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Abstract

In this paper we explore contributions to non-perturbative superpotentials arising from
instantons wrapping effective divisors in smooth Calabi-Yau four-folds. We concentrate
on the case of manifolds constructed as complete intersections in products of projec-
tive spaces (CICYs) or generalizations thereof (gCICYs). We systematically investigate
the structure of the cone of effective (algebraic) divisors in the four-fold geometries and
employ the same tools recently developed in [1] to construct more general instanton ge-
ometries than have previously been considered in the literature. We provide examples
of instanton configurations on Calabi-Yau manifolds that are elliptically and K3-fibered
and explore their consequences in the context of string dualities. The examples dis-
cussed include manifolds containing infinite families of divisors with arithmetic genus,
X(D,0Op) =1 and superpotentials exhibiting modular symmetry.
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1 Introduction

In the search for stabilized vacua and realistic models of string phenomenology, non-perturbative
effects are an essential ingredient. In particular, instanton contributions have played a signifi-
cant role in most attempts at model building and moduli stabilization in realistic 4-dimensional,
N = 1 compactifications. Examples of detailed calculations of instanton effects can be found
in [2-9] (heterotic string theory), [10-14] (F-theory) and [15-18] (Type II).

In order to fully employ these non-perturbative effects it is clear that systematic/algorithmic
control of the underlying geometry is essential. In this paper, we will develop a partial toolkit
for such an approach and look at one particular window into these non-perturbative effects in
a network of dual theories. We will explore the geometry associated with M-theory instantons
on a class of smooth Calabi-Yau (CY) four-folds [19-22], Y}, constructed as complete intersec-
tions in simple projective ambient spaces [23-26], as well as recent generalizations [1] of this
construction. Many of our results readily extend to other constructions of CY four-folds such
as [27-32]. It is well established that very simple observations regarding these non-perturbative
effects — including the structure of the complex divisors, D C Yj, wrapped by M 5-branes —
can have a wide range of consequences. This is true not only for the effective 3-dimensional
description of M-theory compactified on Yy, but also for many other theories related by string
dualities (i.e. Heterotic, Type IIB and F-theory) [14].

It should be noted that here we will consider only the most universal sector of instanton
contributions and the geometry of smooth Calabi-Yau four-folds. Within the context of realistic
string compactifications and dual theories (especially heterotic, F-theory and Type IIB) this
is only a first step. In the language of F-theory for example, the analysis presented here
pertains only to ED3-ED3 instanton zero modes and omits the important consideration of
ED3-7 instanton zero modes which also play a crucial role. There is a rich literature on this
subject including investigations of the cohomology on divisors [33-36], lifting of zero modes,
and the role of fluxes and U(1) symmetries [37-40] in these questions. We view the geometric
tools for smooth CY four-folds explored here as essential but only preliminary steps towards
a comprehensive study of instantons in realistic heterotic/F-theory/Type IIB vacua.

In particular, one of our primary goals in this work is to explore fibration structures and
effective divisors on Y} that are not manifestly “inherited” from the ambient space. That is, for
CY four-folds described in some simple ambient space, Yy C A, we are interested in effective
divisors D C Y, that are not the restriction, Dly,, of some effective divisor D C A. It is
this latter type of divisor that has been most frequently used to explore instanton solutions
in the literature. As an illustration of why it is necessary to study more general solutions, it
should be noted that reference [41] demonstrated that, for some classes of ordinary complete
intersection manifolds in products of projective spaces, no inherited divisors can satisfy the
necessary conditions to contribute non-trivially to the superpotential.

The goals of the present work include:

e A complete, systematic study of the structure of effective cones of divisors on Y, and an
investigation of general divisors with arithmetic genus 1 in smooth CY four-folds.

e An exploration of the structure of instantons on four-folds constructed as “Generalized
Complete Intersections” (i.e. “gCICYs”) [1] in compactifications of M-theory.

e An investigation of the consequences of instantons wrapping “non-inherited” divisors
in string dualities — including infinite families of instanton solutions exhibiting modular



symmetry.

With these goals in mind, we turn first to the essential mathematical structure that we
wish to explore in this work: effective divisors on Yj that are not inherited from A.

1.1 Exploring the full cone of effective divisors

In this section we explore the simple geometric fact that the cone of effective divisors (i.e. the
co-dimension 1 algebraic sub-varieties of Y;) can be significantly larger than that “inherited”
from the ambient space. As a straightforward example, consider the CY four-fold, described
via a degree (2,5) hypersurface in the product of complex projective spaces Pt x P*:

]P>1
}/;l:|:]P>4

Since this manifold is defined via an ample hypersurface, its HY! cohomology group de-
scends simply from the ambient product of projective spaces. Here h'1(Y,) = 2 and a basis
of the Picard group is given by H; and H,, the restrictions of the ambient space hyperplanes
to Yy. On the ambient space, A = P! x P*, the effective cone is simply the positive quadrant
defined by aH; + bHs with a,b > 0 [42]. However, on Y} itself there is a richer range of
possibilities. For example, the line bundles defined by L = Oy,(—1,n) with n > 5 all satisfy
R%(Yy, L) > 0 and thus their global holomorphic sections define algebraic subvarieties of Y}
even though they cannot be simply described by polynomial defining equations in the ambient
coordinates (and h°(A, O4(—1,n)) =0, V n). In other words, the effective cone of Y} is larger
than simply aH; + bHy with a,b > 0.

It was noted in [1] that although divisors of this type are “non-polynomial” [43-48] in the
homogenous coordinate system of A, they may still be represented simply as rational functions
in the ambient space coordinates, that are suitably regular (i.e. holomorphic polynomials) when
evaluated on the CY, Y;. To see this explicitly, let us build the global sections of Oy,(—1,n) on
Yy. Labeling the homogeneous coordinates of P*,P* to be z;,y; with i = 0,1 and j = 0,...4,
consider the defining equation of degree (2,5),

. ] . (1.1)

P alps W (y) + zorips@ (y) + 22psP(y) = 0, (1.2)

where ps(@(y), a = 1,2,3 are homogeneous quintic polynomials in the y-coordinates of P*.
Now, to consider a divisor of the form Oy, (—1,n), by definition it can be decomposed into the
associated divisor of zeros and divisor of poles (D =(Div. of zeros) - (Div. of Poles)) which in

this case can take the form! _
Div. of zeros  f,(y)

= ) 1.
Div. of poles  ¢1(x) (13)

Here f,, is a polynomial of degree n and ¢; a polynomial of degree 1. How then can this rational
function be made regular when evaluated on the CY given in (1.2)? Consider the simple linear
function given by xo = 0. On this locus, the defining equation P = 0, guarantees that one
specific quintic in the y-coordinates also vanishes:

P5(3)(y) =0. (1.4)

Tn this paper we interchangeably use the following four related terms — divisor, divisor class, line bundle
and global holomorphic section of line bundle — and freely call one by another unless confusions arise.




