynman rule
at this order is

〈 ~O†〉tree
(
Z
nq/2
ξ Z

ng/2
A ẐC − 1

)
. (228)

At one loop, the UV divergences of 〈 ~O†〉bare are pro-

portional to the tree-level matrix element as 〈 ~O†〉tree D̂,

where D̂ is a matrix in color space, which denotes the
1/ε2 and 1/ε UV divergences (with µ defined in the MS
scheme) of the bare matrix element. The counter term
has to cancel these UV divergences so

〈 ~O†〉tree
(
Z
nq/2
ξ Z

ng/2
A ẐC − 1

)
= −〈 ~O†〉tree D̂ , (229)

which fixes ẐC at one loop.
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Next consider the renormalization group equations,
working to all orders in αs. As usual, the µ indepen-
dence of the bare operator implies the renormalization
group equation for the Wilson coefficient

µ
d~C(µ)

dµ
= γ̂C(µ) ~C(µ) , (230)

where the anomalous dimension matrix is defined as

γ̂C(µ) = −Ẑ−1
C (µ)

[ d

d lnµ
ẐC(µ)

]
. (231)

The solution of the RGE in Eq. (230) can be written as

~C(µ) = Û(µ0, µ) ~C(µ0) , (232)

with the evolution matrix

Û(µ0, µ) = P exp

[∫ lnµ

lnµ0

d lnµ′ γ̂C(µ′)

]
. (233)

Here, P denotes path-ordering along increasing µ, and
µ > µ0. The path-ordering is necessary since γ̂C(µ) is a
matrix in color space.

The anomalous dimension matrix has the general form

γ̂C(µ) = Γcusp[αs(µ)] ∆̂(µ2) + γ̂[αs(µ)] , (234)

where Γcusp is the cusp anomalous dimension and ∆̂(µ2)
is a process-dependent mixing matrix in color space,
which does not depend on αs. Its µ dependence is given
by

∆̂(µ2) = 1(ngCA + nqCF ) ln
(µ0

µ

)
+ ∆̂(µ2

0) , (235)

which will be demonstrated explicitly at one loop
in Sec. VIII B. We can then perform the integral
in Eq. (233) by using the running of the coupling,
dαs(µ)/d lnµ = β(αs), to switch variables from lnµ to
αs. We find

Û(µ0, µ) = e−(ngCA+nqCF )KΓ(µ0,µ) (236)

× P̄αs exp
[
ηΓ(µ0, µ) ∆̂(µ2

0) + K̂γ(µ0, µ)
]
,

where P̄αs now denotes path-ordering along decreasing
αs, with αs(µ) < αs(µ0), and

KΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
Γcusp(αs)

β(αs)

∫ αs

αs(µ0)

dα′s
1

β(α′s)
,

ηΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
Γcusp(αs)

β(αs)
,

K̂γ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
γ̂(αs)

β(αs)
. (237)

Up to two loops, the noncusp piece γ̂(αs) in Eq. (234) is
proportional to the identity operator [196, 197]

γ̂(αs) = (nqγ
q
C + ngγ

g
C)1 . (238)

(a)

T c
αiβ̄i

αi

ᾱj−T c
βjᾱj

~T ··βi··β̄j··

ai

αjT c
αjβ̄j

~T ··bi··βj··

ifaicbi ai

~T ··bi··bj··

ifaicbi

ifajcbj aj

(b)

FIG. 1. (a) Collinear one-loop diagrams. (b) Soft one-loop
diagrams connecting two fields i and j in the operator.

In this case, the evolution factor simplifies to

Û(µ0, µ) = e−(ngCA+nqCF )KΓ(µ0,µ)+Kγ(µ0,µ)

× exp
[
ηΓ(µ0, µ) ∆̂(µ2

0)
]
. (239)

Starting at three loops the noncusp anomalous dimension
is not color diagonal, and starts to depend on a conformal
cross ratio built from factors of pi · pj [198]. (For earlier
work beyond two loops see Refs. [199–207]. The result
of Ref. [198] implies that the conjectured all-order dipole
color structure in Refs. [202, 203] is violated.)

The evolution factors KΓ(µ0, µ), and ηΓ(µ0, µ) are uni-
versal. Explicit expressions for the integrals in Eq. (237)
to NNLL order, together with the required coefficients
for Γcusp and the β function to three loops, are given for
reference in App. E.

B. One-loop Anomalous Dimension

The anomalous dimension γ̂C(µ) is process dependent.
In this subsection, we derive its general form at one loop.
The anomalous dimension of the operators is determined
from the UV divergences in the effective theory. The rel-
evant one-loop diagrams in SCET are shown in Fig. 1.
In pure dimensional regularization the UV and IR di-
vergences cancel such that the bare results for the loop
diagrams vanish. To extract the UV divergences, we reg-
ulate the IR divergences by taking the external particles
off shell with p2

i = p2
i⊥ 6= 0.

Since all fields in the operators correspond to dis-
tinct collinear directions, the collinear loop diagrams in
Fig. 1(a) only involve one external line at a time. Differ-
ent external lines can only interact through the exchange
of a soft gluon, shown by the diagrams in Fig. 1(b).

When expressing our results, we use the notation [see
Eq. (73)]

Li⊥ = ln
(
−p

2
i⊥
µ2

)
, Lij = ln

(
−sij
µ2
− i0

)
, (240)
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where sij = 2pi · pj .
First, we recall the wave function renormalization con-

stants. In Feynman gauge at one loop,

Zξ = 1− αs
4π

1

ε
(CF + · · · ) ,

ZA = 1 +
αs
4π

1

ε
(β0 − 2CA + · · · ) , (241)

where β0 = 11/3CA − 4/3TFnf is the one-loop beta
function coefficient [see Eq. (E1)], and nf is the number
of considered quark flavors. Here and below, the ellipses
denote possible UV-finite terms, which are irrelevant for
our discussion here. (Using the on-shell scheme for wave
function renormalization, the Zi contain UV-finite pieces,
see App. G.)

The collinear diagrams in Fig. 1(a) contribute

Iqc = I q̄c =
αsCF

4π

( 2

ε2
+

2

ε
− 2

ε
Li⊥ + · · ·

)
〈 ~O†〉tree ,

Igc =
αsCA

4π

( 2

ε2
+

1

ε
− 2

ε
Li⊥ + · · ·

)
〈 ~O†〉tree ,

(242)

where Iic denotes the result of the diagram for an external
leg of type i, either quark or gluon.

The soft diagrams in Fig. 1(b) differ from each other
only in their color structure. The result of the diagram
connecting particles i and j (with i 6= j) is given by

Iijs =
αs
4π

( 2

ε2
+

2

ε
Lij−

2

ε
Li⊥−

2

ε
Lj⊥+ · · ·

)
〈 ~O†〉tree t̂ci t̂

c
j ,

(243)
where t̂ci and t̂cj are matrices in color space. From
Eqs. (242) and (243) we see explicitly that the opera-
tors only mix with respect to the color structure, with
no mixing between operators with distinct helicities.

The action of the matrix t̂ci on the color space is to
insert a generator acting on the color index of the ith
particle, i.e.,

(T̄ t̂ci )
···αi··· = T cαiβ̄i T̄

···βi··· ,

(T̄ t̂ci )
···ᾱi··· = −T̄ ···β̄i··· T cβiᾱi ,

(T̄ t̂ci )
···ai··· = ifaicbi T̄ ···bi··· , (244)

for quarks, antiquarks, and gluons, respectively. Our t̂ci is
identical to what is usually denoted as Ti in the notation
of Refs. [208, 209].

To give an explicit example, consider gg qq̄. Then, for
quark i = 3 and antiquark j = 4 we have

~O† t̂c3 t̂
c
4 = Oa1a2ᾱ3α4 (T̄ t̂c3 t̂

c
4)a1a2α3ᾱ4

= Oa1a2ᾱ3α4 T cα3β̄3
(−T cβ4ᾱ4

)T̄ a1a2β3β̄4 , (245)

while for gluon i = 1 and quark j = 3,

~O† t̂c1 t̂
c
3 = Oa1a2ᾱ3α4 ifa1cb1T cα3β̄3

T̄ b1a2β3ᾱ4 . (246)

Plugging in the explicit basis in Eq. (192) and using the
relations in App. A 2, we can rewrite the resulting color

structures above in terms of the basis in Eq. (192), which
yields

t̂c3 t̂
c
4 = −

CF − 1
2CA 0 0

0 CF − 1
2CA 0

TF TF CF

 ,

t̂c1 t̂
c
3 = −

 1
2CA 0 TF

0 0 −TF
0 −TF 0

 . (247)

The other combinations are computed analogously.
In general, one can easily see that for i = j

T̄ a1···αn t̂ci t̂
c
i = Ci T̄

a1···αn , (248)

where Ci = CF for quarks and Ci = CA for gluons.
By construction, the color basis T̄ a1···αn conserves color,
because each index corresponds to an external particle.
Since t̂ci measures the color charge of the ith particle,
color conservation implies

T̄ a1···αn
( n∑
i=1

t̂ci

)
= 0 . (249)

As a simple example, consider gqq̄ for which T̄ a1α2ᾱ3 ≡
T a1
α2ᾱ3

. In this case, Eq. (249) gives

ifa1cb1T b1α2ᾱ3
+ T cα2β̄2

T a1

β2ᾱ3
− T a1

α2β̄3
T cβ3ᾱ3

=
(
ifa1cb1T b1 + [T c, T a1 ]

)
α2ᾱ3

= 0 . (250)

The total bare one-loop matrix element is given
by summing Eq. (242) for each external particle and
Eq. (243) for each pair of distinct particles. The infrared
logarithms Li⊥ have to drop out in the sum of all UV-
divergent contributions. To see that this is indeed the
case, we can use Eq. (248) to rewrite the collinear contri-
butions. Then, the sum of all Li⊥ terms is proportional
to

〈 ~O†〉tree
[∑

i

Li⊥t̂
c
i t̂
c
i +

∑
i<j

(Li⊥ + Lj⊥) t̂ci t̂
c
j

]
= 〈 ~O†〉tree

(∑
i

Li⊥t̂
c
i t̂
c
i +

∑
i 6=j

Li⊥t̂
c
i t̂
c
j

)
= 〈 ~O†〉tree

(∑
i

Li⊥t̂
c
i

)(∑
j

t̂cj

)
= 0 , (251)

where in the last step we used Eq. (249). For the same
reason the 1/ε2 poles in the soft diagrams cancel against
half of the 1/ε2 poles in the collinear diagrams. The
remaining UV-divergent part of the matrix element is
given by

〈 ~O†〉treeD̂ = 〈 ~O†〉tree αs
4π

[
ngCA

( 1

ε2
+

1

ε

)
+ nqCF

( 1

ε2
+

2

ε

)
− 2

ε
∆̂(µ2)

]
, (252)
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where the color mixing matrix is given by

∆̂(µ2) = −
∑
i<j

t̂ci t̂
c
j Lij . (253)

Combining this result with the identities in Eqs. (248)
and (249), we can easily check that the µ dependence of

∆̂(µ2) is as in Eq. (235):

∆̂(µ2)− ∆̂(µ2
0) = −2

∑
i<j

t̂ci t̂
c
j ln

(µ0

µ

)
=
∑
i

t̂ci t̂
c
i ln
(µ0

µ

)
= 1(ngCA + nqCF ) ln

(µ0

µ

)
. (254)

We can now compute the anomalous dimension of the
operators. From Eqs. (229) and (252), we find at one
loop

ẐC = 1− D̂ − 1
[ng

2
(ZA − 1) +

nq
2

(Zξ − 1)
]
, (255)

which using Eq. (231) yields the one-loop anomalous di-
mension

γ̂C(µ) =
αs(µ)

4π

[
4∆̂(µ2)− 1(ngβ0 + nq 3CF )

]
. (256)

The coefficient of 4 in front of ∆̂(µ2) is the one-loop cusp
anomalous dimension coefficient [see Eq. (E2)]. The re-
maining terms determine the noncusp γ̂(αs) in Eq. (234)

at one loop,

γ̂(αs) = −αs
4π

(ngβ0 + nq 3CF )1 . (257)

C. Mixing Matrices

In this section, we give explicit expressions for the mix-
ing matrices for the color bases used in Secs. V, VI, and
VII. For simplicity, we only give explicit expressions for
up to four partons, but allow for additional colorless par-
ticles, such as a Higgs or vector boson. The matrices are
straightforward to evaluate using the color relations in
App. A 2, but become rather lengthy for more than four
partons, due to the large number of allowed color struc-
tures, and are more easily evaluated in an automated
way (see for example Ref. [210]). For convenience, we in-
troduce the following short-hand notation for sums and
differences of logarithms Lij ,

Lij·kl·... = Lij + Lkl + . . . ,

Lij·.../(kl·...) = (Lij·...)− (Lkl·...) , (258)

with Lij = ln(−sij/µ2 − i0) as defined in Eq. (73).

