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Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be
expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class,
and almost as many different—though physically equivalent—waveforms as there are transformations. This paper
presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs
(BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations
as special cases). To a reasonable approximation, these transformations result in simple coupling between the
modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from
simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to
displacement and drift of the center of mass, accounting for mode-mixing at typical levels of 1%. However, these
effects can be mitigated by measuring the average motion of the system’s center of mass for a portion of the
inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the BMS
transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave data for both
numerical and analytical waveforms. Open-source code implementing BMS transformations of waveforms is
included along with this paper in the supplemental materials.

PACS numbers: 04.30.-w, 04.80.Nn, 04.25.D-, 04.25.dg

I. INTRODUCTION

As the era of gravitational-wave astronomy approaches,
models of gravitational waveforms from physical systems
become crucial to the extraction of scientific results from
the data. The basic goal of this effort is to make the claim
that a waveform measured in a detector corresponds to some
particular physical model. But a treacherous gulf lies between
any waveform and its corresponding physical model, abounding
in subtle and delicate challenges—not least of which is the
gauge flexibility of general relativity. This paper describes the
gauge transformations most relevant to studies of gravitational
waves and shows how to calculate their effects on waveforms.
We will see that, in order to obtain accurate waveform models,
we must account for gauge effects.

The literature on gravitational-wave analysis almost uni-
versally allows for two standard gauge ambiguities: time
translations and phase rotations. For example, the standard
technique of matched filtering involves optimizing the match
over the time and phase of the signal [1, 2]. Similarly,
comparisons between numerical evolutions, between numerical
and analytical waveforms, and between different approximate
analytical waveforms have generally allowed for time and phase
offsets [3, 4]. These transformations alter the waveforms, but in
well behaved ways which can be expressed fairly simply as func-
tions of the transformations. More recently, the harder problem
of analyzing precessing systems has required generalizing phase
rotations to include the full three-dimensional rotation group,
which induces slightly more complicated—though still well
understood—transformations of the waveforms [5–8].
Because of the essential diffeomorphism invariance of

general relativity, it might seem that the natural endpoint of this
progression would include all possible gauge transformations.
This would be problematic, to say the least, because accounting
for the effects of arbitrary diffeomorphisms on a waveform

would be intractable. Fortunately, by making certain standard
approximations, we can avoid accounting for the complete
diffeomorphism freedom, and restrict to a smaller gauge group.
The end result will be somewhat larger than the familiar
Poincaré group—in fact infinitely so, at least in principle—
yet entirely tractable and far smaller than the diffeomorphism
group.
To see how this is possible, we must first note that near-

field effects in the waveforms (effects appearing at second
order in the distance between the emitter and observer) should
be quite small in data collected in the vicinity of Earth,
because even the leading-order waveform will be hard to detect.
Thus, the model waveforms only need to capture asymptotic
features of the radiation far from the source. In particular,
we assume that the model spacetime is asymptotically flat,
and calculate the asymptotic waveform in the limit of future
null infinity, I +, which is described below. Though it is
not believed that our universe is asymptotically flat, this is
a useful construction approximating an isolated source when
the intervening curvature is typically small. The gravitational-
wave signal observed by a detector in the vicinity of Earth
will then be very well approximated by the waves along some
geodesic of I +—up to a scaling related to distance from the
source. The benefit of assuming such an asymptotic structure
is that it allows us to impose certain conditions on the gauge,
the most common of which is called Bondi gauge [9–14].
Essentially, Bondi gauge consists of a special class of coor-

dinates that manifest the asymptotic behavior of the spacetime
such that the metric and its derivatives, when expressed in
these coordinates, approach those of Minkowski spacetime at
large radii. The allowed gauge transformations are symmetry
transformations of this metric, which form a group known
as the Bondi-Metzner-Sachs (BMS) group [9, 10, 12, 15–18].
This group simply extends the Poincaré group with generalized
translations. Bondi coordinates exist in a neighborhood of I +
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for any asymptotically flat system [12], and any two Bondi co-
ordinate systems are related by some BMS transformation [10].
This means that the BMS group encompasses all possible gauge
transformations we need to be concerned with when discussing
the limits of an asymptotically flat spacetime.
Bondi gauge also has a particularly nice feature related to

the inertial observers in a neighborhood of I +. At very large
radii, curves of constant spatial coordinates parametrized by
the retarded-time coordinate are nearly timelike geodesics—
becoming more exactly geodesic at larger radii. Thus, if we
extract a quantity onI + along a simple curve of constant spatial
coordinate, we approximate the signal an inertial observer
measures as a function of proper time (up to the usual amplitude
scaling with radius). Moreover, in the approximately flat
asymptotic region, any two inertial observers are related by
an element of the Poincaré group. But that is a subgroup of the
BMS group, so we can use the BMS group to easily generate
all possible signals that might be measured by any inertial
observer.

Taken together, these facts mean that Bondi gauge is not only
sufficiently general to describe any signal observed at great
distance from a source in the asymptotically flat approximation,
but is also a convenient choice that allows us to construct
waveforms using simple curves and BMS transformations. We
will therefore assume that any waveform is expressed in Bondi
gauge, and narrow our focus to the BMS group. These concepts
are reviewed pedagogically in Sec. II; the eager reader may
prefer to skim that section, and simply refer to Eqs. (8) for the
key expressions describing the BMS transformations.
Having understood the BMS group itself, we will then

need to understand its effects on waveforms, which can be
separated into two parts. First is the effect at a single spacetime
event. The transformation changes the differential structure in
a neighborhood of that event, and since the gravitational field is
fundamentally a measure of that differential structure, it should
come as no surprise that the waveform will change under a
transformation. To make these ideas more precise, however, we
will need a careful treatment of asymptotic flatness. Section III
will review a convenient formalism for developing asymptotic
flatness, then use that formalism to calculate the transformation
properties of a waveform at a point.
Of course, a waveform is not simply measured at a single

spacetime event: a gravitational-wave detector will measure it
along some worldline, whereas model waveforms are typically
expressed over an extended portion of the (future) celestial
sphere of the source, as a function of time. In practical
terms, this means expressing the waveform as a function
of some coordinate system, and that coordinate system also
changes under a BMS transformation. So the second part of
a BMS transformation involves rewriting the waveform as a
function of these new coordinates. This is a fairly simple
bookkeeping exercise in principle, but involves numerous
delicatemanipulations and variousminor subtleties for practical
implementation, as discussed in Sec. IV.

Portions of the BMS group have been discussed previously in
the context of transforming gravitational waveforms produced

by numerical simulations. Gualtieri et al. [19] considered
rotations and boosts, neglecting quantities of order v2/c2. Kelly
and Baker [20] looked at the effect of supertranslations on
ringdown modes, to first order in the time-derivative of the
waveform. This paper, however, presents an exact algorithm
for the full BMS group. The practical implementation of
the algorithm is only limited by numerical precision and the
accuracy of interpolation of the input waveform as a function
of time.
Section V will give a brief overview of the size of these

effects, for various types of BMS transformations and sim-
ple waveforms. Basic analytical arguments will show that
the leading-order coupling due to a supertranslation will be
proportional to the size of the translation and the dominant
frequency of the coupled mode (or generally, the mode’s
logarithmic derivative); for boosts the leading-order coupling
will be proportional to the speed of the boost. In both cases,
the constants of proportionality are typically of order 1, though
there are various geometric factors involved.
In Sec. VI, mode coupling will be demonstrated for a full

waveform from a numerical simulation of a binary black-hole
system in the public waveform catalog maintained by the SXS
collaboration [21, 22]. This example system is chosen for
its seeming symmetry, being equal-mass and nonprecessing,
though with a spin on one black hole aligned with the orbital
angular velocity. Indeed, simple coordinate-based measures
suggest that the center of mass only strays from the coordinate
origin by only about 0.1M over the course of the simulation
(where M is the total mass of the system). Nonetheless, we
will find that near merger more than 1% of each mode—
most notably the dominant (2, 2) mode—will mix into other
modes. In fact, in the raw data the (3, 3) and (3, 1) modes
are completely dominated by power leaking in from the (2, 2)
mode. Overall, the third-largest mode in the data, (2, 1), is
comprised of leaked power by up to 30%. These couplings
give rise to curious features in the smaller modes that are not
present in the post-Newtonianmodel of this system, for example.
The mode couplings, and resulting curious features, can be
dramatically decreased by measuring the motion of the center
of mass (in simulation coordinates), and applying the opposite
transformation to the waveform.
The example system was chosen so that we will be able to

see clearly that the unexpected features are removed. More
complicated systems—in particular, precessing systems—will
have more complicated waveforms, but also larger anomalous
motion of the center of mass. A survey of the entire SXS
catalog suggests that the center of mass in more complicated
simulations will drift from the origin by larger amounts, up to
8M for the most extreme system. This implies correspondingly
larger mode couplings for these systems. Ossokine et al. [23]
showed that it is possible to greatly reduce the size of these
displacements by adjusting the initial data, improving the
outlook for future simulations. Nonetheless, the current SXS
waveform catalog must still be adjusted, and any recoil that
develops during future evolutions will need to be accounted
for. Moreover, boosts and translations only account for six of

2
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the infinitely many degrees of freedom in the BMS group; the
general supertranslations in particular are still uncontrolled,
even after eliminating the drift of the center of mass.
Given the amount of work that needs to be done to account

for gauge effects in numerical waveforms, it is reasonable to
wonder how this affects searches for gravitational waves in
detector data. To understand this issue we will need to know
more about BMS transformations of waveforms, and so we
delay the full discussion until the end of the paper, Sec. VII.
The upshot is that, while we must take BMS transformations
into account when constructing waveforms, we do not need
to search over all waveforms generated by the BMS group.
For an isolated observer, the gauge ambiguities reduce to time
translation and Lorentz rotations, which are already known.
Open-source code, in the form of a Python module scri,

is provided in the supplemental materials along with this
paper [24]. It implements the BMS transformations of the
most common gravitational waveforms, including the Newman-
Penrose quantity ψ4, the Bondi news function, the shear spin
coefficient σ, and the transverse-traceless metric perturbation
h—as well as the remaining Newman-Penrose quantities ψ0
through ψ3. Several appendices describe details about various
constructions and calculations from Geometric Algebra [25–
27] used in this paper and in the scri module, including
the method of implementing a boost of the sphere described
in Sec. II A. A final appendix details the crude method of
measuring and removing the center-of-mass drift found in the
numerical data, which is used in Sec. VI.

A note on conventions
More extensive description of the conventions used in this

paper are given in the appendices, but a few basic comments
are appropriate here. We will assume that all transformations
are proper and orthochronous; both spatial orientation and
the direction of time are preserved. In general, a strictly
improper transformation can be written as the product of
a proper transformation and a parity operator. The effects
of parity operations on modes of a spin-weighted spherical-
harmonic decomposition are described in Appendix B of
Ref. [8]. Similarly, anachronous transformations can be written
as the product of an orthochronous transformation and the time-
reversal operator. The effect of the time-reversal operator is to
simply negate the time coordinate, and in some cases to change
the sign and labeling of waveform quantities. Since these can
be dealt with separately in ways that are already understood,
we dispense with them entirely, and will not bother to repeat
below that all transformations in this paper are proper and
orthochronous.
Points on the sphere will be labeled interchangeably by the

usual spherical coordinates (θ, φ), by the standard stereographic
coordinate ζ, or by the unit spatial vector r pointing in that
direction from the origin when the sphere is considered as
being embedded in Euclidean 3-space and centered on the
origin. While stereographic coordinates are the preferred repre-
sentation throughout much of the literature, and do occasionally
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I −
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OAB

N

FIG. 1. Extending local coordinates to I +. This conformal
diagram shows the worldlines of a pair of inertial emitters, with emitter
B moving at speed 0.5c relative to emitter A , and a distant observer
O stationary with respect toA . The origins of the emitters’ coordinate
systems coincide at τA = τB = 0. We construct the null cone N
emanating from that event, which allows us to extend coordinates to
I +. The intersection of N with I + is a sphere; all points on that
sphere are assigned time coordinate uA = 0 by emitterA and uB = 0
by emitter B. Each point is also labeled by the direction of the null
generator extending from the given emitter to that point. Note that
a rotation obviously does not affect the set of points comprising N ,
though the labeling of points will change—except for the points along
the axis of rotation. Similarly, a boost leaves the null cone invariant,
but will change the labeling of any point not along the boost velocity
vector, as discussed in Sec. II A. The observer O can also be assigned
coordinates based on the null rays emitted by A and, in the limit
of very large separation, any field it observes will approach the field
observed on I +, up to a scaling based on radius. This is the basic
motivation for using asymptotically flat spacetimes to model radiation.

simplify theoretical calculations, they are unsuited for practical
computations because of their infinite range and the nature of
the point at infinity. Perhaps surprisingly, (θ, φ) presents a more
useful parametrization for practical applications. Despite the
coordinate singularities in its representation of the sphere S 2,
it actually provides a non-singular parametrization of a portion
of the rotation group that covers S 2, which is more relevant
for dealing with spin-weighted functions. As a result, software
packages such as spinsfast [28, 29] that implement numeri-
cal routines involving spin-weighted spherical harmonics use
the (θ, φ) representation. Consequently, the same representation
is used by the scri package accompanying this paper.

