aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classifying the bosonic quartic couplings
0.]. P. Eboli and M. C. Gonzalez-Garcia

Phys. Rev. D 93, 093013 — Published 23 May 2016
DOI: 10.1103/PhysRevD.93.093013


http://dx.doi.org/10.1103/PhysRevD.93.093013

YITP-SB-16-09

Mapping the genuine bosonic quartic couplings

0. J. P. Eboli*

Instituto de Fisica, Universidade de Sdao Paulo, Sao Paulo — SP, Brazil.

M. C. Gonzalez-Garcia'
Institucié Catalana de Recerca i Estudis Avangats (ICREA),
Departament d’Estructura i Constituents de la Mateéria,
Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona, Spain and
C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

The larger center—of—mass energy of the Large Hadron Collider Run 2 opens up the possibility of
a more detailed study of the quartic vertices of the electroweak gauge bosons. Our goal in this work
is to classify all operators possessing quartic interactions among the electroweak gauge bosons that
do not exhibit triple gauge—boson vertices associated to them. We obtain all relevant operators in
the non-linear and linear realizations of the SU(2)r ® U(1)y gauge symmetry.

I. INTRODUCTION

The recent discovery of a Higgs-like boson by the ATLAS and CMS collaborations [1] brings us a step closer to a
full check of the standard model (SM). The SM has been subject to a large number of precision tests during the past
decades [2] without any putative indication of deviations from its predictions for the particle couplings, which in the
case of fermion-gauge interactions have been tested to close to per mil accuracy. Since the SM is a gauge theory based
on the SU(2), ® U(1)y group it fixes completely the structure of the trilinear (TGC) and quartic (QGC) electroweak
gauge—boson couplings. Therefore, it is important to establish whether these couplings indeed are in agreement with
the SM predictions.

Precise knowledge of the gauge-boson self-interactions not only can serve to further establish the SM in the case
of agreement with its predictions, but also any observed deviation can indicate the existence of new physics. For
instance, new heavy bosons can generate a tree level contribution to four gauge—boson couplings while its effect in
the triple-gauge vertex would only appear at one one-loop [3], and consequently be suppressed with respect to the
quartic one. Moreover, the comparison of deviations in TGC and QGC [4] can be used to determine whether the
SU(2)r, ® U(1)g, is linearly [5-13] or nonlinearly [14-16] realized in low energy effective theory of the electroweak
breaking sector.

Presently the trilinear gauge-boson couplings are known to agree with the SM within a few percent [17-19]. On the
other hand, there are sparse direct data on anomalous QGC and, for a long time, the most stringent bound on QGC
stemmed from their indirect effects to the Z physics via their one-loop contributions to the oblique corrections [20—
23]; a situation that is starting to change [24-27] . The LEP collaborations directly probed WTW =~y and ZZ~yy
interactions in the reactions ete™ — WTW ~~ [28] and Z~~y [29]. At the Tevatron, the DO collaboration studied the
WHW =+~ vertex in diffractive events exhibiting dielectron and missing energy [30]. At the LHC, the ATLAS and
CMS collaborations studied the production of V7 with V = Z or W to constrain the VV~yy QGC [24]. Moreover,
the ATLAS collaboration analyzed the W+ W~ and ZW¥ pairs via vector boson fusion to bound the QGC among
four massive electroweak vector bosons [25] while the CMS studied the Z~vjj, W*~jj and W*W*j productions to
probe QGC [26]. In addition to these inclusive processes the CMS collaboration also probed the W W~~~y vertex
through the exclusive vy — W W™~ production [27].

The direct study of QGC requires either the production of three gauge bosons or the pair production of gauge bosons
in vector boson fusion [23]. Therefore, the LHC Run 2 opens the possibility of testing systematically anomalous QGC
due to the large center—of—mass energy. Here we focus on genuine QGC, that is, QGC that do not have any TGC
associated to them since the best bounds on the Wilson coefficients in the latter case are obtained from direct study of
TGC. In a scenario where the SU(2)r, ® U(1)y is realized linearly the lowest order QGC are given by dimension-eight
operators [21]. On the other hand, if the gauge symmetry is implemented nonlinearly the lowest order QGC appear
at O(p*) [4, 16].
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In the previous phenomenological [20-23, 31-38] and experimental [24-30] analyses of QGC just a partial list of
effective operators has been considered. Our goal in this work is to classify all genuine QGC in the non-linear and
linear realizations of the gauge symmetry including up to two derivatives acting on the gauge boson fields. This will
facilitate the translation of bounds between different notations.

The outline of the paper is as follows. We start by listing the most general set of Lorentz structures which can
be involved in quartic gauge boson vertices containing up to two derivatives acting on the gauge fields in Sec. II. In
Sec. III we present the most general effective Lagrangian which generates QGC in scenarios in which the observed
Higgs-like particle is indeed a fundamental state belonging to an SU(2), doublet and for which the gauge symmetry
is linearly realized. In these scenarios QGC appear at dimension-8 independently on the number of derivatives, and
we find a total of 10 independent operators and derived the relations between the coefficients of the generated Lorentz
structures that this implies. Section IV contains the most general effective Lagrangian which gives rise to those
QGC in scenarios with a dynamical light Higgs for which the electroweak symmetry realization is chiral. In this case
QGC with no derivatives and two derivatives appear at O(p*) and O(p®) respectively and we find the same number
of independent chiral operators as Lorentz structures. Finally in Sec. V we summarize our conclusions. The article is
complemented with a set of appendices containing the most lengthy expressions as well as some technical details.

II. GENERAL LORENTZ STRUCTURES

Without loss of generality, initially we construct the possible Lorentz structures that are invariant under U (1)ep, and
which contain four vector bosons. We group the vertices in terms of the number of derivatives that they contain, and
we restrict ourselves to vertices exhibiting zero or two derivatives, or, equivalently, to operators with mass dimension
up to six.