As a result, the rational function
ps® (v)
Zo

) (1.5)

is manifestly regular — every zero of the denominator is matched by a zero of a numerator for
points satisfying the defining relation given by (1.2). Likewise, by similar logic, 7%)1(1’) is also
regular and it is straightforward to verify that these two can be used to construct a complete
basis of global sections of Oy, (—1,n). To be explicit, a basis of H(Yy, Oy,(—1,n)) for n > 5

is given by

®3) (1)
p Y p Y
s= 2 W+ 20 ), (16)
o T
where 7, 5(y) and s,_5(y) are arbitrary polynomials of degree (n — 5) in the y-coordinates,
each with ("11) linearly independent monomials, thereby giving rise to a basis for the coho-

n—1

mology with 2( .

) elements?.

The type of construction described in the preceding paragraphs was employed recently in [1]
to build a new dataset of CY manifolds (including both three-folds and four-folds) which possess
a range of interesting features including new Hodge numbers and novel fibration structures. In
the following sections, the observations above will be employed to find new divisor geometries
D C Yy in both finite and infinite families leading to non-trivial superpotentials.

1.2 A study of instanton superpotentials

In [41], it was argued that the simple form of CICY manifolds make it possible to classify what
types of instanton solutions can exist. From remarkably little geometric data, a wide array
of conclusions can be reached for several dual string compactifications including M-theory,
F-theory, Type IIB and heterotic string theory. In the following sections we will briefly review
this structure and point out how the expansion of effective cones described above allows for
a broader class of instanton solutions than had been previously explored in [41] and related
work. We will explore the consequences of this for the network of string dualities described
above.

In Section 2 we will provide a brief, self-contained review of the necessary conditions on
divisors D C Y, for an Mb5-brane wrapping D to contribute to the 3-dimensional superpo-
tential and the consequences for dual geometries. In Section 2.1 the necessary conditions for
a b-brane to contribute to the superpotential, as well as a sufficient condition and a simple
topological consistency check are reviewed. In Section 2.2 we review the detailed links between
the geometry of D C Y, and the non-perturbative superpotentials in dual F-theory, Type I1B
and heterotic vacua. Section 3 provides the first core examples of this work — both traditional
CICY manifolds [20-26] as well as new gCICY constructions [1] — with the types of (non-
“inherited”) divisors as described above. In Section 4 we explore the consequences for the
superpotential, in heterotic/F-theory dual pairs, of the situation where Y, admits a finite or
infinite number of divisors capable of leading to instanton contributions to the superpotenial.
Finally, in Section 5 a brief summary and outlook for future work is provided. Appendix A

2Tt should be noted that the divisor, s, given in this simple illustrative example is in fact singular. All of
the examples that are used in the study of instanton effects in the rest of the paper, however, involve divisors
which are smooth.



provides useful technical results on fibration structures and line bundle cohomology on CY
four-folds.

2 Instantons in M-theory on CY Four-folds

2.1 Instanton geometry

We consider M-theory compactified on a smooth CY four-fold, Y}, leading to an N/ = 2 theory
in 3 dimensions. The necessary (but not sufficient) conditions for an M5-brane to contribute
non-trivially to the superpotential of the 3D theory were clearly laid out in [41]. To facilitate
a self-contained discussion, we will briefly summarize these results here. The first result is
that an anomaly computation and consideration of fermion zero modes leads to a necessary
condition that must be satisfied in order for a non-trivial superpotential effect to be generated.
This can be concisely summarized by the following geometric condition on the arithmetic genus
of the holomorphic divisor D on which the 5-brane is wrapped:

(D, Op) =1 (2.1)
To make sense of this criteria in terms of divisor geometry, we consider the Koszul sequence
0= Oy, (D) = Oy, > Op —0. (2.2)

From the fact that Y; is a CY four-fold and hence, h*(Yy, Oy,) = (1,0,0,0, 1), the long exact
sequence in cohomology associated to (2.2) yields the following

B(D, Op) = 1 — W(Y;, Oy, (= D)) + K (Y, Oy, (—D)) | (2.3a)
hl(DvoD) h ( 47OY4( )) ) (23b)
hQ(D70D) h ( 470Y4( )) ) (23C)
h*(D,0p) = h*(Yy, Oy, (D)) — 1. (2.3)

Defining the index on the four-fold as x(Y1, Oy,(=D)) = i, (—1)"hi (Y, Oy, (= D)), it is clear
that (2.2) indicates that
X(D,0p) =2 — x(Ys, Oy, (=D)) (2.4)

and therefore,
X(D,0p)=1 & x(¥1,0y(-D))=1. (2.5)

Within a CY four-fold, this criterion can also be simply written [11] in terms of the inter-
section structure of D inside Y, as

X(D,0p) = (D" + D% ex(¥3)) (26)
where D? is the quadruple self-intersection number of D and cy(Y}) is the second Chern class of
the CY four-fold. Finally, it should be noted that even when (2.1) is satisfied, if the divisor is
not embedded rigidly, the superpotential can vanish due to the presence of additional fermion
zero modes or cancellations which can occur when integrating over the Mb5-brane position
moduli space [41] (see also [6] and [4] for similar considerations of cancellations in the context



of the heterotic string). In the case of smooth four-folds, these possible cancellations can be
avoided if the stronger condition that D has no embedding moduli holds, i.e.

h*(D,0p) = (1,0,0,0) . (2.7)

In terms of cohomologies on Yy, (2.7) and (2.6) lead to

B(Yi, Oy, (D)) = 1, (2.84)
B (Y1, Oy, (D)) =0, (2.8b)
BA(Y, Oy, (D)) = 0, (2.8¢)
W (Y, Oy, (D)) = h'(Y1, Oy, (D)) = &, (2.84)

where we used Serre duality, h'(Yy, Oy,(=D)) = h*~(Y}, Ky, ® Oy,(D)) = h*~(Yy, Oy, (D)),
and k must equal either 0 or 1 (due to the injectivity of the first non-trivial map in the
long exact sequence associated with the Koszul sequence, (2.2)). In this case no cancellations
within the divisor class can take place and we are guaranteed a non-vanishing contribution to
the superpotential [41].