1. Pure Gluon Mixing Matrices

For gg and ggg in the bases used in Eq. (105) and Eqs. (110) and (157), we have

∆̂gg(µ
2) = CA L12 , ∆̂ggg(µ

2) =
1

2
CA L12·13·23

(
1 0
0 1

)
. (259)

For gggg in the basis used in Eqs. (130) and (197), we have

∆̂gggg(µ
2)

=


1
2CAL12·14·23·34 0 0 2TFL14·23/(13·24) 0 2TFL12·34/(13·24)

0 1
2CAL12·13·24·34 0 2TFL13·24/(14·23) 2TFL12·34/(14·23) 0

0 0 1
2CAL13·14·23·24 0 2TFL14·23/(12·34) 2TFL13·24/(12·34)

TFL12·34/(13·24) TFL12·34/(14·23) 0 CAL12·34 0 0
0 TFL13·24/(14·23) TFL13·24/(12·34) 0 CAL13·24 0

TFL14·23/(13·24) 0 TFL14·23/(12·34) 0 0 CAL14·23

 .

(260)

For our color bases formed from multi-trace color structures, the structure of the mixing matrices is simple. Since the
mixing matrices are determined by single gluon exchange, cyclicity is maintained, and all that can occur in the mixing
is that a single trace splits into two or two traces recombine into one. For example, the color structure tr[T aT bT cT d]
can only mix with

tr[T aT bT cT d] , tr[T aT b] tr[T cT d] , and tr[T dT a] tr[T bT c] . (261)

Therefore, although the mixing matrices quickly get large as the number of color structures grows, their structure
remains relatively simple. (An alternative approach to the organization of the anomalous dimensions for a large
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number of partons has been given in Ref. [211].) For the dijet case, i.e., in the absence of additional colorless particles,
the kinematics simplifies to

s = s12 = s34 , t = s13 = s24 , u = s14 = s23 , (262)

and these matrices were given in Ref. [153], which also gives their eigenvectors and eigenvalues.

2. Mixing Matrices Involving qq̄ Pairs

For qq̄ and gqq̄ in the bases used in Eq. (141) and Eqs. (110) and (149), we have

∆̂qq̄(µ
2) = CF L12 , ∆̂g qq̄(µ

2) =
1

2

[
CAL12·13 + (2CF − CA)L23

]
. (263)

For qq̄q′q̄′ in the basis used in Eqs. (118), (186), and (167), we have

∆̂qq̄ qq̄(µ
2) = ∆̂qq̄ q′q̄′(µ

2) =

(
CF L14·23 + (CF − 1

2CA)L12·34/(13·24) TF L14·23/(13·24)

TF L12·34/(13·24) CF L12·34 + (CF − 1
2CA)L14·23/(13·24)

)
. (264)

For ggqq̄ in the basis used in Eqs. (124), (192), and (177), we have

∆̂gg qq̄(µ
2) =

 1
2CA L12·13·24 + (CF − 1

2CA)L34 0 TF L13·24/(14·23)

0 1
2CA L12·14·23 + (CF − 1

2CA)L34 TF L14·23/(13·24)

TF L12·34/(14·23) TF L12·34/(13·24) CA L12 + CF L34

 . (265)

Again, these simplify in the dijet case, for which they
were given along with their eigenvectors and eigenvalues
in Ref. [153].

D. Soft Function Evolution

In this section, we review the renormalization group
evolution of the soft function, focusing on our use of the
color basis notation of Sec. III D for nonorthogonal bases.
We will consider the particular case of the N -jettiness
event shape [95], which allows for a definition of exclu-
sive N -jet production with a factorization theorem of the
form of Eq. (2).

The color mixing matrices of the previous section are
in general complex-valued for physical kinematics. For a
physical channel, some of the appearing sij are positive,
giving rise to imaginary terms from the logarithms, as in
Eq. (73). Since the cross section is real, these imaginary
terms generated by the renormalization group evolution
must drop out of the final result. We start by describing
the properties of the soft function that ensure that this
is the case.

Recall that the hard function Ĥκ for a particular par-
tonic channel κ has its color indices contracted with those
of the soft function. Explicitly,

tr(ĤκŜκ) = Ha1···αnb1···βn
κ Sb1···βna1···αn

κ (266)

=
∑
{λi}

[
Cb1···βnλ1··(··λn)

]∗
Sb1···βna1···αn
κ Ca1···αn

λ1··(··λn) .

The soft function is defined as a vacuum matrix element
of a product of soft Wilson lines Ŷ as

Ŝκ(M, {ni}) =
〈

0
∣∣∣T̄ Ŷ †({ni}) δ(M − M̂ ) T Ŷ ({ni})

∣∣∣0〉,
(267)

where Ŷ ({ni}) is a product of soft Wilson lines in the

ni directions. It is a matrix in color space, and Ŷ † is
its hermitian conjugate. Here T and T̄ denote time-
ordering and anti-time-ordering respectively. The matri-

ces Ŷ and Ŷ † are multiplied with each other, i.e. one
of the color indices of the corresponding Wilson lines
are contracted, and the external indices correspond to
b1 · · ·βn and a1 · · ·αn, respectively. Thus, for example

Ŷ †Ŷ = δa1b1 · · · δαnβn . The dependence of the soft func-
tion on the particular measurement, as well as the details
of the jet algorithm, are encoded in the measurement
function M̂ , whose precise form is not relevant for the
current discussion.

From the definition of the soft function in Eq. (267)
we see that it is hermitian, namely (Sb1···βna1···αn

κ )∗ =

Sa1···αnb1···βn
κ . In abstract notation, this means Ŝ†κ =

Ŝκ, which implies that the product ~C†Ŝκ ~C appearing in
the cross section is real, so imaginary terms that appear
in the Wilson coefficients due to renormalization group
evolution drop out in the final cross section.

While this argument is trivial in a basis independent
form, it is important to emphasize that in a nonorthog-
onal basis it takes a slightly more complicated form. As
discussed in Sec. III D, in a specific nonorthogonal color
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basis, Eq. (266) takes the form ~C† Ŝκ ~C = ~C∗T T̂ Ŝκ ~C as

in Eq. (58), where the matrix T̂ is defined in Eq. (56).

Similarly, the matrix representation of Ŝκ is not hermi-
tian with respect to the naive conjugate transpose of its
components. Instead, the condition on the reality of the
cross section is given by [see Eq. (57)]

Ŝκ = Ŝ†κ = T̂−1 Ŝ∗Tκ T̂ . (268)

The invariance of the cross section under the RGE

µ
d

dµ
σN = 0 , (269)

implies relations between the anomalous dimensions of
the SCET functions appearing in the factorization the-
orem of Eq. (2). In particular, it allows the anomalous
dimension of the soft function to be determined from the
anomalous dimensions of the Wilson coefficients, along
with the anomalous dimensions of the beam and jet func-
tions. The anomalous dimensions of the jet and beam
functions are proportional to the color-space identity.
The anomalous dimensions of the beam and jet func-
tions appearing in the N -jettiness factorization theorem
are equal to all orders in perturbation theory [212] allow-
ing us to use only the jet function anomalous dimension
in the following discussion. Renormalization group con-
sistency then implies that the contributions of the soft
function anomalous dimension not proportional to the
identity, including the color off-diagonal components, are
completely determined by the anomalous dimensions of
the Wilson coefficients.

The soft function for N -jettiness can be written in the
general form of Eq. (267), but with an explicit measure-
ment function

Ŝκ(ka, kb, k1, . . . , kN , {ni}) (270)

=
〈

0
∣∣∣T̄ Ŷ †({ni})

∏
i

δ(ki − T̂i ) T Ŷ ({ni})
∣∣∣0〉 .

Here T̂i picks out the contribution to the N -jettiness ob-
servable from the momentum region i, whose precise def-
inition can be found in Ref. [98]. The soft function for
N -jettiness was first presented to NLO in Ref. [98], and
more recently analyzed to NNLO in Ref. [213].

The all-orders structure of the renormalization group
evolution for the soft function can be derived from
Eq. (269), and is given by [88, 98]

µ
d

dµ
Ŝκ({ki}, µ)

=

∫ [∏
i

dk′i

]
1

2

[
γ̂S({ki − k′i}, µ) Ŝκ({k′i}, µ)

+ Ŝκ({k′i}, µ) γ̂†S({ki − k′i}, µ)
]
. (271)

The soft anomalous dimension γ̂S , and its conjugate γ̂†S ,
are given in terms of the anomalous dimension γJ of the

jet function and the anomalous dimension of the Wilson
coefficients, γ̂C defined in Eqs. (230) and (231), as

γ̂S({ki}, µ) = −1
∑
i

Qi γ
i
J(Qiki, µ)

∏
j 6=i

δ(kj)

− 2γ̂†C(µ)
∏
i

δ(ki) . (272)

(Here, the Qi are related to the precise N -jettiness defini-
tion, see Ref. [98]). The hermitian conjugates of γ̂C and
γ̂S above again refer to the abstract hermitian conjugate
in color space. In a nonorthogonal color basis, they are
given in terms of the complex conjugate transpose com-
ponents according to Eq. (57) as

γ̂†C = T̂−1 γ̂∗TC T̂ , γ̂†S = T̂−1 γ̂∗TS T̂ . (273)

IX. CONCLUSIONS

In this paper, we have presented a helicity operator ap-
proach to SCET. Helicities are naturally defined with re-
spect to the external lightlike reference vectors specifying
the jet directions in the effective theory, eliminating the
need to consider complicated Lorentz and gamma matrix
structures in the operator basis. The helicity operators
correspond directly to physical states of definite helicity
and color, which when combined with color organization
techniques, greatly simplifies the construction of a min-
imal operator basis. Furthermore, the helicity operators
are automatically crossing symmetric, and make mani-
fest parity and charge conjugation symmetries, making
it simple to determine relations amongst Wilson coeffi-
cients.

We demonstrated the utility of the helicity operator
approach by explicitly constructing the basis valid to
all orders in perturbation theory for a number of key
processes at the LHC involving jets, and then determin-
ing the matching coefficients. In particular we consid-
ered pp → H + 0, 1 jets, pp → W/Z/γ + 0, 1 jets, and
pp → 2 jets at next-to-leading order, and pp → H + 2
jets, pp→W/Z/γ+2 jets, and pp→ 3 jets at leading or-
der. We also discussed the dependence of this matching
on the regularization scheme, considering schemes with
helicities in 4 and d dimensions. An important and well-
known simplification of the SCET approach is that when
dimensional regularization is used for both IR and UV
divergences, all loop graphs in the effective theory are
scaleless, and thus vanish. As a result, the hard SCET
Wilson coefficients in the MS scheme, determined from
matching QCD to SCET, are given directly by the IR-
finite parts of color-ordered helicity amplitudes. The use
of our helicity operator basis therefore makes it simple to
combine analytic resummation in SCET with fixed-order
calculations of helicity amplitudes.

The all-orders structure for the renormalization group
evolution of the helicity operator basis was discussed in
detail. At leading power, distinct helicity structures do
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not mix, with renormalization group evolution causing
mixing only in color space. This feature is made man-
ifest at the level of the SCET Lagrangian due to the
expansion in the soft and collinear limits. Subtleties as-
sociated with the use of nonorthogonal color bases were
carefully treated, and expressions for the color sum ma-

trix T̂ are given for the used color bases for all processes
considered in the paper. Explicit results are also given
for the one-loop mixing matrices describing the renor-
malization group evolution in color space for the case of
pp→ up to 2 jets with an arbitrary number of uncolored
external particles and in a manifestly crossing symmetric
form.