II. THE BMS GROUP

We introduce the Bondi-Metzner-Sachs (BMS) group in a
simple and familiar setting. This will provide a common basis
and useful motivation for the coming sections. Though more of
the formalism of asymptotically flat spacetime will be needed

3
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below, for our purposes in this section, it will be sufficient to
consider the standard compactification of Minkowski space. In
particular, this compactification will provide all the understand-
ing needed for more general asymptotically flat spacetimes. We
will use null rays to relate coordinates of timelike geodesics at
finite radius to coordinates at future null infinity. By relating
timelike geodesics to each other, wewill then be able to describe
the effect of a BMS transformation on the coordinates of future
null infinity.
The conformal diagram displayed in Fig. 1 provides the

standard picture [17, 30, 31]. Here, i− and i+ are past and
future timelike infinity; i0 is spacelike infinity; I − is past null
infinity; and I + is future null infinity. We will be concerned
almost exclusively with I +, as that is the asymptotic limit of
outgoing gravitational radiation. Also shown in the diagram is
a pair of emitters, A and B, traveling along timelike geodesics.
We can extend coordinates defined in a neighborhood of an
inertial emitter to coordinates throughout the spacetime and
to I + using null generators. For example, suppose A emits
a null ray at proper time τA = 0 in a direction given in local
coordinates by the angular coordinates (θ, φ), or equivalently
the stereographic coordinate ζ. Any point at finite distance
along that ray can be assigned coordinates (u, r, ζ), where
u = τA is the retarded time and r is an affine parameter along
the geodesic—in Minkowski spacetime, we can think of this as
the distance between the emitter and that point as measured in
the frame of the emitter. The future limit of the null ray will
represent a unique point on I +; we typically assign that point
the coordinates (u, ζ), dropping r because it will, of course,
be infinite. Continuing in this way for all directions, emitter
A can provide coordinates for the entire null cone N and, in
particular, the sphere S + given by the intersection of N with
I +.

Of course, coordinates can equivalently be constructed in the
same way by emitter B. The set of points S + will naturally
be the same in both cases; any relative rotation of the two
emitters will simply take one null ray into another, and a boost
leaves null rays invariant. But the coordinates labeling each null
ray—hence the coordinates labeling each point on S +—will
be different for the two systems whenever A and B are related
by any Lorentz transformation. We discuss the effect of these
transformations in Sec. II A.
But the Lorentz transformations only relate a subset of

possible emitters, and hence a subset of possible coordinate
systems on I +. In Minkowski spacetime, we are familiar
with translations as the remaining freedom relating coordinate
systems. However, a translation at finite radius has somewhat
surprising effects on the coordinates at I +. This is explained
more fully in Sec. II B. The conclusion will be that a translation
is equivalent to an offset of the retarded time u that depends on
direction, though in a simple way.
The surprising result of early studies [9, 10] was that the

familiar Lorentz and translation groups are not sufficient for
describing all of the asymptotic symmetries of asymptotically
flat spacetimes. It turns out that a focus on null cones in
Minkowski spacetime is too restrictive. Since we are only

prescribing the asymptotic behavior, we can disregard all but
a neighborhood of I +—which means that our null “cones”
need no longer look like cones, in the sense that the generators
need not meet at a point. In general, then, the simple angular
dependence of the offset of the retarded time u induced by
translations must be generalized to an arbitrary (smooth)
function of the angles. These transformations are referred to
as supertranslations. Together with the Lorentz group,1 these
form the complete BMS group, as discussed further in Sec. II C.

A. Rotations and boosts
We first confine ourselves to a single null cone, and the

corresponding sphere S + on I +, by considering emitters
with coordinate systems having identical origins but which
are related by elements of the Lorentz subgroup: rotations
and boosts. The situation is depicted in Fig. 1, where two
emitters give off null rays at the same spacetime event. It
is, of course, one of the fundamental conclusions of basic
special relativity that boosts take null rays to null rays. Thus,
the collection of all null rays (the null cone) originating at
a particular spacetime event will be invariant under boosts.
However, the coordinates assigned to the direction of a given
null ray within that collection will change under a boost. In the
sameway, a rotationmaps the null cone onto itself, while simply
changing the coordinates of individual rays. Our objective in
this section, then, is to find how directions in one coordinate
system map to directions in another system under rotations and
boosts.
We begin with the simpler case, in which the coordinate

systems ofA andB are simply related by some known rotation,
with no relative boost. For a scalar field, if we suppose that
the field is known in frame A , we can find the value of the
field at any point rB in frame B by simply rotating that point
back to rA in A and evaluating the field there. However, for
spin-weighted fields, there is an additional complication. A
spin-weighted field at a point is defined with respect to the
basis of the tangent space to the sphere at that point—usually
represented by a complex tangent vector m. But if A and B
are rotated relative to one another, the tangent vector mA at
rA will also be rotated relative to the tangent vector mB at rB

by some angle λ, referred to as the “spin phase”. [This factor
λ is defined more precisely in Appendix C.] This situation is
depicted in Fig. 2, where a standard grid is shown in frame B
on the left-hand side, and a grid representing the same physical
points in the coordinates of A is shown in the center, along
with the spin phase.

A simple way of dealing with the complication of the spin
phase is described in Appendix B of Ref. [8]. The essential
idea is to evaluate spin-weighted fields directly in terms of a

1 To be precise, the supertranslations form a normal subgroup T of the BMS
group, and the factor group of the BMS group by T is precisely the Lorentz
group SO+(3, 1). However, the Lorentz group is not a normal subgroup.
Thus, the BMS group is the semi-direct product T o SO+(3, 1).

4
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FIG. 2. Transformation of a grid under Lorentz rotations. To decompose a spin-weighted field into spin-weighted spherical harmonics, the
values of the field are needed on the colatitude-longitude grid of frame B seen on the left-hand side. If the field is known in frame A , and B is
simply rotated relative to A , then the appropriate values can be found by evaluating the field in A on the grid shown in the center. The points on
the two grids represent the same physical points. Similarly if B is boosted relative to A (in this example with velocity 0.5c to the right and out
of the page), the values can be found by evaluating the field in A on the grid shown on the right-hand side. However, for spin-weighted fields,
the locations of the points alone are not sufficient; we also need to know the relative alignment angle between the tangent basis constructed by A
and the tangent basis constructed by B at each point. This angle is the spin phase λ described in the text, represented here by the size and color
of the marker at each grid point. The transformed grid positions and λ values are calculated using Eq. (2).

rotation operator. Thus, if the field value is needed at (θ, φ) in
B, this is represented by a rotation operator Rθ,φ, described in
Appendix B [of this paper]. Now, if frame B is obtained from
frame A by a frame-rotation Rf, then the value of the field can
be found by evaluating the field in A at Rf Rθ,φ. The spin phase
is automatically accounted for.

Similarly, we can find the value of the field inB if it is related
to A by a pure boost. We assume that B moves with respect
to A with three-velocity u, and use the conventions established
in the appendices to directly compare components in the two
frames. Suppose that A measures an angle ΘA between u and
the spatial component, r of some null direction. That is, we
have cos ΘA = u · r/ |u| |r|. Similarly B measures an angle ΘB

between u and the spatial component of that same null direction.
Note that the spatial subspaces will, of course, generally be
different for the two frames, except along the axis containing
u. Nonetheless, we can relate the angles measured in the two
frames, as shown in Appendix C, by the formula

tan
ΘB

2
= eϕ tan

ΘA

2
, (1)

where ϕ = artanh |u| is the usual rapidity parameter.
We can use this equation to transform a physical scalar field

measured in one frame into the other frame. Suppose that this
physical field is known onS + as a function of the null direction
measured by A , and we wish to know the value of the field in
some null direction rB as measured by B, noting that the angle
between u and rB is ΘB. We first take the direction r′B in the
frame of A having the same components with respect to the
basis ofA as rB has with respect to the basis ofB, even though
this is a different frame. We then rotate this vector in the u-r′B
plane until we arrive at a new vector rA that makes an angle
with u of ΘA , satisfying Eq. (1). The physical field measured
at I + by A in this direction is the same as the physical field
as measured by B, and is thus the result we sought.

Again, there are complications involved with spin-weighted
fields. However, as shown in Appendix C, these complications
are automatically dealt with when using the rotation-operator
approach described above. The scenario is illustrated in Fig. 2,
where the grid in B is shown on the left-hand side, and the
same grid of physical points is shown in the coordinate system
of A on the right-hand side. The basic idea is the same: the
grid points are simply moved around the sphere and associated
with some spin phase λ. Of course, in this case, the points
are moved in different ways, and λ is a different function of
position. Nonetheless, it is still beneficial to evaluate the field
in A directly in terms of the rotation operator. Here, however,
rather than the constant frame-rotation operator Rf accounting
for the difference between frames A and B, we need to use a
position-dependent rotation operator B′. Using the notation of
quaternions, we can write this operator as

B′(θ, φ) = exp


ΘB − ΘA

2
r′B × u∣∣∣r′
B
× u

∣∣∣

 , (2)

where r′B is the unit spatial vector in the (θ, φ) direction of
frame A , ΘB is the angle between that vector and u, and ΘA

is related to it by Eq. (1). This operator represents a rotation
through ΘB − ΘA about the r′B × u axis. In this case, the
field can be evaluated in A from B′ Rθ,φ. More generally, an
arbitrary element of the Lorentz group can be written as the
product of a frame rotation and a boost, B′ Rf, then the field
can be evaluated from B′ Rf Rθ,φ.
It is worth exhibiting the effect of a Lorentz transformation

in terms of stereographic coordinates. Though they are ill
suited to actual computations involving data, there are certain
advantages to using the stereographic formalism for theoretical
calculations. In particular, if the sphere S + is parametrized
by the stereographic coordinate ζA in frame A and by ζB in
frame B, then under a general Lorentz transformation the two

5
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FIG. 3. Effect of time translation on coordinates of I +. Here,
we see two different local coordinate systems extended to I +: A
and B represent the same emitter with the same spatial coordinates,
but different origins for the time coordinate. The two null cones
correspond to the two origins of the time coordinate. We see that
the time translation τB = τA − δτ affects the time coordinates on
I + isotropically—in fact, the transformation of the retarded-time
coordinate is simply uB = uA − δτ.

are related by2

ζB =
a ζA + b
c ζA + d

, (3)

where (a, b, c, d) is a collection of complex coefficients satisfy-
ing a d−b c = 1. Because of its compactness, the representation
in stereographic coordinates is useful for descriptions, and
occasionally for deriving results. We will encounter this for-
malism again in Sec. III, though the stereographic coordinates
themselves will not appear in the final results. For all other
purposes, quaternions and related formalism will be used
because of their computational superiority.
Finally, we also note that this transformation of a spin-

weighted field under Lorentz transformations is only part of
the story. More generally, different fields will mix with each
other because m remains neither tangent to the sphere nor even
purely spatial under a Lorentz transformation. For example, to
calculate the transformation of the Newman-Penrose quantity
ψ3 on I + we will also need a contribution from ψ4. And that
simple behavior is only a result of the peeling theorem; at finite

2 The stereographic coordinates are usually thought of as elements of the
complex plane augmented by adjoining the point at infinity, also known as
the Riemann sphere. In this form, the transformation shown here is usually
known as a Möbius transformation—an element of the Möbius group, which
is isomorphic to the group of conformal transformations of the sphere, the
projective special linear group PSL(2,C), and the proper orthochronous
Lorentz group SO+(3, 1) � SO+(1, 3).

radii all Newman-Penrose quantities could mix with each other
under a Lorentz transformation. This will be discussed further
in Sec. III B. Throughout the remainder of this section, however,
we will be able to focus solely on the movement of points at
which a field is evaluated.

B. Translations and supertranslations
Now, having understood the transformations that preserve the

light cone, we can move on to more general transformations—
though still considering only inertial emitters in Minkowski
space. In particular, we have translations of both time and
space. Generalizing these, we will be led to the encompassing
notion of supertranslations.
It is instructive to begin with the simple case of time

translations. As noted in the introduction to this section, every
point on a null cone originating at emitter A , at a proper time
of τA , is assigned the same retarded time uA = τA ; similarly
uB = τB. Now, if the emitters’ time scales are related by a
simple time translation such that τB = τA − δt, we clearly
have the simple relation between retarded-time coordinates
uB = uA − δt. This is depicted in Fig. 3. The notable feature
of this transformation is that it is isotropic; the change in the
retarded-time coordinate does not depend on the direction. This
seemingly trivial observation is important because it is not true
of space translations, and generalizing this notion will be key
to understanding the broader class of supertranslations.

We can now consider space translations as depicted in Fig. 4.
EmitterB is simply displaced fromA by a spatial vector δx but
the two are stationary with respect to each other. The null cone
NB emanates from the origin of B, uB = 0, and intersects
I + at two points on this diagram. Those same points of I +

are on null rays from two separate null cones of A —one in
the −x direction with retarded time uA 1 = − |δx|, the other in
the x direction emitted at uA 2 = |δx|. Of course, these two
points correspond to the two points of the sphere S 0 because
the three spatial dimensions have been collapsed to one in this
simple diagram. More generally, for any point on the sphere
S 2 the relationship between the retarded time coordinates is
uB = uA + δx · r.