A. Vertices with zero derivatives

Since the U(1)en, invariance requires that the photon field appears only as part of the electromagnetic field strength,
the zero-derivative vertices do not contain photons, i.e. the QGC exhibit only massive electroweak gauge bosons.
These structures are:

Qv = WHW W W, Q4R , = WHW W W,
QN2 = WTHW, 2" Z, , QNP =WHHW 2,2, (1)
QY0 =212,2v7, .

The first four structures in Eq. (1) modify the SM quartic couplings WTW =W TW ™~ and WtW =27, while the last
one leads to a QGC not present in the SM. The effective Lagrangian containing these five structures has the general
form:

2 2
8=0 _ 0.WW ~0=0 0.WZ 59=0 0,27 /9=0
Ly = Z ¢ Quww.i + Z ¢ "Qwzy Q%7 - (2)
=1 =1

B. Vertices with 2 derivatives

The quartic vertices containing two derivatives can be classified according to the number of photons in the vertex
as U(1)em requires that for each photon field at least one derivative must appear.

1. Vertices with 2 derivatives and two photons

The vertices with two derivatives and containing two photons are constructed using two photon field strengths plus
two W+ or Z fields. In this case there are only four possible Lorentz structures:

QU = Fu FWHeW, | QU2 = Fu Frow ;| (3)
Q74 = FuF"z°Zo Qg% = FuFr2"Z, .



2. Vertices containing 2 derivatives and a single photon

In this group of QGC, one derivative appears in the photon field strength while the other derivative can appear in
the anti-symmetric combination V,, = d,V,, — 0, V,, with V,, = Z, or let or in the symmetric combinations

Xj[v = auW} + (9ny ’ Yiw =0u2, + 0,2, . (4)

In this case one can construct nine Lorentz structures corresponding to anomalous vZW TW ™ interactions:

Q'yZWl = F, ZWWHews ; QVZW2 = FuZre(WHwWe + Wrwih)
QBZWS - F#V(WJFVWOTZQ + WJVWJZQ) ) QaZW4 - F#U(WJQW;ZQ + WJaWjZa) )
Q'yZWS =P WEW=Z, + W, W*Z,) , QVZWG = F,YH(WHWo +WPWr) o, (5)
Q'yZW? F#VZQ(XJ““O‘W*” + X—rawty) QVZW8 F#UZV(X+“°‘W(; + X_”O‘W;) ,

Q7o = Fu ZHXTOW ™ + X oW )

3

while there are three Lorentz structures associated to the coupling of a single photon to three Z’s

Q7% = Fu 2" 2% Ze . Q07%0=Fu 22" Zo , Q7% 3= FuY" " Z" Zy . (6)

3. Vertices with 2 derivatives without photons
The W+W ~ZZ quartic interactions exhibiting two derivatives are summarized by 29 distinct Lorentz structures:

Q)2 = WHwW,, Z°Z, , Q02 , = WHW,, 207, ,
Q)2 s = WHH 2, Z2°W; +he. , Q¥ =Wt Z,,Z,W~* +he. |
Q)25 = WHH 2, Z°W, +he. , Q¥iZe = ZM Zu,WiW e ,
QZr = 2" ZuaW,S W= . Qlzs = XWX, 27, ;
Q)2 = Xt X, 2°7, , Q0210 = XX, V207, :
QU2 = XXV Z0Z, +he. , QfiZ, = XY, Z°W +he.

QUi 13 = XY, Z°W, +he. , QUi = XY, Z,W ™" +he. |

QU215 = XYY Z W= +he. , Q%2 6= XY Z,Ws +he. | (7)
Q21 = XYY ZMW = +he. , Q21s =YY, WiWw— ,
QWZ 19 = Y'Y WHW = 5 QWZ 00 = YUY WIW = )
Qf 2, = YAY W W, , QW20 =W X, 797, +he.

QU2 3 = WH Y0 Z,W ™ + hee. , Qfin = WHY,0Z°W, +he. |
Q)2 s = WHOYEZW +he. , Qffas = XM 2,0 Z,W ™" +hec. |
QS or = XMW 2,0 Z°W, +hie. , Qfif g = X P2y Z"W + hc.

Q072 00 = YW Zuu Wi W™ + hec.



where h.c. stands for the hermitian conjugate. Correspondingly, there are 18 WHTW ~WTW ~ effective vertices con-
taining two derivatives that are given by:

iy, = WHW  WHew Qg = WHYW  WHew, - ,
was =W, Wiw-—« ; QWW4 =WHWEW= W, +he.
QU2 o = WHWAW =W, +he. , Q= X+ X5 W+, ,
Qv = X T X WHew, , Qs = X T X WeW,r ,
Qfrivg = XX P WHew, , Qa0 = X,THX VWS W, 4+ hee. (8)
QWW = XTXEWTOWS +he. QWW 1o = XTWXHEW=*W, +he. |
QUrtis = XX "W W, +he. , Q0R3 1, = X,#XTeW, W, +he.
Qa5 = WX WHeW, +he. , Q0R7 6 = WX, W W} +he. |

QWW17 _XIMWU_QWJ’_UW_Q—’—h'C' 9 Q ng —X+MUW+ w-— aW +hC

Finally, 7 different Lorentz structures are required to describe ZZZZ vertices with two derivatives:

QY7 = 2" 2w Z°Za , Q572" 240 Z°Z,
QY7 =Y"Y, 2%, Q=YY" Y022,
QY =YY Z2Z , QY =Y Y ZuZ,
QY7 = Z"Y a2 2,

Altogether any effective Lagrangian possessing two derivatives and any four gauge bosons can be written as a
combination of the seventy Lorentz structures above as:

0= 2,yW 2,vZ 2 zW 2¥2Z
‘CQ ? = ZC . Q7W1+ZC . Q’VZ’L Z . Q'yZWz_FZC . Q’yZZz
=1

+ZC2 WZQWZZ+ZC2 WWQWWZ+ZC2 ZZOZZl . (10)

i=1 i=1

It is interesting to notice that the quartic vertices in Eqgs. (5), (6), (7), (8), and (9) containing X ;i or Y,,,, have not
been considered before in the literature.