Combining the methods of this paper with known ex-
pressions for jet, beam, and soft functions for particu-
lar exclusive jet cross sections, or jet shapes/observables,
should facilitate analytic resummation for a large number
of processes for which fixed-order amplitudes are known,
or are soon to be calculated.
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Appendix A: Spinor and Color Identities

1. Spinor Algebra

The overall phase of the spinors |p±〉 is not determined
by the Dirac equation, p/ |p±〉 = 0, and so can be chosen
freely. In the Dirac representation,

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
,

(A1)
and taking nµi = (1, 0, 0, 1), we have the standard solu-
tions [146]

|p+〉 =
1√
2


√
p−√

p+eiφp√
p−√

p+eiφp

 , |p−〉 =
1√
2


√
p+e−iφp

−
√
p−

−
√
p+e−iφp√
p−

 ,

(A2)

where

p± = p0 ∓ p3 , exp(±iφp) =
p1 ± ip2√
p+p−

. (A3)

For negative p0 and p± we use the usual branch of the
square root, such that for p0 > 0

|(−p)±〉 = i|p±〉 . (A4)

The conjugate spinors, 〈p±|, are defined as

〈p±| = sgn(p0) |p±〉 . (A5)

The additional minus sign for negative p0 is included to
use the same branch of the square root for both types of
spinors, i.e., for p0 > 0

〈(−p)±| = −|(−p)±〉 = −(−i)〈p±| = i〈p±| . (A6)

In this way all spinor identities are automatically valid
for both positive and negative momenta, which makes
it easy to use crossing symmetry. The additional signs
only appear in relations which involve explicit complex
conjugation. The most relevant is

〈p−|q+〉∗ = sgn(p0q0) 〈q+|p−〉 . (A7)

The spinor products are denoted by

〈pq〉 = 〈p−|q+〉 , [pq] = 〈p+|q−〉 . (A8)

Similarly, for products involving additional gamma ma-
trices, we write

〈p|γµ|q] = 〈p−|γµ|q−〉 , [p|γµ|q〉 = 〈p+|γµ|q+〉 , (A9)

〈p|k|q] = 〈p−|k/|q−〉 , [p|k|q〉 = 〈p+|k/|q+〉 , (A10)

〈p|qk|l〉 = 〈p−|q/k/|l+〉 , [p|qk|l] = 〈p+|q/k/|l−〉 , (A11)

etc.
Some useful identities, that follow directly from the

definition of the spinors, are

〈pq〉 = −〈qp〉 , [pq] = −[qp] , (A12)

[p|γµ|p〉 = 〈p|γµ|p] = 2pµ . (A13)

From the completeness relations

|p±〉〈p±| = 1± γ5

2
p/ , (A14)

p/ = |p]〈p|+ |p〉[p|, (A15)

one finds

〈pq〉[qp] =
1

2
tr
{

(1− γ5)p/q/
}

= 2p · q . (A16)

Combining this with Eq. (A7), it follows that

|〈pq〉| = |[pq]| =
√
|2p · q| . (A17)
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The completeness relation is also useful to reduce typical
expressions like

[p|q|k〉 = [pq]〈qk〉 , (A18)

to spinor products.
Charge conjugation invariance of the current, the Fierz

identity and the Schouten identity are

〈p|γµ|q] = [q|γµ|p〉 , (A19)

[p|γµ|q〉[k|γµ|l〉 = 2[pk]〈lq〉 , (A20)

〈pq〉〈kl〉 = 〈pk〉〈ql〉+ 〈pl〉〈kq〉 . (A21)

Finally, momentum conservation
∑n
i=1 pi = 0 implies

n∑
i=1

[ji]〈ik〉 = 0 . (A22)

From Eq. (A2), we see that under parity the spinors
transform as

|pP±〉 = ±e±iφpγ0 |p∓〉 , (A23)

and therefore

〈pPqP〉 = −ei(φp+φq)[pq] , (A24)

[pPqP] = −e−i(φp+φq)〈pq〉 . (A25)

When applying the above result to a helicity ampli-
tude, the phases which appear are determined by the
little group scaling (see e.g. Refs. [146, 147, 214] for a
review). The little group is the subgroup of the Lorentz
transformations that fixes a particular momentum. In
terms of the spinor helicity variables, the action of the
little group, which preserves the momentum vector p, is
given by

|p〉 → z|p〉, [p| → 1

z
[p| . (A26)

In the case that the particle with momentum p has he-
licity h, the corresponding helicity amplitude scales as
z−2h under the little group scaling. This property of the
helicity amplitudes then predicts the phases that appear
in the amplitude under a parity transformation.

The following completeness relation for the polariza-
tion vectors is also useful∑
λ=±

ελµ(p, q)
(
ελν (p, q)

)∗
= −gµν +

pµqν + pνqµ
p · q

. (A27)

In SCET the collinear quark fields produce projected
spinors

|p±〉n =
n/n̄/

4
|p±〉 . (A28)

The projected spinor trivially satisfies the relation

n/
(n/n̄/

4
|p±〉

)
= 0 , (A29)

so it is proportional to |n±〉. Working in the basis in
Eq. (A2), we have

n/n̄/

4
|p〉 =

√
p0

[
cos

(
θn
2

)
cos

(
θp
2

)
+ei(φp−φn) sin

(
θn
2

)
sin

(
θp
2

)]
|n〉 ,

n/n̄/

4
|p] =

√
p0

[
ei(φp−φn) cos

(
θn
2

)
cos

(
θp
2

)
+ sin

(
θn
2

)
sin

(
θp
2

)]
|n] . (A30)

Here θn, φn, and θp, φp, are the polar and azimuthal angle
of the n and p vectors, respectively. In particular, we see
that choosing nµ = pµ/p0, which can always be done at
leading power since there is a single particle per collinear
sector, we have φp = φn, θp = θn, and the simple relation

n/n̄/

4
|p±〉 =

√
n̄ · p

2
|n±〉 . (A31)

2. Color Algebra

The generators tar of a general irreducible representa-
tion r of SU(N) satisfy

[tar , t
b
r] = ifabc tcr , tar t

a
r = Cr1 , tr[tar t

b
r] = Tr δ

ab ,
(A32)

where fabc are completely antisymmetric, and Cr is the
quadratic Casimir of the representation r. The normal-
ization Tr is given by Tr = Crdr/d, where dr is the di-
mension of the representation and d the dimension of the
Lie algebra.

We denote the generators in the fundamental repre-
sentation by taF = T a, and the overall normalization is
fixed by choosing a specific value for TF . The adjoint
representation is given by (taA)bc = −ifabc, which implies

facdf bcd = CA δ
ab . (A33)

We also define the symmetric structure constants as

dabc =
1

TF
tr[T a{T b, T c}] . (A34)

For the fundamental and adjoint representations we have
dF = N , dA = d = N2 − 1, and so

CF =
N2 − 1

2N
, CA = N , (A35)

where we have chosen the standard normalization

TF =
1

2
. (A36)

Throughout the text, and for the amplitudes in the ap-
pendices, we have kept TF arbitrary. This can be done
using CF = TF (N2 − 1)/N , CA = 2TFN . The strong
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coupling constant, gs, can be kept convention indepen-
dent, by using gs → gs/

√
2TF .

Some additional useful color identities are

tar t
b
rt
a
r =

(
Cr −

CA
2

)
tbr , (A37)

T aT bT cT a = T 2
F δ

bc1 +
(
CF −

CA
2

)
T bT c , (A38)

where the second relation is equivalent to the complete-
ness relation

T aαβ̄ T
a
γδ̄ = TF

(
δαδ̄ δγβ̄ −

1

N
δαβ̄ δγδ̄

)
. (A39)

We also have

T b if bac T c =
CA
2
T a , (A40)

T c if cadifdbeT e = T 2
F δ

ab 1 +
CA
2
T aT b . (A41)

3. QCD Color Decompositions

Here we briefly review a common color decomposition
for QCD NLO amplitudes [5–8]. The color bases used for
the processes discussed in the text are specific examples
of the decompositions given below, and were chosen to
facilitate the extraction of the matching coefficients from
the amplitudes literature. For a pedagogical introduc-
tion to color decompositions in QCD amplitudes see for
example Refs. [146, 147].

For an n gluon process, a one-loop color decomposition
in terms of fundamental generators T a is given by

An(g1 · · · gn) = gn−2
s

∑
σ∈Sn/Zn

tr[T aσ(1) · · · T aσ(n) ]
[
Atree
n

(
σ(1), · · ·, σ(n)

)
+ g2

s CAAn;1

(
σ(1), · · ·, σ(n)

)]

+ gns

bn/2c+1∑
c=3

∑
σ∈Sn/Sc−1,n−c+1

tr[T aσ(1) · · · T aσ(c−1) ]tr[T aσ(c) · · · T aσ(n) ]An;c

(
σ(1), · · ·, σ(n)

)
, (A42)

where An;1, Atree
n are primitive amplitudes, which can be efficiently calculated using unitarity methods, and the An;c

are partial amplitudes which can be written as sums of permutations of the primitive amplitudes. The amplitudes
appearing in this decomposition are separately gauge invariant. In this formula, Sn is the permutation group on n
elements, and Si,j is the subgroup of Si+j which leaves the given trace structure invariant. At tree level, only the
single trace color structure appears.

In the case that additional noncolored particles are also present, an identical decomposition exists, since the color
structure is unaffected. For example, for a process involving n gluons and a Higgs particle, the amplitude satisfies the
same decomposition as in Eq. (A42), but with the partial and primitive amplitudes in Eq. (A42) simply replaced by
A
(
φ, σ(1), · · ·, σ(n)

)
, where φ denotes the Higgs particle [177].

A similar decomposition exists for processes involving qq̄ pairs. For example, the one-loop decomposition for a
process with a qq̄ pair and n− 2 gluons is given by [25]

An
(
q̄1q2g3 . . . gn

)
= gn−2

s

∑
σ∈Sn−2

(
T aσ(3) · · · T aσ(n)

)
αβ̄

[
Atree
n

(
1q̄, 2q;σ(3), · · ·, σ(n)

)
+ g2

s CAAn;1

(
1q̄, 2q;σ(3), · · ·, σ(n)

)]

+ gns

n−3∑
c=3

∑
σ∈Sn−2/Zc−1

tr[T aσ(3) · · · T aσ(c+1) ]
(
T aσ(c+2) · · · T aσ(n)

)
αβ̄
An;c

(
1q̄, 2q;σ(3), · · ·, σ(n)

)
+ gns

∑
σ∈Sn−2/Zn−3

tr[T aσ(3) · · · T aσ(n−1) ]
(
T aσ(n)

)
αβ̄
An;n−2

(
1q̄, 2q;σ(3), · · ·, σ(n)

)
+ gns

∑
σ∈Sn−2/Zn−2

tr[T aσ(3) · · · T aσ(n) ]δαβ̄An;n−1

(
1q̄, 2q;σ(3), · · ·, σ(n)

)
. (A43)

This decomposition is easily extended to the case of additional qq̄ pairs. As with the gluon case, the same color
decomposition also applies if additional uncolored particles are included in the amplitude.

For more than five particles, the one-loop color decompositions given above do not give a complete basis of color
structures beyond one loop, since color structures with more than two traces can appear. A complete basis of color
structures is required for the SCET basis to guarantee a consistent RGE. A convenient basis of color structures for
one-loop matching is then given by extending the one-loop decomposition to involve all higher trace structures.
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Appendix B: Helicity Amplitudes for Higgs + Jets

In this appendix we give explicit results for the hard matching coefficients for H + 0, 1, 2 jets. We only explicitly
consider gluon-fusion processes, where the Higgs couples to two gluons through a top-quark loop, and additional
jets correspond to additional gluons, or quark anti-quark pairs. When matching onto SCET we perform a one-step
matching and directly match full QCD onto SCET, as was done for H + 0 jets in Ref. [97]. Most QCD results are
obtained in the limit of infinite top quark mass, by first integrating out the top quark and matching onto an effective
ggH interaction,

Lhard =
C1

12πv
HGaµνG

µν a , (B1)

which is then used to compute the QCD amplitudes. Here v = (
√

2GF )−1/2 = 246 GeV. From the point of view
of the one-step matching from QCD onto SCET, using Eq. (B1) is just a convenient way to compute the full QCD
amplitude in the mt → ∞ limit. In particular, the αs corrections to C1 in Eq. (B1) are included in the amplitudes
below, and therefore also in the SCET Wilson coefficients. In this way, if higher-order corrections in 1/mt or the
exact mt dependence for a specific amplitude are known, they can easily be included in the QCD amplitudes and the
corresponding SCET Wilson coefficients. We illustrate this for the case of H + 0 jets below.

We separate the QCD amplitudes into their IR-divergent and IR-finite parts

A = Adiv +Afin ,

B = Bdiv +Bfin , (B2)

where Afin, Bfin enter the matching coefficients in Sec. V. For simplicity, we drop the subscript “fin” for those
amplitudes that have no divergent parts, i.e. for Adiv = 0 we have Afin ≡ A. For the logarithms we use the notation

Lij = ln
(
−sij
µ2
− i0

)
, Lij/H = ln

(
−sij
µ2
− i0

)
− ln

(
−m

2
H

µ2
− i0

)
.

