
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Rare Z decays and neutrino flavor universality
Gauthier Durieux, Yuval Grossman, Matthias König, Eric Kuflik, and Shamayita Ray

Phys. Rev. D 93, 093005 — Published  9 May 2016
DOI: 10.1103/PhysRevD.93.093005

http://dx.doi.org/10.1103/PhysRevD.93.093005


DESY 15-235
MITP/15-111

Rare Z decays and neutrino flavor universality

Gauthier Durieux,1, 2, 3 Yuval Grossman,2 Matthias König,4 Eric Kuflik,2 and Shamayita Ray2, 5

1Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, D–22607 Hamburg, Germany
2Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

3Centre for Cosmology, Particle Physics and Phenomenology,
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We study rare four-body decays of the Z-boson involving at least one neutrino and one charged
lepton. Large destructive interferences make these decays very sensitive to the Z couplings to
neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe
the universality of the Z couplings to neutrinos. The rare four-body processes could be accurately
measured at future lepton colliders, leading to percent level precision.

I. INTRODUCTION

In the 1990s, the electron-positron colliders working at
the Z pole, LEP and SLC, provided critical tests of the
Standard Model (SM). The precision measurements of
many electroweak observables still set strong bounds on
physics beyond the SM. Future circular lepton colliders,
like the Circular Electron Positron Collider (CEPC) or
Future Circular Collider (FCC-ee, formerly TLEP), with
anticipated yields of about 1012 Z-bosons [1], could test
the SM further by measuring rarer Z decays.

In this work, we focus on the four-body Z → jj lνl,
Z → l lνν, and Z → l l′νlνl′ decays, where j stands for a
jet. In the SM, these rather clean decays have branching
fractions of order of 10−8. Future colliders could bring
the precision on their measurements down to the one per-
cent level. In the first and third channels listed above,
the neutrino flavor matches the charged lepton flavor, al-
lowing for identification of the neutrino flavor. Separate
sensitivity to the couplings of the Z-boson to each flavor
of neutrino is therefore obtained.

Instead of relying on a specific new-physics scenario,
we adopt a simplified approach and study the depen-
dence of the decay rates on the relevant couplings. This
allows for the identification of the important interference
effects which lead to sensitivities comparable to, or better
than, the ones obtained from other processes. Existing
constraints on the flavor universality of the neutrino neu-
tral currents derive from various other sources and are
discussed in details below. We stress that each observ-
able depends on a different combination of couplings, and
that the complementarity of several observables needs to
be exploited for constraining the couplings individually.
The Z decays we study constitute a fairly direct probe as
their dependence on the couplings is often rather simple.
For instance, each Z → jj lνl decay rate probes directly
one single coupling of the Z to neutrinos, while two of
them enter the Z → l l′νlνl′ rate.

While our study is done in a model-independent way, it
is still relevant to ask how deviations from the SM could
be generated. Since the universality of the couplings of

the Z to neutrinos is a consequence of gauge symmetry,
it rests on rather robust theoretical grounds. To some
extent, it is constrained experimentally by the observed
universality of the Z couplings to charged leptons. New-
physics scenarios featuring mixings of the Z or neutrinos
to new states could alter the Z couplings to neutrinos.
The exploration of such models would require dedicated
studies that are beyond the scope of the current paper.
Thus, the Z decays considered here can be thought of
in two ways. First, taking into account our theoretical
model-building philosophy, these modes could be treated
as “SM candles” to be compared with other probes, like
those coming from neutrino experiments. On the other
hand, we can look at these decays as a probe of unknown
physics. We stress that these decays should be measured
experimentally, regardless of theoretical prejudices.

Experimental searches for Z decays to similar final
states have been carried out at LEP [2, 3]. They fo-
cused on specific kinematical regions (with a displaced
secondary vertex, or a boosted subsystem) that are pop-
ulated in the presence of massive sterile neutrinos. A
study of the probing power of the FCC-ee on such sce-
narios has been presented in Ref. [4, 5].

II. EXISTING BOUNDS

In this section, we setup the framework for studying
neutrino-Z couplings and review the existing constraints.

A. Notations

For the purpose of showcasing the potential of the rare
Z → jj lνl, Z → l lνν, and Z → l l′νlνl′ decays to mea-
sure the Z-boson couplings to neutrinos, and to compare
to existing experimental constraints, we consider mini-
mal modifications of the SM interactions of the Z-boson
to neutrinos, rescaling them by a real number,

LZνν = −
∑

l=e,µ,τ

Cνl

g

2 cos θW

ν̄lγρPLνl Zρ . (1)
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The SM is recovered when Cνl
= 1. Note that we set

the lepton flavor violating off-diagonal couplings to zero,
as is the case in the SM. These couplings are highly con-
strained, for instance, by neutrino oscillations in matter,
as will be discussed in Section II.D. The Hermiticity of
the Lagrangian allows phases to be present only in the fla-
vor off-diagonal couplings. Only the known left-handed
neutrinos are considered. Therefore, the Lagrangian in-
troduces three new parameters: Cνe