As a final comment, it is an interesting observation about the structure of the 3-dimensional
effective theory that the number of divisors satisfying (2.1) may be finite [41] or infinite [11]
for a given CY four-fold. In the former case the contributions to the superpotential take a
simple form, while the latter case can demonstrate remarkable modular invariance properties
(see [11,16,17] for discussions). We will explore both types of solution in the following sections.

2.2 Review of dual geometries

One of the main motivations for considering non-perturbative effects in the context of 3-
dimensional compactifications of M-theory is the powerful window such considerations provide
into the structure of more phenomenologically relevant 4-dimensional theories. As first noticed
in [41], in the case that Y, admits elliptic or K3 fibrations, simple observations about the
geometry of the divisor D C Y, yield a variety of information about the structure of the
superpotentials in a network of dual 4-dimensional A/ = 1 theories.

If Yy admits a genus-1 or elliptic fibration

w:Y, — Bs, (2.9)

then it is possible to comment on the superpotentials of the dual 4-dimensional F-theory and
Type IIB vacua. The key distinction in these cases is whether or not the divisor, D, is “vertical”
or “horizontal” with respect to the fibration in (2.9). That is, the distinction is made between
the following two possibilities:

e D is a section or multisection of the elliptic fibration. (“Horizontal”).

e D is the pullback of a divisor on the base B3 (i.e. D = 7~ '(Dp,) for some divisor
Dp, C Bs). (“Vertical”).

It is interesting to note that this key distinction in instanton physics can be made indepen-
dent of the existence of a section to the fibration in (2.9). The effective physics of F-theory
compactified on a genus-1 fibered manifold (with multisection) and its associated discrete sym-
metries has recently become a topic of active investigation (for recent work see e.g. [49-51]).

5



The interplay of such symmetries and non-perturbative physics is an intriguing area of open
investigation.

As argued in [41], the horizontal divisors only contribute non-trivially to the superpotential
in the 3-dimensional compactification. M-theory on Yj is dual to Type I1IB on B3 x S*. If €
is the area of the elliptic fibers of 7, then the volume of a horizontal divisor is a factor of e+
different to the volume of a vertical divisor, with € — 0 being the Type IIB/F-theory limit. As
a result, a simple scaling argument shows that contributions from horizontal divisors vanish
in the € — 0 limit. It should be noted that contributions from both horizontal and vertical
divisors may appear when one considers other, generically strongly coupled, regimes of the
theory. The complete knowledge of these superpotential contributions can be also useful in
the context of strong-weak dualities.

The second class, of “vertical” divisors pulled back from the base?, can lead to D3 brane in-
stanton contributions to the 4-dimensional effective theory in Type IIB/F-theories. Depending
on the structure of singular fibers of Y}, such divisors can be either reducible or singular [12].
For the present consideration, however, we will restrict ourselves to the case that D is smooth
and irreducible (for instance in the case that all fibers of Y} are irreducible).

In the case of vertical divisors it is clear that D* = 0 and thus, the topological check given
in (2.6) takes the simple form

x(Op) = _iDQ ceo(Yy) . (2.10)

In [11] it was observed that D" 2 - ¢y > 0 for all nef divisors in an n-dimensional CY manifold

[52,53]. Thus, it is clear from (2.10) that any vertical divisors satisfying (2.1) must be non-nef.

In the case that the theory also admits a K3 fibration (suitably compatible with the

elliptic fibration described above), we can also comment on the dual heterotic theory [14]. In
particular, heterotic/F-theory duality requires that the geometries form a pair

Heterotic on 7, : X3 LN B, & F-theoryon ps:Y, LN By, (2.11)

where the fibrations are compatible in that they share a common base, and the base Bs of the
elliptic fibration (2.9) is itself rationally fibered over By via

7B 2 B, (2.12)

In the case that the divisor, D, is not a section or multisection of the elliptic fibration of Y,
it non-trivially contributes to the superpotential of the N = 1, 4-dimensional F-theory EFT
and we would expect this to also lead to contributions in the heterotic theory. In [41], these
contributions were distinguished with respect to their projection under the rational fibration,
T

e Dp, C Bj is a section of the P! fibration 7(Dp,) ~ By (“r-Horizontal”).
e 7(Dp,) C By (“7-Vertical”).

The first of these cases corresponds to spacetime instanton contributions to the N = 1, 4-
dimensional heterotic superpotential, while the second leads to world sheet instanton contri-
butions. These basic duality results are summarized in Table 1. For a further discussion on



M-theory | F-theory | IIB | Heterotic
Section (or multisection) of 7 v X X X
D contains 7~ (Dgp,) v v v v
7(Dp,) ~ By (D ~ 7 YDg,)) v v v | v(SPI)
T(DB3) C By (D ~ W_l(DBg)) v v v \/(WSI)

Table 1: Description of trivial (X ) vs. non-trivial (v') superpotential contributions in different
dual theories. Here we assume that a divisor D C Yy satisfies h*(D,Op) = (1,0,0,0) in M-
theory on a CY four-fold Y, which admits an elliptic fibration (w:Yy — Bs). In the case that
in addition Yy admits a compatible K3 fibration such that T : By — By (with P fiber), a dual
heterotic theory also exists. In the heterotic theory “WSI 7 refers to a world sheet instanton
and “SPI” to a spacetime instanton.

the dualities between NS5-brane solutions in heterotic theories wrapping the elliptic fibers of
X3 or divisors Dp, C By see [3,14].

To conclude, it is useful to make one more important distinction in the case of torus fibered
CY four-folds. The existence of a “horizontal” divisor (i.e. a section or multisection) does not
automatically guarantee the existence of a divisor D with arithmetic genus one. Instead, it
should be noted that sections (either holomorphic or rational) must contribute non-trivially
to the superpotential, while multi-sections are not necessarily even of the correct arithmetic
genus.

First, we consider so-called “holomorphic” and “rational” sections (see for example, [54—
56]). A holomorphic section defines the base, Bs, as a sub-variety of Y and moreover can be
expressed as a holomorphic (polynomial) function of the base coordinates. On the other hand,
“rational” sections define a sub-variety 33 C Y, which is birational to Bs. Both holomorphic
and rational sections automatically satisfy the stronger condition (2.7). This can be seen
simply from the Koszul sequence:

0— Oy, (—=S) = Oy, - 05 = 0. (2.13)

Since Sp,; = 0 defines the base Bj as an algebraic subvariety of Yy, it is clear that if h*(Sher, Os,.,)

# 0, for 1 = 1,2, 3, then the holomorphic i-forms would pull back non-trivially to Y, under

the projection map m : Y, — Bjs, in contradiction to the CY condition. As a result, any

holomorphic section must in fact have not only arithmetic genus equal to 1 but also satisfy

the stronger condition that h*(Sh, Os,,,) = (1,0,0,0). On the other hand, a rational section

is only birational to B3 (and can “wrap” non-trivial blow-up directions in the (resolution) of

the elliptic fiber). As a result, its bundle-valued cohomology could in principle differ from that

of Bz. However, since h"(B, Op) is a birational invariant [57], here too, we see that if S,ational

defines a three-fold surface, Bj, birational to Bj inside of Yj, it will also satisfy (2.7).