We can combine these two transformation laws into a single
law for general spacetime translations:

uB = uA −
∑

`∈{0,1}

∑̀

m=−`
α`,m Y`,m(θ, φ), (4)

where

α0,0 =
√

4π δt, (5a)

α1,−1 = −
√

2π
3

(δx + i δy), (5b)

α1,0 = −
√

4π
3
δz, (5c)

α1,1 = −
√

2π
3

(−δx + i δy), (5d)
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FIG. 4. Effect of space translation on coordinates of I +. Here,
A and B represent emitters displaced relative to each other. A single
null cone emanates from B and intersects I + in two points. The
same points of I + are found on two separate null cones emitted by
A . Thus, a space translation has a non-isotropic effect on the retarded
time coordinates of I +. More generally, allowing for all three spatial
dimensions, the effect of a translation δx will transform the retarded-
time coordinate in a direction r as uB = uA + δx · r.

using δx = (δx, δy, δz). Note that the sum over ` is restricted
to {0, 1} here. This suggests the final generalization we need
to arrive at the BMS group: expanding the range of the sum
over ` to all positive integers, while retaining the condition that
α`,m = (−1)mᾱ`,−m to ensure that the retarded-time coordinate
remains real. More precisely, we construct a transformation of
the coordinates such that

u′ = u − α, (6)

where α is any real-valued function on the sphere. To simplify
later analyses, we can also add the conditions that α be square-
integrable and twice-differentiable. This transformation—
which encompasses spacetime translations—is referred to as
a supertranslation. It can be shown that supertranslations are
asymptotic symmetries of asymptotically flat spacetimes [9,
10], and thus are indeed members of the BMS group.

One way of thinking about supertranslations is to imagine
a network of observers located on a sphere surrounding the
source. Ideally, we could combine the signals detected by these
observers, but to do so we would need some idea of how their
time coordinates compared to each other; we would need to
have some synchronization between their clocks. But if we
now move the network to I +, such a synchronization becomes
impossible. We could supply a separate time offset to each
observer without changing the physics. Roughly speaking, a
supertranslation is just the limit of this direction-dependent
time translation where there is a different observer in every
possible direction.

Supertranslations present an interesting departure from the
other, more basic, types of transformations constituting the
familiar Poincaré group. If u is constructed as given above by
light cones emitting from an inertial world line A , then we
know (by construction) that the null rays generating a surface
of constant u meet in a common point—the vertex of the null
cone. On the other hand, if the function α has any ` > 1
components, the null rays generating a surface of constant u′,
as given by Eq. (6), do not meet in a common point. This is
why the notation changed in Eq. (6), dropping the subscripts
denoting the emitter, because in general we do not require the
retarded time to be constructed by an emitter.

As another, possibly more enlightening, consideration of this
peculiar nature of supertranslations, we can imagine light cones
originating at an emitter in an asymptotically flat spacetime
containing some nontrivial geometry. In the example shown
in Fig. 5, we see a simple cartoon of a merging binary. The
emitter A gives off two null cones, N1 followed by N2. The
rays given off to the right intersect I + as we would expect, N1
followed by N2. The rays given off to the left, however, behave
more erratically. Here, the first null ray interacts strongly with
the black holes and is delayed, arriving at I + after the null ray
that was emitted later. Obviously, coordinates constructed from
null cones of A will be “bad” coordinates, with singularities
resulting from caustics of the null rays.
So for general asymptotically flat spacetimes, it is simply a

bad idea to expect that the retarded time coordinate should be
constructible from null rays emitted from a timelike worldline.
Instead, we should only expect to have “good” or “nice”
coordinates in a neighborhood of I +. In fact, the motivation
for the original paper by Newman and Penrose that introduced
the ð operator [16] was to impose a condition on u in a
neighborhood of I + to fix the ` > 1 supertranslation freedom.
This is also (at least partially) the motivation for the “good cut”
construction [18], the “nice section” construction [32], and the
“regularized null cone cut” construction [33].

C. The complete BMS group

One final element is needed to complete the construction of
the BMS group. In Sec. II A, we assumed that the origins of the
two emitters coincided, but only looked at the effect of a boost
on the null cone emitted at that common origin. Obviously, at
later times, the null cones by which those emitters extend their
local coordinates to I + will not originate at the same event;
there will also be some translation involved. Thus, we expect
that the simple formula from the previous section u′ = u − α
must be modified in some way by the boost.

The situation is easily described pictorially, as in Fig. 6. The
origins of proper time for the observers coincide where their
paths cross. At some later time τB, emitter B constructs a null
cone NB. A simple exercise in special relativity shows that A
must emit a null ray in direction r at time τA = γ (1− u · r) τB

in order to reach the same point of I + as the null ray emitted
in that direction by B. Because we will encounter this factor

7
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FIG. 5. Null rays in complicated spacetimes. When the interior of
the spacetime is not Minkowski, we cannot expect to construct retarded
time coordinates globally based on null cones. The interior of this
diagram is a rough cartoon, in which the shaded region represents the
space between two merging black holes. Some of the null generators
from any emitter in this spacetime must pass through this region, and
may be affected in erratic ways. Given null rays near I +, we cannot
say whether or not they originated at the same point. Clearly, then,
it is too much to demand that general asymptotically flat spacetimes
must have their coordinates given by a construction like the one given
for Minkowski space. Instead, we simply place requirements on the
compactified spacetime in a neighborhood of I +. Conversely, it is
too much to ask that a “nice” coordinate system on I + correspond to
null cones that meet at one spacetime event in general. This motivates
our intuitive acceptance of supertranslations.

frequently, we define

k B
1

γ (1 − u · r)
. (7)

As shown in Appendix D, this k factor is also the conformal
factor of a boost appropriate to the spherical metric. In this
case, where the spatial origins coincide at τA = τB = 0, we
have the transformation law u′ = k u.
Finally, we can combine this with the supertranslation of

Eq. (6) and the angular effects of the Lorentz transformation
given by Eq. (3) to find the general BMS transformation of
coordinates on I +, representing an initial supertranslation,
followed by a Lorentz transformation:

u′ = k (u − α) (8a)

ζ′ =
a ζ + b
c ζ + d

. (8b)

Again, (a, b, c, d) is a collection of complex coefficients satis-
fying a d − b c = 1, representing the Lorentz transformation,
and α is an arbitrary real-valued square-integrable and twice-
differentiable function on the sphere. The implementation of
these transformations to be described below will use Eqs. (1)

i0

I +

i+

I +

i0

I −

i−

I −
AB

NA 1

NA 2

NB

FIG. 6. Effect of boost on coordinates of I + with u , 0. Here,
A and B represent emitters related by a simple boost. Though their
origins coincide, at some later time τB emitter B constructs the null
cone NB. It is not hard to solve for the time τA 1 = γ(1 − v)τB

at which emitter A must construct a null cone to overlap with the
right-going null ray of NB. We can similarly solve for the time
τA 2 = γ(1 + v)τB at which emitter A must construct a null cone to
overlap with the left-going null ray of NB.

and (2) to represent Lorentz transformations rather than the
stereographic coordinates shown here.

It is also important to note that the transformation is constant;
a, b, c, d, k, α are all independent of time. This may seem to
give us a static transformation—though we know that a boost
should, in some sense, result in a time-dependent translation.
To simplify matters, we assume no rotation and α = 0, leaving
only a boost. The transformation law for time in this case
might be rewritten as γ u′ = u + γ u · r u′. We can interpret
this as a rescaling of the time coordinate, in agreement with
the standard time dilation, along with a translation by γ u′ u,
much as we might expect. Interestingly, it is awkward to
express this translation as being proportional to u [e.g., by
expanding the factor of k as spherical harmonics in Eq. (8a)],
because this would imply that a boost gives rise to a time-
dependent supertranslation. This suggests a minor subtlety
of nomenclature when defining the supertranslation, due to
noncommutativity of the boost and supertranslation.
In this section, we have built up the BMS group through

heuristic arguments in order to come to an intuitive and
pedagogical understanding of how coordinates change under
a BMS transformation—though of course, the same result is
also obtained through more rigorous methods [9, 10, 15]. In
particular, Sec. IV C of Ref. [15] describes the associated
Lie algebra bms. In short, the rotations and boosts correspond
to the standard generators of infinitesimal (Lorentz) rotations
in a plane of Minkowski space, while the generators of
supertranslations are given by the basis Y`,m ∂/∂u. We will

8
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not find this infinitesimal presentation directly useful, however,
because it is not easily applicable to finite transformations.
Moreover, we will see in Sec. III B that these operators only
account for the change in how coordinates label points, but not
changes in the waveforms themselves.

III. ASYMPTOTIC FLATNESS AND
TRANSFORMATIONS AT A POINT

Now, having seen the effects of the BMS transformation
on coordinates on I +, we need to understand the effects on
waveforms measured at I +. We begin, in this section, by
examining the effect on the waveform at a single point, where
the transformation leaves that point fixed. This will be extended
in Sec. IV by allowing the point to vary, which will involve
the relatively simple task of evaluating the known function at
different points—in practice, requiring mostly interpolation
and other bookkeeping.

Though we will not yet vary the coordinates of our selected
point, the coordinates of neighboring points will change.
For our purposes, a waveform measures some piece of the
differential structure of spacetime. But waveforms are not
true scalars, in the sense that they are not invariant under
coordinate transformations—in fact, they are inherently defined
with respect to coordinates. More precisely, the tetrad with
respect to which they are constructed is defined in terms of
coordinates. It is, of course, possible to perform a coordinate
transformation while leaving the tetrad fixed. But this is not
relevant; waveforms expressed in different coordinate systems
use different tetrads. Therefore, a BMS transformation that
changes the coordinates of nearby points should also change
the waveform at the given point.
To make these ideas precise, we need to be more specific

about our representation of I +, and the spacetime in a
neighborhood of I +. It will then be a relatively simple matter
to calculate the transformations of standard curvature quantities.
The reader who is willing to take these results on faith may
simply refer to Eqs. (17), (19), (21), and (23), and otherwise
skip this section.

A. Asymptotically flat spacetime
Numerous formulations describe the basic idea of asymptotic

flatness, most prominently developed by Penrose [30]. For defi-
niteness, we will follow the development by Moreschi [12, 34].
The essential idea is to begin with a physical spacetime (M,Γab),
and identify it with a portion of a model spacetime (m, γab) rep-
resenting the asymptotic completion of the physical spacetime.
Here and in the following, to simplify notation, quantities in the
physical spacetime will be represented by uppercase characters,
while quantities in the asymptotic spacetime will be represented
by lowercase.3

3 Indices, of course, will not be included in this distinction. Instead, lowercase
indices will denote tensor indices, while uppercase indices will denote spinor
indices, as usual.

We begin with the physical spacetime (M,Γab), which has
Weyl spinor (the spinor form of the standard Weyl tensor)
ΨABCD. We impose the assumption of (future) asymptotic
flatness by requiring the existence of another spacetime (m, γab),
with boundaryI + such that as topological spacesI + = S 2×R
and M = m \I +. In particular, for any point P ∈ M we have
a point identified as P ∈ m, so that we can interchangeably
describe any function at a point not on I + as being defined
either on M or m. We further assume the existence of a real-
valued function ω that is continuous on m and smooth on M,
and satisfies the following conditions:

1. ω|M > 0.

2. ω|I + = 0.

3. dω|I + , 0.

Given this function, the spacetimes are also required to obey
the following conditions:

4. γab|M = Γab ω
2
∣∣∣
M .

5. At every point of I +, there ends a future-directed null
geodesic of m.

6. In some neighborhood ofI +, there exist quantities r̂ and
r̃ on m such that the Riemann tensor of (M,Γab) satisfies

Rabc
d = f (ω) r̂abc

d + r̃abc
d, (9)

where

(a) d f /dω > 0,
(b) limω→0 f = 0,
(c) r̂ is regular at I +, and
(d) r̃ goes to zero faster than f as ω→ 0.

The last condition is to be understood componentwise, with
respect to an orthogonal tetrad of (m, γab) that is regular at I +,
like the one constructed below in Eqs. (12). We also define
a spinor on M by ψABCD B ω−1 ΨABCD, which we can extend
continuously to I +. Note, however, that r̂ and ψ need not be
the Riemann tensor and Weyl spinor of (m, γab).
It is possible [10, 12, 15] to choose coordinates (u, θ, φ) on

I +, where u labels a slice of I + with topology S 2 and (θ, φ)
are the standard coordinates of the unit sphere. The latter are
frequently expressed—at least for theoretical work—as the
usual stereographic coordinate ζ and its complex conjugate
ζ̄ [35]. These coordinates can be extended into a neighborhood
of I + by taking ω as an additional coordinate along future-
directed null geodesics, where (u, θ, φ) labels the geodesics.
Moreschi [12] showed that, up to irrelevant gauge freedom, the
ω function is related to the luminosity distance rL by

ω =
1
rL

+ O


1
r3
L

 . (10)

These coordinates are essentially what are known as Bondi
coordinates, and allow the metric to be put in a particularly

9
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simple form [9, 10]. This form of the metric is asymptotically
invariant under BMS transformations.
An orthonormal spin dyad [11, 35–38] (OA, IA) and its

asymptotic counterpart (oA, ιA) can also be defined related to
these coordinates, such that we have orthonormal tetrads

la B σa
AA′ oA oA′ , La B σa

AA′ OA OA′ , (11a)
ma B σa

AA′ oA ιA
′
, Ma B σa

AA′ OA IA′ , (11b)
m̄a B σa

AA′ ι
A oA′ , M̄a B σa

AA′ IA OA′ , (11c)
na B σa

AA′ ι
A ιA

′
, Na B σa

AA′ IA IA′ , (11d)

where σa
AA′ are the Infeld-van der Waerden symbols, and at

leading order in ω we have

la = (du)a ' La, (12a)

ma = −
√

2
1 + ζ ζ̄

(dζ̄)a ' ωMa, (12b)

m̄a = −
√

2
1 + ζ ζ̄

(dζ)a ' ω M̄a, (12c)

na = −(dω)a ' ω2 Na. (12d)

We also denote by

Ð ' ω ð (13)

the spin-raising differential operator introduced (at finite radius
as ð) by Geroch, Held, and Penrose [37].4
This completes the basic framework we use to describe

asymptotically flat spacetimes, allowing us to understand the
asymptotic behavior of the physical fields. Next, we will show
how a BMS transformation alters this framework, and use that
result to find the changes in curvature quantities expressed
within this framework.