1. H + 0 Jets

We expand the amplitudes in powers of αs(µ) as

A =
2TFαs(µ)

3πv

∞∑
n=0

A(n)
(αs(µ)

4π

)n
. (B3)

The amplitudes with opposite helicity gluons vanish to all orders because of angular momentum conservation,

A(1±, 2∓; 3H) = 0, (B4)

corresponding to the fact that the helicity operators for these helicity configurations were not included in the basis of
Eq. (104). The lowest order helicity amplitudes including the full mt dependence are given by

A(0)(1+, 2+; 3H) =
s12

2

[12]

〈12〉
F (0)

( s12

4m2
t

)
=
s12

2
F (0)

( s12

4m2
t

)
eiΦ++H ,

A(0)(1−, 2−; 3H) =
s12

2

〈12〉
[12]

F (0)
( s12

4m2
t

)
=
s12

2
F (0)

( s12

4m2
t

)
eiΦ−−H , (B5)

where the function F (0)(z) is defined as

F (0)(z) =
3

2z
− 3

2z

∣∣∣1− 1

z

∣∣∣{arcsin2(
√
z) , 0 < z ≤ 1 ,

ln2[−i(
√
z +
√
z − 1)] , z > 1 .

(B6)

For simplicity, we have extracted the (irrelevant) overall phases

eiΦ++H =
[12]

〈12〉
, eiΦ−−H =

〈12〉
[12]

. (B7)
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Since the two helicity amplitudes for ggH cannot interfere and are equal to each other by parity up to an overall
phase, their higher-order corrections are the same as for the spin-summed ggH form factor. The divergent part of the
NLO amplitudes is given by

A
(1)
div(1±, 2±; 3H) = A(0)(1±, 2±; 3H)

[
− 2

ε2
CA +

1

ε
(2CA L12 − β0)

]
. (B8)

The IR-finite parts entering the matching coefficients in Eq. (107) at NLO are [97]

A
(1)
fin (1±, 2±; 3H) = A(0)(1±, 2±; 3H)

[
CA

(
−L2

12 +
π2

6

)
+ F (1)

( s12

4m2
t

)]
,

F (1)(z) = CA

(
5− 38

45
z − 1289

4725
z2 − 155

1134
z3 − 5385047

65488500
z4
)

+ CF

(
−3 +

307

90
z +

25813

18900
z2 +

3055907

3969000
z3 +

659504801

1309770000
z4
)

+O(z5) . (B9)

The full analytic expression for F (1)(z) is very long, so we only give the result expanded in z. Since the additional mt

dependence coming from F (1)(z) is small and the expansion converges quickly, the expanded result is fully sufficient
for on-shell studies of Higgs production. The IR-finite parts at NNLO are [97]

A
(2)
fin (1±, 2±; 3H) = A(0)(1±, 2±; 3H)

{
1

2
C2
AL

4
12 +

1

3
CAβ0L

3
12 + CA

[
CA

(
−4

3
+
π2

6

)
− 5

3
β0 − F (1)

( s12

4m2
t

)]
L2

12

+
[
C2
A

(59

9
− 2ζ3

)
+ CAβ0

(19

9
− π2

3

)
− β0F

(1)
( s12

4m2
t

)]
L12 + F (2)

( s12

4m2
t

)}
,

F (2)(z) =
(
7C2

A + 11CACF − 6CFβ0

)
ln(−4z − i0) + C2

A

(
−419

27
+

7π2

6
+
π4

72
− 44ζ3

)
+ CACF

(
−217

2
− π2

2
+ 44ζ3

)
+ CAβ0

(2255

108
+

5π2

12
+

23ζ3
3

)
− 5

6
CATF

+
27

2
C2
F + CFβ0

(41

2
− 12ζ3

)
− 4

3
CFTF +O(z) . (B10)

Here we only give the leading terms in the mt → ∞ limit. The first few higher-order terms in z in F (2)(z) can be
obtained from the results of Refs. [171, 172].

2. H + 1 Jet

The amplitudes for H + 1 jet were calculated in Ref. [32] in the mt → ∞ limit. Ref. [32] uses TF = 1 and

gsT
a/
√

2 for the qq̄g coupling. Thus, we can convert to our conventions by replacing T a →
√

2T a, and identifying
1/N = CA − 2CF and N = CA in the results of Ref. [32]. We expand the amplitudes in powers of αs(µ) as

A =
2TFαs(µ)

3πv
gs(µ)

∞∑
n=0

A(n)
(αs(µ)

4π

)n
. (B11)

a. gggH

The tree-level amplitudes entering the matching coefficient ~C++± in Eq. (115) are

A(0)(1+, 2+, 3+; 4H) =
1√
2

m4
H

〈12〉〈23〉〈31〉
=

m4
H√

2|s12s13s23|
eiΦ+++H ,

A(0)(1+, 2+, 3−; 4H) =
1√
2

[12]3

[13][23]
=

s2
12√

2|s12s13s23|
eiΦ++−H , (B12)

where we have extracted the (irrelevant) overall phases

eiΦ+++H =

√
|s12|
〈12〉

√
|s13|
〈31〉

√
|s23|
〈23〉

, eiΦ++−H =
[12]

〈12〉

√
|s12|
〈12〉

√
|s13|

[13]

√
|s23|

[23]
. (B13)
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The divergent parts of the one-loop amplitudes are

A
(1)
div(1+, 2+, 3±; 4H) = A(0)(1+, 2+, 3±, 4H)

{
− 3

ε2
CA +

1

ε

[
CA (L12 + L13 + L23)− 3

2
β0

]}
. (B14)

The finite parts of the gggH amplitudes, which enter the matching coefficient ~C++± at one loop are

A
(1)
fin (1+, 2+, 3+; 4H) = A(0)(1+, 2+, 3+; 4H)

{
f(s12, s13, s23,m

2
H , µ) +

1

3
(CA − 2TFnf )

s12s13 + s12s23 + s13s23

m4
H

}
,

A
(1)
fin (1+, 2+, 3−; 4H) = A(0)(1+, 2+, 3−; 4H)

{
f(s12, s13, s23,m

2
H , µ) +

1

3
(CA − 2TFnf )

s13s23

s2
12

}
, (B15)

where we have extracted the common function

f(s12, s13, s23,m
2
H , µ) = −CA

[
1

2
(L2

12 + L2
13 + L2

23) + L12/HL13/H + L12/HL23/H + L13/HL23/H

+ 2Li2

(
1− s12

m2
H

)
+ 2Li2

(
1− s13

m2
H

)
+ 2Li2

(
1− s23

m2
H

)
− 5− 3π2

4

]
− 3CF . (B16)

b. gqq̄H

The tree-level amplitudes entering the matching coefficient ~C±(+) in Eq. (114) are

A(0)(1+; 2+
q , 3

−
q̄ ; 4H) = − 1√

2

[12]2

[23]
=

s12√
2|s23|

eiΦ+(+)H ,

A(0)(1−; 2+
q , 3

−
q̄ ; 4H) = − 1√

2

〈13〉2

〈23〉
=

s13√
2|s23|

eiΦ−(+)H , (B17)

where the (irrelevant) overall phases are given by

eiΦ+(+)H =
[12]

〈12〉

√
|s23|

[23]
, eiΦ−(+)H =

〈13〉
[13]

√
|s23|
〈23〉

. (B18)

The divergent parts of the one-loop amplitudes are

A
(1)
div(1±; 2+

q , 3
−
q̄ ; 4H) = A(0)(1±; 2+

q , 3
−
q̄ ; 4H)

{
− 1

ε2
(CA+2CF )+

1

ε

[
CA(L12+L13−L23)+CF (2L23−3)− β0

2

]}
. (B19)

The finite parts of the gqq̄H amplitudes, which enter the matching coefficient ~C±(+) at one loop are

A
(1)
fin (1+; 2+

q , 3
−
q̄ ; 4H) = A(0)(1+; 2+

q , 3
−
q̄ ; 4H)

{
g(s12, s13, s23,m

2
H , µ) + (CF − CA)

s23

s12

}
,

A
(1)
fin (1−; 2+

q , 3
−
q̄ ; 4H) = A(0)(1−; 2+

q , 3
−
q̄ ; 4H)

{
g(s12, s13, s23,m

2
H , µ) + (CF − CA)

s23

s13

}
, (B20)

where we have extracted the common function

g(s12, s13, s23,m
2
H , µ) = CA

[
−1

2
(L2

12 + L2
13 − L2

23) + L12/HL13/H − (L12/H + L13/H)L23/H − 2Li2

(
1− s23

m2
H

)
+

22

3
+
π2

4

]
+ CF

[
−L2

23 + 3L23 − 2L12/HL13/H − 2Li2

(
1− s12

m2
H

)
− 2Li2

(
1− s13

m2
H

)
− 11 +

π2

2

]
+ β0

(
−L23 +

5

3

)
. (B21)
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3. H + 2 Jets

The full set of tree-level helicity amplitudes for H + 2 jets in the mt →∞ limit were calculated in Ref. [31], and all
amplitudes below are taken from there. We expand the amplitudes A, B, in the decomposition of Eq. (119), Eq. (124),
and Eq. (130), as

A =
2TFαs(µ)

3πv
[gs(µ)]2

∞∑
n=0

A(n)
(αs(µ)

4π

)n
,

B =
2TFαs(µ)

3πv
[gs(µ)]2

∞∑
n=0

B(n)
(αs(µ)

4π

)n
. (B22)

For simplicity, we only give explicit results for the tree-level amplitudes in this appendix. To reduce the length of
expressions, we use the kinematic variables sijk defined by

sijk = (pi + pj + pk)2 = sij + sik + sjk . (B23)

The H + 2 jets process is nonplanar, which means that we cannot remove all the relative phases in the amplitudes.
It is therefore most convenient to keep all expressions in spinor helicity notation. We will explicitly demonstrate an
example of the phases which appear in Eqs. (B28) and (B29).

a. qq̄ q′q̄′H and qq̄ qq̄H

The tree-level amplitudes entering the Wilson coefficients ~C(+;±) and ~C(+±) in Eqs. (121) and (122) are

A(0)(1+
q , 2

−
q̄ ; 3+

q′ , 4
−
q̄′ ; 5H) = −B(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′ ; 5H) =

1

2

[
〈24〉2

〈12〉〈34〉
+

[13]2

[12][34]

]
,

A(0)(1+
q , 2

−
q̄ ; 3−q′ , 4

+
q̄′ ; 5H) = −B(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′ ; 5H) = −1

2

[
〈23〉2

〈12〉〈34〉
+

[14]2

[12][34]

]
, (B24)

b. ggqq̄H

The tree-level amplitudes entering the Wilson coefficients ~C+−(+), ~C++(+), and ~C−−(+) in Eq. (126) are

A(0)(1+, 2−; 3+
q , 4

−
q̄ ; 5H) =

〈24〉3

〈12〉〈14〉〈34〉
− [13]3

[12][23][34]
,

A(0)(2−, 1+; 3+
q , 4

−
q̄ ; 5H) =

[13]2[14]

[12][24][34]
− 〈23〉〈24〉2

〈12〉〈13〉〈34〉
,

A(0)(1+, 2+; 3+
q , 4

−
q̄ ; 5H) = − [1|2 + 3|4〉2[23]

s234〈24〉

( 1

s23
+

1

s34

)
+

[2|1 + 3|4〉2[13]

s134s34〈14〉
− [3|1 + 2|4〉2

〈12〉〈14〉〈24〉[34]
,

A(0)(1−, 2−; 3+
q , 4

−
q̄ ; 5H) =

〈2|1 + 4|3]2〈14〉
s134[13]

( 1

s14
+

1

s34

)
− 〈1|2 + 4|3]2〈24〉

s234s34[23]
+
〈4|2 + 1|3]2

[12][13][23]〈34〉
. (B25)

In these expressions we have eliminated the Higgs momentum, p5, using momentum conservation, so that all momenta
appearing in the above expressions are lightlike. We have also used an extended spinor-helicity sandwich, defined by
[i|j + k|l〉 = [i|j|l〉+ [i|k|l〉 to simplify notation.