In contrast, it should also be noted here that multisections [50,51] do not generically have
arithmetic genus equal to 1. For instance,

]Pal

Pl

V= | P

]Pal

]P)l

(2.14)

N NN NN

3Note, we will refer to a divisor as vertical even if it only contains vertical components.



is a genus-1 fibered CY four-fold which does not possess a section, but instead only multi-
sections of order 2 at best (e.g. O(1,0,0,0,0)), all with vanishing arithmetic genus. Many
examples of torus-fibered CICY or gCICY CY manifolds in fact have only multisections and
in such cases, are not guaranteed to give rise to any superpotential terms even in the M-theory
limit.

3 Examples

3.1 Example 1: A CICY four-fold

In this section we demonstrate that smooth CICY four-folds as constructed in [19] and fully
classified in [20-22] can admit divisors with arithmetic genus 1 (and indeed rigid divisors). As
one simple illustration of this, we will consider an elliptically and K 3-fibered manifold which
admits a section to its elliptic fibration. The following CY four-fold

P 1100 0
P20 1011
P51 01 11
Yi=lp1o0100] ¢ (3:1)
PLl[1 00 10
P00 10 1]

has Euler number x(Y;) = 456 and the Hodge numbers, h*! = 6, h¥! =62, h*? = 316.
This manifold is elliptically fibered over P! x P! x P!, 7 : Y, Pl x P! x P! and has

a compatible K3-fibration over P' x P, p; : Y} E§ Pt x P!. More precisely, the K3-fiber is
described via the complete intersection:

P 1
P2 0
K3 = P || 1
P1

[ R e S S
— O O
O = = O
O = = O

which in turn is elliptically fibered over P! with fiber

P11 000
E=|P2]0 101 1]. (3.3)
PPl1 0111
On the four-fold given in (3.1), let H;, with ¢ = 1,...6, denote the divisors obtained by
restriction of the ambient projective space factor hyperplanes. Then, in this notation, the
divisor
— Hy+ Hy (3.4)

is in fact a section to the elliptic fibration described above. Using the tools described in the
Introduction, the global sections of Oy, (D) associated to this effective divisor can be described
as follows.

Denote the homogeneous coordinates of the six projective space factors by x € Ply €
P2z € P2,u € P,v ¢ P',w € P! respectively. The five defining relations of the complete



intersection can be written as P'(x,y,z,u,v,w), with ¢ = 1,2,...,5. Explicitly, P? and P>
for example, take the following form

Pix,y) = zop;V(y) +aiptP(y) (3.5)

Pz, u,w) = uopi\ (2, w) +u piy (7, W)

where p?(i) are linear functions in y and pi’gj ) are multi-degree (1,1) in (z, w). The divisor can
be described uniquely, up to an overall factor, as:
(2)(

P? y) —0. (3.6)

Zo

It can be verified that
h.(naoYA(la_laO?Oaan)) = <0707 07071) ) (37)

so the cohomology of Oy,(—D), satisfies the criteria laid out in (2.5), and the stronger one
given by (2.7), and (2.8) with & = 0. Since this divisor is, by construction, a section of the
fibration, D C Y; is a copy of the entire P! x P! x P! base.

As described above this divisor provides an instanton superpotential in M-theory which
provides a trivial contribution when dualized into F-theory/Type IIB. However, the four-fold
given in (3.1) is also K3 fibered and as a result, we can consider the heterotic dual theory as
well.

To generate non-trivial instanton contributions to F-theory, and thus heterotic string the-
ory, on (3.1), one can consider a second example divisor

Oy,(0,0,1,-1,0,1) . (3.8)

The global sections of this line bundle can be explicitly realized, in a similar manner to the

case described above, as
3(2)
P (2, w) (3.9)

Uo
which is again unique up to an overall factor. Once again h*(D,0Op) = (1,0,0,0), where
(2.8) is satisfied with k£ = 0, and x(D,Op) = 1. But here we get a non-trivial superpotential
contribution in F-theory generated by D3 branes wrapping 7(D). These dualize in the heterotic
theory into world sheet instanton contributions.

3.2 Example 2: A gCICY four-fold

In this section we explore another example, a gCICY manifold, using the tools described in
Section 1.1. A smooth CY four-fold with Euler number x(Y;) = 480 can be defined by the
configuration matrix

P31 3
P11

Yi=| p 3| (3.10)
P11



This, according to the gCICY notation [1], characterizes Y} as a hypersurface inside

P31
P 1
P3|
P1

(3.11)

given by a global section of O,(3,1, —1,1). The independent Hodge numbers of this four-fold
are given by h''t = 4, h3! = 68, h?? = 332. Denoting the homogeneous coordinates of the four
ambient projective space factors in turn by x = (g : x1 : 29 1 23), ¥y = (Yo : ¥1), Z = (20 : 21)
and u = (ug : uy), the defining equation for M can be written as

(1) (2)
1

P(X, Yy, z, U) = Z(:)))pl 1(X? Yy, U.) + 2(2)21 plll(xa Yy, U) + ZOZ%pggl)

1(X7 y, u) + Z% pﬁ)l(xv Yy, 'Ll) (312)
Here, the pgci)l (x,y,u), where a = 1,...,4, are generic homogeneous tri-linear polynomials.
To obtain the explicit expression for a section Q € HY(M,Ox(3,1,—1,1)) that defines the
embedding of Y in M, we follow the gCICY construction method [1]. According to the

degree-splitting rule there, @) is taken to have the rational form,

f(x,y,u)

Q= 9(z)

, (3.13)
where f and g are, respectively, polynomials of multi-degree (3, 1,0, 1) and (0,0, 1,0) in the x,
y, z, and u coordinates. Now, with the denominator choice of g(z) = zy, the corresponding
numerator polynomial f(x,y, u) should vanish on the divisor zg = 0 of M. On the other hand,
the defining equation for M, (3.12), also vanishes on M by construction, which indicates that
pﬁ)l (x,y,u) = 0 on the locus zy = 0 inside M. Given this, we can obtain an appropriate
numerator by multiplying pﬁ)l (x,y,u) with a quadric polynomial in x, thus ending up with
the following 10 global sections of line bundle Op4(3,1, —1,1):
(4)
TGN AL