In summary, we have found five Lorentz structures without derivatives and seventy with two derivatives. Next we
are going to build the lowest dimension electroweak gauge invariant Lagrangian which can lead to genuine quartic
gauge boson vertices and map their coeflicients to those of these Lorentz structures.

IIT. GENUINE QGC IN MODELS WITH AN ELEMENTARY HIGGS: THE LINEAR LAGRANGIAN

Assuming that the new state observed in 2012 is indeed the SM Higgs boson and belongs to a light electroweak scalar
doublet, we can construct an effective theory where the SU(2) @ U(1)y gauge symmetry is linearly realized [5-13]
that can be expressed as

Leg = Lsy + Z Afn ; (11)

where the dimension—n operators O,, involve SM fields with couplings f,, and where A is a characteristic scale.



The basic blocks for constructing the effective Lagrangian leading to genuine QGC with the gauge symmetry realized
linearly and their transformations are:

® , that transforms as @& =U® (12)
D,®, that transforms as D) ® = UD,® (13)
—~ g — —~
W = Z wa% , that transforms as W), = UW,, U’ (14)
j
By, , that transforms as B}, = B, (15)

where @ stands for the Higgs doublet, W, is the SU(2)r field strength and By, is the U(1)y one. Here we
denote an arbitrary gauge transformation by U. According to our conventions the covariant derivative is given by

D, ® = (0, + igW]% 2 +ig 'B,,3)® and o7 stand for the Pauli matrices.

Notice that the covarlant derivative of @, as well as, the field strength tensors contain terms with at least one weak
gauge boson when we substitute ® by its vacuum expectation value, v. Therefore the lowest dimension operators that
leads to genuine quartic interactions are dimension eight!. They can be classified in three groups:

e terms that contain four covariant derivatives of the Higgs field;
e terms exhibiting two Higgs covariant derivatives and two field strength tensors;
e terms presenting four field strength tensors.

Here we focus on operators containing up to two derivatives, therefore, we will not analyze the last class, however, we
present these operators in the Appendix B for the sake of completeness.

A. Operators containing only D,®

There are three independent operators belong to this class?:

Os0 = [(D,@) D,@] x [(Dre) Dr@] = 5 [00, + £ 0F8, + £ 055 .
Os1 = [(DM@TDH@} X [(D,,@)TDV@] =g [Q O+ Q%D + 1 OO } (16)

Os.2 = [(D”q))T DV(I)} x [(DV(I))T DM(I)} — [QVV:WJ + gQWZZ,z + HQZE } )

The corresponding effective Lagrangian can be mapped to that in Eq. (2) with coefficients related as:

O.WW _ g*v* [ fsa 4 Is:2 OWW g*v? fs.o

€ = 16 | Ad AT » G2 = 16 AT )

0,WZ _ g*v* fsa 0WZ _ g*v* [ fso fs,2 17
“1 T 16, AT S R el I ey cal (17)
0,22 _ 1 0OWW | OWW

c = 1T (Cl +Cy ) )

where s,, (¢,) stand for the sine (cosine) of the weak mixing angle ,, verifying tan6,, = g/g’. Notice that the linear
realization of the symmetry leads to correlations between the Wilson coefficients appearing in Eq. (2).

1 At dimension six, quartic vertices are generated but they are always accompanied by triple gauge boson vertices with related coefficients.
2 We are using the conventions of Ref. [21], however, the operator Og,2 has been included.



B. Operators containing D,® and field strength

This class possesses seven operators>:

Oro =Tr [Wu W | x [(Ds®)! DP@| |, Ory =T [W W] x (D) Do

Onra = [BuwB™] x [(D@)TD%} , Ows = [Bu B x {(D@)TD%} , a9
Onia = [(DH@TW[;VD%] x B . Onis = [(DH@)T%VD@} x B 4 h.c.
Onr = [(DH@)T Wﬂywﬂw"@}

These seven operators involve 23 of the 70 possible Lorentz structures as explicitly given in Appendix A. In particular
none of the structures with symmetric gauge boson tensors are generated. The corresponding effective Lagrangian
can be written in the form of Eq. (10) where the 23 coefficients of the Lorentz structures can be expressed in terms

2 2,WZ 2 .
of 7 of them. For example, these can be chosen to be cl’gVW, 5 gvﬁ 7 and ¢ W with
2.2
2WW g°v° 2fno
! 8 A4V
2.2
2LWW g“v* fara
c5 = — AL
1
2WZ _ g?v? 1 —fua+5fmr
2 - 2 4 ’
8 ¢ A
2,2
2.WZ 9°v= sw fara
G = LS (19)
8 cw
2.2
2wz _ 9V o fao g e faa
6 8 WAL WAL WAL |
2,2 T
2wz _ 9V afua o s, fus n 12 fur
7 8 woA4 w4 YA T 2T A |
2,2 T
2w _ 9V oy o fus oo fus Lo fur
2 - ) w A4 w A4 whw A4 2 w 4 ’
and the remaining 16 coefficients satisfy the following relations
2WZ _ 1 2WW 2vZ _ 1 2AW 2 WZ
‘1 =5z 0 G T gzl T 6 ;
2,27 _ 1 2WZ , 2WZ 29ZW ey 2,WZ
ann =galt TG y C3 = —gucy ;
27ZW _ 2, WW 2WZ _ 29W e 2 _s2 2WZ 2vZ7Z 1 2~4ZW % —s: 2WZ
c 28wCw [Cl — G -G + 5z 103 » €1 =224 T swew O3 ’
29W _ 1 2WZ | 2WZ 2 2,WW 2LWW _ o2 2WZ  2WW
S = 22 {20 (c3 +Cg )= (ch = s2)ey ] » C3 = 20,5 —Cy ’ (20)
2,27 1 5 2 2WZ 2WZ 2 27W 2~vZ _ 22Z | 1 2WZ | 2°AW
377 = gy (e - s2) (e )+ 253 LG == A @Y ) ,
2WZ 1 2WZ  2.WZ sfu 2'yW 2,WW 2WZ _ 2WZ 2 2WZ 2 WW
Cs =3 {—CQ —cy + & + 2¢y , €y = cj +2(ci ¢ — ¢ ) ,
24ZW 1 2 2WZ Q,WZ 2 2AW 2~NZZ 1 24ZW 2 —s2  2WZ 2.WZ
C2 T 28wCw |:C (02 Cy )_ SwCo , Co = gCQ T ewsw (C5 + Cy ) ,
29ZW _ ey (2WZ | 2WZ 2 2WZ _ 2WW
¢y =~ (c +op ) £ (e €y )

3 We follow the notation in Ref. [21] but we notice that in there an additional operator Opr,¢ was listed which we found to be redundant.



