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The recent discovery of GW150914, the binary black hole merger detected by Ad-
vanced LIGO, has the potential to revolutionize observational astrophysics. But to fully
utilize this new window into the universe, we must compare these new observations
to detailed models of binary black hole formation throughout cosmic time. Expanding
upon our previous work [1], we study merging binary black holes formed in globular clusters using
our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models
with different masses, metallicities, and radii to fully characterize the binary black hole merger rate.
These models include all the relevant dynamical processes (such as two-body relaxation, strong en-
counters, and three-body binary formation) and agree well with detailed direct N -body simulations.
In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent
stellar wind and supernova prescriptions, allowing us to compare our results directly to the most
recent population synthesis predictions for merger rates from isolated binary evolution. We explore
the relationship between a cluster’s global properties and the population of binary black holes that it
produces. In particular, we derive a numerically calibrated relationship between the merger times of
ejected black hole binaries and a cluster’s mass and radius. With our improved treatment of stellar
evolution, we find that globular clusters can produce a significant population of massive black hole
binaries that merge in the local universe. We explore the masses and mass ratios of these binaries
as a function of redshift, and find a merger rate of ∼ 5Gpc−3yr−1 in the local universe, with 80%
of sources having total masses from 32M� to 64M�. Under standard assumptions, approximately
1 out of every 7 binary black hole mergers in the local universe will have originated in a globular
cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar
evolution. If black holes were born with significant natal kicks, comparable to those of neutron
stars, then the merger rate of binary black holes from globular clusters would be comparable to that
from the field, with approximately 1/2 of mergers originating in clusters. Finally we point out that
population synthesis results for the field may also be modified by dynamical interactions of binaries
taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.

I. INTRODUCTION

With the recent detection of the binary
black hole merger GW150914 [2], the era of
gravitational-wave (GW) astronomy is here. Ad-
vanced LIGO promises to open an entirely new window
into the universe, performing detailed measurements of
cataclysmic events such as the mergers of compact ob-
jects. In particular, the mergers of binary neutron stars
(NS) and binary black holes (BHs) will help answer de-
tailed questions about such diverse fields as stellar evo-
lution, gamma-ray bursts, the NS equation-of-state, and
even general relativity itself [3–6]. But to fully realize the
science potential of these instruments, we must be pre-
pared to relate GW observations to detailed models of
the compact object merger rate throughout the universe.

To that end, significant work has been done to trans-
late our understanding of star formation and stellar evo-
lution into realistic predictions for compact object merger
rates. Population synthesis codes [e.g. 7–10] use simple
recipes for stellar evolution to rapidly model the evo-
lution of a large population of stellar binaries. How-
ever, this approach suffers from significant uncertainties.
Only weak observational constraints for binary NS sys-
tems exist from observations of binary pulsars in the

Milky Way [11], while the best rate estimates for
stellar-mass binary BH (BBH) mergers arise from
only one GW detection (GW150914) and one less-
significant GW trigger (LVT151012) [12]. The pre-
scriptions used to predict such systems from population
synthesis methods are tuned to observations of stellar
wind-mass loss rates and low-mass X-ray binaries [13, 14]
which are few and far between, particularly for the low-
metallicity massive stars that will potentially dominate
the BBH merger rate [15]. Furthermore, uncertainties in
the physics of binary stellar evolution make it difficult to
constrain the BBH merger rate from isolated binaries to
within several orders of magnitude.

In [1], we explored the contribution to the BBH merger
rate from globular clusters (GCs), a population of dense,
old stellar systems observed in most galaxies. BBH for-
mation in GCs is primarily driven by dynamics, with
three-body binary formation and strong gravitational en-
counters creating the majority of BBH systems. Since
these clusters have survived to the present day, they do
not suffer from the uncertainties in star formation history,
and present a population of systems with well-measured
masses and metallicities. Furthermore, because most
BBHs in GCs are formed dynamically, they are less sen-
sitive to the physics of binary stellar evolution. We an-
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alyzed a collection of GC models from [16], and found
that a single Advanced LIGO observatory could detect
∼10 to ∼100 BBH mergers from GCs per year, similar
to many estimates of the merger rate from the field; how-
ever, these models assumed a distribution of BH masses
that made it difficult to directly compare our results to
population synthesis studies.

In this paper, we explore the full range of masses,
mass ratios, eccentricities, and merger rates of BBH sys-
tems created in GCs. To compare our results to recent
estimates from the field, we have upgraded the stellar
evolution algorithms of our dynamical models with new
prescriptions for the metallicity-dependent stellar winds
of O/B stars [17] and a new prescription for the rem-
nant and fallback masses of compact objects after super-
nova [18]. These changes bring our code into agreement
with the StarTrack population synthesis code [9, 10],
and allow us to create GC models with the same BH
mass distribution used recent estimates for the merger
rate from the galactic field [14, 19, 20]. With these
new stellar-wind prescriptions, we now find that
GCs can produce significant numbers of massive
BBHs that merge in the local universe, including
30M� + 30M� BBHs, similar to GW150914.

In Section II, we describe the basics of our Monte Carlo
approach to modeling dense star clusters, our choice of
initial conditions, and the upgrades to our stellar evo-
lution algorithms. In Section III, we explore how the
global properties of a GC determine the masses, inspiral
times, and merger rates of the BBH population. Then in
Section IV, we show the distributions of merging BBH
masses, mass ratios, and eccentricities as a function of
redshift. We also explore the effects of various assump-
tions in our stellar evolution algorithm, such as differ-
ences in the common-envelope physics, the supernova
mechanism, and the natal kicks given to BHs at forma-
tion. Finally, in Section V, we calculate the merger rates
for BBHs from GCs as a function of redshift, and com-
pare these rates to the most recent estimates of merger
rates from the field [19]. Throughout this paper, we as-
sume cosmological parameters of ΩM = 0.3, ΩΛ = 0.7,
and H0 = 70km s−1 Mpc−1, to compare with the most
recent estimates of BBH mergers from galactic fields [19].

II. CLUSTER MODELS

We create 52 GC models with our Cluster Monte Carlo
code (CMC), an orbit-sampling Hénon-style Monte Carlo
code [21, 22]. CMC has been developed and described
in several previous papers [23–28]. By assuming that
the dynamics of a GC is primarily driven by two-body
relaxation between neighboring particles, CMC can cre-
ate models of dense star clusters on a significantly faster
timescale than a traditional direct N -body integrator.
This allows us to fully explore the parameter space of
GCs, including the massive and compact clusters used
in this study. Recent comparisons to state-of-the-art N -

body simulations [29] have shown that CMC can cor-
rectly model the evolution of realistic clusters with ∼ 106

particles over 12 Gyr, including the masses, semi-major
axes, and eccentricities of the ejected BBHs [30].

In addition to two-body relaxation, CMC incorporates
all the relevant physics for treating the BBH formation
and merger problem. This includes:

• binary-single and binary-binary gravitational en-
counters computed explicitly with the Fewbody
small-N integrator [31],

• three-body binary formation, implemented with an
analytic prescription [32], and

• single and binary stellar evolution, implemented
with BSE [33, 34], and improved with the stellar
remnant and BH kick prescription from [27, 35].
For this paper, we also update the prescriptions for
stellar winds and supernova fallback, in order to
replicate the BH mass distribution of [14, 15, 19, 20]
(see Section II B)

The BBH merger time is found by directly integrating
the orbit-averaged Peters equations [36]. For mergers in
the cluster, this is calculated by BSE. For mergers of
BBHs that were ejected, we calculate the inspiral time
from the masses, semi-major axis, and eccentricity at
ejection. The merger time is then the sum of the in-
spiral time and the time at which the binary is ejected
from the cluster.

A. Initial Conditions

For our main result, we create 52 GC models spanning
a range of different realistic parameters. These are de-
scribed in Table I. We consider a 3x2x4 grid of models,
with different metallicities, virial radii, and initial parti-
cle numbers, for a total of 24 initial conditions, and four
additional models in which we varying the assumptions
of stellar evolution. For each of the 24 main models,
we generate two statistically independent cluster mod-
els for each initial condition. We consider three metal-
licities: 0.01Z�, corresponding roughly to the lower-
end of the Milky Way GC (MWGC) metallicity distri-
bution [37], 0.05Z�, corresponding to the peak of the
MWGC distribution, and 0.25Z�, corresponding to the
peak of the high-metallicity MWGCs. We will refer to
our 0.01Z� and 0.05Z� models as low-metallicity, and
our 0.25Z� model as high-metallicity1. We place the
0.25Z�, 0.05Z�, and 0.01Z� clusters at galactocentric
distances of 2 kpc, 8 kpc, and 20 kpc respectively, as

1 GCs in most galaxies are observed to fall into two distinct metal-
licity groups: high-metallicity, or “red” GCs, which are typically
found in the galactic bulge, and low-metallicity, or “blue” GCs,
typically found in the galactic halo [38].
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Initial Conditions Final Properties (12 Gyr)