, Cνµ
, and Cντ

.
We next connect our notations to those used in the

context of neutrino experiments. Earlier studies of the
Non-Standard Interactions (NSIs) of neutrinos in neu-
trino scattering and neutrino oscillation experiments typ-
ically used an effective Lagrangian relevant at energies
much below the Z mass:

Leff = Leff
SM − ǫfM

αβ 2
√

2GF (ν̄αγρPLνβ)
(

f̄γρPM f
)

, (2)

where α, β = e, µ, τ , f = e, u, d and M = L, R. Integrat-
ing out the Z-boson in LSM + LZνν , the correspondence
between the parameters of Eq. (1) and (2) is

ǫfM
αα = gf

M (Cνα
− 1), (3)

where

gℓ
L = − 1

2
+ sin2 θw, gℓ

R = sin2 θw,

gu
L = 1

2
− 2

3
sin2 θw, gu

R = − 2
3

sin2 θw,

gd
L = − 1

2
+ 1

3
sin2 θw, gd

R = 1
3

sin2 θw.

(4)

B. Z pole data

We now review some of the more stringent bounds on
the Cνl

couplings. First, the measurement of the total
and visible width of the Z constrains the number of neu-
trinos [6]:

Nν = 2.984 ± 0.008. (5)

In the parametrization of Eq. (1),

Nν = C2
νe

+ C2
νµ

+ C2
ντ

, (6)

and the measurement translates into a tight bound on the
sum of the squared Cνl

’s. Note that the invisible width
of the Z does not probe the coupling of each neutrino
species separately, and is insensitive of the sign of the
couplings.

The e+e− → γνν̄ cross-section was also used as a neu-
trino counting observable, giving Nν = 2.92 ± 0.05 [7].
Off the cross-section peak there is sizable interference
between the s-channel Z and t-channel W exchange con-
tributions. It produces a linear dependence of the cross-
section on Cνe

. We estimate the relative difference in
cross-sections for Cνe

= +1 and Cνe
= −1 to be of the

order of 10% near the Z pole (see Fig. 1) and conclude
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FIG. 1. Cross-section of the e+e−

→ γνν̄ process, as a func-
tion of the center-of-mass energy, for Cνe = +1 and Cνe = −1.
Relative difference between the two distributions obtained
with MadGraph5 [8] at leading order for Eγ > 1 GeV and
45◦ < θγ < 135◦.

that the possibility of a negative Cνe
= −1 is untenable.

Changes in the way the Z couples to neutrinos can
also affect the Z → l+l− partial widths at the one-loop
level. Without a gauge invariant framework, one can not
derive reliable bounds on the Cν couplings. Using naive
dimensional analysis, the correction to the Z → l+l− is
expected to be around Cνl

/16π2. Given the current ex-
perimental precision on the Z → l+l− rates [7], the naive
expectation is that a bound of |Cνl

− 1| ∼ 0.1 can be ob-
tained within specific models. This is in the same range
as other existing bounds discussed in this section. In a
specific model, however, and with the future experimen-
tal precision, these effects may become important.

C. Neutrino scattering data

Neutrino scatting experiments provide strong con-
straints on neutrino interactions with electrons and
quarks of the first generation. They utilize neutrino
beams of known flux and flavor. Combined bounds can
be found in Refs. [9–12], including the measurements
of the following processes: (i) Electron-neutrino scat-
tering off electrons, σνee→νe, by LSND [13], (ii) the ra-
tio of neutral-current to charged-current scatterings of
electron-neutrino off nucleons, σνeN→νX/σνeq→eX , by
CHARM [14], (iii) muon-neutrino scattering off elec-
tions, σνµe→νe, by CHARM II [15], and (iv) the ra-
tios of neutral-current to charged-current scatterings
of muon-neutrino off nucleons, σνµN→νX/σνµq→µX , by

NuTeV [16]. Translating the bounds from ǫfM
αα to Cνl
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gives

0.72 < Cνe
< 1.32 , 0.99 < |Cνµ

| < 1.01 , (7)

with no constraint on Cντ
. The interference between

charged and neutral currents provides a handle on the
sign of Cνe

and excludes, here again, a negative value.
Global fits of the electron-neutrino NSI parameters

to scattering rate measurements were also performed in
Refs. [17–19]. Their inclusion of additional data from
MUMU [20], Rovno [21], LAMPF [22], Krasnoyarsk [23]
and Texono [24] resulted in tighter bound on Cνe

:

0.94 < Cνe
< 1.07. (8)

Note that the constraints on NSI parameters in the above
analyses derived from multi-dimensional fits for the ǫfP

αα

degrees of freedom. Each Cνl
represents only one degree-

of-freedom in the χ2-distribution. We did not correct
for this in Eq. (7) and (8) and consider these bounds as
estimates to be compared with the prospects at future
colliders.

D. Neutrino oscillations

As discussed in Refs. [11, 25–28], both flavor-diagonal
and flavor-changing NSI parameters are constrained by
neutrino oscillation experiments. They can affect neu-
trino production, detection, and propagation through
matter.