1=1,...,10. (3.14)
20

i
Here my ;(x), for i = 1,--- , 10 are the ten quadratic monomials, (z¢)?, xox1, -, (z3)?, in the

coordinates x = (xg : o1 : o3 : x3). One can also choose different denominators, such as
g(z) = 2o — z1 and g(z) = 2o + 21, which, respectively, give rise to 10 more sections each:

L (@
Eplll(xv Yy, u)

t; = i ,=1,...,10, 3.15
) (3.150)
! (a)
Z(_l)aplll(XaY7u)
;= = i ,=1,...,10 . 3.15b
u ) (315b)

It is easy to verify that these 30 sections are linearly independent and that any other section
constructed by choosing a different denominator from zg, 29 — 21, 20 + 21 can be written as a
linear combination of (3.14) and (3.15). Given that h°(M, O (3,1, —1,1)) = 30, we conclude
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that s;, t;, and u; span the entire section space HY(M,On(3,1,—1,1)). As a result, the
defining equation, @), for Y, C M, can be written as

10 10 10
i=1 i=1 i=1

where «;, 8;, and ;, for ¢ = 1,...,10, are generic complex coefficients. One can further check
that the resulting gCICY, Y}, is smooth for a generic choice of P and Q.

Once again this manifold is torus fibered (7 : ¥; — P! x P! x P') and K3-fibered (p; :

Yy 2% P! x P!). Note that the torus fibration of the manifold does not necessarily admit a
section in this case. Here the K3 fiber is given by

P21 3
K3 = [IP’l X 1} , (3.17)
which is in turn torus fibered,
T =[P*| 1 3 ](~ [P?|3] over any given point in the base) . (3.18)

In this example we find a “vertical” instanton which leads to a non-trivial superpotential
contribution in F-theory according to the distinction made in Section 2. Taking

D~ Oy,(1,-1,3,1) (3.19)

it can be verified using the techniques developed in [1] that h*(D, Op) = (1,0,0,0). Moreover
this divisor is not a section of the fibration, but also includes non-trivial base dependence. Since
the geometry admits both K3 and T2 fibrations (and they are compatible), the consequences
of this divisor for dual theories are readily ascertainable. As shown in Table 1, D above will
lead to a non-trivial instanton superpotential not only in M-theory, but also in the dual F-
theory/Type IIB theories. Moreover, since this geometry is also K3 fibered, we see that p(D)
is a non-trivial curve in the two-fold base — P! x P! — of the heterotic dual (i.e. it is also
not a section to the K3-fibration). As a result this divisor leads to a non-trivial world-sheet
instanton effect in the 4-dimensional heterotic dual theory.

With these examples in hand, we turn now to a more systematic study of instantons in
dual heterotic/F-theory effective theories.

4 Heterotic/F-theory Dual Pairs and Finite vs. Infinite
Families of Solutions
In this section we turn our attention to two important questions:

e Under what conditions is it possible for an infinite family of divisors to contribute to the
superpotential?

e [s it possible to characterize divisors (and potentially infinite families as above) that will
contribute to the superpotential in heterotic/F-theory dual pairs?

11



Beginning with the first point above, an important distinction can be made between four-
fold geometries which admit only a finite number of divisors with arithmetic genus 1 (i.e.
(2.1)) and those that admit infinitely many such divisors. In the latter case, the structure of
the superpotential can exhibit interesting modular behavior (see [16,17] for early conjectures
and [11] for an explicit modular superpotential with Eg symmetry). We start by observing
that it is straightforward to engineer examples of CICY (or gCICY) four-fold geometries with
an infinite family of divisor classes with arithmetic genus 1.

4.1 An infinite family of divisors with arithmetic genus 1

Consider the following CY four-fold,

Pl
]P>1
]P>1
]P>1
]P>1
PS

(4.1)

_ o O = OO
_ o O O = O
DO = O
SO N O - =

and the family of divisors
D, ~ Oy,(a,-1,a,0,0,1), a>0 (4.2)
parametrized by integer a. The cohomology computation leads to,
h*(Yy, Oy, (D,)) = ((a + 1)% a® + 2a,0,0,0) , (4.3)
from which we see that the divisor D, is effective and the Koszul sequence (2.2) leads to
h*(D,,0p,) = (1,0,a* + 2a,a® + 2a) , (4.4)

which in particular gives x(D,, Op,) = 1. Therefore, for a = 0, the cohomology (4.4) guaran-
tees a non-trivial superpotential contribution, while each of the divisors with a # 0 in (4.2) is a
potential source for a non-trivial superpotential term. Since these divisors are not rigidly em-
bedded, further analysis is required to determine whether each member of the family survives
possible cancellations to contribute to the superpotential. Because of such possible cancella-
tions, it is difficult to directly analyze the structure of the superpotential and any possible
modular behavior. As a result, it is intriguing to search for infinite families satisfying the
stronger condition in (2.7). In the majority of the literature (see [11]), M-theory superpo-
tentials with modular symmetry involve heterotic/F-theory dual pairs and divisors of a very
special form. To explore this we turn now to heterotic/F-theory dual pairs and infinite families
within this context.

4.2 Instanton families in Heterotic/F-theory dual pairs

In the context of heterotic/F-theory duality, one particularly rich class of instanton solutions
for an elliptically/ K3 fibered CY four-fold includes divisors that are pulled back from the
two-fold base, By in (2.11). If divisors are found in this class with arithmetic genus equal to
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one, or the stronger, rigidly embedded condition in (2.7), this provides insight into the non-
perturbative superpotential of both the dual N/ = 1, 4-dimensional theories. In this case, a
relevant divisor Dpg, C By will also pullback non-trivially to a divisor in the elliptically fibered
three-fold, X3 in (2.11) and can lead to a world sheet instanton contribution to the heterotic
superpotential.

It should be noted that the consideration of such dual pairs is particularly interesting due
to the involved structure of the moduli dependent prefactors which appear in the superpo-
tential. In heterotic effective theory, one must consider not only the isolated/rigid curves
that contribute to the superpotential, but also the bundle-moduli dependent Pfaffian factors
(which vanish if the bundle restricts non-trivially to the curve in Bs) [2,4-6,18,59,60]. Such
calculations can be compared with analogous computations on the M-/F-theory side [10] to
yield non-trivial support for both methodologies. Important information to obtain before such
considerations, however, is a systematic consideration of the divisors (pulled back from Bs) in
Y, [3,10,11,13]. In the following paragraphs, we will systematically explore several solutions
of this type and consider under what conditions we can find heterotic/F-theory dual theories
with superpotentials exhibiting modular behavior.