N (×105) Rv (pc) Metallicity (Z�) Mass (105M�) Nbin Ninsp

2 1 0.01 0.51, 0.52 36, 44 9, 7

2 1 0.05 0.46, 0.43 41, 44 5, 10

2 1 0.25 Dissolved – –

5 1 0.01 1.47, 1.48 90, 89 29, 32

5 1 0.05 1.37, 1.36 87, 86 28, 33

5 1 0.25 0.85, 0.85 80, 84 22, 25

10 1 0.01 3.05, 3.07 177, 169 90, 75

10* 1 0.05 2.84, 2.94 178, 158 94, 84

10 1 0.25 2.35, 2.35 178, 168 102, 86

20 1 0.01 6.32, 6.32 321, 334 232, 233

20 1 0.05 5.96, 5.95 339, 334 254, 252

20 1 0.25 5.29, 5.33 323, 348 260, 270

2 2 0.01 0.4, 0.5 31, 32 3, 4

2 2 0.05 0.47, 0.48 37, 31 7, 6

2 2 0.25 Dissolved – –

5 2 0.01 1.49, 1.52 82, 75 22, 21

5 2 0.05 1.4, 1.41 74, 75 21, 23

5 2 0.25 0.72, 0.73 73, 71 20, 15

10 2 0.01 3.18, 3.15 121, 127 43, 48

10 2 0.05 3.0, 3.01 133, 140 55, 54

10 2 0.25 2.53, 2.47 128, 136 44, 46

20 2 0.01 6.59, 6.59 215, 233 144, 139

20 2 0.05 6.33, 6.3 243, 226 154, 153

20 2 0.25 5.86, 5.82 221, 230 132, 127

TABLE I. List of the main 48 GC models created in this study. We consider 24 initial conditions with different initial particle
numbers, virial radii, and metallicity, and run two independent realizations of each cluster model. For each set of model inputs,
we show the final cluster mass, the total number of BBHs ejected by 12 Gyr (Nbin), and the number of those BBHs that will
merge before the present day (Ninsp) for each of the two models. Of these 48 models, 4 dissolve before 12 Gyr. We show these
for completeness, but do not include them in our analysis, which we have restricted to the population of GCs that survive to
the present day. We also generate 4 additional models, identical to the starred model, with different physics for the treatment
of stellar evolution. These are described in Section IV D.

there exists a strong correlation between a cluster’s galac-
tocentric distance and its metallicity [39]. We also con-
sider clusters with initial virial radii of both 1 pc and 2
pc. This is motivated by both observational evidence of
cluster formation in the local universe, suggesting that
Rv ∼ 2 pc is typical [40] and theoretical modeling sug-
gesting that smaller Rv produce GCs with properties
more similar to observed MWGCs [16].

For each metallicity, galactocentric distance, and virial
radius, we then consider clusters with N = 2 × 105, 5 ×
105, 1×106, and 2×106 particles. The particles are placed
at radii drawn from a King profile [41] with W0 = 5
(as [1, 16] found no correlation between the initial GC
concentration and either the observational properties of
the clusters or the properties of the BBH population).
The stellar masses are drawn from a Kroupa initial mass
function (IMF) of the form [42]:

P (m)dm ∝ m−αdm (1)

with

α =

{
1.3 0.08M� ≤M < 0.5M�

2.3 0.5M� ≤M
(2)

We consider masses from 0.08M� to 150M�, in order
to directly compare our results to recent results for the
field (e.g. [14, 19]). We also assume that all models be-
gin with 10% of the particles as binaries. This is ac-
complished by randomly selecting 10% of particles and
adding a companion mass drawn from a flat distribution
in the mass ratio. The binary separations are drawn from
a P (a)da ∝ 1/a distribution, with a lower-limit near the
point of stellar contact and an upper-limit such that the
velocity of the binary components is equal to the average
velocity of a star in the cluster core. The eccentricities
are chosen from a thermal distribution, P (e)de = 2ede
[43]. Because we select 10% of our particles to become
binaries, our models have 10% more stars than the num-
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ber of particles (e.g. our N = 2 × 105 model contains
2.2× 105 stars).

B. Upgraded Stellar Evolution

In [1], we used a series of models from [16] to estimate
the BBH merger rate. We noted that in our simulations,
dynamically-formed BBHs from GCs were characteristi-
cally more massive than those formed by stellar evolution
of binaries in the field; however, this result was highly de-
pendent on our particular prescription for binary stellar
evolution. More recent work [8, 14, 15] has suggested
that massive BBHs (with total masses up to 160 M�)
can be formed in low-metallicity environments, where the
reduced stellar winds from massive stars enable the for-
mation of BHs with masses up to 80M�. Furthermore,
the reduced wind-driven mass loss increases the chance
that the system will remain bound during its evolution
to become a BBH.

We have upgraded the binary stellar evolution module
in CMC with improved prescriptions for the metallicity-
dependent stellar winds and supernova-driven mass loss.
For stellar winds, we make two additions to the default
BSE implementation: first, for O and B stars, we imple-
ment the mass-loss prescriptions developed in [17], which
we will refer to as the “Vink prescription”. This fit de-
termines the mass-loss as a function of the star’s mass,
effective temperature, metallicity, and luminosity for any
hot (12500 K < Teff < 50000 K) hydrogen-rich star on the
main sequence. The Vink prescription covers separately
the temperature range from 12500 K < Teff < 22500 K
and 27500 K < Teff < 50000 K, while explicitly excluding
the range between 22500 K and 27500 K, which is com-
plicated by the appearance of Fe ion line-driven winds
at approximately 25000 K. We follow the prescription
from [13], extending the lower temperature prescription
(equation (25) from [17]) up to 25000 K and the higher
temperature prescription (equation (24) from [17]) down
to 25000 K. In addition to the new prescription for O
and B stars, we add a metallicity dependence to the evo-
lution of naked-helium (Wolf-Rayet) stars. This is done
by supplementing the original BSE prescription [44] with
the metallicity dependence from [45].

We also include two new prescriptions for the super-
nova mechanism. These prescriptions, first developed in
[18], describe the amount of material that falls back onto
the newly-formed compact object for neutrino-driven
and convection-enhanced supernovae. They consider two
cases, based on the delay between the core bounce and
the explosion: the rapid case, which assumes that any
explosion occurs within the first 0.25 seconds after the
core bounce, and the delayed case, which relaxes this as-
sumption. The rapid prescription replicates the observed
“mass-gap” between NSs and BHs [46, 47], while the de-
layed prescription allows for BH masses from 2M� to
5M�. For the default in this study, we use the rapid su-
pernova model, although in Section IV D we also explore

the effects of the delayed supernova mechanism on BBH
production in GCs

In addition to determining the mass of the supernova
remnant, the mass of the fallback material determines
the velocity kick the newly-formed BH receives from the
explosion. Consistent with the original version of BSE,
we give all BHs natal kicks drawn from a Maxwellian
with a dispersion of σ = 265km s−1 [48] as is done for
NSs formed by core-collapse supernova. However, we as-
sume that the final velocity is lowered by the mass of the
fallback material according to

Vfinal = (1− ffb)Vnatal (3)

where ffb is the fraction of the ejected supernova mass
that will fall back onto the newly-formed proto-compact
object, determined by equations (16) and (19) in [18]. For
any sufficiently massive BH progenitor (M & 40M�), the
fallback completely damps any natal kick, and the BH is
retained in the cluster. This is consistent with the direct
collapse scenario discussed in [49].

The goal of these modifications is to replicate the BH
mass spectrum used in the recent studies of field-born
BBHs, specifically those employed in the StarTrack pop-
ulation synthesis code. With these new changes to our
version of BSE, we find that CMC produces a similar re-
lationship between the zero-age main-sequence mass of a
massive star and its final BH mass (Figure 11 of [18]).
Therefore we can now explicitly compare our results to
those from [19, 20]. Note that this does not imply that
our stellar evolution code would replicate the StarTrack
results for binary stars, as we have not modified our bi-
nary stellar evolution prescription from the version used
in previous papers. However, since the majority of BBHs
from GCs are formed dynamically (90% of all BBH merg-
ers, and 99.7% of mergers at z < 1), this does not sig-
nificantly impact our results. To confirm this, we create
an additional 4 GC models varying the physics of binary
stellar evolution, and explore the effects of these assump-
tions in Section V A.

III. BBH PRODUCTION IN GCS

A. Binary Properties

One of the most interesting results of [1] was the sig-
nificant increase in the merger rate of BBHs from GCs
as compared to other studies. This was attributable to
two key effects: first, the Monte Carlo method allows
us to model significantly larger clusters than a direct N -
body method. Since CMC can integrate clusters with
N ∼ 106 in days to weeks, [1] was able to explore the
contribution of massive GCs that were shown to domi-
nate the BBH merger rate. Previous studies, particularly
those using direct N -body integrators, were limited to
clusters with at most ∼ 105 particles [50–53]. After 12
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FIG. 1. The distribution of semi-major axes and inspiral times for the binaries ejected from our collection of GC model. The
models are broken down according to the initial number of particles (equivalent to the mass), with the Rv = 1pc models along
the top row, and the Rv = 2pc models along the bottom. Clusters with larger masses and smaller virial radii eject binaries
with higher binding energies. The gray shaded region in the plot of inspiral times indicates merger times of less that 12 Gyr.
The rightmost plots shows the differences between the redshift at which the binary is ejected from the cluster and the redshift
at which it merges.

Gyr of evolution, these clusters would produce at most
∼10 to 20 BBHs, only ∼ 10% of which would merge in
a Hubble time. The one exception was the two studies
[54, 55], which used a Monte Carlo approach similar to
CMC. However, they only considered a single, relatively
low cluster mass (N ∼ 5 × 105) and did not include di-
rect integration of binary-single and binary-binary en-
counters, critical for correctly predicting the properties
of dynamically-formed BBHs. By covering the full dis-
tribution of GC masses, our models can correctly predict
the number of binaries ejected from the most massive
GCs, significantly increasing the total number of bina-
ries produced by GCs overall.

Not only do massive clusters produce more BBHs, but
the BBHs that they produce are more likely to merge
within 12 Gyr than BBHs from lower-mass GCs. This
result arises from the physics of binary formation and in-
teraction in a cluster environment. A hard binary (with
binding energy greater than the typical kinetic energy
of particles in the cluster), typically undergoes a series of
strong encounters with other single and binary stars. The
result of these repeated encounters, known as “Heggie’s
law”, is that hard binaries tend to get harder, increasing
their binding energy on average with each encounter, and
transferring that energy to the center-of-mass velocity of
the interacting stars [43]. The recoil velocity of the bi-
nary in the cluster is increased after each encounter, until

eventually the binary receives a velocity kick sufficient to
eject it from the cluster.