Atmospheric neutrinos are very sensitive to matter
NSIs as they travel a long distance through the Earth.
Since the Earth is made up of approximately equal num-
ber of protons, neutrons and electrons, the atmospheric
neutrino oscillation experiments bound the quantity

ǫ⊕
αβ =

∑

M

(

3ǫuM
αβ + 3ǫdM

αβ + ǫeM
αβ

)

. (9)

Experimental studies of the matter NSIs with the Super-
Kamiokande atmospheric neutrino data [29, 30] result in

∣

∣ǫ⊕
ττ − ǫ⊕

µµ

∣

∣ < 0.147 , (10)

where the analysis in Ref. [30] assumed that neutrinos
interact only with the d-quarks inside the Earth to fix
the normalization [31]. Considering the complete Earth
contribution, as given in Eq. (9), and using Eq. (4), the
bound on Cνl

becomes
∣

∣Cντ
− Cνµ

∣

∣ < 0.294 , (11)

which is much weaker than the constraints on Cνl
dis-

cussed in Section II.C.
In our study we do not consider flavor-changing NSI

parameters, but briefly discuss the bounds from neu-
trino oscillations. Super-Kamiokande atmospheric neu-
trino data yields

ǫ⊕
µτ < 0.033 , (12)

which was obtained with a normalization that assumes
neutrinos interact only with d-quarks [29, 30] inside the
Earth. While earlier studies [32–34] demanded that reac-
tor experiments bound the NSI parameters ǫeµ and ǫeτ ,
recent analysis [35, 36] showed that Daya Bay experiment
cannot constrain the flavor-changing NSI parameters be-
cause of their strong correlation with the reactor angle
θ13. It can, however, bound |ǫee| < O(10−2), when the
parameter is considered to be real, and a normalization
error in the neutrino flux is taken into account. No bound
can be put if an arbitrary phase is allowed. The accelera-
tor neutrino experiments like K2K [37], MINOS [38–43],
T2K [44], OPERA [45–47] and NOνA [48] also bound
the flavor-changing NSI parameter ǫeτ . Future neutrino-
factory experiments could test the off-diagonal NSI pa-
rameters down to the 10−3 level, whereas diagonal NSI
parameter combinations such as (ǫee−ǫττ) and (ǫµµ−ǫττ)
could only be tested down to 10−1 and 10−2, respec-
tively [49].

III. INTERFERENCE PATTERNS

Before turning to the four-body decays of interest and
their sensitivity to the Cνl

couplings, we detail the in-
terference pattern of the simpler three-body Z → Wlνl

decays.
They receive three contributions, respectively propor-

tional to the Z couplings to neutrinos, to charged lep-
tons, and to the W -boson. The corresponding diagrams
are shown in Fig. 2. From the full analytical expres-
sions given in the Appendix, we obtain the tree-level SM
branching fraction:

ΓSM(Z → Wl νl) ≃ 1.99 × 10−8 GeV (13)

for each lepton flavor. Given the total Z-boson width of
2.50 GeV, this corresponds to a branching ratio of the
order of 10−8. The rates for distinct lepton flavors differ
by ratios of the charged lepton masses to the Z-boson
mass, which we have neglected in this section.

To examine the pattern of interferences, we momentar-
ily introduce rescaling parameters for the Z couplings to
the charged leptons and W -boson, Cl and CW , respec-
tively. We assume that these parameters are real, as is
the case for the Cνl

’s. The total decay rate is then:

Γ(Z → Wlνl)

10−8 GeV
≃









Cνl

Cl

CW









T 







1.36 −0.24 −1.59

−0.24 0.39 −0.86

−1.59 −0.86 5.63

















Cνl

Cl

CW









. (14)

Since we consider the W as a final-state particle, we have
neglected its width here.

The coupling strengths of the Z to neutrinos, charged
leptons, and W mainly determine the magnitude of each
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FIG. 2. Tree-level diagrams contributing to Z → W lνl de-
cays.

contribution taken in isolation. Remarkably, all their
interferences are destructive and correct the decay rate
by a factor of 3.7. Interferences linear in the coupling of
the Z to neutrinos alone are responsible for a factor of 2.0.
Flipping the sign of Cνl

would increase the partial decay
rate by a factor of 4.7. The rate of the Z → Wlνl decay
has a high sensitivity to modifications of its magnitude
and sign, for each flavor l, individually. Focusing on the
neutrino couplings, fixing Cl = CW = 1, the 3-body
width is:

Γ(Z → Wl νl)

10−8 GeV
= 4.3 − 3.7 Cνl

+ 1.4 C2
νl

. (15)

IV. FOUR-BODY DECAYS

In practice, the observable processes are four-body de-
cays. They receive contributions from diagrams featuring
an intermediate W l νl state as well as new contributions
that do not derive from the three-body process discussed
in the previous section (see Fig. 3). Higher-order correc-
tions could be important given the future experimental
accuracy. In this first qualitative study, we only show
leading-order results.