All the B amplitudes vanish at tree level,

B(0)(1+, 2−; 3+
q , 4

−
q̄ ; 5H) = B(0)(1+, 2+; 3+

q , 4
−
q̄ ; 5H) = B(0)(1−, 2−; 3+

q , 4
−
q̄ ; 5H) = 0 . (B26)

c. ggggH

The tree-level amplitudes entering the Wilson coefficients ~C++−−, ~C+++−, and ~C++++ in Eq. (133) are

A(0)(1+, 2+, 3+, 4+; 5H) =
−2M4

H

〈12〉〈23〉〈34〉〈41〉
,
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A(0)(1+, 2+, 3+, 4−; 5H) = 2

[
[1|2 + 3|4〉2[23]2

s234s23s34
+

[2|1 + 3|4〉2[13]2

s134s14s34
+

[3|1 + 2|4〉2[12]2

s124s12s14

+
[13]

[41]〈12〉〈23〉[34]

(
s12[1|2 + 3|4〉
〈34〉

+
s23[3|1 + 2|4〉
〈41〉

+ [13]s123

)]
,

A(0)(1+, 2+, 3−, 4−; 5H) = 2

[
[12]4

[12][23][34][41]
+

〈34〉4

〈12〉〈23〉〈34〉〈41〉

]
,

A(0)(1+, 4−, 2+, 3−; 5H) = 2

[
[12]4

[13][14][23][24]
+

〈34〉4

〈13〉〈14〉〈23〉〈24〉

]
. (B27)

To illustrate the relative phases that appear in these amplitudes, we can rewrite the amplitude
A(0)(1+, 2+, 3−, 4−; 5H) in terms of the Lorentz invariants sij

A(0)(1+, 2+, 3−, 4−; 5H) = 2eiΦ++−−H

[
s2

12√
|s12s23s34s14|

+ eiϕ s2
34√

|s12s23s34s14|

]
, (B28)

with

ϕ = −2β arg

{
i
√
s23[−s12s34 + s13s24 + s14s23 − i(

√
α+ 2

√
s13
√
s23s14)]

−s12s34(
√
s13 − i

√
s23) + (s13s24 − s14s23 + i

√
α)(
√
s13 + i

√
s23)

}
,

α = 16(εµνρσp
µ
1p
ν
2p
ρ
3p
σ
4 )2 = 4s13s14s23s24 − (s12s34 − s13s24 − s14s23)2 ≥ 0 ,

β = sgn(εµνρσp
µ
1p
ν
2p
ρ
3p
σ
4 ) . (B29)

The branch cut of the square root is given by the usual prescription,
√
sij ≡

√
sij + i0 = i

√
|sij | if sij < 0. Our

convention for the anti-symmetric Levi-Civita tensor is ε0123 = −1. For this process we can choose a frame where all
but one of the momenta p1 through p4 lie in a plane (with p5 determined by momentum conservation). The phase ϕ
is needed to determine the momentum of the nonplanar momentum and the sign β resolves which side of the plane
this particle is on, which is not captured by the sij (because they are symmetric with respect to a reflection about
the plane). We note the simplicity of the spinor-helicity expression as compared with the explicit expression for the
phases.

Appendix C: Helicity Amplitudes for Vector Boson + Jets

In this appendix we give all required partial amplitudes for the vector boson + jets processes discussed in Sec. VI.
For each of the amplitudes Aq,v,a, Bq,v,a defined in Sec. VI, we split the amplitude into its IR-divergent and IR-finite
parts,

X = Xdiv +Xfin , (C1)

where X stands for any of Aq,v,a and Bq,v,a. For the logarithms we use the notation

Lij = ln
(
−sij
µ2
− i0

)
, Lij/kl = Lij − Lkl = ln

(
−sij
µ2
− i0

)
− ln

(
−skl
µ2
− i0

)
. (C2)

1. V + 0 Jets

In this section we give the amplitudes Aq,v,a for V + 0 jets. For each partonic channel, we expand the amplitudes
as

X =

∞∑
n=0

X(n)
(αs(µ)

4π

)n
. (C3)

where X stands for any of Aq,v,a. The tree-level and one-loop helicity amplitudes entering the matching coefficient in
Eq. (146) are given by

A(0)
q (1+

q , 2
−
q̄ ; 3+

` , 4
−
¯̀ ) = −2i

[13]〈24〉
s12

,
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A
(1)
q,div(1+

q , 2
−
q̄ ; 3+

` , 4
−
¯̀ ) = A(0)

q (1+
q , 2

−
q̄ ; 3+

` , 4
−
¯̀ )CF

[
− 2

ε2
+

1

ε

(
2L12 − 3

)]
,

A
(1)
q,fin(1+

q , 2
−
q̄ ; 3+

` , 4
−
¯̀ ) = A(0)

q (1+
q , 2

−
q̄ ; 3+

` , 4
−
¯̀ )CF

[
−L2

12 + 3L12 − 8 +
π2

6

]
,

A(0)
v = A(1)

v = A(0)
a = A(1)

a = 0 . (C4)

2. V + 1 Jet

In this section we give the amplitudes Aq,v,a for V + 1 jets. Each amplitude is expanded as

X = gs(µ)

∞∑
n=0

X(n)
(αs(µ)

4π

)n
. (C5)

where X stands for any of Aq,v,a. The tree-level and one-loop helicity amplitudes for V + 1 jets were calculated in

Refs. [11, 12, 14, 181]. We use the results given in Ref. [14], which uses TF = 1 and gsT
a/
√

2 for the qq̄g coupling. We

can thus convert to our conventions by replacing T a →
√

2T a, and identifying 1/N = CA − 2CF and N = CA. The
one-loop amplitudes are given in the FDH scheme in Ref. [14], which we convert to the HV scheme using Eqs. (100)
and (101).

The tree-level amplitudes entering the matching coefficient ~Cx+(+;+) in Eq. (154) is given by

A(0)
q (1+; 2+

q , 3
−
q̄ ; 4+

` , 5
−
¯̀ ) = −2

√
2

〈35〉2

〈12〉〈13〉〈45〉
A(0)
v = A(0)

a = 0 . (C6)

The divergent part of the one-loop helicity amplitude is given by

A
(1)
q,div(1+; 2+

q , 3
−
q̄ ; 4+

` , 5
−
¯̀ ) = A(0)

q (1+; 2+
q , 3

−
q̄ ; 4+

` , 5
−
¯̀ )

×
{
− 1

ε2
(CA + 2CF ) +

1

ε

[
CA(L12 + L13 − L23) + CF (2L23 − 3)− β0

2

]}
. (C7)

The finite parts entering the matching coefficients at one loop are

A
(1)
q,fin(1+; 2+

q , 3
−
q̄ ; 4+

` , 5
−
¯̀ ) = A(0)

q (1+, 2+
q , 3

−
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` , 5
−
¯̀ )

×
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2

(
−L2
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π2

3

)
+
(
CF −
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2

)(
−L2

23 + 3L45 − 8 +
π2

6

)
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s45
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s45

)
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+
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,
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q , 3
−
q̄ ; 4+

` , 5
−
¯̀ ) = 4

√
2TF [12][14]〈35〉

[
1

s2
45

L1

(s23

s45

)
− 1

12s45m2
t

]
,

A(1)
v = 0 . (C8)

The contributions from virtual top quark loops are calculated in an expansion in 1/mt to order 1/m2
t in Ref. [14],

hence the divergent behavior of A
(1)
a as mt → 0. To reduce the length of the expressions, we have used the commonly
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defined functions

L0(r) =
ln r

1− r
, L1(r) =

L0(r) + 1

1− r
, Ls−1(r1, r2) = Li2(1− r1) + Li2(1− r2) + ln r1 ln r2 −

π2

6
. (C9)

The proper branch cut of logarithms follows from the prescriptions sij → sij + i0. The proper branch cut of the
dilogarithm follows from that of the logarithm through the identity

Im
[
Li2(1− r)

]
= − ln(1− r) Im

[
ln r
]
. (C10)

3. V + 2 Jets

In this section, we give the amplitudes Aq,v,a, Bq,v,a for V + 2 jets. Each amplitude is expanded as

X = [gs(µ)]2
∞∑
n=0

X(n)
(αs(µ)

4π

)n
. (C11)

where X stands for any of Aq,v,a or Bq,v,a. We also define the kinematic variables sijk as

sijk = (pi + pj + pk)2 = sij + sik + sjk . (C12)

The one-loop helicity amplitudes for q′q̄′qq̄ V and qq̄ qq̄ V were calculated in Ref. [186]. The one-loop helicity ampli-
tudes for gg qq̄ V were calculated in Ref. [14], which also gives compact expressions for the four-quark amplitudes,
which we use here. The contributions from virtual top quark loops are calculated in an expansion in 1/mt to order
1/m2

t in Ref. [14].

Ref. [14] uses TF = 1 and gsT
a/
√

2 for the qq̄g coupling. We can thus convert to our conventions by replacing

T a →
√

2T a, and identifying 1/N = CA − 2CF and N = CA. The one-loop amplitudes are given in the FDH scheme
in Ref. [14], which we convert to the HV scheme using Eqs. (100) and (101).

a. q′q̄′qq̄ V and qq̄ qq̄ V

The tree-level amplitudes for q′q̄′qq̄ V and qq̄ qq̄ V entering the Wilson coefficients in Eqs. (173) and (174) are given
by

A(0)
q (1+

q′ , 2
−
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ ) = −B(0)

q (1+
q′ , 2

−
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )

=
2

s12s56

[
[13]〈46〉(〈12〉[15]− 〈23〉[35])

s123
+
〈24〉[35]([12]〈26〉+ [14]〈46〉)

s124

]
,

A(0)
q (1−q′ , 2

+
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ ) = −B(0)

q (1−q′ , 2
+
q̄′ ; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ )

=
2

s12s56

[
[23]〈46〉(〈12〉[25] + 〈13〉[35])

s123
+
〈14〉[35]([12]〈16〉 − [24]〈46〉)

s124

]
,

A(0)
v = A(0)

a = B(0)
v = B(0)

a = 0 . (C13)

Due to the length of the one-loop q′q̄′qq̄ V amplitudes, we only show how to translate the decomposition of the
amplitude in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes
Ai;j(3q, 2Q̄, 1Q, 4q̄) of Ref. [14] as

A(1)
q (1q′ , 2q̄′ ; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 32π2N A6;1(3q, 2Q̄, 1Q, 4q̄)−

(β0

ε
+ 2CF −

1

3
CA

)
A(0)
q (1q′ , 2q̄′ ; 3q, 4q̄; 6+

` , 5
−
¯̀ ) ,

B(1)
q (1q′ , 2q̄′ ; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 32π2N A6;2(3q, 2Q̄, 1Q, 4q̄)−

(β0

ε
+ 2CF −

1

3
CA

)
B(0)
q (1q′ , 2q̄′ ; 3q, 4q̄; 6+

` , 5
−
¯̀ ) ,

A(1)
a (1q′ , 2q̄′ ; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −B(1)

a (1q′ , 2q̄′ ; 3q, 4q̄; 6+
` , 5

−
¯̀ ) = −i 32π2A6;3(3q, 2Q̄, 1Q, 4q̄) ,

A(1)
v = B(1)

v = 0 . (C14)

The overall factor −i 32π2 is due to our different normalization conventions. We have not included helicity labels, as
these relations are true for all helicity combinations. Note that the partial amplitudes Ai;j do not include labels for

the lepton momenta, which are implicitly taken as 6+
` , 5−¯̀ . The terms in the first two lines proportional to A

(0)
q and

B
(0)
q come from the UV renormalization and switching from FDH to HV.
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b. gg qq̄ V

The tree-level amplitudes for gg qq̄ V entering the matching coefficients in Eq. (182) are given by

A(0)
q (1+, 2+; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ ) = −4

〈46〉2

〈12〉〈13〉〈24〉〈56〉
,

A(0)
q (1+, 2−; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ ) =

4

s12s56

[
[13]〈23〉〈46〉(〈23〉[35]− 〈12〉[15])

〈13〉s123
+
〈24〉[35][14]([12]〈26〉+ [14]〈46〉)

[24]s124

+
([12]〈26〉+ [14]〈46〉)(〈23〉[35]− 〈12〉[15])

〈13〉[24]

]
,

A(0)
q (1−, 2+; 3+

q , 4
−
q̄ ; 5+

` , 6
−
¯̀ ) =

4

s12s56

[
[23]2〈46〉(〈12〉[25] + 〈13〉[35])

[13]s123
+
〈14〉2[35]([12]〈16〉 − [24]〈46〉)

〈24〉s124

+
[23]〈14〉[35]〈46〉

[13]〈24〉

]
,

A(0)
v = A(0)

a = B(0)
q = B(0)

v = B(0)
a = 0 . (C15)

Due to the length of the one-loop gg qq̄ V amplitudes, we again only show how to translate the decomposition of
the amplitude in Ref. [14] to our notation. The one-loop amplitudes are given in terms of the bare partial amplitudes
Ai;j(3q, 1, 2, 4q̄), A

v
i;j(3q, 4q̄; 1, 2), and Aax

i;j(3q, 4q̄; 1, 2) of Ref. [14] as

A(1)
q (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 64π2N A6;1(3q, 1, 2, 4q̄)−

(β0

ε
+ CF

)
A(0)
q (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) ,

B(1)
q (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 64π2A6;3(3q, 4q̄; 1, 2) ,

A(1)
v (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 64π2Av

6;4(3q, 4q̄; 1, 2) ,

B(1)
v (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = +i 64π2 2

N
Av

6;4(3q, 4q̄; 1, 2) ,

A(1)
a (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 64π2Aax

6;4(3q, 4q̄; 1, 2) ,

B(1)
a (1, 2; 3q, 4q̄; 6+

` , 5
−
¯̀ ) = −i 64π2 1

N

[
Aax

6;5(3q, 4q̄; 1, 2)−Aax
6;4(3q, 4q̄; 1, 2)−Aax

6;4(3q, 4q̄; 2, 1)
]
. (C16)

The overall factor −i 64π2 is due to our different normalization conventions. We have not included helicity labels, as
these relations are true for all helicity combinations. Note that the partial amplitudes Ai;j do not include labels for

the lepton momenta, which are implicitly taken as 6+
` , 5−¯̀ . The term in the first line proportional to A

(0)
q comes from

the UV renormalization and switching from FDH to HV.