Since conservation of energy demands that the change
in Ebin be proportional to the post-encounter kinetic en-
ergy of the binary, and the potential of the cluster deter-
mines the minimum kinetic energy for escaping particles,
we can use the cluster potential to determine the min-
imum binding energy (and maximum semi-major axis)
required to eject a binary. First, we assume that Ebin in-
creases by roughly the same fraction after every binary-
single encounter, and that ∼ 1/3 of that energy gets
transferred into the binary recoil. [43, 56] both assumed
an average Ebin increase of 40% after each encounter,
while [50] assumed 20%; however, both studies consid-
ered the average only for particles with equal masses.
For generality, we simply assume that the binding en-
ergy is related to the center-of-mass kinetic energy by
some factor α, such that after a scattering encounter

ECM = αEbin = α
Gm1m2

2a
(4)

where a is the binary semi-major axis and m1 and m2 are
the component masses. If we assume the cluster poten-
tial is represented by a Plummer distribution, then the
energy required to eject a binary from the center of the
cluster is given by [e.g., 57]
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FIG. 2. The relationship between the global cluster parame-
ters and the properties of its ejected binaries. Clusters with
higher escape speeds (low Rh and high MGC) eject binaries
with larger binding energies. The top panel shows the dis-
tribution of the constant from equation (6), fitted to a log-
normal distribution. The lower panel shows the relationship
between the ratio of the semi-major axis to the reduced mass
for each binary, a/µbin, and the ratio of the half-mass ra-
dius to cluster mass, Rh/MGC , at the time each binary is
ejected from the cluster. The red dashed line indicates the
median of the log-normal fit. The blue and black points show
each binary ejected after a strong encounter with a single star,
with the blue points indicating binaries that will merge within
12Gyr. The cyan points (excluded from the log-normal fit)
show binaries ejected after a strong encounter with another
binary.

Eesc = (m1 +m2)|Φc| =
GMGC(m1 +m2)√

22/3 − 1Rh
(5)

where MGC is the cluster mass and Rh is the half-mass
radius (the radius enclosing half the cluster mass). Com-

10-2
10-1
100
101
102
103
104
105

t i
n
sp

(G
y
r)

Rv = 1pc

Inspiral Times                 

N= 2× 105

N= 5× 105

N= 1× 106

N= 2× 106

40 60 80 100 120 140 160
Binary Mass (M¯)

100
101
102
103
104
105
106

t i
n
sp

(G
y
r)

Rv = 2pc

FIG. 3. The median inspiral time for binaries from different
GCs as a function of binary mass. The binaries from each
cluster are binned according to total mass, and the median
inspiral time (after ejection from the cluster) is computed. An
increase in either the binary mass or the cluster mass yields
a decrease in the median merger times. The fluctuations in
each line arise from the small number of points, which more
strongly effect high-mass BBHs and smaller GC models.

bining (4) and (5), we can relate the semi-major axis of
ejected binaries to the mass and half-mass radius of the
cluster at the time of ejection by

MGC

Rh
=

(
α

√
22/3 − 1

2

)
µbin
a

=
1

κ

µbin
a

(6)

where µbin = (m1m2)/(m1 + m2) is the reduced mass
of the binary and we have defined the coefficient κ ≡
2/(α

√
22/3 − 1).

Equation (6) reinforces an important point: when av-
eraged over many encounters, it is the global properties
of the cluster, not the micro-physics of the dynamics,
that primarily determines the semi-major axes of bina-
ries formed dynamically. We show the semi-major axes,
inspiral times, and redshift delays for the binaries from
each of our models in Figure 1. Although this relation-
ship between the cluster potential and the semi-major
axis of ejected binaries has beeen noted before [50, 58],
the size of the models considered here allows us to extend
this analysis to realistically-sized clusters with realistic
BBH masses.
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FIG. 4. The relationship between the median mass of an
ejected BBH (in black) and the ratio of the half-mass radius
to the GC mass (in red) as a function of time for our 0.01Z�,
N = 2 × 106, Rv = 1pc model. The cluster preferentially
forms and ejects massive binaries early in its lifetime, How-
ever, during this phase, the (Rh/MGC)4 term increases by
several orders of magnitude, primarily driving the increase in
inspiral times as shown in equation (10). We normalize Rh

and MGC to their initial values at t = 0.

Since our GC models span a range of BH masses, clus-
ter masses, and cluster half-mass radii, we can compare
(6) directly to the BBHs ejected from our models. In Fig-
ure 2, we show the relationship between the semi-major
axis and reduced mass of each binary and the half-mass
radius and total mass of the cluster from which it was
ejected. We show the distribution of κ from all ejected
binaries in the top panel. We find that the distribution
of κ values roughly follow a log-normal distribution. In
the bottom panel, we plot the value of a/µbin for every
binary against Rh/MGC at the time it was ejected. We
also show a line corresponding to the median of the log-
normal fit. We note that this relationship only applies to
binaries ejected from the cluster during strong encounters
with a single object. Binaries ejected during encounters
with another binary have significantly more complicated
interactions, including a much greater possibility of ex-
changing components. However, we find that 81% the of
binaries ejected from our GC models are ejected immedi-
ately following a binary-single encounter (involving either
a hardening encounter or an exchange of componenets),
while only 13% are ejected following a binary-binary en-
counter. For completeness, we also show these points in
Figure 2, though we exclude them from the fit to equation
(6). With the fit to κ from equation (6), we can
express the probability for a BBH to be ejected
with a given eccentricity and semi-major axis as:

P (e) de = 2e de (7)

P (a|MGC , Rh, µbin) da =
1

aσ
√

2π
× (8)

exp

−
(

log µbinRh

aMGC
− a∗

)2

2σ2

 da
where a∗ and σ are the parameters of the log-
normal distribution with mean a∗ = 3.98 and
σ = 0.59. We reiterate that equations (7) and
(8) only apply for the 81% of sources which are
ejected from the cluster following a binary-single
encounter.

With a relationship between the cluster parameters
and the semi-major axes of the binaries it ejects, we can
show how cluster dynamics determines the inspiral times
of BBHs once they are ejected from the cluster. From
the Peters equations [36], we see that the merger time of
a binary scales as

tinsp ∝
a4

m1m2(m1 +m2)
(9)

If we combine equation (9) with the scaling from equation
(6), we can show that the inspiral time of a binary with
total mass M ≡ m1 +m2 scales as

tinsp ∝
(

Rh
MGC

)4

M (10)

where we have assumed all binaries to have equal-mass
components.

In Figure 3, we show the inspiral times for BBHs
ejected from each of our GC models as a function of bi-
nary total mass. What is immediately striking is that the
median inspiral time appears to decrease with increasing
binary mass, in contrast to the scaling derived in equa-
tion (10). This is primarily due to the influence of the
cluster itself: while the binary mass does determine the
inspiral time of the binary post-ejection, it is the cluster
mass and half-mass radius that determine the separation
at ejection, and the (Rh/MGC)4 factor in equation (10)
increases by several orders-of-magnitude over the 12 Gyr
lifetime of a GC.

In Figure 4 we show the median mass of ejected BBHs
and the ratio (Rh/MGC)4 for a single GC model over
time. As the cluster ages, it preferentially ejects its most
massive BHs first, working its way from most to least
massive BHs as time progresses. As the BHs are ejected,
the cluster expands and loses mass, increasing Rh/MGC

and significantly increasing the inspiral time of the lower-
mass binaries ejected at late times. This scaling drives
the counter-intuitive decrease in inspiral times for high-
mass BBHs seen in Figure 3: these BBHs are ejected
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FIG. 5. The number of mergers for each model as a func-
tion of the final cluster mass. We show separately the
low-metallicitiy (0.01Z�, 0.05Z�) and high-metallicity GCs
(0.25Z�), and separate the clusters by virial radii. We then
fit equation (11) to each set of models. The main fits using
the combined sample of clusters with Rv = 1pc and Rv = 2pc
are shown with dashed lines, while the dotted lines show fits
to clusters with only Rv = 1pc or Rv = 2pc

early in the cluster lifetime, when (Rh/MGC)4 is low. As
the cluster ages, (Rh/MGC)4 increases significantly, and
the average inspiral time for an ejected BBH increases
accordingly.

B. BBH Mergers per Cluster

To determine the mean number of mergers per cluster,
we need a functional form for the number of inspirals as
a function of cluster mass. In [1], this was done with a
simple linear regression, assuming that the mass of the
cluster at 12 Gyr was proportional to the number of in-
spirals it had produced. However, as we have shown, this
scaling is somewhat more complicated: while the mass of
a cluster may be proportional to the number of BBHs it
produces, the fraction of those sources that will merge
in a Hubble time, finsp, is also controlled by the cluster
mass. While the number of BBHs a cluster forms should
linearly depend on its mass (more stars yield more BHs,
yielding more BBHs), the relationship between finsp and
the final GC mass is less obvious.

Rather than derive a physically-motivated functional
form for finsp, we choose a simpler approach, and require
only that whatever finsp we choose increases with mass
and assymptotes to 1 as MGC →∞. As this requirement
also describes the family of cumulative probability distri-
butions, we elect to use an error function (the cumulative

normal distribution). This yields a final relationship for
the number of inspirals as a function of GC mass:

Ninsp(MGC) = NBBH(MGC)× finsp(MGC) (11)

where

NBBH(MGC) = aMGC + b (12)

finsp(MGC) = erf

(
MGC −M0

2σ

)
(13)

We fit NBBH and finsp separately, then take the product
to be Ninsp. We fit equation (11) for high-metallicity and
low-metallicity clusters. We also consider separate fits to
clusters with Rv = 1 pc and Rv = 2 pc to better un-
derstand the impact of cluster size on our results (Figure
5).