We focus on three different channels. In the semilep-
tonic Z → jjl νl decay, the flavor of the neutrino is fixed
by that of the lepton and the coupling of each neutrino
to the Z can be probed separately. Among the four-body
decays that are sensitive to the Z neutrino couplings, it
also has the highest rate. The fully leptonic Z → l l′νlνl′

decay involves two leptons of distinct flavors. In that
case, interferences between diagrams where the Z couples
to neutrinos of different flavors render the analysis more
involved. On the other hand, in Z → l lνν, with two
leptons of the same flavor, all species of neutrinos can
be produced irrespectively of the flavor of the charged
leptons (see, e.g., the first diagram of Fig. 3). The pres-
ence of two couplings of the Z to neutrinos in the corre-
sponding diagrams also introduces cubic and quartic Cνl

dependences in the decay rate. However, there are no

Z

Z

ν̄

ν

l+

l−

W

Z

q̄

q′

l+

νl

Z

h

Z

ν̄

ν

τ+

τ−

FIG. 3. Some contributions to the four-body Z → jjlνl and
Z → l lνν̄ decays that do not proceed through a W lνl inter-
mediate state.

interferences proportional to two different Cνl
’s in this

third channel.
Using MadGraph5 [8], we extract the dependence of

each decay rate on the Cνl
coefficients. These are given

in Eqs. (A6–A8) of the Appendix. The τ mass has been
kept nonvanishing and marginally affects some of the nu-
merical factors. Because of additional contributions to
the four-body decays and of the small phase space avail-
able in the three-body decay (which requires an on-shell
W ), the rate of the four-body processes are much higher
than what would have been obtained by using a narrow-
width approximation on the three-body decays. Fixing
Cνl

= 1, the SM decay widths are

ΓSM(Z → l lνν̄)

10−8 GeV
≃







2.4 for l = e, µ

2.3 for l = τ

ΓSM(Z → l νljj)

10−8 GeV
≃







6.5 for l = e, µ

6.3 for l = τ

ΓSM(Z → l l′νlνl′)

10−8 GeV
≃







1.5 for l = e, l′ = µ

1.4 for l = e, µ, l′ = τ

for each lepton charge assignment.
The Z → jj lνl process has the highest rate and the

simplest dependence in the Cνl
couplings. When Cνl

=
−1, the destructive interferences discussed in Section III
causes a dramatic increase of the width by a factor of
4.1 (to 27 × 10−8 GeV for l = e, µ, and 26 × 10−8 GeV
for l = τ). The changes induced by positive Cνl

’s in
differential distributions of Z → jj l νl are moderate (see
Fig. 4). An increased sensitivity could be obtained by se-
lecting dijet invariant masses in the [15, 75] GeV interval
(see Fig. 5). Regions of the phase space with enhanced
sensitivities could also be studied and exploited in the
channels involving two final-state charged leptons.

In the Cνe
− Cντ

plane of Fig. 6, we display the lines
along which several relevant partial decay widths take
their SM values. The muon-neutrino coupling to the Z
has been fixed to its standard-model value CSM

νµ
= 1. The
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FIG. 4. The effect of positive Cνl
variations on some differential distributions in Z → jjlνl. The dijet invariant mass, angle

between the dijet system and charged lepton, and angle between the two jets are displayed.

bands around each line assume 2% uncertainties on the
rate measurements, a precision that should be achieved
at future colliders. The current bound on

∑

l C2
νl

from
the total Z-boson width is also displayed. It should be
noted that Z → µµνν has a strong dependence on Cνµ

and the band is expected to get broadened when allowing
Cνµ

to vary within its allowed range. A combination of
several channels would bring the constrains on the Cνe

and Cντ
couplings down to the percent level at which the

magnitude of Cνµ
is currently known. A negative value

for the latter could be unambiguously excluded. Only a
tiny volume of the full Cνe

− Cντ
− Cνµ

parameter space
would remain allowed if no deviation is observed.

V. CONCLUSIONS

We have demonstrated the high and differentiated sen-
sitivities of certain four-body decays of the Z to its cou-
plings to each flavor of neutrino. They are sourced by
large destructive interferences. While, in our study, we
concentrated on the coupling of the Z to neutrinos, de-
viations from the SM could also occur in several other
couplings that enter the decays discussed. So, we em-
phasize that non-standard interactions should be probed
in several independent ways. We expect that future cir-
cular colliders running at the Z peak will measure the
suggested decays at the one-percent level. Future neu-
trino scattering and oscillation experiments will also fur-
ther probe the low-energy limit of interactions that de-
pend on the same couplings of the Z to neutrinos. It is
the combination of these experiments that will give the
strongest probing power and ensure the robustness of the
obtained limits.

There are several possible outcomes to such a program.
These experiments may agree with SM predictions, and
set stronger bounds on the deviations of the couplings
from their SM values. Alternatively, some deviations
might be established. In that case, a combination of ex-
periments should be used to identify unambiguously their
origin. We can imagine a situation in which neutrino os-
cillation observations deviate from the SM expectations

0.9 0.95 1 1.05 1.1

0.9

1

1.1

1.2

inclusive

mjj ∈ [15, 75] GeV

Cνe

Γ
(Z

→
e
ν
e
j
j
)/

Γ
(Z

→
e
ν
e
j
j
)S

M

FIG. 5. Improvement obtained in the sensitivity to positive
Cνe when a mjj ∈ [15, 75] GeV cut is imposed on the dijet
invariant mass of the Z → jjeνe decay. Similar results are
expected for Z → µνµjj and Z → τντ jj.