IV. GENUINE QGC IN MODELS WITH A DYNAMICAL HIGGS: THE CHIRAL LAGRANGIAN

In dynamical Higgs scenarios, the Higgs particle is a composite field which happens to be a pseudo-Nambu-Goldstone
boson (PNG) of a global symmetry exact at scales Agirong that corresponds to the masses of the lightest strong
resonances. Because the Higgs-like particle is a PNG, the effective Lagrangian is non-linear or “chiral”: a derivative
expansion [14, 15, 40, 41] with a global SU(2);, ® SU(2)r symmetry broken to the diagonal SU(2).. The effective
low-energy chiral Lagrangian is entirely written in terms of the SM fermions and gauge bosons and of the physical
Higgs h. In this scenario, the basic building block at low energies is a dimensionless unitary matrix transforming as
a bi-doublet of the global symmetry:

U(z) = e@a™" @)/v U(z) - LU(z)R", (21)

where L, R denote SU(2)r g global transformations, respectively and 7% are the goldstone bosons. Its covariant
derivative reads

D,U(z) =9,U(z) + zg%JW;L(a:)U(:r) - %g/B#(.I)U(.I)O'g . (22)

We define the vector chiral field and its covariant derivative as

v, = (D, U)UT, (23)
DuVa auVoz + iQ[Wm Va] > (24)

and the scalar chiral field 7' = Uo3UT. These three objects transform in the adjoint of SU(2)r,. Moreover, the Higgs
field h is a singlet under the global symmetry.

In our framework, we consider genuine QGC that appear at O(p?) and O(p®) and are invariant under CP. The
CP transformation properties of our building blocks can be easily obtained once we know that [15]

CPB.(#,1)(CP)™' = —B,(~&1t) , CPWiL(Z,t)(CP)! = c2Wi(~&,1)o? | )
CPT(Z,1)(CP)"! = —0?T(~7,t)0? , CPV,(Z,t)(CP)"" = 02V, (~7,1)0>

Our choice of phases are such that D,U has a well-defined transformation under C'P. From the above equation we
can learn that the C'P conserving QGC are the ones exhibiting an even number of 7’s and B,,’s.

The building blocks that we use to construct genuine C'P conserving QGC can be classified according the mass
dimension of the operator (D) [15]. Here we list all building block operators needed to construct up to O(p®) quartic
operators, as well as their expressions in the unitary gauge. There is just one operator with mass dimension one

Tr[TV,] = z‘cizﬂ . (26)

On the other hand, there are five D = 2 building blocks, however, only 4 of them appear in C'P invariant quartic
operators:

B = cwFu —swlu , (27)

T D] = iV (28)

A (LZHZU+W+W;+W—W,,+> , (29)
2 \ Iz Iz

T[TWo) = coZuy + SwFu (30)

where we define the symmetric combination D, = D,V, + D,V,,.
Just two of the eight D = 3 basic operators appear in C'P invariant quartic vertices:

2 1 _ _
Tr[V,Dyy] = —% (CTZ#YUA + WX, +W, Xj/\> , (31)
w

Te[V, W] = ig<

1
5 —Zu(CcwZux + swFun) + WJWV_A + WMW:&) . (32)

Cw



Of the eleven possible D = 4 operators just three of them contribute to C'P conserving quartic vertices:

271
WD Dos] = 4 (VYo + X1 X0 + X X3, ) (53)
—~ 1
T W Was) = 5 [(Cwi + 50Fun) (CuZas + suFas) + W Woy + W Wi | (34)
— ) 1
Te[W,, Daj] = % L—(CMZW,—FSwa,)Yaﬁ—I—W:;,Xaﬂ—FW;VX;FB} : (35)

It is interesting to notice that no dimension-five operador can give rise to p® C'P-conserving QGC.
Using the D = 1,2, 3,4 building blocks, we construct all possible C P-conserving operators for genuine QGC, and
then we remove those which can be related by total derivatives. For instance, the relation

0y {Tx[V,D,\V,] Tr[V,Vs]} = Tr[D,V,Da\V,] Tr[V, V3] + Tr[V,D, D\V,] Tr[V,Vs]+ (36)
Tr[V,,D\V,| Tr[D, Vo V3] + Tr[V,D\V,] Tr[V,D, Vs]

can be used to eliminate operators that contain the building block Tr[V,, D, D,V,]. To further reduce the number of
equivalent operators we also use the relation

D,uvu - DUV,LL = Z.g/W,uv - %g/B,uUT + [V,uv Vl/] . (37)

Moreover, we introduce a factor i g and i g’ in each operator containing /1/17“,, and B, respectively in order to have
consistent global powers of coupling constants.