C. Sampling our Inspiral distribution

In order to create a representative population of BBHs
from GCs, we must compare our models to observations
of GC systems. In [1], this was accomplished by integrat-
ing Ninsp(MGC) over the GC mass function (GCMF),
which we assumed to be a log-normal distribution with
mean log10(M0) = 5.54 and width σM = 0.52, based on
recent observations of the GC luminosity function in [59]
and an assumed mass-to-light ratio of 2 in solar units [60].
This, when combined with the spatial density of GCs per
comoving volume [1, Supplemental Materials], yielded an
effective estimate for the density of BBH mergers from
GCs in the universe. This was then converted into a de-
tection rate by multiplying this density by the distribu-
tion of inspirals from our models in redshift, reweighed
to favor GC models which more closely resembled the
MWGC distribution. This statistical machinery was used
to account for the fact that the models developed in [16]
and used in [1] were designed to probe the space of GC
initial conditions, not to span the space of observed GCs.

We proceed in a similar fashion. We integrate equa-
tion (11) over the GCMF from 0 to 2 × 107M� to de-
termine the mean number of inspirals per GC. Note that
we do not consider a varying upper-mass cutoff in the
integral, as the upper-mass cutoff does not strongly af-
fect the mean [1, and its associated erratum]. We do this
separately for high- and low-metallicity clusters, though
we use the same GCMF for both. We present the re-
sults in Table II. To combine the different metallicity
results, we use the computed spatial density of high-

metallicity (ρhigh
GC = 0.34Mpc−3) and low-metallicity clus-

ters (ρlow
GC = 0.44Mpc−3) from the Supplemental Mate-

rials of [1], which implies that 56% of all clusters are
low-metallicity.

In addition to 〈Ninsp〉, we need to weigh the models
to more closely represent the observed mass distribution
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Virial Radius

Metallicity Rv = 1pc Rv = 2pc Rv = 1, 2pc

Low 319 194 251

High 381 190 271

Both 347 192 260

TABLE II. The mean number of inspirals per GC over 12
Gyr, found by integrating equation (11) over the GCMF. We
show separately the average numbers for clusters with Rv = 1
pc and Rv = 2 pc, and the combined fit to both. We also
separate the results according to metallicity.

of GCs. To accomplish this, we compute the final mass
for our N = 2 × 105, 5 × 105, 106, and 2 × 106 models.
We then use the average mass for each set of simulations
to divide the GCMF into discrete bins, such that each
set of models sits in the center of its respective mass
bin. Each model is then assigned a weight corresponding
to the total integrated number of observed GCs in that
mass bin. This is done separately for high- and low-
metallicity clusters, with 4 bins for the low-metallicity
cluster and 3 for high-metallicity clusters2. In addition
to the contribution from clusters with different masses,
we have also assumed that 56% of clusters in the universe
have low metallicities. However, 2/3 of our models have
low metallicity, so we multiply the weights of the low-
metallicity clusters by 0.86, to ensure our inspirals are
correctly sampled according to the metallicity spread of
observed GCs.

We use these weights to create a collection of BBH
mergers representative of a full population of GCs. This
is accomplished by randomly drawing samples from each
model according to its weight. As an example, the high-
metallicity N = 2 × 106 model has the largest weight
of all our models, so we draw all of its BBH inspirals
for our merger population. On the other hand, the low-
metallicity N = 5 × 105 model has a weight 0.46 times
the weight of the largest model, so we only draw 46% of
its binaries.

For the next section, we will use this collection of inspi-
rals for our primary analysis. For any scatter plots show-
ing a representative sample of mergers, we only use a sin-
gle draw from our models. For percentiles, rate compu-
tations, and any quantities involving relative quantities,
we perform 10 independent draws from our GC models.
This effectively considers each BBH merger from each of
our models, weighted by the contribution of that model
to the total merger rate.

2 We do not use the 2 × 105 high-metallicity models, as these dis-
rupted before 12 Gyr, and we are interested only in the popula-
tion of clusters which survives to the present day.
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FIG. 6. The mass distribution of single BHs from our models
as a function of metallicity. As the metallicitiy decreases, the
amount of mass loss due to stellar winds is also decreased,
increasing the maximum BH mass. For higher metallicity
systems, the wind-driven mass loss causes all stars above a
certain mass to form BHs with similar masses (e.g., 30M� for
stars with 0.25Z�).

IV. BBH PROPERTIES

A. Mass Distributions

With the Vink prescription for stellar winds, our mod-
els now produce significantly more massive BHs than was
found in previous GC studies. While [1] found a maxi-
mum BH mass of ∼ 20M� and ∼ 25M� for high and
low-metallicity systems respectively, the reduced stellar
winds for low-metallicity massive stars significantly in-
crease these cutoffs. We now find maximum BH masses of
∼ 30M�, ∼ 53M�, and ∼ 78M� for our 0.25Z�, 0.05Z�,
and 0.01Z� models respectively (see Figure 6). This is
consistent with the latest results from population synthe-
sis codes, such as StarTrack [13] and SEVN [8] (though
the latter, which explores significantly higher-mass pro-
genitors than we consider here, can produce BHs as mas-
sive as 130M� for stars with Z = 0.01Z�).

Despite the significant changes to the BH mass spec-
trum, the behavior of BHs in clusters, developed in [16],
remains unchanged: after core collapse, the most mas-
sive BHs segregate into the center of the cluster, where
they immediately form BBHs via three-body encounters.
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FIG. 7. Scatter plot of BBH merger masses, weighted to select more inspirals from models with final GC masses near the peak
of the GCMF (see Sec. III C). We show separately the results from models with Z = 0.25Z� (in red) and Z = 0.05, 0.01Z� (in
blue). Along the top, we show the chirp mass, total mass, and individual component masses for binary mergers as observed
in the detector frame (i.e. mz = m(1 + z)), while the bottom shows the intrinsic masses as measured at the source. Note
that the plot range excludes 5 sources at very high masses (total mass ∼ 250M�) from the chirp mass and total mass plots,
and 18 points from the component-mass plot, which are the result of repeated mergers of BH progenitors early in the GC
evolution. We also show the source-frame masses of GW150914 (in magenta) and the GW trigger LVT151012
(in teal), with the 90% intervals reported from the GW parameter estimation [61, 62]. Although it was not
claimed as a detection, LVT151012 has a & 84% probability of having an astrophysical origin [12]. Due to the
lack of published uncertainties, the LVT151012 total mass intervals are computed by adding the 90% credible
intervals on the individual components from [62].

These BBHs then undergo a series of binary-single and
binary-binary encounters, increasing their binding ener-
gies and shrinking their semi-major axes. Eventually, the
recoil from one of these encounters will be sufficient to
eject the binary from the cluster, as discussed in Section
III A. Although a significant number of binaries merge
in the cluster (∼ 10%), the majority of these in-cluster
inspirals occur early in the GC lifetime. At z < 1, only
0.06% of binary mergers (one merger from all 48 models)
occur in-cluster. Of the ejected sources merging in the
local universe, 99.7% were formed dynamically, which we
define to be either a BBH formed from three isolated
BHs by a three-body interaction, or a BBH formed from
a primordial binary which swapped components at least
once during a binary-single or binary-binary encounter.

In Figure 7, we show the masses for each of the in-
spirals from the weighted sample of GC BBH merg-
ers. We break the masses down into two categories:
source masses, or the local masses of each BBH, and ob-
served masses, which correspond to the redshifted mass,
mz = m(1 + z), measured by an observer on Earth. We
also show separate panels for the chirp mass of the source,
Mc ≡ (m1m2)3/5/(m1 + m2)1/5, the total mass of the
source, and the individual components of each binary.

The overall structure of the plots agrees well with our
understanding of BH and BBH evolution in GCs: after
the formation and core collapse of the cluster (at z ∼ 4),
the most massive BHs form binaries and are ejected im-
mediately. The GC processes through its available pop-
ulation of BHs, working its way through the BH popu-
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FIG. 8. Percentage of sources in a given mass range as a function of redshift, computed from a sample containing 10 weighted
draws of inspirals from our models. The sources are divided into bins with width ∆z = 0.1. The solid white line represents the
median mass at a given redshift, while the blue, green, and red intervals show the mass range containing 50%, 80%, and 99% of
all inspirals at that redshift. We separate the two component masses, with component 1 greater than component 2. We also
show GW150914 and LVT151012, in magenta and teal respectively. The component BH masses of GW150914
are consistent with the high-mass end of the BBH mass distribution (the 80% region), while LVT151014 lies
nearly at the median total mass of merging BBHs.

lation from most to least massive, so that only low-mass
BHs (∼ 10− 20M�) are still present in massive GCs by
the present day. In the total-mass panel of Figure 7,
this story is obvious. The majority of the most massive
inspirals (total mass > 100M�) merge soon after GC for-
mation, between z = 4 and z = 3. After these BBHs are
ejected, the cluster moves on to less massive BBHs with
longer inspiral times. These sources (with total masses
from 30M� to 60M�) form the predominant population
of BBHs detectable in the present day.

The plateaus in the chirp mass, total mass, and com-
ponent mass distributions are primarily determined by
the maximum BH mass at each metallicity, which is in
turn determined by the wind-driven mass loss from the
Vink prescription (Figure 6). For the highest metallic-
ity models (Z = 0.25Z�), this yields a large population
of 30M� BHs, which in turn forms a large population
of equal-mass BBHs with a total mass of 60M�. For
the Z = 0.05Z� clusters, this yields a smaller collec-

tion of sources with a total mass of 110M�. However,
for the lowest-metallicity models (Z = 0.01Z�) there is
no apparent collection of sources at 160M� as might be
expected.

This behavior can again be explained by the wind-
driven mass loss. Each model begins with an identical
distribution of stars drawn from (1). For the highest-
metallicity models, the mass-loss from these winds brings
all stars with birth masses from ∼ 80M� to ∼ 150M�
down to a final progenitor mass of ∼ 30M� to ∼ 35M�
before the supernova occurs. Essentially, this truncates
a large section of the high-mass end of the IMF to a
single BH mass; however, for lower-metallicity models,
the decreased efficiency of the stellar winds means a
lower number of high-mass stars are being converted into
maximum-mass BHs, essentially spreading out the high-
mass stars over a wider range of BH masses. The num-
ber of maximum-mass BHs between each of our mod-
els decreases by roughly a factor of 5 between each of
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our metallicitiy bins. This also yields a higher num-
ber of inspirals with unequal-mass components for lower-
metallicity models, which we discuss in the next section.