B. Transformations
Equation (8) describes the general BMS transformation.

However, this transformation is only defined on I +. Because
the curvature quantities we are interested in measure the dif-
ferential structure of spacetime, understanding those quantities
requires understanding the transformation in a neighborhood
of I +. Moreschi [34] found the general transformation to first-
order in ω that preserves the leading-order Bondi form of the

metric:

ŭ = k (u − α) − ω ðu
′ ð̄u′

k
, (14a)

ζ̆ =
a ζ + b
c ζ + d

− ω ðu
′ ð̄ζ′ + ðζ′ ð̄u′

k
, (14b)

ω̆ = kω. (14c)

Here, u′ and ζ′ are the leading-order terms in their respective
equations—also given by the standard BMS transformation of
Eq. (8). This transformation is defined in a neighborhood of
I +, so we can evaluate the differentials in Eqs. (12) and take
the limit asω→ 0, to find the transformation laws for the tetrad
and infer the effects on the spinor basis:

o′A =
ei λ/2

√
k

(
oA − ðu

′

k
ιA

)
, (15a)

ι′A =
e−i λ/2

√
k
ιA. (15b)

Here, λ is the spin phase described in Sec. II A and Appendix C.
Because the curvature quantities are defined with respect to
these spinors and their spatial dependence, this is enough to
calculate the transformation laws of the curvature quantities.

The first and simplest set of curvature quantities we will need
is the collection of Newman-Penrose scalars. The following
are the definitions of these scalars on I +, along with their
leading-order relationship to the corresponding finite-radius
scalars:

ψ0 B ψABCD oA oB oCoD ' ω−5 Ψ0, (16a)
ψ1 B ψABCD oA oB oCιD ' ω−4 Ψ1, (16b)
ψ2 B ψABCD oA oB ιCιD ' ω−3 Ψ2, (16c)
ψ3 B ψABCD oA ιB ιCιD ' ω−2 Ψ3, (16d)
ψ4 B ψABCD ι

A ιB ιCιD ' ω−1 Ψ4. (16e)

Because ψABCD is a geometric object, it does not transform
under a change of coordinates, so the transformation law for
these scalars is given simply by replacing the spinors oA and ιA
with their transformed values, which leads to a simple hierarchy
with a basic combinatorial pattern:

ψ′0 =
e2iλ

k3

ψ0 − 4
ðu′

k
ψ1 + 6

(
ðu′

k

)2

ψ2 − 4
(
ðu′

k

)3

ψ3 +

(
ðu′

k

)4

ψ4

 , (17a)

4 Note that the operator ðNP originally introduced by Newman and Pen-
rose [16] is generally different from the operator ðGHP ≡ Ð introduced
by Geroch, Held, and Penrose, in that only the latter has well defined

transformation behavior under boosts. There is also a discrepancy in the
normalization such that ðNP =

√
2 ðGHP for scalar functions.
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ψ′1 =
eiλ

k3

ψ1 − 3
ðu′

k
ψ2 + 3

(
ðu′

k

)2

ψ3 −
(
ðu′

k

)3

ψ4

 , (17b)

ψ′2 =
1
k3

ψ2 − 2
ðu′

k
ψ3 +

(
ðu′

k

)2

ψ4

 , (17c)

ψ′3 =
e−iλ

k3

[
ψ3 − ðu

′

k
ψ4

]
, (17d)

ψ′4 =
e−2iλ

k3

[
ψ4

]
. (17e)

The simplicity of this result is surprising because the Newman-
Penrose quantities Ψn represent the components of a tensor,
so at finite radius all of these components would mix with
each other. However, in the limit as I + is approached,
the “peeling-off property” [10, 15, 30] of asymptotically flat
spacetimes comes into play, as seen in the right-hand column
of Eqs. (17), so that the pattern emerges with lower-index
quantities (e.g., ψ0) being irrelevant to the transformed values
of higher-index quantities (e.g., ψ′4). On the other hand, given
this peeling behavior, it may also seem surprising that effects
from the higher-index quantities don’t overwhelm the lower-
index scalars. The reason is that at finite radii ð is replaced
by ω−1 Ð, and since each higher-index scalar appears in the
expressions for lower-index scalars accompanied by powers of
ð, the resulting factors of ω−1 are exactly enough to cancel the
dominance of the higher-index scalars—to leading order in ω.
The most interesting remaining quantity is the spin coeffi-

cient representing the shear:

σ B oA oB ῑB
′ ∇BB′oA. (18)

Because of the derivative, this is somewhat more difficult to
evaluate than the Newman-Penrose scalars. However, after the
suitable limit has been taken, we arrive at the simple formula [9,
10, 12]

σ′ =
e2iλ

k

[
σ − ð2 α

]
. (19)

This is consistent with Eq. (17e) and the asymptotic relation

ψ4 = − ∂
2

∂u2 σ̄ (20)

because ∂/∂u′ = 1
k∂/∂u, and the BMS transformation is

constant, so that the λ, k, and α functions are independent
of u. The shear is also related to the more commonly used [39]
strain of the transverse-traceless metric perturbation5 h = σ̄,
which implies the transformation law

h′ =
e−2iλ

k

[
h − ð̄2 α

]
. (21)

5 It is worth pointing out that this relation is only true for the asymptotic fields.
Trivially, we have h ' r H, whereas σ ' r2 Σ. That is, the two finite-radius
fields behave differently in the limit r → ∞. But terms at higher relative
order in 1/r may differ more substantially.

Similarly, the Bondi news function [9, 10, 40–42] satisfies

N ' n = − ∂
∂u
σ̄, (22)

which implies the transformation law

n′ =
e−2iλ

k2 n. (23)

We note, however, that these relationships betweenψ4,σ, h, and
n are only valid asymptotically, and only in Bondi coordinates;
more generally, the relationships would be more complicated.
The expressions given here for the transformations of the

waveform quantities are fairly simple, and can all be constructed
given the waveforms and a choice of transformation—as
described by the functions k, λ, and α. However, these
expressions hide a complication: all of the quantities involved
are functions of position. To actually implement a BMS
transformation, we need to know how to express these functions
in terms of the coordinates, both old and new. This requires
combining the ideas of the present section with those of the
previous section.

IV. IMPLEMENTATION OF BMS
TRANSFORMATIONS OF WAVEFORMS

We assume that the field is known in some observer’s
frame O , as a function of that observer’s Bondi coordinates
throughout some portion of I +. A second observer O ′ is
related to the first by some known BMS transformation as in
Eqs. (8). In particular the frame of O ′ can be obtained from O
by an initial supertranslation α, followed by a frame rotation
Rf, followed by a boost of velocity u. Our objective will be to
find the field as decomposed into modes of a spin-weighted
spherical-harmonic expansion, at a series of discrete retarded
times {u′i′ }.
The first step is to find the mode weights of all quantities

we will need in frame O . At the most basic level, we need the
modes of the waveform in question. We denote this waveform
by f , which may represent h, ψ4, or any of the other quantities
discussed in Sec. III B. A waveform f of spin weight s will
be decomposed into modes of the spin-weighted spherical
harmonic expansion as

f (u, θ, φ) =
∑

`,m

f `,m(u) sY`,m(θ, φ), (24)

11
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where the relevant data are the modes f `,m(u). In practice, the
sum over ` extends up to some maximum integer `max.
If f represents a Newman-Penrose quantity ψn with n < 4,

we also need all the higher-index Newman-Penrose quantities
as shown in Eqs. (17), as well as the quantity ðu′/k. For σ
and h, we will need ð2α (or its complex conjugate). Given
an arbitrary function w of spin weight s, we can calculate the
modes of the differentiated quantity ðw in terms of the modes
of the original function as6

(
ðw

)`,m
=


0 ` < |s + 1| ,√

(`−s)(`+s+1)
2 w`,m otherwise.

(25)

Similarly, we have

(
ð̄w

)`,m
=


0 ` < |s − 1| ,
−

√
(`+s)(`−s+1)

2 w`,m otherwise.
(26)

We will assume that the supertranslation α is given directly in
terms of its modes. This makes it trivial to compute either ð2α
or ð̄2α, noting that α has spin weight s = 0, while ðα has spin
weight s = 1 and ð̄α has spin weight s = −1. On the other
hand, to compute ðu′/k = u ðk/k − ðα, we need to know k in
terms of its spherical-harmonic modes. This could be done
analytically with exact expressions involving Wigner’s D and
3- j functions. For practical purposes, a more efficient approach
is to evaluate k as given in Eq. (7) on a series of grid points,
and feed the results into software that computes the modes, as
discussed below.

Now, given the modes of the various fields at some discrete
set of times {ui}, we need to be able to interpolate as a
function of time, because slices of constant u will not typically
correspond to slices of constant u′. Of course, because of
the direction-dependence of these time slices, interpolation
of the mode weights themselves is not possible in general.
Instead, we must transform the modes into a series of points
in physical space, interpolate the values of the field at each
spatial point to the appropriate time, and then transform
back to modes. The current state-of-the-art numerical code
for transforming between physical space and modes is the
spinsfast package [28, 29]. The points in physical space
used by this package form an equiangular grid in colatitude-
longitude:

θ′j =
π j

Nθ − 1
for j ∈ {0, 1, . . . ,Nθ − 1}, (27a)

and

φ′k =
2 π k
Nφ

for k ∈ {0, 1, . . . ,Nφ − 1}. (27b)

6 These equations differ from the similar Eq. (3.22) of Newman and Pen-
rose [16] and Eqs. (2.7) of Goldberg et al. [43] by the factor 1/

√
2 here. As

noted previously, this is because the operator here is—up to the factor given
in Eq. (13)—identical to the one given by Geroch, Held, and Penrose [37],
which intentionally introduced the 1/

√
2 factor.

Note that the poles, θ′j = 0 and π are each covered by Nφ pairs of
(θ, φ) values, but each such pair represents a different alignment
of the tangent basis at that point. For the sake of accuracy, it is
best to choose Nθ > 2`max and Nφ > 2`max [29]. In practice, it
seems to be sufficient to simply choose Nθ = Nφ = 2`max+1. Of
course, this grid is given in the frame ofO ′; since the waveform
is given in the frame of O , we need to know the points in
that frame corresponding to the points {(θ′j, φ′k)}. Moreover, a
spin-weighted field in O ′ is defined with respect to the tangent
vectors to the sphere, canonically defined in terms of the (θ′, φ′)
coordinates. Thus, we also need to know what these tangent
vectors correspond to in the basis of O .

Adapting the discussion of Sec. II A, we begin by defining
the rotor (in quaternion notation)

R′j,k B eφ
′
k z/2 eθ

′
j y/2, (28)

where x, y, and z are the orthonormal basis vectors of O . Note
the mixing of coordinates from O ′ with basis elements of O .
We then define the unit vector

r′j,k = R′j,k z R′−1
j,k , (29)

which points in the direction (θ′j, φ
′
k) as measured by O , and

define the angle

Θ′j,k B arccos
u · r′j,k
|u| |r′j,k |

. (30)

The equivalent angle in the unprimed frame is

Θ j,k = 2 arctan
e−ϕ tan

Θ′j,k
2

 , (31)

where ϕ = artanh |u| is the rapidity. Then, we can define

B′j,k B exp


Θ′j,k − Θ j,k

2

r′j,k × u∣∣∣∣r′j,k × u
∣∣∣∣

 , (32)

unless Θ′ = Θ = 0 or π, in which case we simply have B′j,k = 1.
Finally, we arrive at the required rotor

R j,k B B′j,k Rf R′j,k. (33)

The physical point labeled by (θ′j, φ
′
k) in O ′ is given by

r j,k = R j,k z R−1
j,k (34)

in O , while the complex tangent vector m′j,k at that point in O ′

corresponds to the vector

mj,k = R j,k
x + i y√

2
R−1

j,k (35)

in O . The spin phase is determined by the relative rotation
between mj,k as given here and the natural canonical m vector
given at the same point by O . This was depicted in Fig. 2, and
is explained in more detail in Appendix C.
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More directly, we can evaluate any field, along with its
appropriate spin-phase factor, by evaluating the mode-weighted
spin-weighted spherical harmonics directly as functions of R j,k.
As detailed in Appendix B of Ref. [8], this is made possible
by redefining the spin-weighted spherical harmonics to be
functions of a single unit-quaternion argument in terms of
Wigner’s D matrices as7

sY`,m(R) B

√
2` + 1

4π
D

(`)
−s,m(R). (36)

Thus, for example, when transforming the strain h, part of the
right-hand side of Eq. (21) can be calculated very simply as

e−2iλ
[
h − ð̄2 α

]∣∣∣∣
θ′j,φ

′
k

=
∑

`,m

[
h`,m −

(
ð̄2α

)`,m]
−2Y`,m(R j,k).

(37)
Note that no additional manipulation is required to find the spin-
phase factor e−2iλ; it is implicitly calculated by −2Y`,m(R j,k).
There is, however, the remaining factor of 1/k to calculate.
Including this factor is best done by evaluating this factor as
[compare Eq. (7)]

1
k

= γ
(
1 − u · r j,k

)
, (38)

then multiplying this result by the result of Eq. (37). In a
similar way, other waveforms can be computed as necessary by
pointwise combination of the relevant quantities given in the
transformation laws of Sec. III B.