while Z decays rates agree with them. That could be
an indication of a new heavy mediator of neutrino in-
teractions. Another possible scenario could be that of
a deviation only found in the four-body decay of the Z
involving two charged leptons of identical flavor, but nei-
ther in that featuring jets, nor in that involving charged
leptons of different flavors. Such an outcome could be
explained by a new source of a triple-Z vertex.
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Appendix A: Analytical and numerical results

1. Analytical results for Z → W lν

The amplitude for the decay Z → Wlν is obtained
from evaluating the diagrams shown in Fig. 2. We assign
the momenta kµ, pµ and qµ to the final state W , lepton
and neutrino respectively. Allowing for modifications of
the SM couplings, the amplitude can be written as:

iAZ→W lν =

− iū(p)
[

∆Z
ν Aµν

1 + ∆Z
l Aµν

2 + ∆Z
W Aµν

3

]

PLv(q)εZ
µ εW ∗

ν ,

with:

Aµν
1 =

g2

√
2cW

(gν
V + gν

A)γν /p + /k

(p + k)2
γµ ,

Aµν
2 = − g2

√
2cW

(gl
V + gl

A)γµ
/k + /q

(k + q)2
γν ,

Aµν
3 =

g2cW√
2

V µνρ (p + k + q, k, p + q)

(p + q)2 − m2
W − iΓW mW

γρ ,

(A1)

where

V µνρ(P, p−, p+) = gµν(P + p−)ρ

− gµρ(p+ + P )ν + gνρ(p+ − p−)µ .
(A2)

Here mW = 80.385 GeV is the W -boson mass, ΓW =
2.085 GeV the W -boson full width and cW = 0.8768 is the
cosine of the electroweak mixing angle. We extract the
electroweak coupling g from g2 = 8GF m2

W /
√

2, where

GF = 1.1663787 ·10−5 GeV−2 is Fermi’s constant [7]. We
neglect the charged lepton mass throughout this discus-
sion. When the functions Aµν

k are written in terms of the
invariant masses

m2
W l = (p + k)2 , m2

lν = (p + q)2 , (A3)

the matrix appearing in Eq. (14) is defined by:

Mij =
1

64(2π)3m3
Z

m2

Z
∫

m2

W

d m2
W l

m̂2

lν
∫

0

d m2
lν

{

tr
[

(Aµν
i )

†
/pAρσ

j /q
]

(

1

3
PZ

µρ(p + k + q)PW
νσ(k)

) }

(A4)

where PX
µν(k) = −gµν + kµkν/m2

X is the transverse pro-
jector for a gauge boson X with momentum k and mass
mX , mZ = 91.19876 GeV is the Z-boson mass and the
upper integration boundary of the phase space integral
is given by:

m̂2
lν =

(m2
W l − m2

W )(m2
Z − m2

W l)

m2
W l

. (A5)

Performing this integration numerically, and setting the
width of the W to zero, leads us to the numbers shown
in Eq. (14).

2. Numerical results for four-body Z-decays

Here we present the numerical results of the four body
decays discuss in the main text.
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Γ(Z → l l νν̄)

10−8 GeV
≃







2.8 − 4.3Cνl
+ 3.2C2

νl
− 1.3C3

νl
+

∑

α=e,µ,τ

(

0.077C2
να

+ 0.27C3
να

+ 0.33C4
να

)

for l = e, µ

2.7 − 4.0Cνl
+ 3.0C2

νl
− 1.4C3

νl
+

∑

α=e,µ,τ

(

0.076C2
να

+ 0.26C3
να

+ 0.31C4
να

)

for l = τ
(A6)

Γ(Z → jjl νl)

10−8 GeV
≃







8.2 − 10Cνl
+ 8.7C2

νl
for l = e, µ

8.1 − 9.9Cνl
+ 8.0C2

νl
for l = τ

(A7)

Γ(Z → l l′νlνl′)

10−8 GeV
≃







2.8 − 2.3(Cνl
+ Cνl′

) − 0.085Cνl
Cνl′

+ 1.5(C2
νl

+ C2
νl′

) for l = e, l′ = µ

2.7 − 2.4Cνl
− 2.3Cνl′

− 0.080Cνl
Cνl′

+ 1.5C2
νl

+ 1.4C2
νl′

for l = e, µ, l′ = τ
(A8)

[1] F. Zimmermann, M. Benedikt, D. Schulte, and J. Wen-
ninger, Challenges for Highest Energy Circular Collid-
ers, in Proceedings, 5th International Particle Accelerator
Conference (IPAC 2014) (2014) p. MOXAA01.

[2] O. Adriani et al. (L3), Search for isosinglet neutral heavy
leptons in Z0 decays, Phys. Lett. B295 (1992) 371.

[3] P. Abreu et al. (DELPHI), Search for neutral heavy lep-
tons produced in Z decays, Z. Phys. C74 (1997) 57, [Er-
ratum: Z. Phys.C75,580(1997)].

[4] A. Blondel, E. Graverini, N. Serra, and M. Shaposhnikov
(FCC-ee study Team), Search for Heavy Right Handed
Neutrinos at the FCC-ee, (2014), arXiv:1411.5230 [hep-
-ex].

[5] S. Antusch and O. Fischer, Testing sterile neutrino ex-
tensions of the Standard Model at future lepton colliders,
JHEP 05 (2015) 053, arXiv:1502.05915 [hep-ph].