4.2.1 Pulling back divisors from B,

Suppose that there exists a divisor Dp, C By with cohomology h*(Bs, Op,(Dg,)) = (1,0,0).
Under what conditions will this pull back to a divisor of Y, with arithmetic genus equal to one
and satisfying the strong condition, h*(Yy, p*(Og,(Dg,))) = (1,0,0, k, k), of (2.8)7

A simple tool to answer this question is provided by the Leray spectral sequence for bundle-
valued cohomology on a fibered manifold (see [61] for a review). As discussed in Appendix A,
we find the following criteria,

h*(Bs, Op,(Dp,)) = (1,0,0) , (4.5)
h.(327 032(D32) ® KB2) - (Ov kv k) )

to guarantee that a (rational) curve in B, will pull back to a rigidly embedded divisor in Y}
with h*(D,Op) = (1,0,0,0). Moreover, it is known that a curve in B, satisfying the above
criteria is an isolated, rational curve in By (i.e. a curve of genus zero).
To see this, recall that by the Riemann-Roch theorem [62], the genus of a curve C' C By is
given by
29—2=C-(C+Kg,) (4.6)

while the Euler characteristic (i.e. index) of any smooth curve is in turn:

S (1K By, 05, () = X(Ba, O, (€)= 5C+ (O~ i) + x(Bo, Op) . (47)

i

Furthermore, for the base By of a torus-fibered CY three-fold (the heterotic geometry) it is
clear that x (B, Op,) = 1. Thus, combining the formulae above with the required conditions
in (4.5), it is clear that the index of Dpg, + Kp, is

1

X(827OBQ(DBQ + KBQ)) =0= §(D32 + KBQ) ’ (DBQ) +1= g— 1+1 ) (48)

hence, g = 0. Thus, as expected, a search for divisors in By contributing to the superpotential
leads to a consideration of rational curves. Since a rational curve in By always obeys the

13



proposed criteria (4.5), the divisors of B; with these properties have to be in one-to-one
correspondence with the rational curves in By. We can now ask, for what complex surfaces,
B; can we expect an infinite number of genus zero curves, Dp,?

To begin, it should be observed that the work of Grassi [63], Gross [64] and the minimal
model program [65,66] has led to a characterization of the possible surfaces, S, which can
support an elliptically (or genus-1) fibered CY three-fold. This set consists of the following
surfaces, P2, the Enriques surface, the Hirzebruch surfaces F,,, for 0 < m < 12, and the
blow-ups of these surfaces at one or more points. A systematic approach towards enumerating
and classifying these non-minimal (i.e. blown-up) surfaces has recently been undertaken in
[58,67-71] and has led to a dataset of tens of thousands of distinct toric surfaces (see [67,68])
and some non-toric geometries (with A'(S) < 8) [70].

These surfaces then form the arena for our question: How many of them can admit infinite
families of rational curves? Of the minimal set, P2 and FF,,, as well as the del Pezzo surfaces,
dP, with 0 < r < 8 can be immediately ruled out, as all are known to contain only finitely
many rational curves. More interesting are the family of surfaces including K3, the Enriques
surfaces, and the rationally elliptically fibered surface (dPy) [11]. Each of these admits an
elliptic fibration over P!

s S — P (4.9)

with sections o;. It is the presence of more than one such section in these cases — that is, a
non-trivial Mordell-Weil group — which generates an infinite family of sections and hence, of
rational curves (since each holomorphic section to the elliptic fibration is a copy of the P! base).
In the case of dP,, the Mordell-Weil group is famously large (rank 8) and leads to a space of
sections (with self-intersection C? = —1) which are linked to the root lattice of Fg [73]. If dPy
forms the base of a K3-fibered CY four-fold, it is natural to consider the pull-back of infinite
families of such sections as divisors in Y;. The contribution of these Mordell-Weil elements
to the superpotential was studied in [11,13] and found to lead to a remarkable Eg modular
symmetry. Since the K3 surface cannot serve as base to a non-trivial CYj elliptic fibration
and the Enriques surfaces leads to an essentially trivial Weierstrass model, the dPy surface
remains one of the most interesting examples which we will explore in detail below.

To conclude, we consider how the existing datasets of bases By available could be explored
for infinite families and modular superpotentials in the future. A result due to Bogomolov
(see [74,75]) states that if S is a surface of general type with

c3(9) > c(9) , (4.10)

then for any g, the curves of geometric genus g on S form a bounded family. Since a surface
of general type cannot be covered by rational curves, these curves cannot deform. So this
result implies that a surface S satisfying (4.10) contains only finitely many rational curves.
This criteria could be employed to filter the dataset of surfaces By for those leading to infinite
families. Some surfaces constructed already in [58] are similar to dPy in that they are known
to contain (—1)-curves and possess infinitely generated Mori cones. It would be interesting to
explore the possible modular structure of such examples in the future. For now, we simply
return to the dPy surface to illustrate that the techniques developed in this work readily lead
to infinite, modular families. In this case we find a class of instanton contributions leading to
an SU(2) symmetry in the superpotential.
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4.2.2 An infinite family on dFP,

In this section we will study a fibration ps : Y 5§ dPy similar to that investigated in [11,13].
Consider the following CY four-fold,

PQ
Hj)l
YV, = | P!
P2
Pl

(4.11)

—— o O
o~ OO
— O O N W

and the family of divisors,
D, = 0y,(0,0,—1+3a,1 —2a,1 —8a +10a®), a€Z. (4.12)
We claim that each divisor D, satisfies
h*(D,.,Op,) = (1,0,0,0) , (4.13)

and, therefore, a non-trivial superpotential term is generated by each D, in the family (4.12)
(for the smooth four-fold above). To see how (4.13) comes about, note first that the four-fold
geometry is K 3-fibered,

p:Yy— By, (4.14)

where the base By has the following configuration matrix,
P11
By=|P?*|1 2], (4.15)
PLii1 0
which describes a dPy surface. Then, the cohomology in (4.13) originates from the following
observations on the base B,

h*(Bs, L,) = (1,0,0) , (4.16)
h*(Bs, Kp, ® L,) = (0,0,0)

where
L, = Op,(—143a,1 —2a,1 — 8a + 10a?) (4.17)

satisfies D, = 7*L, and Kp, = Op,(0,0,—1) is the canonical bundle of By. This family
of divisors are in fact holomorphic sections of the elliptic fibration visible in (4.15). The
cohomology group in (4.16) on the base can be pulled back to Y; via the Leray spectral
sequence (see Appendix A.2 for details)