Proceeding in this way for all values of the discrete indices,
we obtain the waveform values f ′(u′i, j,k, θ

′
j, φ
′
k), where

u′i, j,k = k(θ′j, φ
′
k)

[
ui − α(θ′j, φ

′
k)
]
. (39)

Next, we simply need to interpolate these values in each
direction to a corresponding set of times {u′i′ } representing
some target time slices of observer O ′. There is a minor
ambiguity here, in that this set of times is somewhat arbitrary. In
practice, the input data may be sampled unevenly in time—for
example, to provide better resolution of the merger-ringdown
portion of a waveform, while reducing the amount of data
representing the slow inspiral. It would presumably be best to
retain this sampling in the transformed data set. To a reasonable
approximation, this can be done by assigning

u′i =
1
γ

(
ui − α0,0/

√
4π

)
, (40)

7 This relationship was originally noted by Goldberg et al. [43], though
they essentially restricted the possible rotations to rotors of the form
R = eφ z/2 eθ y/2. The problem with such a limited interpretation is that
the spin-weighted spherical harmonics so defined do not transform among
themselves under rotations, and are incapable of expressing the correct spin-
phase behavior. By expanding the meaning of the spherical harmonics in
this way we eliminate those problems, while maintaining agreement with
the original definition and standard usage.

which is the value of u′ for which the average value of u over the
sphere (on the slice of constant u′) is precisely ui. To clarify the
notation, {u′i, j,k} is the set of time coordinates already present
in the data, whereas {u′i} is the set of times to which we might
wish to interpolate.

However, we must deal with a subtlety first. In some
directions, interpolation to some of the values of u′i given by
Eq. (40) would require data at times earlier than u0 or later than
uNu−1. This is because we have simply used the average value
to derive Eq. (40), while neglecting the direction dependence.
To avoid extrapolation, then, we must restrict the set {u′i} to the
range of times u′min ≤ u′ ≤ u′max, where

u′min = max
j,k

u′0, j,k, (41a)

u′max = min
j,k

u′Nu−1, j,k. (41b)

We denote the resulting subset by {u′i′ }, which is the final set
of times to which we will interpolate the data. The index i′ is
used to indicate that it comes from a slightly different indexing
set than the index i used for the input data.
Though the construction of {u′i′ } suggested here is by no

means unique, we will always be limited to using a proper sub-
set of the input data, whenever the boost and supertranslation
components with ` > 0 are nontrivial, because some of the
input time steps will correspond to slices of u′ for which the
input data represent an incomplete sphere, and thus insufficient
data for computing spin-weighted spherical-harmonic modes.
Nonetheless, this choice of {u′i′ } is well defined and easy to
implement, it roughly preserves the sampling of the input data,
and it uses the input data to nearly the fullest possible extent.
Finally, for each value of (i′, j, k), we interpolate the wave-

form values f ′(u′i, j,k, θ
′
j, φ
′
k) in time to f ′(u′i′ , θ

′
j, φ
′
k). For each

i′, we then feed these values into a software package like
spinsfast to obtain the modes as measured by observer O ′,
thus arriving at our goal: the set of modes f ′`,m for each time
u′i′ . The entire transformation is implemented in the python
module scri, which is included in the supplemental materials
provided with this paper [24].

V. EFFECTS OF TRANSFORMATIONS ON
WAVEFORMMODES

It will be instructive to observe the effect of typical transfor-
mations on waveform modes. Because of the peculiar nature of
I + and the highly nonlinear behavior of waveforms under these
transformations, we will not be able to rely on any intuition for
transformations of multipole moments that we may have gained
in studying electromagnetism, for example. However, we can
take advantage of the fact that mode decompositions are linear,
so that it is sufficient to observe the transformation of a single
mode at a time. In particular, we will define input waveforms
having a single nonzero mode. For further simplicity, that
mode will behave as a pure phase rotation at constant angular
velocity. We can then transform this model waveform, and see
how the power in the chosen mode leaks out into other modes.
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TRANSFORMATIONS OF ASYMPTOTIC GRAVITATIONAL-WAVE DATA

Because rotations are already well understood—in fact, they
behave identically to the more familiar rotations of spin-zero
spherical harmonics—we will focus here only on translations
and boosts.

To be precise, let us choose the nonzero mode (`nz,mnz) and
define our model waveform by its modes as

ψ`,m4 (u) = δ`,m
`nz,mnz

eiω u. (42)

Here, ω represents an angular velocity. For purposes of
illustration, let us choose ω = 0.3 1

M , which is a typical value
for the (`,m) = (2, 2) mode of comparable-mass binaries just
before merger, where M is the total mass of the system.

As a first, example, we see the effect of translations in Fig. 7.
The four cases shown here correspond to (`nz,mnz) = (2, 2) or
(`nz,mnz) = (4, 2), and translations of α = 0.1M sin θ cos φ or
α = 0.1M cos θ. These are displacements of 0.1M in the x and
z directions, respectively, corresponding to typical displace-
ments found in the publicly available catalog of waveforms
from the SXS collaboration [21], as will be discussed further in
Sec. VI. The z displacement evidently has a very simple effect
on the modes; power is transferred to all other ` modes with
m = mnz, where the transferred power goes roughly as ε |`−`nz |
for some parameter ε ≈ 0.01. This simplicity is a result of the
fact that the waveform of Eq. (42) is effectively rotating about
the z axis, so a translation along that direction preserves a great
deal of the symmetry of the system. A similar but far more
complicated pattern can be seen in the x translations, where
now the power is transferred into essentially all modes. And
while there is a similar dependence in `—where the coupling
seems to get smaller exponentially with |` − `nz|—there is a
more complicated dependence on m.

These patterns can be understood by looking at the effect of a
translation on the time coordinate. Kelly and Baker [20] pointed
out that the effect on ψ4 of a supertranslation α (without any
accompanying boost or rotation) can typically be approximated
by the first few terms of the Taylor-series expansion8

ψ′4(u′, θ′, φ′) =

∞∑

j=0

1
j!

(
−α(θ, φ)

∂

∂u

) j

ψ4(u, θ, φ), (43a)

8 The term −α ∂/∂u in Eq. (43a) is the generator of the supertranslation α,
as described at the end of Sec. II C and in Ref. [15]. Thus, this equation
is simply the exponentiation of that element of the Lie algebra bms, which
gives us the corresponding element of the Lie group BMS. It must be noted,
however, that such exponentiation is not typically a sufficient method for
transforming waveform data. For example, Eq. (17e) shows that we generally
also have a factor e−2iλ/k3 in the transformation law. In our particular case,
this factor happens to be 1, which is why exponentiation works. More
generally, the generator of a boost would not supply the correct factor of
k. But even for supertranslations, exponentiation would fail to correctly
transform other quantities. For example, in transforming h [Eq. (21)], the
term −ð̄2α would not appear. A more extreme example is provided by ψ0
[Eq. (17a)]; action of the bms generators would fail to supply the terms ψ1
through ψ4. Moreover, because of the infinite nature of this expansion, it
may be useful for gaining qualitative insight into the approximate coupling
between modes, but it is not useful for accurate implementation of these
transformations.

where (θ, φ) = (θ′, φ′). With Eq. (42), this specializes to

ψ′4(u′, θ′, φ′) =

∞∑

j=0

1
j!

(
− iωα(θ, φ)

) j
−2Y`nz,mnz (θ, φ) eiω u.

(43b)
In each case shown in Fig. 7, α is an ` = 1 function, and
thus couples with −2Y`nz,mnz to progressively higher orders—and
hence at larger “distances” from (`nz,mnz), in some sense—with
increasing values of the summation index j. On the other hand,
these couplings also include progressively higher powers of ω
times the amplitude of α, roughly 0.03, and thus progressively
smaller amplitudes. Besides the factor of 1/ j!, there are further
geometric factors involved in the normalization of the spin-
weighted spherical harmonics, which means that the ratios
of power in the various modes do not follow a particularly
simple pattern, but it is clear that these considerations lead
to the correct qualitative behavior and—when accounting for
the factorial and geometric factors—the correct quantitative
behavior.
The nonzero input waveform mode in each of these cases

has amplitude 1. Of course, the effect of mode mixing is linear,
so the plots in Fig. 7 should essentially be read as fractional
coupling between the modes. For example, in Fig. 7a, we see
that a little more than 1% of the power in the (2, 2) mode is
mixed into the (2, 1) and (3, 3) modes. But in many cases, the
physical (2, 2) mode is strongly dominant over either of these
modes, so that the expected ratio of amplitudes would be less
than 1%. In such cases, the measured (2, 1) and (3, 3) modes
would actually be primarily made up of power leaking from the
(2, 2) mode. And while we might typically expect the frequency
of the (2, 1) mode in real binary systems to be roughly 1/2 that
of the (2, 2) mode, and the frequency of the (3, 3) mode to be
roughly 3/2 that of the (2, 2) mode, the frequency of the mixed
component would be nearly the same as that of the (2, 2) mode.
Taken together, these features can provide a signature of mixing
due to transformations.
As we have seen, translations comprise a special case of

supertranslations having ` = 1. Similar behavior results from
supertranslations with ` > 1, except that the coupling between
modes is more extensive. For example, if the original waveform
has nonzero mode (`nz,mnz) = (2, 2), a supertranslation
with nonzero (`,m) = (2, 0) component couples power at
a roughly equal level into both the (3, 2) and (4, 2) modes
of the transformed waveform. It should also be noted that
supertranslations with ` > 1 can directly alter the value of,
for example, the strain waveform h through the term −ð̄2α in
Eq. (21). The operator ð̄2 eliminates the modes of α with ` ≤ 1,
as it must for a field of spin weight s = −2.
We can make a similar comparison of waveform modes

before and after a boost. Figure 8 shows essentially the same
thing as Fig. 7, except that instead of translations, the waveforms
have been subjected to boosts. The speed of the boost is
β = 0.01c in each case, directed in either the x or z direction.
The most obvious feature here is the remarkable similarity
between Figs. 7 and 8. The coupling due to translation falls off
more quickly with increasing distance from the dominant mode,

14



TRANSFORMATIONS OF ASYMPTOTIC GRAVITATIONAL-WAVE DATA

0 1 2 3 4 5 6 7 8
10−15

10−12

10−9

10−6

10−3

100

`

M
od

e
am

pl
itu

de
ψ′4 − ψ4

ψ4

(a)

0 1 2 3 4 5 6 7 8
10−15

10−12

10−9

10−6

10−3

100

`

M
od

e
am

pl
itu

de

ψ′4 − ψ4

ψ4

(b)

0 1 2 3 4 5 6 7 8
10−15

10−12

10−9

10−6

10−3

100

`

M
od

e
am

pl
itu

de

ψ′4 − ψ4

ψ4

(c)

0 1 2 3 4 5 6 7 8
10−15

10−12

10−9

10−6

10−3

100

`

M
od

e
am

pl
itu

de

ψ′4 − ψ4

ψ4

(d)

FIG. 7. Mode transformations under translation. These plots show the changes to the amplitudes of the waveform modes when the system
is translated. The modes are grouped by ` value, with individual m values increasing from −` on the left to ` on the right in each group. In
each case, the initial waveform ψ4 is made up of a single mode, as in Eq. (42). In the two upper panels, (a) and (b), the nonzero mode is
(`nz,mnz) = (2, 2); in the two lower panels, (c) and (d), the nonzero mode is (`nz,mnz) = (4, 2). These waveforms are then transformed to ψ′4 by a
translation of magnitude 0.1M. The panels on the left, (a) and (c), depict a translation in the x direction (the same translation in the y direction
would look almost identical here); the panels on the right, (b) and (d), depict a translation in the z direction. We see that a translation in the x
direction tends to move power into modes with a wide variety of (`,m) values, whereas a translation in the z direction only moves power into
modes with the same m values as the original waveform. This is a result of the fact that the simulated waveform is effectively rotating about the z
axis, so a z translation preserves a certain amount of symmetry, whereas the x translation violates that symmetry. As explained in the text, the
power leakage is roughly given by powers of the product of displacement and frequency, which is roughly 0.03 in this case. The frequency
was chosen to be typical of frequencies seen just prior to the merger stage of comparable-mass binaries. Earlier during the inspiral portion, the
frequencies will be an order of magnitude smaller, and the size of these effects correspondingly smaller.

but the general patterns are very similar. The time has been
chosen as u = u′ = 0, so that only the boost itself factors into
this transformation. This means that the translation induced by
the boost, as discussed near the end of Sec. II C, is zero. In this
case, only the movement of the points around the sphere—as
depicted in Fig. 2—comes into the transformation. In particular,
the transformation law given by Eq. (17e) is

ψ′4(0, θ′, φ′) = e−2iλγ3 (1 − u · r)3 ψ4(0, θ′, φ′). (44)

The spin factor e−2iλ is primarily just transforming the tangent

bases to avoid singularities in the basis vector fields, and has
no strong effect on the modes in this case. The value of
γ3 is approximately 1.00015, which accounts for the change
to the (2, 2) mode, to reasonable accuracy. The third factor
multiplies the waveform by roughly 1 − 3 β sin θ cos φ for the
boost in the x direction, and roughly 1 − 3 β cos θ for the boost
in the z direction. But this factor can only explain coupling
between modes with ∆` = ±3, whereas we clearly see more
extensive coupling in Fig. 8. In fact, if we expand the boost
rotor of Eq. (2) in powers of β, and use that to expand the
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FIG. 8. Mode transformations under boost. These plots show the changes to the amplitudes of the waveform modes when the system is
boosted. These are similar to the plots in Fig. 7, except that there is no translation, only a boost. Again, the initial waveform in the upper panels
has nonzero mode (`nz,mnz) = (2, 2); in the two lower panels, the nonzero mode is (`nz,mnz) = (4, 2). In this case, the two panels on the left
depict a boost of speed 0.01c in the x direction, while the two panels on the right depict a boost of speed 0.01c in the z direction. The mode
amplitudes change as a function of time in this case, because the boost is essentially a time-dependent supertranslation, as described at the end of
Sec. II C. The quantities shown here correspond to u = u′ = 0, so that the translation induced by the boost is actually zero. Despite the difference
in their construction, these results are qualitatively very similar to those of Fig. 7. However, the boost used to produce these figures is orders of
magnitude greater than any found in the numerical waveforms considered below. The basic conclusion is that the boost matters in those cases
only to the extent that even a small boost can induce a significant translation over the course of a long simulation.

argument of ψ4(0, θ′, φ′) in a Taylor series, we find another
factor multiplying ψ4(0, θ, φ):

1 − |u × r| + 1
2
|u × r| u · r + . . .