We also show in Figure 7 the masses and 90%
uncertainties associated with the recent detection
of GW150914. The masses reported from the pa-
rameter estimation [61] of GW150914 are consis-
tent with the masses of BBH mergers from GCs
in the local universe, with the specific masses
(36M� and 29M�) being easily formed in lower-
metallicity GCs. We also show the less-significant
GW trigger LVT151012, with the 90% uncertain-
ties taken from [62]. Although this signal was not
claimed as a detection, we note that the masses
of this event (total mass of ∼ 36M�) is also con-
sistent with BBH mergers from GCs in the local
universe

In Figure 8, we convert our scatter plot of BBH mergers
into percentiles as a function of redshift. In the local
universe (z . 0.1), we find that the median BBH source
from a GC has a chirp mass of 17M�, with 50% of sources
lying in the range [14.6M� − 21.4M�], 80% of sources
in the range [13.2M� − 27.7M�], and 90% of sources
in the range [13.2M� − 37.1M�]. This corresponds to
a median total mass of 39.4M�, with a 50% interval of
[33.6M�−49.6M�], a 80% interval of [31.8M�−63.6M�],
and a 90% interval of [30.5M� − 86.8M�]. Given the
analysis in Section III A and Figure 3, we can expect
that massive binaries that merge in the local universe
are more likely to be ejected from clusters with lower
masses and larger half-mass radii. This is supported by
our results: 77% of all BBH mergers are formed in our
most massive GCs (N = 2× 106). However, in the local
universe, this fraction changes as a function of mass. 86%
of binary mergers with total masses < 50M� at z ∼
0.1 are preferentially formed in high-mass clusters. On
the other hand, for binary mergers with masses above
50M�, this fraction drops to 66%. We note that the
large contribution from high-mass GCs is a result of our
focus on GCs which have survived to the present day.
Were we to consider lower mass clusters that disrupted
before 12 Gyr, it is likely that the merger rate for massive
BBHs in the local universe would increase significantly.

Finally, we note that there exists a small population of
BHs significantly more massive than the maximum-BH
mass allowed by stellar evolution. These ∼ 25 BHs are
the result of repeated stellar mergers early in the evolu-
tionary history of the cluster. These collisions are primar-
ily the mergers of massive giant and main-sequence stars
during binary-single and binary-binary encounters, with
a smaller number resulting from direct collisions of single
stars. We note that 3 of these sources were formed from
a BBH merger whose remnant remained in the cluster,
forming a second BBH; however, as CMC does not in-
corporate the physics of gravitational-wave recoil, these
3 sources are most likely nonphysical, as typical recoil
velocities from a BBH merger greatly exceed the escape
velocity of a typical GC [63].
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FIG. 9. The mass ratios for all inspirals from Figures 7 and 8.
On the top, we show the scatter plot of mergers, with red and
blue indicating inspirals from high and low-metallicity GCs,
respectively. The bottom panels indicate the median mass
ratio for a given source mass, with bin widths of ∆Mc =
1.5M� and ∆Mtot = 3M�, while the blue, green, and red
ticks indicate the range of mass ratios encompassing 50%,
80%, and 90% of all sources. We also show the mass
ratio for GW150914 and its 90% credible region. We
do not show the LVT151012 trigger, which lacks a
published mass ratio.

B. Mass Ratio Distributions

In addition to the individual BH masses, the mass ra-
tios of BBHs may provide an important clue to the for-
mation mechanism of a binary. In Figure 9, we show
the mass ratios from our models as a function of chirp
mass and total mass. The mass ratios pile up near unity,
with a median mass ratio of 0.87 and 68% of sources
having mass ratios greater than 0.8. This is to be ex-
pected: binary-single and binary-binary scattering exper-
iments show that binaries in dense stellar environments
are prone to swapping components, preferentially ejected
less-massive components in favor of more massive com-
panions [64].

However, we also note that there exists a small pop-
ulation (7%) of sources with mass ratios less than 0.6.
These appear at the base of the apparent “V” formations
in the top panels of Figure 9, corresponding to binaries
with total masses of ∼ 20M�, ∼ 50M�, ∼ 80M�, and
∼ 130M�. These features are a direct result of the peaks
in the distribution of BH masses (Figure 6). The three
most-obvious peaks in the BH mass distribution, around
18M�, 30M�, and 53M�, create peaks of equal-mass bi-



13

naries at total masses near 36M�, 60M�, and 106M�.
For instance, the ∼ 53M� maximum BH mass for the
0.05Z� models creates a large population of equal-mass
binaries with a total mass of 106M�. However, these BHs
will also form binaries with less-massive companions from
the BH distribution (roughly down to the second peak of
the distribution at ∼ 25M�). This creates the feature
running from a mass ratio of 1 at ∼ 106M� to a mass
ratio of 0.4 at ∼ 80M�. We reiterate that these features
are the result of the peaks in the BH mass distribution,
which strongly depends on the stellar metallicity. As we
have only considered three metallicities here, it is likely
that a collection of models fully spanning the distribu-
tion of GC metallicities would find a more continuous
distribution of mass ratios.

C. Eccentricity Distributions

It is a well-known result that dynamically-formed bi-
naries will follow a thermal distribution of eccentricities
[43]. This distribution, P (e)de = 2ede, is the result of
the thermalization of velocities that occurs through re-
peated encounters in the dense cluster core. However,
once ejected, these binaries evolve in isolation, and are
rapidly circularized due to the preferential emission of
gravitational radiation at periapsis [36]. Given the diffi-
culties involved in detecting such binaries and the pos-
sibility of parameter estimation for such systems [65], it
is important to quantify the number of sources that will
enter the LIGO detection band with non-negligible ec-
centricities.

In Figure 10, we show the eccentricities of all ejected
binaries. The eccentricity at 10Hz is computed by in-
tegrating 〈de/da〉 [36] from ejection to af = G(m1 +
m2)/(4π2f2

low), the Keplerian separation for a binary
with an orbital period of flow = 5Hz (corresponding to
a gravitational-wave frequency of 10Hz). We show the
relationship between the 10Hz eccentricity and the semi-
major axis and eccentricity at ejection in the upper and
middle plots, and the distribution of final eccentricities
in the lower plot.

This result suggests that the majority of BBHs from
GCs will very nearly circular by the time they are de-
tectable, with 99% of sources entering the LIGO band
with eccentricities below ∼ 10−3. Thus, eccentric sys-
tems ejected from clusters will not be a significant source
for Advanced LIGO. However, it has been shown that a
non-negligible number of sources in the cluster will be
driven to merger by long-term secular effects, such as
the Lidov-Kozai mechanism, in BH triple systems, which
we do not consider here. Were that physics properly in-
cluded in these models, it is likely that ∼1% of mergers
could be detected with significant eccentricity [66].
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FIG. 10. The eccentricities of the BBH population at a
gravitational-wave frequency of 10Hz. The top plot shows
the final eccentricities as a function of the semi-major axis at
ejection (which corresponds to 99.9% of sources that merge at
z < 1). The middle plot shows the eccentricity at ejection vs.
10Hz. The bottom plot shows the distribution of all sources
at 10Hz.

D. The Impact of Stellar Evolution

The main uncertainty in population synthesis esti-
mates of the BBH merger rate from the field concerns
the physics of binary stellar evolution. The most recent
studies [e.g., 14] have considered a large number of pos-
sible outcomes from various stages of binary stellar evo-
lution. These different models are then used to constrain
the uncertainties, although the sheer number of parame-
ters makes it difficult to constrain the merger rate even
to within several orders-of-magnitude.

More recent work [67] has focused on three specific
questions: can BBH progenitors survive the common-
envelope (CE) phase when the donor star is in the
Hertzsprung gap (HG)? What is the standard mechanism
for BH-producing supernova (rapid or delayed)? And
what is the impact on the rate if BHs are born with



14

0 10 20 30 40 50 60 70
Chirp Mass (M¯)

0

5

10

15

20

25

30

N
um

be
r

Merging BBH Masses
Standard
αλ= 0. 01

αλ= 10

Delayed Supernova
Full BH Natal Kicks

FIG. 11. Chirp masses of merging binaries from the N = 106,
Z = 0.05Z�, Rv = 1 pc model. We compare our standard
model to models with different values of αλ for the common
envelope, a model with a different SN prescription, and a
model where BHs are born with natal kicks equivalent to NSs.
All changes to the binary stellar evolution produce no signif-
icant difference. However, the model with high natal kicks
significantly reduces the number of BBH inspirals.

natal kicks drawn from the same distribution as NSs?
The standard StarTrack model assumes that stars in the
HG cannot be CE donors, that supernovae are well de-
scribed by the rapid model, and that BH natal kicks are
reduced proportionally to the mass of fallback material,
as in equation (3).

In contrast, our models for dynamical formation of
BBHs are largely insensitive to the uncertainties in bi-
nary stellar evolution. Since the majority of BBHs are
formed dynamically, their numbers, semi-major axes, ec-
centricities, and inspiral times are determined by well-
understood gravitational physics. Any changes to our
binary stellar evolution prescription should not have a
significant effect on our BBH population. However, the
same cannot be said for single star evolution: any changes
that modify the number or masses of single BHs will sig-
nificantly change both results from both clusters and the
field.

To quantify these effects, we rerun our N = 106,
Z = 0.05Z�, and Rv = 1 pc model, varying some of
the assumptions in binary and single star evolution. We
consider 5 models:

• the standard model, adopted in the previous sec-
tions. We use the standard BSE prescription for the

CE evolution, employing the αλ formalism3 [68],
with λ calculated by a fitting formula similar to
that described in [69]. By default, BSE will allow
binaries to survive the CE phase so long as the core
of either star does not fill its Roche lobe (including
stars in the HG, for which BSE employs a time-
dependent density profile [34]).