[6] S. Schael et al., Precision electroweak measurements
on the Z resonance, Phys. Rept. 427 (2006) 257,
arXiv:hep-ex/0509008.

[7] K. A. Olive et al. (Particle Data Group), Review of Par-
ticle Physics, Chin. Phys. C38 (2014) 090001.

[8] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and
M. Zaro, The automated computation of tree-level and
next-to-leading order differential cross sections, and their
matching to parton shower simulations, JHEP 07 (2014)
079, arXiv:1405.0301 [hep-ph].

[9] V. D. Barger, R. J. N. Phillips, and K. Whisnant, Solar
neutrino solutions with matter enhanced flavor changing
neutral current scattering, Phys. Rev. D44 (1991) 1629.

[10] Z. Berezhiani and A. Rossi, Limits on the nonstandard
interactions of neutrinos from e+ e- colliders, Phys. Lett.
B535 (2002) 207, arXiv:hep-ph/0111137.

[11] S. Davidson, C. Pena-Garay, N. Rius, and A. Santamaria,
Present and future bounds on nonstandard neutrino in-
teractions, JHEP 03 (2003) 011, arXiv:hep-ph/0302093.

[12] F. J. Escrihuela, M. Tortola, J. W. F. Valle, and O. G.
Miranda, Global constraints on muon-neutrino non-
standard interactions, Phys. Rev. D83 (2011) 093002,
arXiv:1103.1366 [hep-ph].

[13] L. B. Auerbach et al. (LSND), Measurement of electron
- neutrino - electron elastic scattering, Phys. Rev. D63

(2001) 112001, arXiv:hep-ex/0101039.
[14] J. Dorenbosch et al. (CHARM), Experimental Verifica-

tion of the Universality of νe and νµ Coupling to the Neu-

tral Weak Current, Phys. Lett. B180 (1986) 303.
[15] P. Vilain et al. (CHARM-II), Precision measurement

of electroweak parameters from the scattering of muon-
neutrinos on electrons, Phys. Lett. B335 (1994) 246.

[16] G. P. Zeller et al. (NuTeV), A Precise determination of
electroweak parameters in neutrino nucleon scattering,
Phys. Rev. Lett. 88 (2002) 091802, [Erratum: Phys. Rev.
Lett.90,239902(2003)], arXiv:hep-ex/0110059.

[17] J. Barranco, O. G. Miranda, C. A. Moura, and J. W. F.
Valle, Constraining non-standard interactions in nu(e)
e or anti-nu(e) e scattering, Phys. Rev. D73 (2006)
113001, arXiv:hep-ph/0512195.

[18] J. Barranco, O. G. Miranda, C. A. Moura, and J. W. F.
Valle, Constraining non-standard neutrino-electron inter-
actions, Phys. Rev. D77 (2008) 093014, arXiv:0711.0698
[hep-ph].

[19] D. V. Forero and M. M. Guzzo, Constraining nonstan-
dard neutrino interactions with electrons, Phys. Rev.
D84 (2011) 013002.

[20] Z. Daraktchieva et al. (MUNU), Limits on the neutrino
magnetic moment from the MUNU experiment, Phys.
Lett. B564 (2003) 190, arXiv:hep-ex/0304011.

[21] A. V. Derbin, L. A. Popeko, A. V. Chernyi, and G. A.
Shishkina, New Experiment on Elastic Scattering of Re-
actor Neutrinos by Electrons, JETP Lett. 43 (1986) 206,
[Pisma Zh. Eksp. Teor. Fiz.43,164(1986)].

[22] R. C. Allen et al., Study of electron-neutrino electron
elastic scattering at LAMPF, Phys. Rev. D47 (1993) 11.

[23] G. S. Vidyakin, V. N. Vyrodov, I. I. Gurevich, Yu. V.
Kozlov, V. P. Martemyanov, S. V. Sukhotin, V. G.
Tarasenkov, E. V. Turbin, and S. K. Khakhimov, Limi-
tations on the magnetic moment and charge radius of the
electron-anti-neutrino, JETP Lett. 55 (1992) 206, [Pisma
Zh. Eksp. Teor. Fiz.55,212(1992)].

[24] M. Deniz et al. (TEXONO), Measurement of Nu(e)-bar
-Electron Scattering Cross-Section with a CsI(Tl) Scin-
til lating Crystal Array at the Kuo-Sheng Nuclear Power
Reactor, Phys. Rev. D81 (2010) 072001, arXiv:0911.1597
[hep-ex].