=


1 − β sin φ + 1

4 β
2 sin 2φ sin θ + . . . x boost,

1 − β sin θ + 1
4 β

2 sin 2θ + . . . z boost.
(45)

Because of the geometry, the largest couplings from this factor
are typically several times smaller than the couplings from the
(1 − u · r)3 factor. That is, the largest peaks in Fig. 8 will be
dominated by the 3 β term, but smaller peaks with |∆`| > 3
will be dominated (and in fact made possible) by the more

complicated factor of Eq. (45).
In the plots of Fig. 8, 3 β = 0.03, which is also the

approximate scale of the effects of the translation for the plots
of Fig. 7. This explains why the magnitude of the coupling is
so similar in the two cases, at least for the dominant coupling
terms. Of course, there is no 1/ j! term for the boost couplings,
as in Eqs. (43). This explains why the couplings in Fig. 7 should
fall off so much faster than those in Fig. 8.
In fact, this numerical equality between the couplings for

translations and boosts is the reason β = 0.01c was chosen for
these examples, to ease comparison between the effects of a
translation and of a boost. But we must note that this value
was chosen entirely for the purpose of illustration; it is an order
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FIG. 9. Center of mass motion. This plot shows the coordinates
in the x-y plane of the center of mass for system SXS:BBH:0004,
throughout the inspiral of the system. Motion in the z direction is
far smaller. The coordinates are given in units of M = M1 + M2,
the total Christodoulou mass [44] of the system. The raw data from
the simulation results in the curve labeled “Original”. This is the
motion of the center of mass, as seen in the same frame in which the
waveforms are measured. There is a small initial offset, as well as a
strong drift velocity. We can also apply a spatial translation and boost
to the system, in which case the center of mass appears to rotate more
simply around the origin, as seen in the curve labeled “Transformed”.

of magnitude larger than the largest speed found in the SXS
catalog discussed below, and several orders of magnitude larger
than typical speeds. This might appear to suggest that the effect
of the boost itself is entirely negligible for those simulations.
However, we have thus far only described the transformation
due to a boost on the u = u′ = 0 slice. At any later time u′, an
additional coupling is present, which is essentially identical to
a translation by γ u′ u, as we can see from the arguments toward
the end of Sec. II C. Even a very small boost can build up to a
significant translation over the course of a long simulation. In
fact, we will find that near merger, boosts play a significantly
more important role than translations in the SXS catalog.

VI. REMOVING DRIFT FROM NUMERICAL
WAVEFORMS

To demonstrate one way in which BMS transformations are
important at a practical level, we examine the publicly available
catalog of simulations from the SXS collaboration [21, 22].
First, we will illustrate a particular system to see unexpected
effects in its waveform modes, and see how these effects can be
reduced by applying a spatial translation and a boost derived
from the simulation data. Then, we will briefly examine the
size of the translation and boost for other simulations in the
catalog.

The first simulation we consider is labeled in the waveform
catalog as SXS:BBH:0004, and represents an (approximately)
equal-mass system in which one black hole has dimensionless

spin S 1/M2
1 = 0.5 along the −z axis, while the other black

hole has no spin. This system is interesting because it is
not precessing, and so retains enough symmetry to allow us
to unambiguously identify some curious features. But it is
nonetheless not perfectly symmetric, and thus exhibits those
nontrivial features.
We can see the first example of nontrivial features in this

system by simply plotting the center of mass. Using the
Christodoulou masses and coordinate positions of the black
holes, we form the usual center of mass.9 The result is plotted
in Fig. 9. Because the system is not symmetric, we expect to
see some asymmetry in the emission of gravitational waves
in the orbital (x-y) plane [8, 47], and thus some force in this
plane. But that force should have roughly constant magnitude
on the orbital timescale, and should simply rotate with the
system. So we expect the center of mass to be pushed around
in a circle. This is essentially what we find in the data. The
center of mass starts nearly at the origin, so this circle is initially
not centered on the origin. But there is another strong effect:
an overall drift. Evidently, this drift is due to residual linear
momentum in the initial data. For future evolutions, Ref. [23]
introduced amethod to eliminate such residual momentum from
the initial data. However, for the present waveform catalog and
any future simulations in which a large initial translation is
present, or a significant recoil develops during the inspiral, we
must transform the data to eliminate the offset and drift.

The approach taken here is crude, but will serve the purpose
of illustration. By minimizing the average distance between
the center of mass and the origin, we can find the optimal
translation and boost, as described in Appendix E. For this
system, the results are

δx =
(
−9.1 × 10−3, 7.8 × 10−3,−4.0 × 10−9

)
, (46a)

u =
(
9.4 × 10−6,−5.3 × 10−6, 2.6 × 10−12

)
. (46b)

Over the course of this ∼11 000 M simulation, the small
boost grows into a larger translation than the initial offset δx.
Applying this transformation to the center of mass we see a
much cleaner-looking curve, essentially orbiting the origin, in
Fig. 9. Although the center of mass measured in this way is
based on coordinates, and thus susceptible to all the vagaries of
gauge in the most extreme regions of the simulated spacetime,
we will nonetheless find that the same transformation applied
to the waveform removes features that we would not expect
based on naive analytical models.

Figure 10a shows the largest modes10 in the waveform. This
is the original data taken from the SXS catalog. The (2, 2)

9 These quantities are all stored in the waveform catalog in files named
Horizons.h5.

10 This is as measured shortly before merger. We ignore modes with negative
m values because, for this system, they have essentially the same magnitudes
as their counterparts with positive m values. Also, the (2, 0) mode comes
out above the (4, 2) mode when extrapolating with N = 3 polynomials, but
is evidently not trustworthy [46], so we ignore it.
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FIG. 10. Original and corrected waveform data. These plots show the waveform data for SXS:BBH:0004, and the effects of the transformation.
The plot on the left, (a), shows the raw waveform obtained from the SXS catalog, using extrapolation with polynomials of order N = 3 [45, 46].
The eight most significant modes are shown. Of these, the (2, 1), (3, 3), and (3, 1) modes exhibit substantial oscillations. Oscillations are
somewhat unexpected because analytical models of this system contain no such features. However, these are also the modes that couple most
strongly to the dominant (2, 2) mode under a translation in the x-y plane, as shown in Fig. 7a. The plot on the right, (b), shows the (2, 2) mode
and the three oscillating modes (removing the other modes for clarity) after the waveform has been transformed by the translation and boost given
in Eqs. (46). For comparison, the original modes are also shown in the corresponding colors, with lower opacity. The effect of the transformation
is largest near merger, when the translation induced by the boost is largest and the frequency is highest. Despite the crude way in which the
transformation parameters were determined, the transformation itself eliminates the oscillations of the (2, 1) mode, while reducing the overall
amplitudes of the (3, 3) and (3, 1) modes by as much as a factor of 20.

mode is entirely dominant, as expected. The post-Newtonian
model [47] of this system predicts smooth, monotonic wave-
form amplitudes during the inspiral. Yet the (2, 1), (3, 3), and
(3, 1) modes exhibit distinctive oscillations that are not visible
in the other modes. These modes also have the largest couplings
with the (2, 2) mode under translation in the x-y plane, as seen
in Fig. 7a, and the oscillations are at the same frequency as the
(2, 2) mode. These facts strongly suggest that the oscillations
are caused by mode coupling due to the motion of the center of
mass. In fact, we can even predict the size of these couplings.
The original system ends up translated from the origin by about
0.1M at merger, and the frequency of the (2, 2) mode just prior
to merger exceeds 0.3/M. These were the parameters used to
construct Fig. 7a, which means that the couplings shown in that
plot should be roughly the couplings found in this waveform
near merger. Specifically, we expect to find mode couplings in
this waveform starting at just over 1% of the magnitude of the
(2, 2) mode near merger.

Figure 10b shows the dominant mode—which is not visibly
changed at this scale—and the oscillating modes after the
transformation of Eq. (46) has been applied to the waveform.
For comparison, the original modes are shown in the same
colors with lower opacity. In each case, the effect of the
transformation is smallest at the beginning of the simulation,
when the offset and frequency are smallest; conversely, it is
largest at merger, when the offset and frequency are largest.
This is just as we would expect, given the arguments of Sec. V.
Moreover, we can look at the changes to these modes as a

fraction of the (2, 2) amplitude, and find that they do agree
nicely with Fig. 7a: the (2, 1) and (3, 3) modes change by just
over 1.3% at merger, and the (3, 1) mode by around 0.35%.
Finally, we can subtract the transformed waveform from the
original data and measure the frequency of the difference; for
each of these three modes, we find that it matches the frequency
of the (2, 2) mode, rather than the frequency of the transformed
mode. These facts all suggest that the changes to these three
modes are primarily undoing leakage of the (2, 2) mode.

The oscillations have been essentially removed from the (2, 1)
mode. This mode is the third-largest overall, after the (2, 2) and
(4, 4) modes. Yet its amplitude is altered in this transformation-
induced coupling by several percent throughout the inspiral,
growing to 30% at merger (relative to the transformed values).
The oscillations of the much smaller (3, 3) mode are reduced
substantially, though not entirely eliminated. This is not
surprising, given that the change in the waveform is so large,
and the method of choosing the transformation of Eq. (46) so
crude. In fact small changes in the parameters used to choose
the transformation (ti and t f in Appendix E) lead to significant
changes in the smoothness of this transformedmode, suggesting
that there may be better choices. However, the remarkable
feature of this transformation is the size of the change, which
ranges up to 350% late in the inspiral (again, relative to the
transformed values). Even more extreme is the change in the
(3, 1) mode, which reaches typical values over 2000% toward
the end of the inspiral.

We can conclude from this that throughout almost the entire
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FIG. 11. Survey of translations and boosts in the SXS catalog. These plots show the number of systems with a given initial displacement,
(a), and a given displacement at merger, (b). In the latter plot, tCAH is the time at which a common apparent horizon is found, which is a typical
definition of the merger time. The data include every system in the SXS catalog, but only the highest-resolution instance of each system. The
vertical red line in each plot shows the value for the system SXS:BBH:0004, which is the one described in Sec. VI and Figs. 9 and 10. Systems
with small values in each plot are typically simple systems with little or no spin, or high symmetry; larger values generally indicate asymmetries in
the masses, unequal spins, and especially strongly precessing systems. The displacement at merger is dominated in most cases by the translation
due to boost, rather than initial displacement—though the boost actually reduces the displacement from its initial value in roughly one fifth of
the systems in the catalog.

simulation, the (3, 3) and (3, 1) modes as given in the original
data from the SXS catalog are entirely dominated by coupling
from the (2, 2)mode, while the (2, 1)mode is strongly affected—
though not completely dominated. This means that any attempt
to use these modes without accounting for the effect of the
residual velocity in the initial data will be prone to errors.
The mode couplings we have seen here are all caused by

a very small residual velocity, which leads to an anomalous
translation of just 0.1M around merger. It may be surprising
that such large effects can follow from such a seemingly small
cause. But it is more surprising that this anomalous translation
is typical of the simulations in the SXS catalog. Figure 11
shows the initial and final displacements of the center of mass
for every system in the SXS catalog. We can see that the size
of the transformation in SXS:BBH:0004 is fairly typical of
systems in the catalog. In fact, the translation near merger
[Fig. 11b] for this system (0.108) is slightly above the median
(0.070), and just half the mean (0.216).

Closer inspection of the data show that all the systems with
very small translations (less than about 10−2 in Fig. 11b) are
symmetric, with equal masses and spins, and the spins are all
aligned with the orbital axis. If the masses or spin magnitudes
are not equal, there is generally a larger translation. Still
larger translations are typically found in systems for which
one or both black holes have spin components in the orbital
plane. On the other hand, simulations that run for longer
have more opportunity to develop a large translation; the very
largest values result from very long simulations, rather than
extraordinarily asymmetric physics.

In this section, we have found that applying translations and

boosts determined from the orbital trajectories of a simulation in
the SXS catalog can have a very large effect on the distribution
of power in the modes, and can diminish unmodeled features
in the waveform. Moreover, we have seen that this particular
system is fairly typical of systems in the SXS catalog, with
numerous systems expected to exhibit significantly larger mode
couplings. The mode transformations described in this paper
can be expected to substantially improve the agreement between
analytical waveform models and numerical waveforms in these
cases.