A. QGC at O(p")

The lowest order genuine quartic operators are O(p*), and there are two operators which respect the SU(2).
custodial symmetry, as well as C' and P that are given by*

Po = TVAVITV VIZo(h) = o [ 0% + Ofvwas + & Oz | Folh)

(38)
Pu = Te[VFVYTe [V, V, | Fui(h) = ¢* [éoozz + 3500w + 300w + %OQVZQ} Fu(h)
and 3 additional C'P conserving operators that violate SU(2).:
Pas = VAV I(TTV, ) Fas(h) = " 525 0% + & O 1| Fas(h)
Py = Te[VAVY T[TV, Te[TV,) Fas(h) = g* [2—15 0%, + %03@2} Faa(h) | (39)

Pas = (Te[TV,TR([TV, ])* Fas(h) = £ O, Fas(h) -

Fi(h) are generic functions parametrizing the chiral-symmetry breaking interactions of h which can be expanded as

Fi(h)y =1+ Qdi% + 512—2 +.... As we are looking for operators whose lowest order vertex contains four gauge bosons,
we will be only concerned by the constant term. So the most general Lagrangian at O(p*) for genuine QGC is
—4 =4
rt= > & (40)

i=6,11,23,24,26

From Egs. (38) and (39) we see that the above Lagrangian leads to quartic gauge couplings which do not contain
photons. We also see that there are five operators matching five independent Lorentz structures that do not exhibit
derivatives. In Ref. [15] we can find the p* QGC assuming that there is no light Higgs-like state and this corresponds
to the limit F; — 1 in our framework. The correspondence between between the Wilson coefficients our notation and
the one of Ref. [15] is

4 4

as=7c7", as="" , ag =", ar=ch; , aro=7chg . (41)

4 We follow the notation of Refs. [4, 16].



B. QGC at O(p°)

At order O(p%), there is the emergence of genuine QGC containing photons as well as only four electroweak gauge
bosons with two derivatives acting on them. As in Ref. [15], we construct the pS operators for QGC combining the
D =1,2,3, and 4 building blocks defined above. Without loss of generality we write the corresponding Lagrangian as

L50 =3 A T ) (42)

where T7=% are the O(p%) operators constructed with the blocks defined above, and we denote by FP=°(h) the
corresponding arbitrary function parametrizing the h couplings. As already mentioned we will be only concerned
with the first term of its expansion FF=°(h) = 1.

There are twelve independent operators in this category:

TP=0 = Tx[T'D,,, | Te[TD* | Te[ TV Tx [TV, , TP=% = Tx[TD,,, | Te[T D T[TV Tx [TV, ,
T§=% = Te[T DU T[T DY) Te [TV Tr[TV,] , TE=° = Te[TDY T[T D | T[TV, | Tx[TV,] ,
TP = =g Te[TW,,, | e[ TWH TR [TV Te[TV,] |, T8 = =g Te[TW,, | Tr[TWH T[TV T[TV, ]
TE=S = i g Tr[TW,, | Ty [TDH ] TY[TVY|Te[TV,] , TE~° = —¢° B, B Tr[TV| T[TV, )
TP=% = —¢"> B, B* T[TV Tx[TV,] , TE=% =i g B, Te[TDH) Ty [TV Tx[TV,) :

TE=S = —g¢’ B, Te[TWH T[TV T[T V,] . TES = —gg' By Te[TWHO| TR [TV Te[TV,)]

Notice that all the effective Lagrangian in this class violate SU(2). since they contain the T field. We present the
relations between these operators and the Lorentz structures in Appendix C that allow us to see that all the operators
in this group contain only neutral gauge bosons.

2. (D=1)(D=2)(D=3) terms
This group contains twenty one operators that violate SU(2). due to the presence of T

Ti® = T[TV, TY[TD,,, ) Te[V D] , T = Te[TVo] T[T D | Te [V DHe] )
T = DTV T(TD TVaD*)  Tfy * = TelTVo] T[T D Tx[V oDy ’
TE=S = Te[TV, | Te[T DY T [V, D] , Tl * = T[TV TY[TDyo] Tr[V D] ’
Tl * = ig T[TV I D | TV WH] , T3® = ig YTV Te[TD, | Th[Va W]
T = ig DIV TTDY TV W] T = i g (T Vo] T[T W, | TV D)

T30 = ig T[TV T TW,, | Te[Va D], T30 = ig Te[TVY T[T W,a] Te[VODL] (44)

T30 = —g® M[TVa] Te[TW, | T [VOWH] | THS = —g T[TV T[T, | T [V¥ Whe]

TE=% =i g’ Tt[TV¥|B,, Tr[V, D] , TH 0 =ig TY[TVY]B,o Tr[V oDy ,

-

2 . 2 5

2 . 2 .

TES = — 2 T[TV Te[TW,, | Te[VaWhe] | TE® = i g/ Te[TV,] By, Te[VYDHe| :

2 . 3 .

TES = —gg’ Tx[TVa) By, Te[VOWH] L TES = —gg/ TY[TV,] B, Tr[VYWhe| :
-

TES = —gg TY[TVY]B,, Tr[V, WHe]
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From the results presented in Appendix C, we can see that the above operators give rise to WTW~ZZ, ZZZZ,
NZZZ, yZWFTW ™ and yyZZ anomalous QGC.

3. (D =3)? terms

We find 11 operators in this class with all of them respecting the custodial symmetry.

TE7% = Te[Va D, | Te[VODH] , Tds * = Te[Va Dy | Te[VV D] :
Tis * = TV'Du (VoD ] T3 = Te[Va Dy Te[V DY) ’
T ° = Tr[V, DL Tr[Va D] L Tl * =i g Te[Va Dy | Te[VVWHe]

(45)

TH = ig VD) Te[VaWre] |, TH™C =i g Te[V, DL Tr[Va W] ,

4 3 4
Tl " = g TV W JTVoWr] | T = —g? T[Va W |V Wee]
4 - Iz

TES = 2 Te[VVW,, | Te[Va Whe]

From Appendix C we can learn that the effective Lagrangians in this class generate WTW-W+TW~= WTW~ZZ and
ZZZZ quartic vertices, as well as, YZWTW ™, vZZZ and yyZZ. Due to the custodial symmetry the last three
vertices are multiplied by s,,, therefore, vanishing in the custodial conserving limit s,, — O.

4. (D =2) terms

There are 12 operators in this class

TH" = Te[TDy | TR [T D TY[V OV, » Tl * = T[Ty | e[ TD TV V| !