H°(Y,,D,) ~ H°B, L,)=C,

HY(Y,, D,) HY(By,L,) =0, (4.18)
H(Yy, D,) H'(By,Ly) ® H ?(By, L, ® Kp,) =0, i>2

12

12

Y

which then leads to the desired result (4.13). Because the first two degrees of each divisor
class (4.12) are zero, in describing the superpotential contributions, we may restrict to the 3-
dimensional subspace of Hy (Y}, C) spanned by y1, y2, and ys3, corresponding to the hyperplanes
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in the last three projective pieces of the ambient space, respectively. Then, the family (4.12)
contributes to the superpotential as

W(y) o E e2mi((=143a)y1+(1-2a)y2+(1-8a+10a%)ys)
a€Z

= E e2mi(a?10yz-+a-(3y1—2y2—8y3)+(—y1+y2-+y3))
a€Z

627r7lz ZGQﬂi(Ta2+wa) : (419)

a€Z

where in the last step the following reparametrization has been made,

z = —UYy1+Y2+ys,
w = 3y — 2ys — 8ys, (4.20)
T = 10y3 .

Now, to a Lie group G of rank r there is associated a theta function defined by

Oc(; W= (wy,- ,w,)) = Y emEectmtmw) (4.21)

melg

Q¢ is the quadratic form associated with the Cartan matrix for the Lie algebra of G, and
(-,-) is the natural pairing. Then, the superpotential contribution, eq. (4.19), is proportional
to Ogy(2) and hence, shows a modular behavior*. It should be noted that the one-parameter
family of sections leading to the above superpotential is a subset of that which could be
generated using the full rank 8 Mordell-Weil group, as discussed in [11]. We leave to future
work a systematic survey of the more general base surfaces of [58,67,68], non-Higgsable clusters,
and the intriguing question of how many such symmetries can appear in the non-perturbative
superpotentials of dual heterotic/F-theory compactifications.

5 Conclusions

In this paper, we have studied instanton superpotential contributions from branes wrapping
effective divisors of smooth CY manifolds, constructed as CICYs and their generalizations,
gCICYs. In M-theory compactification on a smooth CY four-fold, instantons arise from Mb5-
branes wrapping a divisor of the four-fold and may contribute to the superpotential of the
effective 3D, N/ = 2 theory. Via a network of string dualities, their consequences to the
related 4D, N/ = 1 theories are well established, where the relevant arenas are type IIB/F-
theory (E3-brane instantons) or the heterotic theory (world sheet or spacetime instantons).
Firstly, we have reviewed some known criteria for a divisor to potentially contribute to the
superpotential. For a non-trivial contribution, the divisor necessarily has to be of arithmetic
genus one (though this is not in general sufficient for a superpotential contribution), whereas a

41t is important to observe that this modular behavior exists only because the pre-factors of each term in
the series are identical in the case that the pulled-back divisors are sections to the elliptic fibration of dPy. As
pointed out in [11] this is due to invariance under reparameterizing/shifting of elements of the Mordell-Weil
group of the elliptic fibration. See [72] for another look at the physical reparameterizations of Mordell-Weil
elements.
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divisor being embedded rigidly is a sufficient condition (though not in general necessary). We
have then provided explicit examples of CICY and gCICY geometries, together with the rele-
vant brane-wrapping divisors that obey these criteria. Notably, the divisors are not inherited
from the ambient space, but are nevertheless effective.

In the network of dual theories in 4D, fibered geometries determine much of the structure
of the non-perturbative superpotential. In particular, for elliptically and/or K3 fibered CY
four-folds, divisors that are pulled back from the base of the fibration play a special role.
For the 2-dimensional base B, of a K3 fibration, the relevant 4D N = 1 duals are heterotic
compactifications on an elliptically fibered CY three-fold with base By. Via the Leray spectral
sequence, we have systematically studied the relevant cohomology structures and have thereby
found that the sufficient rigidity criterion leads us to rational curves inside the base. In
particular, amongst the “minimal” bases which generate the base surfaces of [64], dPy turns
out to be the only base that can give rise to an infinite family of rigid divisors on a non-trivial
smooth CY four-fold. With such an infinite family of relevant divisors, the superpotential
exhibits an intriguing modular behavior and we have indeed found a simple four-fold geometry
with the dPy base, for which the resulting superpotential has an SU(2) modular symmetry.
Modular structures may also arise from CY geometries with non-minimal bases, and it would
be interesting to explore them in a systematic manner, using the techniques that we have
described here.

It should be noted that in principle a systematic analysis of this same type can be applied
to the 3-dimensional base Bs of an elliptically fibered CY four-fold. The related 4D N =1
theories in this case are I[IB/F vacua. Furthermore, in the case that Bs is a P! fibration over a
surface By, the dual theories can also include Heterotic vacua with non-trivial superpotential
terms generated via both world sheet instantons and spacetime instantons. In future work,
we hope to add such effects to the systematic study of heterotic “Standard Model” effective
theories [76-78,83] and their potentials [79-83]. In the search for interesting infinite families
of divisors, the Leray sequence remains a crucial tool. Unlike in the By case, however, it is not
straightforward to classify infinite families of relevant divisors on B3 to uplift. In Appendix A.1,
similar criteria to those of By case have been proposed for the lift of a base divisor to give
rise to a desired divisor in Y. A detailed study of such examples (and the different modular
symmetries they could give rise to) would be a fruitful area of future investigation.

In summary we have provided an improved preliminary toolkit for the study of divisors in
CY four-folds and the associated non-perturbative superpotentials. We hope that in the future
these tools can be extended to the context of realistic vacua in string phenomenology and for
singular CY four-folds. In particular, the presence of such non-perturbative effects plays a
critical role in moduli stabilization in the 4D, N = 1 theories. Explicit constructions such as
those provided here can help to constrain the possible form of the moduli fixing potential, as
well as shed light on the vacuum structure of the underling effective 3D N =2 and 4D N =1
theories arising from geometric engineering in string theory.
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A Leray Spectral Sequences for Elliptically and K 3-fibered
CY Four-folds

In this section we consider CY four-folds that are elliptically and K 3-fibered. We will consider
each of these fibrations in turn and use divisors in the fibration bases to generate divisors
D C Y, with arithmetic genus equal to one, satisfying (2.7).

For any fibered space, a Leray spectral sequence provides a simple tool to relate the coho-
mology of line bundles on the total space to some associated cohomology groups on the base.
More specifically, let 7 : Y — B be a fibration with a generic fiber being k-dimensional and
given by m71(b) for a point in b C B.