VII. EFFECTS ON DATA ANALYSIS FOR
GRAVITATIONAL-WAVE DETECTORS

The previous section showed that seemingly small trans-
formations can have pronounced effects on waveform modes.
Having understood the nature and origin of these effects, we
can now address the issue of what must be done about them.
This section briefly discusses the impact these transformations
have on two aspects of detections of gravitational waves:
the production of waveform models, and the construction of
template banks for searches in detector data.
The first step in detecting a gravitational wave is to devise

a model of a waveform we might expect to find in the data.
From astrophysical arguments, the most reliable candidates
for detection are mergers of compact binary systems. Because
of the nonlinear nature of mergers, they can only be modeled
accurately by computers. On the other hand, using a computer
to generate the entire signal is simply unrealistic for most of
the expected systems [48]. Thus, at some level, waveform
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modeling must combine numerical and analytical results. But
because the waveforms come from different approaches, we
should expect to find differences in their gauges—as amply
demonstrated by the boosts and translations discovered in the
SXS data, which will not naturally appear in any analytical
model.
These gauge differences will have real impacts on any

model that uses numerical waveforms. For example, when
“calibrating” effective-one-body models [49–51], the analytical
waveform must be aligned to the numerical waveform. If the
numerical waveform has spurious features, the waveforms will
appear to align poorly, so the calibration will be less than
optimal and result in inaccurate waveforms. Other phenomeno-
logical waveformmodels [52, 53] and surrogatemodels [54, 55]
would experience the same biases, trying to fit simple formulas
to waveforms with effectively random gauge effects. Similarly,
when constructing hybrid waveform models [48], the hybrids
will be imperfect or even discontinuous in the region where
one switches from analytical to numerical data.

As mentioned in Sec. I, some of these gauge freedoms—time
translations and rotations—are entirely familiar, and routinely
dealt with simply by applying a gauge transformation to one
waveform to minimize some measure of the difference between
the waveforms. In principle at least, this approach could also be
extended to the full BMS group, though the supertranslations
would obviously be represented only up to some finite spherical-
harmonic order, and the numerical implementation may be
delicate. It may also be feasible to resolve the gauge ambiguities
using any of various methods presented in the literature [33, 56–
58], though it is not clear that such an approach would be
numerically feasible. In any case, a simplistic approach like
the one found in Sec. VI is presumably a helpful first step.
Now, assuming that we have a waveform model for a

particular astrophysical system produced with the appropriate
care for gauge ambiguities, searches of detector data require a
family of template waveforms—specific instances of waveforms
from the broader class making up the model. As noted in
Sec. I, the signal measured along any simple curve on I + of
constant spatial coordinates is a good approximation for the
signal measured by some inertial observer, because the metric
in Bondi gauge is manifestly asymptotically flat. Here, we
consider the signal to be measured as a function of the retarded-
time coordinate u along some direction (θ, φ), in which case
the limiting process as r → ∞ is well defined and the signals
at finite radius and on I + can be compared meaningfully. Of
course, since BMS transformations preserve Bondi gauge, we
can apply any BMS transformation to generate another curve
on I +, and another corresponding waveform. We might worry
that we would need a separate template for each member of
the BMS group—or at least for some discrete sampling of the
BMS group. But given its infinite dimensionality, this could
still be a very large or even impossible task.

Fortunately, the situation is not quite so dire. We only need to
generate templates for elements of the BMS group that produce
detectably distinct waveforms. But there are degeneracies
among the templates created in this way, particularly among

the supertranslations. Given that our detector will lie along a
single direction from the source, the supertranslation α will be
evaluated along a particular direction. Ignoring the Lorentz
transformation for the moment, the retarded time transforms
as u′ = u − α(θ, φ). As far as its effect on the time variable is
concerned, all those infinitely many degrees of freedom in α
reduce to a single number. In principle, the angular dependence
of α does lead to a transformation of the quantity h measured by
a gravitational-wave detector, as shown in Eq. (21). However,
the term ð̄2 α is constant in time, and so is not detectable. Thus,
for detections along a single line of sight from the source, the
entire supertranslation sector of the BMS group is reduced to a
single time offset.

Factoring the supertranslations out of the BMS group leaves
us with the familiar Lorentz group of rotations and boosts. The
rotations determine the sky-position of the detector relative
to the source—or equivalently the orientation of the source
relative to the detector. 11 We can further separate rotations into
a rotation along the line of sight between detector and source,
and two other degrees of freedom that we might call latitude
and longitude. This first rotation is directly degenerate with the
spin phase λ described in Sec. II A. But both this and the time
offset are “extrinsic” parameters, already dealt with in searches
by simply finding the element of a discrete Fourier transform
with the largest magnitude [1, 59, 60]. The remaining rotational
degrees of freedom are described in more detail elsewhere [61–
63]. In brief, it appears that accounting for them could provide
benefits for localization and parameter estimation, but could
actually be counterproductive for detection. The impact of the
boost degrees of freedom is likely to be much smaller, and
indistinguishable from an error in the total mass of the system.
To summarize this section, let us reiterate how it is that

supertranslations are so important for waveform modeling, but
not important for detection. Supertranslations are important to
waveform models for two reasons: (1) the models must be able
to describe the waveform in any direction from the source; and
(2) at some point we generally need to compare or combine
two different models, so the gauge freedom must be accounted
for. On the other hand, a detector lies along a single direction
from the source, which means that all the degrees of freedom
in the supertranslation are degenerate. If we had a network
of detectors located in significantly different directions from a
source, and we wished to combine their information, we would
need some control over their relative time offsets which could be
considered equivalent to supertranslation degrees of freedom.
This is not expected to be a pressing concern in the near future.

11 There is still another rotation that must be accounted for in data analysis,
related to the orientation of the detector relative to the source—or equiva-
lently the sky-position of the source relative to the detector. This second
rotation is partially degenerate with the first, in that it will also affect the
spin phase. The other two degrees of freedom in this rotation determine
the detector’s sensitivity to the signal via the “antenna pattern”. However,
since this rotation relates the detector’s orientation to the coordinates we
have already been dealing with, it does not fit comfortably within the scope
of this discussion.
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VIII. CONCLUSIONS

There is no such thing as a gauge-invariant gravitational
waveform. It is possible to find a gauge-fixed waveform—for
example, one measured in the standard Bondi gauge. However,
even this is not a particular coordinate system, but an infinite-
dimensional class of equally acceptable systems. We can trans-
form between members of the class using any element of the
infinite-dimensional Bondi-Metzner-Sachs group, which shows
that the class is very large indeed. Moreover, we have seen
that such transformations can affect the waveform dramatically,
even when the transformation seems to be small. This means
that any comparison between waveforms—whether numerical,
analytical, or even experimentally measured waveforms—will
be affected by the gauge in which the waveform is expressed
(or equivalently, the frame in which the waveform is measured).
There is no obvious preferred frame. Instead, all we can (and
should) do is to insist that the waveforms are at least in the
same frame. Doing so requires understanding the BMS group,
and how its elements transform waveforms.

This paper has explored the BMS group, and illustrated some
of its impact on gravitational-wave analysis. We began with a
thorough and pedagogical introduction to the group itself, to
provide a common starting point to be used in the remainder
of the paper. We then examined asymptotically flat spacetime,
and found how the BMS group transforms various types of
waveforms. We then used these insights to see how such
transformations can be implemented in practice. This is applied
in the python package scri accompanying this paper on its
arXiv page. The following section then showed how these trans-
formations should affect the spin-weighted spherical-harmonic
modes of a waveformwith simplified numerical models, and we
found good agreement with analytical approximations for the
leading-order couplings. Anomalous translations and boosts
were found in the publicly available SXS catalog. A particular
example was used to show that the original data contains large
effects from these anomalies, including modes that are several
to dozens of times larger than they would be expected to be.
These modes can be transformed to simplify their structure,
and bring them more closely in line with what is expected from
analytical models. However, more complicated systems will
have even larger mode couplings. The size of the coupling is
expected to scale roughly linearly with the size of the translation
involved—since the direct contribution of the boost is relatively
small compared to the influence of the translation it gives rise
to—and some simulations in the SXS catalog have translations
almost 100 times greater than the example system. Finally,
we discussed the effect of the BMS gauge freedom on data
analysis for gravitational-wave detectors, showing that it must
be accounted for when creating model waveforms, but the
supertranslations do not complicate searches.
The waveforms found in the SXS catalog are not wrong,

per se; but they contain effects that may not be expected.
For example, they will not be consistent with the usual post-
Newtonianwaveforms; using the rawwaveforms to construct hy-
brids with PN waveforms would result in mismatches between

the modes. Using raw waveforms to calibrate effective-one-
body waveforms [49–51], surrogate models [54, 55], or other
phenomenological waveform models [52, 53] would degrade
the quality of the numerous fits inherent to the calibration
process, by subjecting them to effectively random noise in
the input. A broader and deeper survey of the effects of these
transformations on waveforms in the SXS catalog will be the
subject of an upcoming paper [64].
Essentially, we have a more general form of the familiar

alignment problem in which arbitrary time and phase offsets
need to be removed. Those simple alignments are just special
cases of the one described here, restricted to the subgroup
of BMS transformations consisting of time translations and
rotations about the z axis. This more general alignment problem
will necessitate using more general elements of the BMS
group. With the algorithm presented in this paper, we can
begin to investigate ways to achieve such alignment. Previous
investigations have suggested ways of using asymptotic data
to determine the center of mass, and more generally resolve
the supertranslation ambiguity [33, 56–58]. While these are
promising theoretical developments, additional work will be
needed to make these methods practicable—towards which the
present work is a crucial first step.
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Appendix A: Conventions

We start with some fiducial frame (t, x, y, z), and some
corresponding observer O . A spacetime event is a point
p, and is represented by some vector corresponding to the
displacement from the origin ofO to that point. The point p can
be given coordinates (pt, px, py, pz) such that its corresponding
vector is pt t + px x + py y + pz z.

Another observer “O moves at velocity u relative to O , which
means that the location of the spatial origin of “O relative to
the (absolute) origin of O is of the form η (t + u) for some η,
where we assume the speed of light is c = 1. We also define
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the following shorthand notations:

β B | u |, (A1a)
ϕ B artanh β, (A1b)

γ B
1√

1 − β2
, (A1c)

ϕ B ϕ
u

β
. (A1d)

It is worth noting the convenient identities

γ ≡ coshϕ, (A1e)
β γ ≡ sinhϕ, (A1f)

γ(1 + β) ≡ coshϕ + sinhϕ ≡ eϕ, (A1g)
γ(1 − β) ≡ coshϕ − sinhϕ ≡ e−ϕ, (A1h)

1
2

ln
1 + β

1 − β ≡ ϕ. (A1i)

The frame (“t, “x, “y,“z) of observer “O is defined by the relations

“t B B t B−1, (A2a)
“x B B x B−1, (A2b)
“y B B y B−1, (A2c)
“z B B z B−1, (A2d)

where B is a Lorentz rotor:

B B e−ϕ t/2 = cosh
ϕ

2
− ϕ t

ϕ
sinh

ϕ

2
. (A3)

Here, we use the formalism of Geometric Algebra [25–27]
to describe the boost. In particular, the term ϕ t represents
the geometric (or Clifford) product between these two vectors.
Because ϕ is a spatial vector, this product ϕ t is a pure bivector
ϕ ∧ t representing the hyperplane spanned by ϕ and t. The
quantity B is a mild generalization of a unit quaternion (also
called a rotor), except that now “rotations” need not be confined
to spatial planes; the vectors spanning the plane of rotation can
now include time components—as in this case. For simplicity,
we have also specialized to the case where there is no additional
rotation. If there is some additional rotation, it can easily be
absorbed by redefining the frame of O , or simply replacing
every occurrence of B with B Rf, where Rf represents the
required (purely spatial) rotation of the O frame.
Using the form of B given above, we have “t = γ (t + u),

which agrees with our earlier statement, because any point at
the spatial origin of “O will be of the form η′ “t = η′ γ (t + u) =

η (t +u) for some η = η′ γ. We should also note that “O observes
O moving with velocity −“u = −B u B−1 = −γ (u + β2 t), which
is a purely spatial vector in “O , with magnitude β.

Appendix B: Spherical coordinates

Spherical coordinates are defined as usual, so that a point
on the sphere at position r has coordinates (θ, φ) when the

angle between r and z is θ, and the angle between x and the
projection of r onto the x-y plane is φ. Then, any point r may
be represented by a rotor Rθ,φ as

r = Rθ,φ z R−1
θ,φ, (B1)

where

Rθ,φ B eφ y x/2 eθ x z/2. (B2)

Similarly, the observer “O can represent a point as

“r = “R“θ,“φ “z “R−1
“θ,“φ
, (B3)

where

“R“θ,“φ B e“φ “y “x/2 e“θ “x “z/2 = B R“θ,“φ B−1. (B4)

Note that the final form above is written using basis vectors
from the frame of O , but uses the coordinates measured by “O .
This presentation of spherical coordinates in terms of the

corresponding rotor is useful, not only because the point itself
may be expressed as in Eqs. (B1) and (B3), but also because
the corresponding tangent vectors are easily expressed. For
example, if θ and φ are the standard tangent vectors, we have

t = Rθ,φ t R−1
θ,φ, (B5a)

θ = Rθ,φ x R−1
θ,φ, (B5b)

φ = Rθ,φ yR−1
θ,φ, (B5c)

r = Rθ,φ z R−1
θ,φ. (B5d)

This suggests the use of rotors more generally as a better way
to keep track of a basis frame than retaining all four vectors
separately. We also take this opportunity to define another
frame

t′ B R“θ,“φ t R−1
“θ,“φ
≡ t, (B6a)

θ′ B R“θ,“φ x R−1
“θ,“φ
, (B6b)

φ′ B R“θ,“φ yR−1
“θ,“φ
, (B6c)

r′ B R“θ,“φ z R−1
“θ,“φ
. (B6d)

In the frame of O , the last three are pure spatial vectors. Once
they are boosted they will be pure spatial vectors in the frame
of “O and, along with “t, will comprise the correct frame for a
point on the sphere at coordinates (“θ, “φ), as measured by “O:

“t = B t′ B−1, (B7a)
“θ = B θ′ B−1, (B7b)
“φ = Bφ′ B−1, (B7c)
“r = B r′ B−1. (B7d)

This shows that we can extend Eqs. (B5) to use Lorentz rotors
(generalizing from pure spatial rotors) to keep track of all
possible basis frames related by a Lorentz transformation, rather
than retaining all four vectors separately.
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Appendix C: Rotor of a boost

Any future-directed null vector may be represented by O up
to a positive scaling as

l B r + t ≡ Rθ,φ (z + t) R−1
θ,φ. (C1)

Note that the rotor has no effect on t, as it is an entirely spatial
rotor. Similarly, observer “O may express any future-directed
null vector via

“l B “r + “t ≡ “R“θ,“φ (“z + “t) “R−1
“θ,“φ

(C2a)

= B R“θ,“φ (z + t) R−1
“θ,“φ

B−1. (C2b)

The final expression represents the conjugation by B of a vector
expressed entirely in the basis of O , though using coordinates
as measured by “O .