[25] A. Bolanos, O. G. Miranda, A. Palazzo, M. A. Tor-
tola, and J. W. F. Valle, Probing non-standard neutrino-
electron interactions with solar and reactor neutrinos,
Phys. Rev. D79 (2009) 113012, arXiv:0812.4417 [hep-
-ph].

http://jacow.org/IPAC2014/papers/moxaa01.pdf
http://dx.doi.org/10.1016/0370-2693(92)91579-X
http://dx.doi.org/10.1007/s002880050370
http://arxiv.org/abs/1411.5230
http://dx.doi.org/10.1007/JHEP05(2015)053
http://arxiv.org/abs/1502.05915
http://dx.doi.org/10.1016/j.physrep.2005.12.006
http://arxiv.org/abs/hep-ex/0509008
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1103/PhysRevD.44.1629
http://dx.doi.org/10.1016/S0370-2693(02)01767-7
http://arxiv.org/abs/hep-ph/0111137
http://dx.doi.org/ 10.1088/1126-6708/2003/03/011
http://arxiv.org/abs/hep-ph/0302093
http://dx.doi.org/10.1103/PhysRevD.83.093002
http://arxiv.org/abs/1103.1366
http://dx.doi.org/10.1103/PhysRevD.63.112001
http://arxiv.org/abs/hep-ex/0101039
http://dx.doi.org/10.1016/0370-2693(86)90315-1
http://dx.doi.org/10.1016/0370-2693(94)91421-4
http://dx.doi.org/ 10.1103/PhysRevLett.88.091802
http://arxiv.org/abs/hep-ex/0110059
http://dx.doi.org/ 10.1103/PhysRevD.73.113001
http://arxiv.org/abs/hep-ph/0512195
http://dx.doi.org/ 10.1103/PhysRevD.77.093014
http://arxiv.org/abs/0711.0698
http://dx.doi.org/ 10.1103/PhysRevD.84.013002
http://dx.doi.org/10.1016/S0370-2693(03)00707-X
http://arxiv.org/abs/hep-ex/0304011
http://dx.doi.org/10.1103/PhysRevD.47.11
http://dx.doi.org/ 10.1103/PhysRevD.81.072001
http://arxiv.org/abs/0911.1597
http://dx.doi.org/ 10.1103/PhysRevD.79.113012
http://arxiv.org/abs/0812.4417


8

[26] C. Biggio, M. Blennow, and E. Fernandez-Martinez, Gen-
eral bounds on non-standard neutrino interactions, JHEP
08 (2009) 090, arXiv:0907.0097 [hep-ph].

[27] F. J. Escrihuela, O. G. Miranda, M. A. Tortola, and
J. W. F. Valle, Constraining nonstandard neutrino-
quark interactions with solar, reactor and accelerator
data, Phys. Rev. D80 (2009) 105009, [Erratum: Phys.
Rev.D80,129908(2009)], arXiv:0907.2630 [hep-ph].

[28] O. G. Miranda and H. Nunokawa, Non standard neutrino
interactions: current status and future prospects, New J.
Phys. 17 (2015) 095002, arXiv:1505.06254 [hep-ph].

[29] T. Ohlsson, Status of non-standard neutrino interactions,
Rept. Prog. Phys. 76 (2013) 044201, arXiv:1209.2710
[hep-ph].

[30] G. Mitsuka et al. (Super-Kamiokande), Study of Non-
Standard Neutrino Interactions with Atmospheric Neu-
trino Data in Super-Kamiokande I and II, Phys. Rev.
D84 (2011) 113008, arXiv:1109.1889 [hep-ex].

[31] M. C. Gonzalez-Garcia, M. M. Guzzo, P. I. Krastev,
H. Nunokawa, O. L. G. Peres, V. Pleitez, J. W. F. Valle,
and R. Zukanovich Funchal, Atmospheric neutrino ob-
servations and flavor changing interactions, Phys. Rev.
Lett. 82 (1999) 3202, arXiv:hep-ph/9809531.

[32] J. Kopp, M. Lindner, T. Ota, and J. Sato, Non-standard
neutrino interactions in reactor and superbeam experi-
ments, Phys. Rev. D77 (2008) 013007, arXiv:0708.0152
[hep-ph].

[33] T. Ohlsson and H. Zhang, Non-Standard Interaction Ef-
fects at Reactor Neutrino Experiments, Phys. Lett. B671

(2009) 99, arXiv:0809.4835 [hep-ph].
[34] R. Leitner, M. Malinsky, B. Roskovec, and H. Zhang,

Non-standard antineutrino interactions at Daya Bay,
JHEP 12 (2011) 001, arXiv:1105.5580 [hep-ph].

[35] I. Girardi and D. Meloni, Constraining new physics sce-
narios in neutrino oscillations from Daya Bay data,
Phys. Rev. D90 (2014) 073011, arXiv:1403.5507 [hep-
-ph].

[36] S. K. Agarwalla, P. Bagchi, D. V. Forero, and M. Tortola,
Probing Non-Standard Interactions at Daya Bay, JHEP
07 (2015) 060, arXiv:1412.1064 [hep-ph].

[37] A. Friedland and C. Lunardini, A Test of tau neutrino
interactions with atmospheric neutrinos and K2K, Phys.
Rev. D72 (2005) 053009, arXiv:hep-ph/0506143.

[38] N. Kitazawa, H. Sugiyama, and O. Yasuda, Will MINOS
see new physics?, (2006), arXiv:hep-ph/0606013.

[39] J. Kopp, P. A. N. Machado, and S. J. Parke, In-
terpretation of MINOS data in terms of non-standard
neutrino interactions, Phys. Rev. D82 (2010) 113002,
arXiv:1009.0014 [hep-ph].