Appendix D: Helicity Amplitudes for pp → Jets

1. pp → 2 Jets

In this appendix we give explicit expressions for all partial amplitudes that are required in Eqs. (189), (190), (194),
and (203), for the various partonic channels of the pp→ 2 jets process. Since this process is planar, we can write all
amplitudes for a given set of helicities with a common overall phase extracted, which is determined by the phases of
the external particles. In this way, we do not need to worry about relative phases between the Wilson coefficients for
different color structures when they mix under renormalization. The cross section does not depend on this overall
phase. This simplifies the numerical implementation considerably for this process, as it avoids having to implement
the complex spinor algebra. To extract the overall phase from the amplitudes, the following relations for the relative
phases between the spinor products are useful,

〈12〉
[34]

=
〈34〉
[12]

=
〈14〉
[23]

=
〈23〉
[14]

= −〈13〉
[24]

= −〈24〉
[13]

. (D1)

These relations follow from Eq. (A22) with n = 4.
We split the partial amplitudes into their IR-divergent and IR-finite parts,

A = Adiv +Afin , B = Bdiv +Bfin , (D2)
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where the IR-finite parts enter the matching coefficients. We expand the amplitudes and Wilson coefficients in powers
of αs(µ) as

X = [gs(µ)]2
∞∑
n=0

X(n)
(αs(µ)

4π

)n
, (D3)

where X stands for any of Adiv,fin, Bdiv,fin, and X(0) and X(1) are the tree-level and one-loop contributions, respec-
tively. For simplicity, we drop the subscript “fin” for those amplitudes that have no divergent parts, e.g., for the

tree-level amplitudes A
(0)
div = 0 and A

(0)
fin ≡ A(0). For the logarithms we use the notation

Lij = ln
(
−sij
µ2
− i0

)
, Lij/kl = Lij − Lkl = ln

(
−sij
µ2
− i0

)
− ln

(
−skl
µ2
− i0

)
. (D4)

a. qq̄ q′q̄′ and qq̄ qq̄

Here we list all partial amplitudes up to one loop entering the Wilson coefficients in Eqs. (189) and (190). The
one-loop helicity amplitudes for qq̄ q′q̄′ and qq̄ qq̄ were first calculated in Ref. [23], and the two-loop helicity amplitudes
were computed in Refs. [191, 192]. We find agreement between the one-loop results of Ref. [191] and Ref. [192], from
which we take our results.10 Our one-loop matching coefficients agree with the calculation of Ref. [88].

The tree-level amplitudes are

A(0)(1+
q , 2

−
q̄ ; 3+

q′ , 4
−
q̄′) = −B(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′) = −〈24〉[13]

s12
=
s13

s12
eiΦ(+;+) ,

A(0)(1+
q , 2

−
q̄ ; 3−q′ , 4

+
q̄′) = −B(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′) = −〈23〉[14]

s12
=
s14

s12
eiΦ(+;−) , (D5)

where the phases are given by

eiΦ(+;+) =
〈24〉
〈13〉

, eiΦ(+;−) =
〈23〉
〈14〉

. (D6)

We have chosen to express all the one-loop amplitudes in terms of A(0)(1+
q , 2

−
q̄ ; 3+

q′ , 4
−
q̄′) and A(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′). The

divergent parts of the one-loop amplitudes are

A
(1)
div(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)

{
− 4

ε2
CF +

2

ε

[
CF (2L12 − 4L13/14 − 3) + CA(L13/14 − L12/13)

]}
,

B
(1)
div(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)

{
4

ε2
CF −

2

ε

[
CF (2L12 − 2L13/14 − 3) + CA(L13/14 − L12/13)

]}
,

A
(1)
div(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)

{
− 4

ε2
CF +

2

ε

[
CF (2L12 − 4L13/14 − 3) + CA(L13/14 − L12/13)

]}
,

B
(1)
div(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)

{
4

ε2
CF −

2

ε

[
CF (2L12 − 2L13/14 − 3) + CA(L13/14 − L12/13)

]}
. (D7)

The finite parts entering the Wilson coefficients are

A
(1)
fin (1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)
[
f(s12, s13, s14, µ) + (4CF − CA) g(s12, s13, s14)

]
,

B
(1)
fin (1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3+

q′ , 4
−
q̄′)
[
4CF L12L13/14 − f(s12, s13, s14, µ) + (CA − 2CF ) g(s12, s13, s14)

]
,

A
(1)
fin (1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)
[
f(s12, s13, s14, µ) + 2(CA − 2CF ) g(s12, s14, s13)

]
,

10 Note that there is a minor disagreement here with the earlier
calculation in Ref. [23], presumably due to typos. Specifically,
in Ref. [23] the factors

(
log2 s14

s12
+ π2

)
and

(
log2 s14

s13
+ π2

)
in

Eqs. (5.10) and (5.12) respectively, must be swapped to achieve
agreement with the results of Refs. [88, 191, 192]. Ref. [192]
also has a minor typo, having a flipped overall sign for the IR-
divergent terms.
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B
(1)
fin (1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′) = A(0)(1+

q , 2
−
q̄ ; 3−q′ , 4

+
q̄′)
[
4CF L12L13/14 − f(s12, s13, s14, µ) + 2(CF − CA) g(s12, s14, s13)

]
,

f(s12, s13, s14, µ) = CF

[
−2L2

12 + 2L12(3 + 4L13/14)− 16 +
π2

3

]
+ CA

(
2L12(L12/13 − L13/14) +

10

3
+ π2

)
− β0

(
L12 −

5

3

)
,

g(s12, s13, s14) =
s12

s13

[
1

2

(
1− s14

s13

)(
L2

12/14 + π2
)

+ L12/14

]
. (D8)

b. gg qq̄

The one-loop helicity amplitudes for gg qq̄ were first calculated in Ref. [23], and the two-loop helicity amplitudes
were computed in Refs. [187, 188]. We take our results from Ref. [187], converted to our conventions.11

Here we list all partial amplitudes up to one loop entering the Wilson coefficients in Eq. (194). We start with
the partial amplitudes where the gluons have opposite helicity, which are the only ones having a nonzero tree-level
contribution. The tree-level amplitudes are given by

A(0)(1+, 2−; 3+
q , 4

−
q̄ ) = −2

〈23〉〈24〉3

〈12〉〈24〉〈43〉〈31〉
= 2

√
|s13 s14|
s12

eiΦ+−(+) ,

A(0)(2−, 1+; 3+
q , 4

−
q̄ ) = −2

〈23〉〈24〉3

〈21〉〈14〉〈43〉〈32〉
= 2

s13

√
|s13 s14|

s12 s14
eiΦ+−(+) ,

B(0)(1+, 2−; 3+
q , 4

−
q̄ ) = 0 . (D9)

In the second step we extracted a common overall phase from the amplitudes, which is given by

eiΦ+−(+) =
〈24〉
[24]

[13][14]√
|s13 s14|

. (D10)

The divergent parts of the corresponding one-loop amplitudes are

A
(1)
div(1+, 2−; 3+

q , 4
−
q̄ ) = A(0)(1+, 2−; 3+

q , 4
−
q̄ )

[
− 2

ε2
(CA + CF ) +

1

ε
(2CF L12 + 2CA L13 − 3CF − β0)

]
,

A
(1)
div(2−, 1+; 3+

q , 4
−
q̄ ) = A(0)(2−, 1+; 3+

q , 4
−
q̄ )

[
− 2

ε2
(CA + CF ) +

1

ε
(2CF L12 + 2CA L14 − 3CF − β0)

]
,

B
(1)
div(1+, 2−; 3+

q , 4
−
q̄ ) = A(0)(1+, 2−; 3+

q , 4
−
q̄ )

1

ε
4TF

(
L12/14 +

s13

s14
L12/13

)
. (D11)

The corresponding finite parts entering the Wilson coefficient ~C+−(+) at one loop are

A
(1)
fin (1+, 2−; 3+

q , 4
−
q̄ ) = A(0)(1+, 2−; 3+

q , 4
−
q̄ )

{
CA

(
−L2

13 + L2
12/13 + 1 +

7π2

6

)
+ CF

(
−L2

12 + 3L12 − 8 +
π2

6

)
+ (CA − CF )

s12

s14
(L2

12/13 + π2)

}
,

A
(1)
fin (2−, 1+; 3+

q , 4
−
q̄ ) = A(0)(2−, 1+; 3+

q , 4
−
q̄ )

{
CA
2

(
−2L2

14 + L2
12/14 − 3L12/14 + 1 +

4π2

3

)
+ CF

(
−L2

12 + 3L12 − 8 +
π2

6

)
− CA

2

s14

s13

[(
1− s14

s13
L12/14

)2

+ L12/14 +
s2

14

s2
13

π2

]
+
(CA

2
− CF

) s12

s13

[(
1 +

s12

s13
L12/14

)2

− L12/14 +
s2

12

s2
13

π2

]}
,

11 We find a slight disagreement with the earlier results of Ref. [23]
for their subleading color amplitude in Eq. (5.24). This ampli-
tude appears to have typos since it does not have the correct IR

structure, as determined by the general formula [215] or by the
SCET result in Eq. (G4). Comparing with the matching calcula-
tion of Ref. [88], we find a typo in the π2 term in W4 in Eq. (54),
which should have 3π2u2/(2ts)→ −3π2u/(4t).
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B
(1)
fin (1+, 2−; 3+

q , 4
−
q̄ ) = A(0)(1+, 2−; 3+

q , 4
−
q̄ ) 4TF

[
−L12L13/14 +

s12

s14
L14L12/13 −

3

4

s12

s13

(
L2

12/14 + π2
)]
. (D12)

The partial amplitudes where both gluons have the same helicity vanish at tree level,

A(0)(1+, 2+; 3+
q , 4

−
q̄ ) = B(0)(1+, 2+; 3+

q , 4
−
q̄ ) = 0 ,

A(0)(1−, 2−; 3+
q , 4

−
q̄ ) = B(0)(1−, 2−; 3+

q , 4
−
q̄ ) = 0 . (D13)

The corresponding one-loop amplitudes entering the Wilson coefficients ~C++(+) and ~C−−(+) are IR finite. They are

A(1)(1+, 2+; 3+
q , 4

−
q̄ ) = 2

√
|s13 s14| eiΦ++(+)

[
(CA − CF )

1

s13
+

1

3
(CA − 2TF nf )

1

s12

]
,

A(1)(2+, 1+; 3+
q , 4

−
q̄ ) = −2

√
|s13 s14| eiΦ++(+)

[
(CA − CF )

1

s14
+

1

3
(CA − 2TF nf )

1

s12

]
,

B(1)(1+, 2+; 3+
q , 4

−
q̄ ) = 0 , (D14)

and

A(1)(1−, 2−; 3+
q , 4

−
q̄ ) = 2

√
|s13 s14| eiΦ−−(+)

[
(CA − CF )

1

s13
+

1

3
(CA − 2TF nf )

1

s12

]
,

A(1)(2−, 1−; 3+
q , 4

−
q̄ ) = −2

√
|s13 s14| eiΦ−−(+)

[
(CA − CF )

1

s14
+

1

3
(CA − 2TF nf )

1

s12

]
,

B(1)(1−, 2−; 3+
q , 4

−
q̄ ) = 0 , (D15)

with the overall phases

eiΦ++(+) =
[12]

〈12〉
[13]〈14〉√
|s13 s14|

, eiΦ−−(+) =
〈12〉
[12]

[13]〈14〉√
|s13 s14|

. (D16)

c. gggg

The one-loop helicity amplitudes for gggg were first calculated in Ref. [23], and the two-loop amplitudes were
computed in Refs. [193, 194]. The results given here are taken from Ref. [194], and converted to our conventions. We
also find complete agreement with the expressions given in Ref. [23].12

The amplitudes inherit the cyclic symmetry of the traces, which means that many of the amplitudes appearing in
Eq. (203) are related, for example

A(1+, 3−, 4−, 2+) = A(2+, 1+, 3−, 4−) . (D17)

For the convenience of the reader, we will explicitly give all amplitudes needed in Eq. (203). We start with the partial
amplitudes with two positive-helicity and two negative-helicity gluons, which are the only nonvanishing amplitudes
at tree level. We have

A(0)(1+, 2+, 3−, 4−) = 4
〈34〉4

〈12〉〈23〉〈34〉〈41〉
= 4

s12

s14
eiΦ++−− ,

A(0)(1+, 3−, 4−, 2+) = 4
〈34〉4

〈13〉〈34〉〈42〉〈21〉
= 4

s12

s13
eiΦ++−− ,

A(0)(1+, 4−, 2+, 3−) = 4
〈34〉4

〈14〉〈42〉〈23〉〈31〉
= 4

s2
12

s13 s14
eiΦ++−− , (D18)

12 We have also compared with the matching calculation of
Ref. [88], which has a minor typo. In particular, in F(s, t, u) in
Eq. (61) the nf terms must be dropped and β0 set to 11CA/3.