We need to know the coordinates (θ, φ) given (“θ, “φ) such that
l is a positive scalar multiple of “l, which is possible if and only
if l“l = 0. (Again, juxtaposition of the vectors l and “l denotes
the geometric product.) For now, let us assume that B is a boost
along z. Then clearly φ = “φ since y and x are unaffected. We
can calculate

l“l = Rθ,φ (z + t) R−1
θ,φ B R“θ,“φ (z + t) R−1

“θ,“φ
B−1 (C3a)

= eθ x z/2 (z + t) e−θ x z/2 B e“θ x z/2 (z + t) e−“θ x z/2 B−1.
(C3b)

The key expression here is the Lorentz rotor

L = e−θ x z/2 e−ϕz t/2 e“θ x z/2 (C4a)

= cosh
ϕ

2
cos

θ − “θ

2
− z t sinh

ϕ

2
cos

θ − “θ

2

+ x t sinh
ϕ

2
sin

θ + “θ

2
− x z cosh

ϕ

2
sin

θ − “θ

2
.

(C4b)

In particular, if l“l is a scalar, we have l“l = (z + t) L (z + t) L−1,
and if the latter expression is to be a scalar, L (z + t) L−1 must
have no x component. A simple argument from Geometric
Algebra shows that L can only have terms involving x of the
form x (z + t); terms of the form x (z − t) must vanish. Using
the coefficients of x t and x z above, some simple algebra shows
us that this implies that

tan
θ

2
= e−ϕ tan

“θ

2
. (C5a)

We can repeat this analysis for a past-directed null vector, and
find the condition that L (z− t) L−1 must have no x component,
which implies that

tan
θ

2
= eϕ tan

“θ

2
, (C5b)

This is equivalent to flipping the sign or direction of the boost in
Eq. (C5a). Note that Eq. (C5b) is the standard formula for stellar

aberration due to a boost,12 because an observer detects photons
moving into the future along past-directed null vectors. Put
another way, an observer receiving null rays assigns a direction
to a ray according to where it came from, rather than where it
is going; an emitter assigns directions according to where the
ray is going, rather than where it would have come from—this
is the reason for the sign difference.
By looking at this more geometrically, we can eliminate

the requirement that the boost be in the z direction. We first
dispense with the trivial case for which u and r are parallel
or anti-parallel, in which case r = r′. Assuming henceforth
the situation is not so trivial, we note that u, r, and r′ all lie
in the same plane, and angles between them are governed by
Eqs. (C5). To be specific, define “Θ to be the angle measured
by “O between “u and “r, and similarly for Θ. We can calculate “Θ
in the O frame as

“Θ B arccos
[
“u · “r] ≡ arccos

[
u ·

(
R“θ,“φ z R−1

“θ,“φ

)]
. (C6)

The corresponding value of Θ for future-directed (respectively
past-directed) null rays is simply

tan
Θ

2
= e∓ϕ tan

“Θ

2
. (C7)

Using this equation, we can find another useful relation between
l and “l: the latter can be rotated into the former with a rotation
that is purely spatial in O . Essentially, we simply rotate by
Θ − “Θ in the r-u plane. The rotor that does this is

B′ B exp

Θ − “Θ

2
r ∧ u
|r ∧ u|

 . (C8)

With this rotor, we have

Rθ,φ (z + t) R−1
θ,φ = B′ R“θ,“φ (z + t) R−1

“θ,“φ
B′−1. (C9)

Note that this equation does not imply Rθ,φ = B′ R“θ,“φ; instead
we have13

Rθ,φ eλ x y/2 = B′ R“θ,“φ, (C10)

for some angle λ. It turns out that this angle is the spin phase
described in Sec. II A. Though it will never be necessary to
compute this directly (except for the purposes of visualizations
like Fig. 2), we can rearrange Eq. (C11) and express λ as

λ = 2 log
[
R−1
θ,φ B′ R“θ,“φ

]
y x. (C11)

Of course, rather than computing this angle to evaluate spin-
weighted functions, we can just use the right-hand side of

12 See, e.g., Eq. (1.3.5) of Ref. [35].
13 We know that the extra factor in this equation is the most general possible

such factor because: (1) it must be an even-grade element of unit norm,
since all other elements of this equation have even grade and unit norm; (2)
it must be purely spatial in O , since all other elements are purely spatial; (3)
it must commute with z + t. Thus, it can only be a rotation in the x-y plane.
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Eq. (C10) directly, and evaluate the spin-weighted function
on that rotor.

It may be helpful to see why this spin phase is a meaningful
quantity under a boost. The fact that u, r, and r′ lie in the same
plane and the fact that angles between them are governed by
Eq. (C7) are purely geometric statements; they are independent
of our basis frame. We can use these facts to express the value
of a spin-weighted function in the boosted frame in terms of
the spin-weighted function in the original frame. Assuming
u and r are not proportional to each other, we know that the
products t ∧ u ∧ r and t ∧ u ∧ r′ are the same up to some
nonzero scalar multiple; they represent the same hyperplane.
Under the boost e−ϕ t/2, the three vectors t, u, and r′ transform
among themselves, which means that “t ∧ “u ∧ “r also represents
the same hyperplane.14 There is a unique axis orthogonal to
this hyperplane. In fact, we can construct a unique unit vector
Φ along this axis by defining

Φ B
t ∧ u ∧ r
β sin Θ

t ∧ θ ∧ φ ∧ r, (C12a)

=
t ∧ u ∧ r′

β sin “Θ
t ∧ θ ∧ φ ∧ r, (C12b)

=
“t ∧ “u ∧ “r
β sin “Θ

“t ∧ “θ ∧ “φ ∧ “r. (C12c)

When u = β z, we have Φ = φ—the usual basis vector. But
the definition given in Eqs. (C12) is geometrically invariant.
By construction Φ is orthogonal to u ∧ t, and so is invariant
under boosts. More specifically, Φ is a purely spatial vector
for both observers, orthogonal to the velocity, and lies in the
tangent space of the sphere at “r for “O and at r for O . We can
therefore use it to compare directions in the tangent spaces for
our spin-weighted functions.

These invariance properties of the Φ = “Φ vector field allow
us to identify the alignment of the tangent space. We choose
the point on the sphere designated by “r, with coordinates (“θ, “φ).
This has a standard [39] alignment of the tangent space given
by

“m B
1√
2

(
“θ + i “φ

)
≡ B R“θ,“φ

x + i y√
2

R−1
“θ,“φ

B−1. (C13a)

Because this is a purely spatial vector in the frame of “O , but has
a time component in the frame of O , direct comparison would
be complicated. However, we can define the similar vectors

m′ B
1√
2

(
θ′ + iφ′

) ≡ B′ R“θ,“φ

x + i y√
2

R−1
“θ,“φ

B′−1, (C13b)

m B
1√
2

(θ + iφ) ≡ Rθ,φ
x + i y√

2
R−1
θ,φ, (C13c)

14 That is, the latter product is the same as the former two products up to some
other nonzero scalar multiple. In fact, a straightforward calculation shows
that csc “Θ“t ∧ “u ∧ “r = csc “Θ t ∧ u ∧ r′ = csc Θ t ∧ u ∧ r.

and the products

“m“Φ B “m · “Φ, (C14a)
m′Φ B m′ ·Φ, (C14b)
mΦ B m ·Φ. (C14c)

Almost by definition, we have “m“Φ ≡ m′
Φ
. Thus, the nontrivial

comparison is between m′
Φ
and mΦ.

To make this comparison, suppose that l and l′ are as given
in Eqs. (C1) and (C2). We know that the rotors involved in
those expressions are related by Eq. (C10), so we can calculate
the relative alignment of the tangent spaces as follows:

m′Φ B m′ ·Φ, (C15a)

=

(
B′ R“θ,“φ

x + i y√
2

R̄“θ,“φ B̄′
)
·Φ, (C15b)

=

(
Rθ,φ eλ x y/2 x + i y√

2
e−λ x y/2 R̄θ,φ

)
·Φ, (C15c)

= ei λ
(
Rθ,φ

x + i y√
2

R̄θ,φ

)
·Φ, (C15d)

= ei λ mΦ. (C15e)

This relation is exactly the one implied by Newman and
Penrose’s original definition of spin at the beginning of Sec. III
in Ref. [16]: they defined spin with respect to the transformation
m′ = ei λ m. This describes the relative alignment of the “m
and m fields—except for any time component orthogonal to Φ
produced by the relative boost. Those additional components
cannot be accounted for simply by a rotation; they must
be accounted for by mixing between different components
of the tensor in question. This is why we find various
Newman-Penrose scalars on the right-hand sides of Eqs. (17a)
through (17d), for example.

This property of rotating the tangent space is very important,
and is the primary motivation for this more geometric approach.
That is because we are dealing with spin-weighted functions,
which means that we need to know not only how points move
around on the sphere, but also how the tangent space to the
sphere changes at each point under a boost. Using rotors allows
us to automatically track both the change of position and the
change of the tangent basis.

Appendix D: Conformal factor of a boost

We can use spatial directions to label all the null directions
from a point, which has the topology of a sphere. We define the
metric on this null sphere as the metric induced on the sphere
of spatial directions. In that case, a boost induces a conformal
transformation of the null sphere, which means that we can
find the conformal factor of the boost. In particular, for future-
directed null rays, by simply applying the transformation of θ
given by Eq. (C5a) we can calculate

d“θ2 + sin2 “θ d“φ2 =

[
1

γ (1 − u · r)

]2 (
dθ2 + sin2 θ dφ2

)
, (D1a)
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and similarly for past-directed null rays with Eq. (C5b)

d“θ2 + sin2 “θ d“φ2 =

[
1

γ (1 + u · r)

]2 (
dθ2 + sin2 θ dφ2

)
. (D1b)

So we define the conformal factors for future-directed (k+) and
past-directed (k−) null spheres as

k± B
1

γ (1 ∓ u · r)
. (D2)

We know that the form of the metric is invariant under rotations,
and this the form of this conformal factor is clearly invariant
under rotations, so this is the correct conformal factor for boosts
in any direction. In this paper, we are always dealing with
future-directed null rays, so we drop the subscript and just use
k B k+.

Appendix E: Estimating translation and boost in
simulations

The coordinate center of mass of a simulated compact binary
presents an imperfect representation of its motion. Obviously,
this can be tainted by gauge effects, especially because the data
are drawn from the most dynamical and nonlinear portion of
the simulated spacetime. And while this may be a topic ripe
for improvement, it is nonetheless useful to have some way
to illustrate the methods of this paper for the waveform data
of the SXS catalog. In that spirit, this appendix presents a
simple method for estimating the translation and boost, given
the coordinate tracks and Christodoulou masses of the black
holes. As noted in Sec. VI, the data can be obtained from the
Horizons.h5 file accompanying each waveform in the SXS
catalog.

Denoting by xCoM(t) the coordinate location of the center of
mass, as a function of the coordinate time, and in units where
the total mass of the system is 1, we can define the quantity

Ξ(δx, u) =

∫ t f

ti
|xCoM − (δx + u t)|2 dt. (E1)

This measures the distance between the origin and the center
of mass of a system transformed by (δx, u), integrated over

some range of times. We can minimize this quantity over
the transformation to find the optimal transformation. This
minimum can be found analytically by defining two moments
of the center of mass:

x0 =

∫ t f

ti
xCoM(t) dt and x1 =

∫ t f

ti
t xCoM(t) dt. (E2)

Then, the minimum is given by

δx =
4 (t2

f + t f ti + t2
i ) x0 − 6 (t f + ti) x1

(t f − ti)3 , (E3a)

u =
12 x1 − 6 (t f + ti) x0

(t f − ti)3 . (E3b)

The moments can be computed by numerical integration of the
data, and simply plugged into these formulas to find the desired
transformation.
The only free parameters in this case are the limits of

integration, ti and t f . In principle, these could span the entire
time for which there are two separate apparent horizons in
the data. In some cases, as when a simulation needs to be
aligned with another simulation or an analytical waveform, for
example, it would likely be better to restrict this time span to
the same times over which the waveforms are being aligned. In
this case, however, where we are simply interested in finding
estimates for the motion of the systems, we can be somewhat
more liberal. The initial time should be delayed slightly, to
allow junk radiation to settle down, so that the black holes can
be measured accurately. For simplicity and definiteness, we
will set ti to be 1% of the entire time for which data is available.
On the other hand, bizarre features are sometimes present in
the SXS catalog close to merger. To avoid these, and to lessen
the impact of true physical recoils that develop close to merger,
we similarly set t f to be 10% before the end of the data.

With this simple recipe in hand, we can apply it to the
entire SXS catalog very easily. The results are shown for
SXS:BBH:0004 in Eq. (46), and are aggregated for the entire
catalog in Fig. 11. Again, this is a very crude and gauge-
sensitive measure of the motion of the system. It should no
doubt be improved in future work. But for the purposes of
illustration in this paper, it seems to be sufficient.
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