• low CE binding energy model, in which we set
αλ = 0.01 for all binaries,

• high CE binding energy model, in which we
set αλ = 10,

• delayed supernova model, in which we use the
delayed supernova model for BH masses and fall-
back, as described in [18], and

• full BH natal kicks model, in which we ignore
the effects of fallback, and give each BH its full kick
velocity from the NS distribution.

We show the impact of these different cases on the dis-
tribution of BBH mergers in Figure 11. As expected, the
mass spectrum of BHs does not significantly depend on
the physics of stellar evolution, with one notable excep-
tion for the full BH natal kicks case. Over 12 Gyr of
evolution, the standard model produces 84 mergers. The
αλ = 0.01 case produces 72 mergers, the αλ = 10 case
produces 87 mergers, the delayed supernova case pro-
duces 79 mergers, but the full kicks case produces only 7
mergers.

This significant decrease in BBH production is to be
expected: the distribution of BH velocities in the high-
kick case is drawn from a Maxwellian with σ = 265 km
s−1, meaning most BHs will be born with speeds signif-
icantly greater than the escape speed from the center of
the cluster (∼ 50 − 100 km s−1). In that case, the ma-
jority of BHs are ejected before they have a chance to
dynamically form binaries. We explore the implications
of this for the BBH merger rate in Section V A.

V. COSMOLOGICAL MERGER RATES

To compare different models for BBH formation, it is
necessary to understand the predicted merger rate for

3 The term αλ arises from the energy balance between the gravi-
tational potential energy of the envelope and the orbital energy
of the binary:

α∆Ebin =
GMdMe

λR
(14)

where ∆Ebin is the change in binding energy of the binary before
and after the CE, Md is the mass of the donor star, Me is the
mass of the donor star’s envelope, and R is the donor star’s
radius at Roche lobe overflow. In this model λ parameterizes
the binding energy of the envelope, while α parameterizes the
efficiency of energy transfer from the binary’s shrinking orbit to
the envelope.
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FIG. 12. The BBH merger rates from our models as a function of redshift. The upper panels show the cumulative rate of
mergers per year in a volume out to redshift z, with the left panel showing the cumulative merger rate for all binaries, and
the right panel showing the cumulative merger rate for binaries with specific total masses. The lower panels show the source
merger rate in Gpc−3yr−1 at a given redshift for all BBHs (left) and for specific BBH total masses (right). For the total merger
rates (the leftmost panels) we illustrate the uncertainties in our models to specific assumptions, showing how the rate varies
with the spatial density of GCs and our choice of initial virial radius.

each different formation scenario. We compute the cos-
mological merger rate of BBH inspirals from our models
as a function of redshift. We then assume all GCs to
be 12 Gyr old, and we describe the merger rate per unit
time and comoving volume as

Rs(z) = ρGC 〈Ninsp〉P (z) (15)

where ρGC is the spatial density of GCs [1, Supplemental
Materials], 〈Ninsp〉 is the mean number of GC inspirals
per cluster from Section III B, and P (z) is the normalized
merger rate at a given redshift, defined as

P (z) = Pt(tlookback(z)) (16)

where Pt is the probability distribution of inspiral merger
times, computed by generating a kernel density estimate
of the merger times from our sample of BBH mergers,
and tlookback is the cosmological lookback time at a given

redshift [70]. Note that P (z) is the distribution of sources
in time at redshift z, not the distribution of sources in
redshift4.

Additionally, we are interested in the total number of
sources that merge within a comoving volume out to a
given redshift, z. We compute the observed rate of merg-
ers per unit time as

Ro(z) =

∫ z

0

dVc
dz′
Rs(z′)

(
dts
dto

)
dz′ (17)

4 By computing the kernel density estimate with the inspiral times
of the bianries, the probability of seeing an inspiral at time t is
Pt(t)dt. By converting this to the distribution in redshift with
(16), we ensure that P (z) is in units of equal time, not equal
redshift. This is different than the approach employed in [1], and
we note that properly accounting for the distribution increases
the detection rates from that study by ∼ 30%.
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where dVc/dz is the comoving volume at a given redshift,
Rs(z′) is the source merger rate (15), and dts/dto = (1+
z)−1 is rate of time dilation between a clock measuring
the merger rate at redshift z′ and a clock on Earth [e.g.,
71].

To gain a handle on the uncertainties in our assump-
tions, we consider three different cases: our standard case
assumes a spatial density ρGC = 0.77 Mpc−3, and that
half of those clusters have virial radii of 1 pc, and half
have virial radii of 2 pc. We also consider an optimistic
case, which assumes ρGC = 2.31 Mpc−3 (the optimistic
estimate from [1]) and Rv = 1 pc for all clusters, and
a conservative case, which assumes ρGC = 0.33 Mpc−3,
and Rv = 2 pc for all clusters. The standard, optimistic,
and conservative cases are shown in the left panels of
Figure 12. The upper-left panel shows the observed cu-
mulative rate as a function of redshift (equation 17),
while the lower-left panel shows the source rate (equa-
tion 15). In the local universe, our standard assump-
tions leads to a merger rate of ∼5 Gpc−3yr−1 while our
optimistic and conservative assumptions predict merger
rates of ∼20 Gpc−3yr−1 and ∼2 Gpc−3yr−1, respec-
tively. This is consistent with the merger rate for
GW150914-like binaries, which was found to be
2− 53 Gpc−3 yr−1 [12].

In the right panels of Figure 12, we show the merger
rates for binary inspirals with specific total masses from
our standard case. We compute 〈Ninsp〉 separately for
each mass bin by fitting the inspirals in each bin to
equation (11) and integrating over the GCMF; this is
the same technique used for the total rate, although for
mass bins with only a handful of inspirals, such as the
5 inspirals in the M > 160M� bin, we abandon equa-
tion (11) in favor of a simple linear regression. We then
compute the distribution of inspirals, P (z), separately
for each mass bin, and compute the rates with equa-
tions (15) and (17). In the local universe, we can ex-
pect a merger rate of ∼ 3 Gpc−3yr−1 for BBHs with
a total mass of M < 40M�, and ∼ 2 Gpc−3yr−1 for
40M� < M < 80M�, with higher masses contributing
minimally to the total merger rate. We note that the os-
cillatory behavior of the high-mass bins at low redshifts
is the result of the small number of events. As an ex-
ample, the bump at z = 2 for M > 160M� sources is
the result of a single inspiral whose BH progenitor un-
derwent repeated mergers. Given the uncertainties in
modeling stellar collisions and mergers, particularly with
the Monte Carlo method, the merger rates for such rare
events should be treated with appropriate skepticism.

A. Comparison to the Field

One of the basic questions for gravitational-wave astro-
physics is whether or not GW observations can discrim-
inate between different formation physics for observed
sources. Can intrinsic parameters, such as the BH masses
and spin, be used to determine whether a particular event

was formed by dynamics, or by isolated binary stellar
evolution? And can a collection of GW observations be
used to answer detailed questions about star formation
and stellar evolution [6]? While each of these questions
is worthy of study, in this paper we focus on a much
simpler, but more critical question: what fraction of de-
tectable sources originated in GCs?

To that end, we make the following assumptions: we
assume that all BBH mergers in the universe arise from
either isolated binary evolution in the field [as done in
14, 19, 20] or from GCs. We also assume that the star
formation scenarios for the field and for old GCs are dis-
tinct, with all GCs being formed in a single burst of
star formation 12 Gyr ago, while star formation in the
field occurring continuously, with metallicity increasing
with the age of the universe. The StarTrack models
in [19] employed a star-formation rate from [72] and a
metallicity-redshift relationship found by averaging the
results of [73] and [74]; however, these assumptions pro-
duced unphysically-high metallicities for star formation
in the local universe (with metallicities as high as 3Z�),
so they considered two extreme scenarios: a high-end
metallicity scenario, where they divide their metallicity
profile by 1.7, to agree with results from [75], and a low-
end metallicity scenario, where they divide the profile by
3.0, to agree with SDSS observations from [76].

We compare the cumulative merger rates from our
models to the cumulative rates for the StarTrack models
examined in [19] in Figure 13. The four models consid-
ered are:

• the standard model, in which they assume all bi-
naries which enter the CE with a donor star in the
HG will immediately merge, use the rapid super-
nova prescription, and employ a physical αλ de-
scription taken from [77],

• the optimistic model, where they allow BBH pro-
genitors to survive the CE with donor stars in the
HG,

• the delayed supernova model, where they use
the delayed supernova model, and

• the full BH natal kick model, where they give
newly formed BHs natal kicks identical to those of
NSs, regardless of the fallback fraction.

Given that our merger rates are insensitive to the as-
sumptions of binary stellar evolution, we assume that
our main results will remain unchanged under the as-
sumptions of the standard, optimistic, and delayed su-
pernova cases. For the case of high BH natal kicks, we
multiply our standard merger rates by 0.08, proportional
to the decreased number of mergers from our high-kick
N = 106 model (Section IV D). This oversimplifies the
true relationship between BH retention and natal kicks,
since the fraction of retained BHs will increase for more
compact, massive clusters with higher escape speeds, but
it is sufficient for this current estimate. We also compare
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the GC merger rate to the rate from the field for both
the high-end and low-end metallicity evolution scenarios.
The fraction of mergers from GCs up to a given redshift
z is defined to be FGC(z) =

RGC
o (z)

RGC
o (z) +RField

o (z)
(18)
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where RGC
o (z) is from equation (17), and RField

o (z) is the
results from [19] obtained from the Synthetic Universe
website 5.

In the local universe, the standard model suggests that
15% (12%) of merging BBHs will have been formed in a
GC under the high-end (low-end) metallicity scenarios.
For the optimistic model, the field rate increases signif-
icantly, with FGC(z) dropping to 4% (2%) in the opti-
mistic case. For the models using the delayed supernova
prescription, the fraction increases to 25% (15%) in the
local universe.