Also as noted in Ref. [89], the last column of Table 5 in Ref. [88]
applies to helicities 7, 8, while the second-to-last column applies
to helicities 9–16.
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with the common overall phase

eiΦ++−− = − [12]

〈12〉
〈34〉
[34]

. (D19)

The corresponding B(0) all vanish,

B(0)(1+, 2+, 3−, 4−) = B(0)(1+, 3−, 4−, 2+) = B(0)(1+, 4−, 2+, 3−) = 0 . (D20)

At one loop the B(1) amplitudes can be expressed in terms of the nf -independent part of the A(1),

B(1)(1+, 2+, 3−, 4−) =
2TF
CA

2
[
A(1)(1+, 2+, 3−, 4−) +A(1)(1+, 3−, 4−, 2+) +A(1)(1+, 4−, 2+, 3−)

]∣∣∣
nf=0

. (D21)

The same relation also holds for the other helicity assignments. Using the cyclic symmetries of the amplitudes, it
follows that the last three entries in the Wilson coefficients in Eq. (203) at one loop are all equal to each other and are
given by 2TF /CA times the sum of the first three entries at nf = 0. The divergent parts of the one-loop amplitudes
are

A
(1)
div(1+, 2+, 3−, 4−) = A(0)(1+, 2+, 3−, 4−)

[
− 4

ε2
CA +

2

ε
(CA L12 + CA L14 − β0)

]
,

A
(1)
div(1+, 3−, 4−, 2+) = A(0)(1+, 3−, 4−, 2+)

[
− 4

ε2
CA +

2

ε
(CA L12 + CA L13 − β0)

]
,

A
(1)
div(1+, 4−, 2+, 3−) = A(0)(1+, 4−, 2+, 3−)

[
− 4

ε2
CA +

2

ε
(CA L13 + CA L14 − β0)

]
,

B
(1)
div(1+, 2+, 3−, 4−) = A(0)(1+, 2+, 3−, 4−)

[
8TF
ε

(
L12/13 +

s14

s13
L12/14

)]
,

B
(1)
div(1+, 3−, 4−, 2+) = A(0)(1+, 2+, 3−, 4−)

[
8TF
ε

(
s14

s13
L13/14 +

s12

s13
L13/12

)]
,

B
(1)
div(1+, 4−, 2+, 3−) = A(0)(1+, 2+, 3−, 4−)

[
8TF
ε

(
L14/13 +

s12

s13
L14/12

)]
. (D22)

The finite parts entering the Wilson coefficient ~C++−− at one loop are

A
(1)
fin (1+, 2+, 3−, 4−) = A(0)(1+, 2+, 3−, 4−)

[
CA

(
−2L12L14 −

4

3
+

4π2

3

)
+ β0

(
L14 −

5

3

)]
,

A
(1)
fin (1+, 3−, 4−, 2+) = A(0)(1+, 3−, 4−, 2+)

[
CA

(
−2L12L13 −

4

3
+

4π2

3

)
+ β0

(
L13 −

5

3

)]
,

A
(1)
fin (1+, 4−, 2+, 3−) = A(0)(1+, 4−, 2+, 3−)

{
CA

(
−2L14L13 +

4

3
π2 − 4

3

)
− β0

(
5

3
+
s13

s12
L14 +

s14

s12
L13

)
− (CA − 2TFnf )

s13s14

s2
12

[
1 +

(
s13

s12
− s14

s12

)
L13/14 +

(
2− s13s14

s2
12

)(
L2

13/14 + π2
)]

− 3TFnf
s13s14

s2
12

(
L2

13/14 + π2
)}

,

B
(1)
fin (1+, 2+, 3−, 4−) = B

(1)
fin (1+, 3−, 4−, 2+) = B

(1)
fin (1+, 4−, 2+, 3−)

= −4TFA
(0)(1+, 2+, 3−, 4−)

[
s14

s13
2L13 L12/14 + 2L14 L12/13 +

s14

s12
+
s14

s12

(s13

s12
− s14

s12

)
L13/14

+
s14

s12

(
2− s13 s14

s2
12

)(
L2

13/14 + π2
)]
. (D23)

Due to Eq. (D17), the first two amplitudes in Eq. (D18), as well as the first two in Eq. (D23), can be obtained from
each other by interchanging 1+ ↔ 2+ which corresponds to s13 ↔ s14 without an effect on the overall phase.

The amplitudes with only one or no gluon with negative helicity vanish at tree level,

A(0)(1+, 2+, 3+, 4±) = A(0)(1+, 3+, 4±, 2+) = A(0)(1+, 4±, 2+, 3+) = 0 ,
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B(0)(1+, 2+, 3+, 4±) = B(0)(1+, 3+, 4±, 2+) = B(0)(1+, 4±, 2+, 3+) = 0 . (D24)

The corresponding one-loop amplitudes are infrared finite. Those entering ~C+++− are given by

A(1)(1+, 2+, 3+, 4−) = 4
[13]2

[41]〈12〉〈23〉[34]

1

3
(CA − 2TF nf ) (s14 + s34) = 4 eiΦ+++−

1

3
(CA − 2TF nf )

(s13

s12
+
s13

s14

)
,

A(1)(1+, 3+, 4−, 2+) = 4
[23]2

[42]〈21〉〈13〉[34]

1

3
(CA − 2TF nf ) (s13 + s12) = 4 eiΦ+++−

1

3
(CA − 2TF nf )

(s14

s12
+
s14

s13

)
,

A(1)(1+, 4−, 2+, 3+) = 4
[21]2

[42]〈23〉〈31〉[14]

1

3
(CA − 2TF nf ) (s13 + s14) = 4 eiΦ+++−

1

3
(CA − 2TF nf )

(s12

s14
+
s12

s13

)
,

B(1)(1+, 2+, 3+, 4−) = B(1)(1+, 3+, 4−, 2+) = B(1)(1+, 4−, 2+, 3+) = −16TF e
iΦ+++− , (D25)

and those for ~C++++ are

A(1)(1+, 2+, 3+, 4+) = A(1)(1+, 3+, 4+, 2+) = A(1)(1+, 4+, 2+, 3+) = 4 eiΦ++++
1

3
(CA − 2TF nf ) ,

B(1)(1+, 2+, 3+, 4+) = B(1)(1+, 3+, 4+, 2+) = B(1)(1+, 4+, 2+, 3+) = 16TF e
iΦ++++ , (D26)

where for convenience we have extracted the overall phases

eiΦ+++− =
[12]

〈12〉
[13]

〈13〉
〈14〉
[14]

, eiΦ++++ = − [12]

〈12〉
[34]

〈34〉
. (D27)

2. pp → 3 Jets

In this appendix we give explicit expressions for all partial amplitudes that are required in Eqs. (209), (210), (217),
and (226), for the various partonic channels for the pp→ 3 jets process. The one-loop amplitudes for these processes

were calculated in Refs. [22, 24, 25], respectively. These papers use TF = 1 and gsT
a/
√

2 for the qq̄g coupling. Thus,

we can convert to our conventions by replacing T a →
√

2T a, and identifying 1/N = CA − 2CF and N = CA. Below
we restrict ourselves to giving explicit expressions for the tree-level amplitudes, since the one-loop expressions are
fairly lengthy.

For each partonic channel, we expand the amplitude as

X = [gs(µ)]3
∞∑
n=0

X(n)
(αs(µ)

4π

)n
, (D28)

where X stands for any of Adiv,fin, Bdiv,fin.

a. gqq̄ q′q̄′ and g qq̄ qq̄

The tree-level amplitudes entering the Wilson coefficients in Eqs. (209) and (210) are given by,

A(0)(1+; 2+
q , 3

−
q̄ ; 4+

q′ , 5
−
q̄′) =

√
2

〈25〉〈35〉2

〈12〉〈15〉〈23〉〈45〉
, A(0)(1+; 4+

q′ , 5
−
q̄′ ; 2+

q , 3
−
q̄ ) = −

√
2

〈35〉2〈34〉
〈13〉〈14〉〈23〉〈45〉

,

A(0)(1+; 2+
q , 3

−
q̄ ; 4−q′ , 5

+
q̄′) = −

√
2

〈25〉〈34〉2

〈12〉〈15〉〈23〉〈45〉
, A(0)(1+; 4−q′ , 5

+
q̄′ ; 2+

q , 3
−
q̄ ) =

√
2

〈34〉3

〈13〉〈14〉〈23〉〈45〉
,

B(0)(1+; 2+
q , 3

−
q̄ ; 4+

q′ , 5
−
q̄′) = −

√
2

〈23〉〈35〉2

〈12〉〈13〉〈23〉〈45〉
, B(0)(1+; 4+

q′ , 5
−
q̄′ ; 2+

q , 3
−
q̄ ) = −

√
2

〈35〉2〈45〉
〈14〉〈15〉〈23〉〈45〉

,

B(0)(1+; 2+
q , 3

−
q̄ ; 4−q′ , 5

+
q̄′) =

√
2

〈23〉〈34〉2

〈12〉〈13〉〈23〉〈45〉
, B(0)(1+; 4−q′ , 5

+
q̄′ ; 2+

q , 3
−
q̄ ) =

√
2

〈34〉2〈45〉
〈14〉〈15〉〈23〉〈45〉

. (D29)

Of these helicity amplitudes only 4 are independent. The one-loop amplitudes were computed in Ref. [24].
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b. ggg qq̄

The three independent tree-level partial amplitudes which enter the Wilson coefficients in Eq. (217) are given by,

A(0)(1+, 2+, 3−; 4+
q , 5

−
q̄ ) = 2

√
2

〈34〉〈35〉2

〈12〉〈14〉〈23〉〈45〉
,

A(0)(2+, 3−, 1+; 4+
q , 5

−
q̄ ) = −2

√
2

〈34〉〈35〉3

〈13〉〈15〉〈23〉〈24〉〈45〉
,

A(0)(3−, 1+, 2+; 4+
q , 5

−
q̄ ) = −2

√
2

〈35〉3

〈12〉〈13〉〈25〉〈45〉
,

B(0) = C(0) = 0 . (D30)

At tree level, the partial amplitudes for the other color structures vanish, B(0) = C(0) = 0. The one-loop amplitudes
were computed in Ref. [25].

c. ggggg

The two independent partial amplitudes that enter the Wilson coefficients in Eq. (226) are given by the Parke-Taylor
formula [216]

A(0)(1+, 2+, 3+, 4−, 5−) = 4
√

2
〈45〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
,

A(0)(1+, 2+, 4−, 3+, 5−) = 4
√

2
〈45〉4

〈12〉〈15〉〈24〉〈34〉〈35〉
,

B(0) = 0 , (D31)

All other amplitudes can be obtained by cyclic permutations. The double-trace color structure does not appear at
tree level, so B(0) = 0. The one-loop amplitudes were calculated in Ref. [22].