[40] W. A. Mann, D. Cherdack, W. Musial, and T. Kafka, Ap-
parent multiple ∆m2

32 in muon anti-neutrino and muon
neutrino survival oscillations from non-standard inter-
action matter effect, Phys. Rev. D82 (2010) 113010,
arXiv:1006.5720 [hep-ph].

[41] A. Friedland and C. Lunardini, Two modes of searching
for new neutrino interactions at MINOS, Phys. Rev. D74

(2006) 033012, arXiv:hep-ph/0606101.
[42] M. Blennow, T. Ohlsson, and J. Skrotzki, Effects of non-

standard interactions in the MINOS experiment, Phys.
Lett. B660 (2008) 522, arXiv:hep-ph/0702059 [HEP-
-PH].

[43] Z. Isvan (MINOS), Search for Non-standard Interactions
with the MINOS Experiment, in Particles and fields. Pro-
ceedings, Meeting of the Division of the American Phys-
ical Society, DPF 2011, Providence, USA, August 9-13,
2011 (2011) arXiv:1110.1900 [hep-ex].

[44] J. A. B. Coelho, T. Kafka, W. A. Mann, J. Schneps,
and O. Altinok, Constraints for non-standard interac-
tion ǫeτ Ve from νe appearance in MINOS and T2K, Phys.
Rev. D86 (2012) 113015, arXiv:1209.3757 [hep-ph].

[45] T. Ota and J. Sato, Can ICARUS and OPERA give in-
formation on a new physics?, Phys. Lett. B545 (2002)
367, arXiv:hep-ph/0202145.

[46] A. Esteban-Pretel, J. W. F. Valle, and P. Hu-
ber, Can OPERA help in constraining neutrino non-
standard interactions?, Phys. Lett. B668 (2008) 197,
arXiv:0803.1790 [hep-ph].

[47] M. Blennow, D. Meloni, T. Ohlsson, F. Terranova,
and M. Westerberg, Non-standard interactions using the
OPERA experiment, Eur. Phys. J. C56 (2008) 529,
arXiv:0804.2744 [hep-ph].

[48] A. Friedland and I. M. Shoemaker, Searching for Novel
Neutrino Interactions at NOvA and Beyond in Light of
Large θ13, (2012), arXiv:1207.6642 [hep-ph].

[49] P. Coloma, A. Donini, J. Lopez-Pavon, and H. Mi-
nakata, Non-Standard Interactions at a Neutrino Fac-
tory: Correlations and CP violation, JHEP 08 (2011)
036, arXiv:1105.5936 [hep-ph].

http://dx.doi.org/10.1088/1126-6708/2009/08/090
http://arxiv.org/abs/0907.0097
http://dx.doi.org/10.1103/PhysRevD.80.129908, 10.1103/PhysRevD.80.105009
http://arxiv.org/abs/0907.2630
http://dx.doi.org/10.1088/1367-2630/17/9/095002
http://arxiv.org/abs/1505.06254
http://dx.doi.org/ 10.1088/0034-4885/76/4/044201
http://arxiv.org/abs/1209.2710
http://dx.doi.org/10.1103/PhysRevD.84.113008
http://arxiv.org/abs/1109.1889
http://dx.doi.org/10.1103/PhysRevLett.82.3202
http://arxiv.org/abs/hep-ph/9809531
http://dx.doi.org/10.1103/PhysRevD.77.013007
http://arxiv.org/abs/0708.0152
http://dx.doi.org/ 10.1016/j.physletb.2008.12.005
http://arxiv.org/abs/0809.4835
http://dx.doi.org/10.1007/JHEP12(2011)001
http://arxiv.org/abs/1105.5580
http://dx.doi.org/ 10.1103/PhysRevD.90.073011
http://arxiv.org/abs/1403.5507
http://dx.doi.org/10.1007/JHEP07(2015)060
http://arxiv.org/abs/1412.1064
http://dx.doi.org/ 10.1103/PhysRevD.72.053009
http://arxiv.org/abs/hep-ph/0506143
http://arxiv.org/abs/hep-ph/0606013
http://dx.doi.org/ 10.1103/PhysRevD.82.113002
http://arxiv.org/abs/1009.0014
http://dx.doi.org/10.1103/PhysRevD.82.113010
http://arxiv.org/abs/1006.5720
http://dx.doi.org/ 10.1103/PhysRevD.74.033012
http://arxiv.org/abs/hep-ph/0606101
http://dx.doi.org/ 10.1016/j.physletb.2008.01.049
http://arxiv.org/abs/hep-ph/0702059
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-11-540
http://arxiv.org/abs/1110.1900
http://dx.doi.org/ 10.1103/PhysRevD.86.113015
http://arxiv.org/abs/1209.3757
http://dx.doi.org/ 10.1016/S0370-2693(02)02625-4
http://arxiv.org/abs/hep-ph/0202145
http://dx.doi.org/ 10.1016/j.physletb.2008.07.092
http://arxiv.org/abs/0803.1790
http://dx.doi.org/10.1140/epjc/s10052-008-0683-6
http://arxiv.org/abs/0804.2744
http://arxiv.org/abs/1207.6642
http://dx.doi.org/ 10.1007/JHEP08(2011)036
http://arxiv.org/abs/1105.5936