5 = T[T DY Te{T DY Tx[VoV,] . Th © = T[T DY Te(T D" Tx[V, V] ’

Tl " = —g? Te[TW,, ) [TWH T [VeV,] |, T = —g® T[T W, | T TWH T [V V] (46)
Th* = ig TITWu I DRV Vo] T = =g B BTV Vo] ’

Th° = =g B BUTr[VVV,] L T C =g Bu/ T[T Ta[V¥ Vo] ’

T4 = g9 Bu TIWITVV,] | T8 = —gg' By TeTWr TV V)

It is interesting to notice that the operators in this group generate QGC among all electroweak gauge bosons except
for WHW-W+Hw-.

This class contains 7 operators

TS = BDWD VeV, T = MDDV
7-5%:6 — T‘I’[DﬁDZ]T‘T[VQVa] R 7—6%:6 = Tr[Dﬁ'DVa]Tl”[VVVa] )

Gl o (47)
T =~ DWW Te[VoV,] |, T = —¢? Te[W,, WHeTe [V Ve

TES = i g Te[W,,, D Te[VV V]

These operators are SU(2), invariant in the limit s,, — 0 and this can be seen by their expression in terms of Lorentz
structures presented in Appendix C. This class of Lagrangians generate the following QGC: WTW~Z2Z, ZZZZ,
NIWIW =, yYWTW ™, vZZZ, and yvZ Z.
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6. (D =1)*(D=4) terms

We find 7 operators in this class that violate the custodial symmetry:

Téy * = Te[D, D T[TV Tr [TV, L T " = Te[Dy DH T[TV T[TV, ,
=0 = Te[DEDY e [T VO] Tx[TV,] , Tgr © = Te[DLD T[TV, | Tx[TV,] ) (48)
2=0 — g2 Te[W,, W Tx[TV Y [TV, , TES = —g2 Te[W,, WHe|Te [TV TY[TV,)] |

TE=S = i g Te[W,,, D Tx[T VY| Te[TV,]

As we can see in Appendix C, this group of effective Lagrangians give rise to WYW~ZZ, ZZZZ,vZZ Z, and yyZZ
QGC.

Altogether we find 70 independent operators leading to genuine QGC in the chiral Lagrangian at O(p®), so there are
as many operators as independent Lorentz structures containing two derivatives. As mentioned above, this was also the
case at O(p?). This is somehow not unexpected: as is well known [39], a generic U(1)en invariant Lagrangian, which
is the only symmetry imposed in building the Lorentz structures, is also invariant under nonlinear SU(2), ® U(1)y
transformations.

V. SUMMARY

In this work we have constructed the most general form of the QGC containing up to two derivatives acting on
the electroweak gauge boson fields. We have shown that there are 5 independent Lorentz structures that respect the
U(1)em symmetry and contain no derivatives while there are 70 structures exhibiting two derivatives.

We have then derived which of these QGC are generated assuming that the SU(2);, ® U(1)y gauge symmetry is
linearly realized, as characteristic of scenarios with a fundamental Higgs doublet. In this case the lowest dimension
that presents QGC without a TGC associated to them is eight. In this scenarios there are only three operators that
contain only massive gauge bosons and no derivative acting on them; see Eq. (16). So due to the linear realization
of the symmetry the Wilson coefficient of the five Lorentz structures that contain no derivatives are correlated —
independently of the basis of operators used; see as example last line in Eq. (17). In the same framework, we find
seven operators containing genuine QGC with two derivatives and they generate only 23 of the 70 possible Lorentz
structures. So again, gauge invariance in the linear realization implies correlations among the coefficients of the
different Lorentz structures, as for example those in Eq. (20).

We also classified the quartic gauge-boson interactions assuming that the SU(2), ® U(1)y symmetry is realized
nonlinearly with the global symmetry breaking SU(2)r ® SU(2)r — SU(2)., characteristic of scenarios with a light
dynamical Higgs boson. At order O(p*) there are five chiral operators which generate QGC without an associated
TQC. They contain only W* and Z and no derivatives. There are 70 independent operators at order O(p®) and they
contain four gauge bosons and two derivatives. This is, the chiral Lagrangian for genuine QGC contains the same
number of operators as independent Lorentz structures. So no basis independent correlation can be derived between
the coefficients of the Lorentz structures in this case.

At present the most sensitive searches for quartic gauge boson couplings are those involving vertices with two
photons. Most of the analyses carried out by the LEP [28, 29], DO [30] and LHC [24, 27] collaborations used the
following effective Lagrangian to study the two-photon sector [32]

w
Oé ™ ao Qem T a Qe T ao Qem T a
Eeff = e;n Q’le e;n Q’yWQ 26;7; Q'yZ 1 26"; A2 Q'yZ 2 (49)

where e, stands for the electromagnetic fine-structure constant. In the framework of electroweak gauge invariance
linearly realized, the seven operators in Eq. (18) give rise to QGC containing two photons which in the notation in
Eq. (49) read:

My 2 fuo 2 fura

ay = — o {Sw 5+ 205, 5552 4 swewis ,
2 . 2

w _ My, 2 fma 2 f fums sy a7
Qe T Tem |:_Sw A2 w + 2 A2 5 (50)
aZ — _ Myl [ st fuo + M2 sy fMma
0 — TQlem c2, A2 A2 2c, A2 )
aZ = My [ sE fma 1 fMs s fus + s2 fmr
c TOlem 2c¢2 A 2 A2 cw A2 4c2 A2
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So even in the scenario with the linear realization of the gauge invariance, these four coefficients can be fully uncor-
related. Test of the presence/absence of the correlations which can point out towards an underlaying linear or chiral
expansion will require the measurement with equivalent accuracy of quartic vertices involving one or zero photons,
consequently requiring much more data.