However, for the high-BH natal kick model, the merger
rate from BBHs is comparable to those from the field,
with FGC(z) reaching values of 55% (45%) in the local
universe. This surprising result is a direct implication
of the dynamical formation scenario. It was previously
assumed that, were BHs to be formed with large natal
kicks, the majority of BHs would be ejected from clusters,
with only a small fraction (the low-velocity tail of the kick
distribution) being retained and processed into BBHs.
Given that, it is surprising that rates from GCs should
rival those from isolated binary stellar evolution in the
field.

To understand this, assume that there is some small
fraction of BHs, fret, born with sufficiently low kicks
that they remain gravitationally bound to whatever sys-
tem they are member of, be it a GC or a binary star
system. For a GC, this means that after 20 Myr, ap-
proximately Nfret of the total N BHs will be retained in
the cluster. If we then assume that some fraction, fBBH

of these BHs will be dynamically processed into BBHs,
then the total number of BBHs produced by the clus-
ter is NBBH ∝ NfretfBBH. However, for systems in the
field, each BBH must be formed from a binary progen-
itor, and therefore each binary must survive two natal
kicks. From an initial population of Nbin binaries, this
suggests that the number of BBHs produced by the field
in this scenario is NBBH ∝ f2

retNbin. In other words, if
the BH natal kicks are inversely proportional to the frac-
tion of retained BHs, then as the kicks are increased, the
rates from GCs decrease as Vnatal, while the rates from
the field decrease as (Vnatal)

2.
Additionally, the retention of BHs in our high-kick GC

model is aided by the primordial binary fraction. Of
the 27 BHs retained after supernova, 18 were in binaries
at the time of formation. As such, these systems are
bound by both the local gravitational potential of their
companions and the full potential of the cluster. We
note that our choice of initial binary fraction (fb = 10%)
is much lower than the fraction assumed by [19]. As a
quick check, we rerun our high-kick GC model with a
binary fraction of 50%. We find that the high-kick GC
model now retains 48 BHs initially (41 of which were in

5 The merger rates from [19] and several other studies using
StarTrack are available from the Synthetic Universe website
(http://www.syntheticuniverse.org/)

binaries at formation), and creates 16 BBH mergers over
its 12 Gyr lifetime. Assuming these results scale with
the total merger rate of BBHs from GCs, then roughly
75% (70%) of all BBH mergers in the local universe would
have formed in GCs. This approach is similar to proposed
mechanisms for the retention of NSs in GCs [78].

Three caveats must be mentioned at this point. First,
it is unlikely that clusters, and particularly the massive
GCs studied here, were formed with a binary fraction
near 50%. Theoretical studies have shown that the frac-
tion of binaries in a GC remains roughly constant over
time [79, 80], while observations of GCs suggest a binary
fraction between 1% and 5% [e.g. NGC 6397, 81]. Sec-
ond, increasing the binary fraction significantly changes
the evolution of the GC as the primordial binaries heat
the cluster core [e.g. 82]. And finally, such a dependence
on the binary fraction will also introduce a significant
dependence on the initial conditions for binaries in star
clusters, such as the distribution of initial mass ratios and
semi-major axes. We explore the effects of our choice of
initial conditions in [83].

B. What is the field?

In several papers examining the BBH merger rate of
the field, it has been assumed that the field and star clus-
ters exist as separate populations, formed by fundamen-
tally different processes However, observational evidence
suggests that the majority of star formation occurs in
clusters [84]. These regions of star formation, consisting
of clusters as small as ∼ 100M�, might dominate the
star formation rate, particularly at high redshifts [85].
Furthermore, observational evidence of the peculiar ve-
locities of O stars in the MW suggest that ∼ 96% of these
massive stars formed in clusters [86]. If that is the case,
then a clean division between “field” and “dynamical”
sources could be a significant oversimplification. Studies
of young star clusters (∼ 3 × 103M�) have shown that
the properties of a BBH population can be significantly
altered by dynamics, even for small clusters that disrupt
on a short (∼ 100 Myr) timescale [87].

A proper analysis of the contribution from clusters of
all masses to the BBH merger rate is beyond the scope
of this paper; however, it is important to ask the ques-
tion: what fraction of the merger rate of field binaries
computed in population synthesis studies is actually af-
fected by dynamics, which these studies neglect entirely?
As an order-of-magnitude check, let us assume that, con-
sistent with our IMF, approximately one of every 600
stars will become a BH. If we assume that, at the very
least, a cluster must contain two BHs for dynamics to
play a role, then combined with an average stellar mass
of 〈m〉 = 0.6M�, the minimum cluster mass where dy-
namics could be considered is ∼ 700M�. If the fraction
of star formation that occurs in clusters at high redshifts
is ∼ 50% [c.f. Figure 9, 85], and the cluster initial mass
function follows a P (m) ∝ 1/m2 distribution, then, inte-

http://www.syntheticuniverse.org/


19

grating from 100M� to 108M� suggests that ∼ 10% of
BBHs are formed in regions where dynamics may play a
significant role.

Such an increase could play a significant role in the
merger rate of dynamically-formed BBHs. The results
presented here have considered only the present-day pop-
ulation of GCs which, at z = 0, constitute only ∼ 0.07%
of the baryonic matter in the MW [88]. If most galaxies
formed with ∼ 10% of stars in dynamically-relevant clus-
ters, then a significant fraction of the BBH population
may have been affected by dynamics at some point.

However, this does not directly imply that the BBH
merger rate would be dominated by clusters. The major-
ity of these disrupted clusters would have masses signifi-
cantly below the population of old, massive GCs studied
here. And since we have shown that less-massive clusters
not only produce fewer BBHs, but a lower fraction of
BBHs that will merge in a Hubble time, it is not imme-
diately obvious whether an early population of disrupted
clusters will significantly affect the merger rates. This
is consistent with [87], which found that in young star
clusters, only 0.3% of BBHs merged within 12 Gyr.

VI. CONCLUSION

In this paper, we have explored mergers of BBHs from
GCs. Using our cluster Monte Carlo code, CMC, we
have created a broad range of GC models with differ-
ent masses, metallicities, and initial virial radii, designed
to approximate the distribution of GCs observed in the
present-day universe. To increase the realism of our mod-
els, and to facilitate an easier comparison to BBH merger
rates from the field (such as those from [19]), we have up-
graded the stellar evolution prescription used by CMC,
with new temperature-dependent stellar winds for O and
B stars and new prescriptions for the supernova mech-
anism. These changes were designed to bring our stel-
lar evolution subroutines into agreement with those cur-
rently employed in the StarTrack population synthesis
code. With these enhancements, CMC now reproduces
the mass distribution for single BHs that was used in the
most recent estimates of BBH merger rates from the field
[14, 19, 20].

By considering a wide range of models, we were able to
broadly characterize the relationship between the global
properties of a GC (its mass and radius), and the in-
spiral times of the binaries it creates. We showed that,
in addition to creating more BBHs, more massive and
more compact clusters ejected BBH binaries with higher
binding energies and smaller semi-major axes, leading a
greater number of BBHs to merge within 12 Gyr. This
explained the significant increase in merger rates first re-
ported in [1]: by accurately modeling the median and
high-mass end of the GCMF, our realistic cluster models
produced significantly more merging BBHs than previ-
ous studies of this type. After integrating over the full
GCMF, we found that the average GC will have produced

260 BBH mergers throughout its 12 Gyr lifetime.

We then used the GCMF to select a population of in-
spiral events representative of the population of GCs in
the present-day universe. With the new prescriptions for
wind-driven mass loss and the rapid supernova mecha-
nism, our GC models can now form BBHs with total
masses from 20M� to 160M�. These BBHs follow the
same story that we first observed in [1, 16]: the most-
massive BHs lead the first period of mass segregation,
driving the deep collapse of the cluster core. These BHs
then dynamically form BBHs, which are among the first
to be ejected from the cluster, and the first to merge.
The GC processes through its BH population from most
to least massive, continuing to eject BBHs up to the
present day. As such, the total mass of the merging
BBHs decreases with redshift, with a median BBH total
mass in the local universe of ∼ 40M� and 50% of sources
lying between ∼ 35M� and ∼ 50M�. However, there
exists a significant tail of massive sources, ejected with
large semi-major axes (and correspondingly large inspiral
times), such that the 90% interval of masses extends from
∼ 30M� up to ∼ 90M�. We found that these massive
BBHs were more likely to be formed in lower mass GCs,
as these clusters ejected binaries with wider separations
and longer inspiral times.

We also found that the distribution of mass ratios de-
pended strongly on the BH mass spectrum. Any peaks in
the distribution of single BH masses created correspond-
ing peaks at twice that mass in our BBH population,
where these BHs formed a large population of equal-mass
BBHs. As such, the three most prominent peaks in the
BH mass distribution (and 18M�, 30M�, and 53M�)
created corresponding peaks in the distribution of BBH
total masses at 36M�, 60M�, and 106M�. In between
these regions, binaries would tend to form with unequal
mass components, often drawing one of their components
from the peaks of the BH mass spectrum. This created
an overabundance of sources with only one component
from the peak of the BH mass spectrum, creating certain
regions of the BBH total mass distribution (20, 45, and
80 M�) that favored systems with unequal component
masses.