Appendix E: RGE Ingredients

In this appendix, we collect explicit results required for the running of the hard matching coefficients required to
NNLL order. We expand the β function and cusp anomalous dimension in powers of αs as

β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1

, Γcusp(αs) =
∞∑
n=0

Γn

(αs
4π

)n+1

. (E1)

Up to three-loop order in the MS scheme, the coefficients of the β function are [217, 218]

β0 =
11

3
CA −

4

3
TF nf , β1 =

34

3
C2
A −

(20

3
CA + 4CF

)
TF nf ,

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(11

9
CF +

79

54
CA

)
4T 2

F n
2
f , (E2)

and for the cusp anomalous dimension they are [219, 220]

Γ0 = 4 , Γ1 =
(268

9
− 4π2

3

)
CA −

80

9
TF nf ,

Γ2 =
(490

3
− 536π2

27
+

44π4

45
+

88ζ3
3

)
C2
A +

(80π2

27
− 836

27
− 112ζ3

3

)
CA 2TF nf +

(
32ζ3 −

110

3

)
CF 2TF nf −

64

27
T 2
F n

2
f .

(E3)

Note that here Γcusp does not include an overall color factor, it differs from the usual qq̄ case by a factor of CF .
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For the noncusp anomalous dimension of the Wilson coefficient, which is color diagonal to two loops, we write

γ̂(αs) = (nqγ
q
C + ngγ

g
C)1 +O(α3

s) , (E4)

as in Eq. (238). The quark and gluon noncusp anomalous dimensions,

γiC =
(αs

4π

)
γqC 0 +

(αs
4π

)2

γqC 1 , γgC =
(αs

4π

)
γgC 0 +

(αs
4π

)2

γgC 1 , (E5)

have the following coefficients

γqC 0 = −3CF ,

γqC 1 = −CF
[(

41

9
− 26ζ3

)
CA +

(
3

2
− 2π2 + 24ζ3

)
CF +

(
65

18
+
π2

2

)
β0

]
,

γgC 0 = −β0 ,

γgC 1 =

(
−59

9
+ 2ζ3

)
C2
A +

(
−19

9
+
π2

6

)
CAβ0 − β1 . (E6)

The evolution kernels required for the resummation were defined in Eq. (237) by the integrals

KΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
Γcusp(αs)

β(αs)

∫ αs

αs(µ0)

dα′s
1

β(α′s)
,

ηΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
Γcusp(αs)

β(αs)
,

K̂γ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
γ̂(αs)

β(αs)
. (E7)

Up to two loops, we can simplify the noncusp evolution kernel as

K̂γ(µ0, µ) =
(
nqK

q
γ(µ0, µ) + ngK

g
γ(µ0, µ)

)
1 . (E8)

Explicit results to NNLL order are given by

KΓ(µ0, µ) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+

(
β1Γ1

β0Γ0
− β2

1

β2
0

)
(1− r + r ln r)−

(
Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

]}
,

ηΓ(µ0, µ) = − Γ0

2β0

[
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1) +

α2
s(µ0)

16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2 − 1

2

]
,

Kq
γ(µ0, µ) = −

γqC 0

2β0

[
ln r +

αs(µ0)

4π

(
γqC 1

γqC 0

− β1

β0

)
(r − 1)

]
,

Kg
γ (µ0, µ) = −

γgC 0

2β0

[
ln r +

αs(µ0)

4π

(
γgC 1

γgC 0

− β1

β0

)
(r − 1)

]
, (E9)

with r = αs(µ)/αs(µ0). The running coupling in the above equations is given by the three-loop expression

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

( lnX

X
+

1

X
− 1
)]
, (E10)

with X ≡ 1 + αs(µ0)β0 ln(µ/µ0)/(2π).

Appendix F: Color Sum Matrices

For each specific process considered in the text we de-
composed the Wilson coefficients in a color basis as

Ca1···αn
+··(··−) =

∑
k

Ck+··(··−)T
a1···αn
k ≡ T̄ a1···αn ~C+··(··−) ,

(F1)

where T̄ a1···αn is a row vector of color structures which
form a complete basis of the allowed color structures for
the particular process. Since convenient color bases are
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generically not orthogonal, the scalar product between

Wilson coefficients is nontrivial. The ~C† is given by

~C† = [Ca1···αn ]
∗
T̄ a1···αn = ~C∗T T̂ , (F2)

where

T̂ =
∑

a1,...,αn

(T̄ a1···αn)†T̄ a1···αn , (F3)

is the matrix of color sums.
In this appendix we give explicit expressions for T̂ for

all the processes in this paper, both for general SU(N),
as well as a numerical result for the specific case of N = 3.
For simplicity, in this section we restrict ourselves to the
normalization convention TF = 1/2, and CA = N , and
write the results for general SU(N) in terms of only CA
and CF .

For qq̄ and gg in the basis in Eq. (105), we have

T̂qq̄ = CA = 3 , T̂gg = 2CACF = 8 . (F4)

For g qq̄ and ggg in the basis Eq. (110), we have

T̂g qq̄ = CACF = 4 ,

T̂ggg = 2CF

(
C2
A 0

0 C2
A − 4

)
=

8

3

(
9 0
0 5

)
. (F5)

For qq̄ qq̄ and qq̄ q′q̄′ in the basis Eq. (186), we have

T̂qq̄ qq̄ = T̂qq̄ q′q̄′ =

(
C2
A CA

CA C2
A

)
=

(
9 3
3 9

)
. (F6)

For gg qq̄ in the basis Eq. (192), we have

T̂gg qq̄ =
CACF

2

 2CF 2CF − CA 1
2CF − CA 2CF 1

1 1 CA


=

2

3

 8 −1 3
−1 8 3
3 3 9

 , (F7)

and for gggg in the basis Eq. (197), we have

T̂gggg =
CACF

4


a b b c d c
b a b c c d
b b a d c c
c c d e f f
d c c f e f
c d c f f e

 , (F8)

where

a = C2
A −

9

2
CACF + 6C2

F +
1

4
=

23

12
,

b = C2
A − 5CACF + 6C2

F = −1

3
,

c = CF =
4

3
, d =

(2CF − CA)

2
= −1

6
,

e = CFCA = 4 , f =
1

2
. (F9)

For g qq̄ qq̄ and g qq̄ q′q̄′ in the basis Eq. (206) we have

T̂g qq̄ qq̄ = CACF

CA 0 1 1
0 CA 1 1
1 1 CA 0
1 1 0 CA



= 4

3 0 1 1
0 3 1 1
1 1 3 0
1 1 0 3

 . (F10)

For ggg qq̄ in the basis Eq. (215) we have

T̂ggg qq̄ =
CF
4



a b b c d d e f f i j
b a b d c d f e f i j
b b a d d c f f e i j
c d d a b b e f f j i
d c d b a b f e f j i
d d c b b a f f e j i
e f f e f f g h h 0 0
f e f f e f h g h 0 0
f f e f f e h h g 0 0
i i i j j j 0 0 0 i j
j j j i i i 0 0 0 j i


, (F11)

where

a = 4CAC
2
F =

64

3
, b = CA − 2CF =

1

3
,

c = (C2
A + 1)(CA − 2CF ) =

10

3
, d = −2CF = −8

3
,

e = −1 , f = 2CACF = 8 , g = 2C2
ACF = 24 ,

h = CA = 3 , i = C2
A − 2 = 7 , j = −2 . (F12)

For ggggg in the basis Eq. (221) we have

T̂ggggg =
CF
32

(
X̂1 X̂2

X̂T
2 X̂3

)
, (F13)

where

X̂1 =



a −b −c −b c −b −c b −c −b −c 0
−b a b −c b c −b −c b −c 0 c
−c b a −b −c −b −c −b −c 0 c −b
−b −c −b a b −c b −c 0 c b c
c b −c b a −b −c 0 c −b c b
−b c −b −c −b a 0 c b c −b c
−c −b −c b −c 0 a −b c −b −c −b
b −c −b −c 0 c −b a b c b −c
−c b −c 0 c b c b a −b c −b
−b −c 0 c −b c −b c −b a b c
−c 0 c b c −b −c b c b a −b
0 c −b c b c −b −c −b c −b a



,
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X̂2 =



−d d −e e e −e −d −d −d e
−d −d d e −e −e e e d −d
−e −e d d e −e −e d d d
d −e −e −d −d −e e d −d −e
−d −e e −e −d −d −e e −d −d
e −e −e −e e d d −d d −d
d −d −d −d d −e −e e −e e
−e d −d d −e −e d −d −e −e
−e −d −d e e −d d −e e −d
d d e e −d d d e e e
e e −e d −d −d d d −e e
−e e d −d −d d −e −e −e −d



,

X̂3 =



f 0 −g −g 0 g g g 0 g
0 f 0 g −g g 0 −g −g g
−g 0 f 0 −g g −g g g 0
−g g 0 f 0 −g g 0 g g
0 −g −g 0 f 0 −g −g g g
g g g −g 0 f 0 −g g 0
g 0 −g g −g 0 f 0 g −g
g −g g 0 −g −g 0 f 0 g
0 −g g g g g g 0 f 0
g g 0 g g 0 −g g 0 f


,

(F14)

and

a = C4
A − 4C2

A + 10 = 55 , b = 2C2
A − 4 = 14 ,

c = 2 , d = 2C2
ACF = 24 , e = CA = 3 ,

f = 2C3
ACF = 72 , g = C2

A = 9 . (F15)

Appendix G: IR Divergences

In this appendix, we explicitly check that the IR diver-
gences of QCD are reproduced by SCET. This ensures
that they drop out in the one-loop matching, and that

the resulting Wilson coefficients are IR finite. They also
provide a very useful cross check when converting from
the different conventions used in the literature to ours.

The one-loop matching equation relating the SCET
operators and their Wilson coefficients to the QCD am-
plitude is

〈 ~O†〉(0) ~C(1) + 〈 ~O†〉(1) ~C(0) = −iA(1) . (G1)

First we determine the residues of the propagators en-
tering the LSZ reduction formula. Regulating both UV
and IR divergences in dimensional regularization, all bare
loop integrals in SCET are scaleless and vanish, i.e. the
UV and IR divergences cancel. In particular, for the self-
energy diagrams, we have

Σ = ΣUV + ΣIR = 0 . (G2)

The UV divergences ΣUV plus possible additional UV
finite terms Σx (as dictated by the renormalization
scheme) determine the wave function renormalization Zξ.
The remainder ΣIR − Σx enters the residue Rξ

Z−1
ξ = 1− d(ΣUV + Σx)

dp/

∣∣∣∣
p/=0

,

R−1
ξ = 1− d(ΣIR − Σx)

dp/

∣∣∣∣
p/=0

. (G3)

At one loop in pure dimensional regularization, we then
have Rξ = Z−1

ξ , and similarly for gluons RA = Z−1
A . In

the on-shell scheme Σx = ΣIR, so with pure dimensional
regularization Zξ = Rξ = ZA = RA = 1.

Since all loop diagrams contributing to 〈 ~O†〉(1) vanish,
the only nonzero contributions come from the counter
term in Eq. (229) and the one-loop residues. At one loop
we find

〈 ~O†〉(1) ~C(0) = 〈 ~O†〉(0)
[(
Z
nq/2
ξ Z

ng/2
A ẐC − 1

)
+
(
R
nq/2
ξ R

ng/2
A − 1

)]
~C(0) = 〈 ~O†〉(0)(ẐC − 1)~C(0)

= 〈 ~O†〉(0) αs
4π

[
− 1

ε2
(ngCA + nqCF ) +

1

ε

(
−1

2
ngβ0 −

3

2
nqCF + 2∆̂(µ2)

)]
~C(0) , (G4)

where we used the explicit expression for ẐC derived in Sec. VIII B. One can easily check that this exactly reproduces
the IR-divergent parts of the QCD amplitudes. For example, for gg qq̄, we have

[
− 1

ε2
(2CA + 2CF ) +

1

ε

(
−β0 − 3CF + 2∆̂gg qq̄(µ

2)
)]
~C

(0)
+−(+)(p1, p2; p3, p4) =

A
(1)
div(1+, 2−; 3+

q , 4
−
q̄ )

A
(1)
div(2−, 1+; 3+

q , 4
−
q̄ )

B
(1)
div(1+, 2−; 3+

q , 4
−
q̄ )

 . (G5)

Hence, the IR divergences in 〈 ~O†〉(1) ~C(0) and A(1) cancel each other and do not enter in ~C(1), as must be the case.
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