At this point it is interesting to a have an idea of the LHC potential to constrain the genuine quartic couplings.
For instance, Ref. [38] studied the vector boson fusion (VBF) production of W*W = and W*W# pairs and obtained
the prospective 95% C.L. limits on the p* QCG

—0.0045 < &= <0.0055 and  —0.0022 < &T* < 0.0027 (51)

for a center-of-mass energy of 14 TeV and an integrated luminosity of 300 fb~!. Moreover, Ref. [31] analyzed some
of the p® QGC containing photons (01873631732733742743744 52.53.55.56,61,62) through the study of the VBF production of

vy and yeTe~. The typical 95% C.L. limits on the modulus of these couplings are in the range 1.2-6.3 TeV~2 for a
center-of-mass energy of 14 TeV and an integrated luminosity of 100 fb~1.
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Appendix A: Relations between linear operators and Lorentz structures

In the framework where the SM gauge symmetry is realized linearly, the genuine quartic gauge couplings generated
by the dimension-eight operators with two derivatives listed in Section IIT can be expressed in terms of the Lorentz
structures defined in Section II as:

2,2
Omo = g7 3 [2QWW1 + = Q Z s QWZ 6 T 28uwCw Q?EIQ/VJ
o Sw ~o w Al
+s, Qwvl +35 QZZ 1 + Q'yZZ 1 + Q’yZ 1 (A1)
Ovs = —L% g0 o)d L od
M1 = —g Wi + WW3+ Wiotch QWZ7+SwaQ'yZW2
Q752, + 20057 + v Q% S >0%7 A2
+s7, 7W2+ ZZ2+ wzzz‘f‘ ’yZ2 (A2)
92 ? _
OM,2 = [ Qle 254 Cy Q'yZWl + s> Q%2276
+35 Q’yZ 1 QQZZ ) Ll QZZ 1 (A3)
—g*v? _
Oms = 3 [c2 Qwvg SwCw Q?yz%vz +50,QW 20
1 6: w |
t5722 szz 2t 5 sz 2 (A4)
U Sw
Oma = [ ( 22%{/,1 QVZZ 1) QVZW3 T QWZ 3
+SwCuw (Q»ﬂ/{/l QWZG 2 (Q'yZ 1 QZZ 1>:| (A5)
2,2
g<v 1
Oms = 3 [(Ci} %) (QVZW2 QVZZ 2)

QVZW4 QQZW5 + 2w (QWZ4 + QWZ 5)

U}



+chw( (Q'yWQ QWZ 7) —

Om,r = 16

(@7 - 3 )| (46)

- [2QWW3+C QWZ7+SU)CU)QVZW2+S QVWQ

(QWZ5 QWZ4) Sw(Qyzws QVZW4)

Sw Sa
+5 QZZ 2 + QVZZ 2 + Q'yZ 2 + QWZ 2] (A7)

Appendix B: Dimension-eight operators containing four field strength tensors

There are 8 operators containing just field strength tensors that lead to genuine quartic anomalous couplings, which
in the notation used in Ref. [21] are:

Expanding the 70 O(p®

TP
T
TP
TP
TP
T

p=6
77

p=6
Tio

p=6
T

p=6 __
Tia

o~ o~

Oro = Tr [Wu W[ x Tr [WasWe2] |, Opy =T |

Opy=Tr [ﬁv\wﬁv\#ﬁ} x Tr [ﬁ/\gywm} , Ops=Tr [WWWW} % BogB*®

P

WMW#ﬂ x Tr [W WCW}

Org = Tr [Wa, W) x Bys B . Orp = Tr [Wo W] x By, B

Ors = By B" By BoP , Or.9 = BouB"® By, BY .

Appendix C: Relations between O(pG) Operators and Lorentz Structures

9_po=2
T <223
w
4
9 ~Ho=
QZZ24
w
QZZ 5
w
QZZ 6
'UJ
gt
=) e QZZ 1+ 2chwQ'yZZ |+ si Q'yZ 2]
w
gt
=) e QZZ 2+ 25uCw Q»YZZ R Q’yZ %)
w
gt
) [cw QZZ 7+ Sw Q'yZZ )
w
2 12
gg
2 [ QZZ 1 25waQ»yZZ Lt Q’yZ 1}
w
g%g”
2 [ QZZQ - 2SwaQ'yZZ2 +c; Q’yZ 2}
w
39/
3 [—suw QZZ 7+ CwaZZ 3]
w
g
= [Cwsw (— QZZl + QvZ 3) + (< )Q'yZZ 1
'UJ
39/
[Cwsw (— szz + Q'yZ %) + (2 )Q’yZZ ]

Cuw

) operators introduced in Sec. IV in terms of the Lorentz structures in Sec. IIB we find

(c1)
(C2)
(C3)
(C4)
(C5)
(C6)
(c1)
(C8)
(C9)

(C10)

(C11)

(C12)



T
T
T
T
T
T
Ty
75"
T
75"
TH
T
T
75
T
Th
Tio °
THh "
TH
T
TH
T
T

p=6
Ts6

%I‘% %I‘% %I‘% Y

— [Cuw QWZ 28 T Sw Q'yZW o]

w
4 -

w O
o &

QQl\.’)QQ

2
S

Q o
w
QQ\

2)
S

Q o
w
QQ\

S

QWZ 12 +
QWZ ut 5
QWZ ER)
QWZ 15+
QWZ it

QWZ 16 +

9=2
Qw2 25

QZZB
QZZ4
QZZ4
QZZB
QZZG

QZZG

(QWZ 26 + QZZ 7)

<QWZ 27 + QZZ 7>

Sw Sw
(QWZ3+ QZZl + Q'yZZ 1) + Sw (Q'yZWS'i_QvZZl + = QvZ 1)
Sw Sw
QWZ 4T QZZ 2 + Q'yZZ 2]+ Sw Q'yZW4 + QVZZ 2 + QvZ 2

9= S S
Cw <QW 5+QZZ2+ wQ'yZZ2> + Sw <Q'yZW5+QvZZ2+ wazz>

Sw
QWZ 23 T QZZ 7 + Q'yZZ 3}

QWZ 24 T QZZ 7 + Q'yZZ 3}

(QVZW7 + QVZZ 3)]

<QVZW8 + QVZZ 3)]

—Sw (QWZ 26 + QZZ 7> + Cw <Q'yZW7 + 5 Q'yZZ 3>}

{ (QWZ 27 + QZZ 7> + Cw <Q'yZW8 + Q'yZZ 3>}
-

Sw QWZ 28 T Cuw Q'yZW o]