We then computed the merger rates from this popu-
lation of BBHs as a function of redshift. In the local
universe, we found that BBHs formed in GCs will merge
at a rate of ∼ 5 Gpc−3 yr−1. Under highly optimistic
assumptions, this rate becomes ∼ 20 Gpc−3 yr−1, while
highly pessimistic assumptions forces the rate down to
∼ 2 Gpc−3 yr−1. For the standard assumptions, we also
found a merger rate of ∼ 3 Gpc−3 yr−1 for sources with
total massesM < 40M�, and∼ 2 Gpc−3 yr−1 for sources
with total masses 40M� < M < 80M�. This is con-
sistent with the merger rate of 2− 53 Gpc−3 yr−1

[12] for binaries similar to GW150914. When com-
paring these numbers to estimates of BBH merger rates
from the field, we found that roughly 15% of BBH merg-
ers in the local universe will have originated in a GC.
However, if BHs are born with large natal kicks, simi-



20

lar to NSs, this fraction increased significantly, with GCs
possibly dominating the merger rate for BBHs. In addi-
tion to changing BBH merger rates and properties, any
such changes effecting BH retention in early GCs (such
as the natal kicks or the high-mass slope of the IMF) will
significantly change the observational properties of GCs
in the present day. A study to fully characterize the re-
lationship between BH retention and GC observational
properties is currently underway [83].

We reiterate that we have studied a conceptually clean,
but not physically complete, picture of star formation
and BBH formation in the universe. By using the
present-day population of observed GCs, we have re-
stricted ourselves to studying a well-posed problem with
good observational constraints. However, both the cur-
rent study and studies of field populations have ignored
the fact that most star formation is assumed to occur
in clusters, with lower-mass clusters being disrupted into
what we today call “the field”. The merger rates and
BBH properties of estimates from the field should only
be applied to binary systems from star forming regions
that were disrupted before they could be dynamically
altered; however, it is not at all obvious that the re-
sults presented here can simply be scaled down to lower-
mass star forming regions. A full exploration of the BBH
merger problem will require an exploration of the inter-

mediate regime, where most BBHs are formed from pri-
mordial binaries that undergo significant dynamical per-
turbations (e.g. [87]). Fully understanding these three
scenarios–the field, dynamical, and intermediate BBH
formation regimes–will be critical to unlocking the po-
tential of gravitational-wave astrophysics.

Finally, we have shown that the masses and
redshift associated with the recent detection of
GW150914 (and the less-significant GW trigger
LVT151012) are consistent with dynamical for-
mation in the low-metallicity environment of a
GC as reported in our models. However, we will
address the full implications of this detection in
the context of GC modeling in a future work
[89]. This detection emphasizes the importance
of BBH modeling as we transition into the era of
GW astrophysics.
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[22] M. Hénon, Astrophy. Space Sci. 14, 151 (1971).
[23] K. J. Joshi, F. A. Rasio, S. P. Zwart, and S. Porte-

gies Zwart, Astrophys. J. 540, 969 (2000).
[24] K. J. Joshi, C. P. Nave, and F. A. Rasio, Astrophys. J.

http://dx.doi.org/ 10.1103/PhysRevLett.115.051101
http://dx.doi.org/ 10.1103/PhysRevLett.115.051101
http://dx.doi.org/ 10.1103/PhysRevLett.116.061102
http://dx.doi.org/ 10.1103/PhysRevLett.116.061102
http://dx.doi.org/ 10.1103/PhysRevD.79.124033
http://dx.doi.org/ 10.1103/PhysRevD.79.124033
http://dx.doi.org/ 10.1103/PhysRevD.84.062003
http://dx.doi.org/ 10.1088/0004-637X/725/1/496
http://dx.doi.org/10.1088/0004-637X/810/1/58
http://dx.doi.org/10.1088/0004-637X/810/1/58
http://adsabs.harvard.edu/abs/2001MNRAS.321..199P papers3://publication/uuid/6E5C8C2C-3038-483E-865E-C3893DC3152D
http://dx.doi.org/10.1093/mnras/stv1161
http://dx.doi.org/10.1093/mnras/stv1161
http://stacks.iop.org/0004-637X/572/i=1/a=407 papers3://publication/doi/10.1086/340304
http://stacks.iop.org/0004-637X/572/i=1/a=407 papers3://publication/doi/10.1086/340304
http://dx.doi.org/10.1086/521026
http://stacks.iop.org/1538-4357/601/i=2/a=L179 papers3://publication/doi/10.1086/382155
http://stacks.iop.org/1538-4357/601/i=2/a=L179 papers3://publication/doi/10.1086/382155
http://arxiv.org/abs/1602.03842
http://arxiv.org/abs/1602.03842
http://dx.doi.org/ 10.1088/0004-637X/714/2/1217
http://dx.doi.org/ 10.1088/0004-637X/714/2/1217
http://dx.doi.org/ 10.1088/0004-637X/759/1/52
http://dx.doi.org/ 10.1088/2041-8205/715/2/L138
http://dx.doi.org/10.1088/0004-637X/800/1/9
http://dx.doi.org/10.1051/0004-6361:20010127
http://dx.doi.org/ 10.1088/0004-637X/749/1/91
http://dx.doi.org/ 10.1088/0004-637X/749/1/91
http://dx.doi.org/ 10.1088/0004-637X/779/1/72
http://dx.doi.org/ 10.1088/0004-637X/806/2/263
http://link.springer.com/article/10.1007/BF00649159 papers3://publication/doi/10.1007/BF00649159
http://dx.doi.org/10.1007/BF00649201
http://dx.doi.org/10.1086/309350
http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001ApJ...550..691J{&}link{_}type=EJOURNAL papers3://publication/doi/10.1086/319771


21

550, 691 (2001).
[25] J. M. Fregeau, M. A. Gurkan, K. J. Joshi, and F. A.

Rasio, Astrophys. J. 593 (2003).
[26] J. M. Fregeau and F. A. Rasio, Astrophys. J. 658, 1047

(2007).
[27] S. Chatterjee, J. M. Fregeau, S. Umbreit, and F. A.

Rasio, Astrophys. J. 719, 915 (2010).
[28] B. Pattabiraman, S. Umbreit, W.-k. Liao, A. Choud-

hary, V. Kalogera, G. Memik, and F. A. Rasio, Astro-
phys. J. Suppl. Ser. 204, 15 (2013).

[29] L. Wang, R. Spurzem, S. Aarseth, K. Nitadori,
P. Berczik, M. B. N. Kouwenhoven, and T. Naab,
Mon. Not. R. Astron. Soc. 450, 4070 (2015).

[30] C. L. Rodriguez, M. Morscher, L. Wang, S. Chatterjee,
F. A. Rasio, and R. Spurzem, eprint arXiv:1601.04227
(2016).

[31] J. M. Fregeau, P. Cheung, S. F. Portegies Zwart, and
F. A. Rasio, Mon. Not. R. Astron. Soc. 352, 1 (2004).

[32] M. Morscher, S. Umbreit, W. M. Farr, and F. A. Rasio,
Astrophys. J. 763, L15 (2013).

[33] J. R. Hurley, O. R. Pols, and C. A. Tout,
Mon. Not. R. Astron. Soc. 315, 543 (2000).

[34] J. R. Hurley, C. A. Tout, and O. R. Pols,
Mon. Not. R. Astron. Soc. 329, 897 (2002).

[35] P. D. Kiel and J. R. Hurley, Mon. Not. R. Astron. Soc.
395, 2326 (2009).

[36] P. Peters, Phys. Rev. 136, B1224 (1964).
[37] W. E. Harris, Astron. J. 112, 1487 (1996).
[38] W. E. Harris, Philos. Trans. R. Soc. London, Ser. A 368,

889 (2010).
[39] S. Djorgovski and G. Meylan, Astron. J 108, 1292 (1994).
[40] R. A. Scheepmaker, M. R. Haas, M. Gieles, N. Bastian,

S. S. Larsen, and H. J. G. L. M. Lamers, Astron. Astro-
phys. 469, 925 (2007).

[41] I. R. King, Astron. J 71, 64 (1966).
[42] P. Kroupa, Mon. Not. R. Astron. Soc. 322, 231 (2001).
[43] D. C. Heggie, Mon. Not. R. Astron. Soc. 173, 729 (1975).
[44] W. R. Hamann and L. Koesterke, Astron. Astrophys.

335, 1003 (1998).
[45] J. S. Vink and A. de Koter, Astron. Astrophys. 442, 587

(2005).
[46] W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D.

Bailyn, I. Mandel, and V. Kalogera, Astrophys. J. 741,
103 (2011).

[47] K. Belczynski, G. Wiktorowicz, C. L. Fryer, D. E. Holz,
and V. Kalogera, Astrophys. J. 757, 91 (2012).

[48] G. Hobbs, D. R. Lorimer, A. G. Lyne, and M. Kramer,
Mon. Not. R. Astron. Soc. 360, 974 (2005).

[49] C. L. Fryer and V. Kalogera, Astrophys. J. 554, 548
(2001).

[50] S. F. Portegies Zwart and S. L. W. McMillan, Astro-
phys. J. Lett. 528, L17 (2000), astro-ph/9910061.

[51] S. Banerjee, H. Baumgardt, and P. Kroupa,
Mon. Not. R. Astron. Soc. 402, 371 (2010).

[52] A. Tanikawa, Mon. Not. R. Astron. Soc. 435, 1358
(2013).

[53] Y.-B. Bae, C. Kim, and H. M. Lee, Mon. Not. R. As-
tron. Soc. 440, 2714 (2014).

[54] J. M. B. Downing, M. J. Benacquista, M. Giersz, and
R. Spurzem, Mon. Not. R. Astron. Soc. 407, 1946 (2010).

[55] J. M. B. Downing, M. J. Benacquista, M. Giersz, and
R. Spurzem, Mon. Not. R. Astron. Soc. 416, 133 (2011).

[56] P. Hut, S. McMillan, and R. W. Romani, Astrophys. J.
389, 527 (1992).

[57] D. Heggie and P. Hut, The Gravitational Million-Body
Problem: A Multidisciplinary Approach to Star Cluster
Dynamics (Cambridge University Press, 2003).

[58] K. Moody and S. Sigurdsson, Astrophys. J. 690, 1370
(2009).

[59] W. E. Harris, W. Morningstar, O. Y. Gnedin,
H. O’Halloran, J. P. Blakeslee, B. C. Whitmore, P. Côté,
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