Then we have a natural bi-grading such that for any bundle V on Y,

HY(Y,V)= > B, (A1)
p=l+m
where
Ei™ = BB, R™m.(V)) | (A:2)

and R™m,(V) is the m-th direct image sheaf of the bundle V' (pushed forward under the
fibration 7). The spectral sequence is iterated via the maps

d, : EP9 — EPtra-rtl (A.3)

where d,? = 0 and .
ker(d, : E,79 — E,PTat
Effl = '67’( —r,qg+r—1 ) ) (A'4)
im(d, : EPTTT — BLP)
where F, is defined as the limit to which this iterative sequence converges.
Note that on any open set U on B, the m-th direct image sheaf, R™m,(V') can be locally

represented by the pre-sheaf

U— H™ (7' (U), V) - (A.5)

It is clear then that if the fiber is k-dimensional, that R™m,.(V') is non-vanishingly only for
m=20,1...k.

To analyze the cohomology in any given fibration, a series of tools must be employed. The
first of these will be useful to compute the cohomology of line bundles pulled back from the
base. For any line bundle Og(Dpg) on the base B, we can consider its pullback, 7*(Op(Dg)).
Then the push-forward functors R™m, of this line bundle obey the so-called projection formula:
For any bundles V on Y and U on B,

R"m,(Ven'U)=R"m(V)U . (A.6)
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Another important tool is known as Grothendieck (or “Relative”) Duality [61,62]. For any
sheaf F on Y, the push-forward functors obey the following relation:

R (FY @wyp) = (Rm.F)Y , i=01...k. (A7)

where
wyp = Ky @ 7 (Kg") , (A.8)

and using the projection formula (A.6), this reduces to
Rr(FY o Ky)® K = (RnF)Y , i=0,1...k. (A.9)

Using these tools, we will consider the following question. Let 7 : Y — B by a CY manifold.
Suppose that a divisor Dp C B has cohomology h°(B,Og(Dp)) = 1 and h'(B,Og(Dg)) =0
Vi > 0. Under what conditions will this pull back to a rigidly embedded divisor on Y with
(Y, 7*(Op(Dg))) = 0 Vi > 0 and h°(Y, 7*(Op(Dg))) = 17 We will consider this in turn for
Y an elliptically, respectively K3, fibered four-fold.

A.1 Elliptic fibrations, 7 : Y, — Bj

Let 7 : Yy — Bs be an elliptically (or genus one) fibered four-fold. Note that R™m.(V)
is non-vanishing only for m = 0,1, because the fiber is 1-dimensional. Let D C Bj3 have
h°(Bs, Op,(Dp,)) = 1 and h'(Bs3, Op,(Dp,)) = 0 Vi > 0 and define L = 7*(Op,(Dp,)). Then
it is clear that by the projection formula

R"m,L = (R"m.Oy,) ® Op,(Dp,) . (A.10)
Furthermore, it will be useful to observe that using Grothendieck duality, (A.7), in this case:
R'1.(Oy,) ® K}, = (R'm.(Oy,))" . (A.11)
Finally, for an elliptically fibered CY manifold it is straightforward to demonstrate that
R'm.(Oy,) =0p, , R'7.(0y,)=Kp, . (A.12)
Now, with Lg, = Op,(Dg,), suppose that
h*(Bs, Lp, ® Kp,) = (0,0,k, k) , (A.13)

for some integer £ > 0, in which case the spectral sequence terminates at E5. Then, the
pullback bundle L = 7*(Op, (D)) has cohomology that is given by

H(Y;, L) = H*(Bs, R'7.(L)) , (A.14)
H'(Y,,L) = H' (B3, R°7.(L)) © H(Bs, R'm.(L)) , (A.15)
H*(Y,, L) = H*(Bs, R°7.(L)) ® H'(Bs, R'7,(L)) , (A.16)
H*(Y,, L) = H*(Bs, R, (L)) & H*(Bs, R'm,(L)) , (A.17)
H*(Yy, L) = H*(Bs, R'7.(L)) (A.18)

Using the projection formula, it is clear that R™m,.(L) = R™7.Oy, ® Lp,. Thus, by (A.12),
we have

H°(Y,,L) = H(Bs, Lg,) , (A.19)
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H'(Yy, L) = H'(Bs, Lp,) ® H(Bs, Lp, ® Kp,) (A.20)
H*(Yy, L) = H*(Bs, Lp,) ® H'(Bs, Lp, ® Kp,) , (A.21)
H*(Y,, L) = H*(Bs, Lp,) ® H*(Bs, Lp, ® Kp,) , (A.22)
H*(Y),L) = H*(Bs,Lg, ® Kp,) . (A.23)

Note that this result is manifestly consistent with Serre duality on Y, and on Bj, as expected.
Thus, a line bundle/divisor, Lg, of the form described above will pull back to a rigidly em-
bedded divisor with arithmetic genus equal to one, satisfying h®(Yy, L) = (1,0,0, k, k). Note
that k =0 or 1, as k£ > 1 contradicts the Koszul sequence for L.

A.2 K3 fibrations, p: Y, — By

Let p : Yy — By be a K3 fibered four-fold. Here the fiber is two dimensional and R™m. (V)
is non-vanishing only for m = 0,1,2. As in the previous case, consider Dp, C By with
h°(By, Op,(Dp,)) = 1 and h*(By, Op,(Dg,)) = 0 Vi > 0 and define L = p*(Op,(Dg,)). As
in the previous section, by the projection formula, (A.6), the cohomology of L on Y} is fully
specified by the higher derived push-forward functors of the trivial line bundle Oy,:

R"p.(Oy,) for m=0,1,2. (A.24)
For a K3-fibered CY four-fold, it can be shown that
R’p.(Oy,) =0, , R'p.(Oy,)=0, Rp,(Oy,)=Ksp,. (A.25)
With Lp, = Op,(Dg,), presuming again that
h*(Ba, Lp, ® Kg,) = (0,k, k) , (A.26)

for some integer k > 0, we see that the spectral sequence terminates at Ey and that the
cohomology forms a pattern very similar to that given in the previous section,

HO(Ya, L) = HO(B3, L) . (A.27)
H'(Y,, L) = H1<BQ,LBQ> (A.28)
H*(Y,, L) = H*(By, Lp,) ® H°(By, Lp, ® Kp,) , (A.29)
H3(Y,,L) = HY(By,Lg, ® Kg,) , (A.30)
H*(Yy, L) = H*(By,Lg, ® Kp,) . (A.31)
We then find that h*(Yy, L) = (1,0,0, k, k) where k has to be either 0 or 1 again for a consistency

with the Koszul sequence for L.
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