Q W11 +2QWW6 +

Q W12 + QWW7 + QWWS + =

—Sw (sz4 + QZ22 +

Sw

[ s
—Sw (QWZ3+QZZI+ = 7221>+Cw( vZW3+ 72214' Q’yZl

Q

Sw
Q'yZZ2 + Cw QVZW4+ 'yZZ2+ Q'yZ?
Q

QWZ 12 + Q%7 3}

QWZ 14 + QZZ 4]

'w

wau + 2QWW7 + QWZ 13 + QZZ 4}

)
)
)

- ) ) -
—Sw (Q 5+szz+ = ’yZZ2>+Cw (QWZW5+Q ZZ2+ wQ»yzz

14

(C13)
(C14)
(C15)
(C16)
(C17)
(C18)
(C19)
(C20)
(C21)
(C22)
(C23)
(C24)
(C25)
(C26)
(C27)
(C28)
(C29)
(C30)
(C31)
(C32)
(C33)
(C34)
(C35)

(C36)



TH
Th
TH
T
Th®
TH
TH
Th
TE®
T
TH
T
Tio
THh
TH
TH
T
T
TE
T
TH

p=6
Tss

=06
To =

15

4
QZ Qa ww,13 t 2QWW9 + QWZ 15 + QZZ 5} (C37)
AT
el foltm W14 + QWW 10 + QWZ 16 + QWZ 17 + QZZ 6:| (C38)
4
gz Q Wivas QWW 16 T QWZ 26 + QWZ 23 + QZZ 7+ i <Q2ZW7 + = Q'yZZ 3)] (C39)
4
gz QWW 18+ QWW 15 T QWZ 27 + QWZ 24 + QZZ 7+ a <Q2ZW8 + = Q'yZZ 3)] (C40)
g* [ 9=2 9=2 Sw
T —Qwwir—Qwzoes + & 2 QWZ 25~ Q'yZW 9} (C41)
. )
gz 2Q W1+QWW4+2Q Z3+QZZ1 92221"’2 Q?yzws‘f' wa21 (C42)
94 Sw
T QWW5+2QWW3+2QWZ4+QZZ2 97222"’2 Q'yZW4+ waZ2 (C43)
4
QZ was + Qwaz + 2QWZ 51 QZZ 2 Q'yZZ 2 Q'yZWS + w QvZ 2 (C44)
g [ ]
22 2QWZ 18 + QZZ 3 (C45)
g' |
22 2QWZ 19 + QZZ 4 (C46)
g' |
22 2QWZ 20 + QZZ 5 (C47)
g' | ]
22 2QWZ 21 + QZZ 6 (C48)
4
% {20 QWZ 6 T 4Swlw QyZWl + 257 Q»YW1 + QZZ 1+ Q?yZZ 1 + w Q'yZ 1] (C49)
4
% {20 QWZ 7 T 25wCw Q'yZWQ + 257,00 W2 + QZZ 2 Q?yZZ 2 + w Q'yZ 2] (C50)
94 d
2% [Cw QWZ 29 + QZZ 7+ Sw Q’yZWG + Q'yZZ 3} (C51)
929/2 2 ~0=2 w )
9 [2% Owz6 — 4swlu QyZWl +2¢2 Qle + QZZ 1 Q'yZZ 1+ Q'yZ 1} (C52)
g%g” o2 o—2 | Su 55w
9 [25 QWZ 7~ 28wCw Qi Zw,2 + 2,9 W2 + QZZ 2 — Q'yZZ 2 T Q'yZ 2} (C53)
g | Suw
%, —Sw QWZ 29 — QZZ 7+ Cw Q'yZWG + Q'yZZ 3] (C54)
g | (ca —s3)
5 2(c3, )Q'yZWI + 28y Cw (QVWI QWZ 6) + TQWZZ 1 + (Q'yZ 1 QZZ 1)] (C55)
3T 2 .2
g2g (01211 )ngwz + 28y ¢ (Q'yW2 QWZ 7) %9222 2 + (Q’yZ b — Q%7 2)} (C56)
g' [
T 4QWW6 + = 2 QWZ 8 + QWZ 18 + QZZ 3} (C57)
94 d
I 2QW 7+2QWW8+ wQWZ9+ QWZ 19+ 9224} (C58)
AT
T 4QWW9 + 5 2 QWZ 10+t =5 2 QWZ 20 T T QZZ 5] (C59)
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= g
Tl * = T 2QWW1O + QWZ 11 + QWZ 21 + QZZG (C60)
p=6 94
Ta = = T 4 (ol W1+2C QW26+45waQ ZW1+2S Q»le
2 25w 50 |
+C_2QWZ 1+ QZZ 1+ — Q?yZZ 1 + Q’yZ 1 (C61)
Th = gz [2Q07 + 2Q0ts + 265, Q2 7 + 2chwQ'yZW2 + 255, Q007
2 2sw 50 |
+C_2QWZ2 + QZZQ +— Q»ayzzz + Q’yZQ (C62)
p=6 __ 94 0=2 Sw ~d C
Tos = T Qw15 + QWW 16 + Q Wz + QWZ 29 + QZZ 7 + Q'yZWG + Q’yZZ 3 (C63)
=0 — 9y 64
61 = a2 | szs+ sza (C64)
o= _ 9" [, C65
65 = 9 QW29+ QZZ4 (C65)
25— 9 Thoo- Q 66
6 =~ 22 | WZ 10 + ZZ5 (C66)
72— 9 [go- Q 67
7 = 9@ | WZ 11 + ZZG (C67)
4
= g
T ® = 2% [2QWZ Lt QZZ 1+ 28wCw Q'yZZ R QvZ 2] (C68)
4
=6 g
Teo = = BY) 2 QWZ2 +ci QZZ2 + 23waQ~yzz2 + st QvZ 3] (C69)
o _ 9 C70
0 T 52 QWZ22+ QZZ7+ 97223 (C70)
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