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Abstract

Helical hypermagnetic fields in the primordial Universe can produce the observed amount of

baryon asymmetry through the chiral anomaly without any ingredients beyond the Standard Model

of particle physics. While they generate no B − L asymmetry, the generated baryon asymmetry

survives the spharelon washout effect, because the generating process remains active until the

electroweak phase transition. Solving the Boltzmann equation numerically and finding an attractor

solution, we show that the baryon asymmetry of our Universe can be explained, if the present large-

scale magnetic fields indicated by the blazar observations have a negative helicity and existed in

the early Universe before the electroweak phase transition. We also derive the upper bound on

the strength of the helical magnetic field, which is tighter than the CMB constraint, to avoid the

overproduction of baryon asymmetry.
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I. INTRODUCTION

The origin of the baryon asymmetry of the present Universe is one of the biggest problems

in both cosmology and high energy physics. The prevailing lore is that the baryon asymmetry

is almost impossible to be generated within the Standard Model of particle physics (SM)

because it is hard to satisfy Sakharov’s conditions [1]. Therefore, it is often explored by

assuming some extensions of the SM.

However, a remarkable mechanism is studied in Ref. [2] and recently revisited in Ref. [3]

in the context of the pseudoscalar inflation model. In this mechanism, baryon asymmetry is

generated from helical magnetic fields thorough the chiral anomaly in the SM U(1)Y gauge

interaction. (See also other studies of baryogenesis and magnetic fields [4–24].) From the

chiral anomaly, baryon asymmetry can be generated if there exists a time-varying helicity of

the hypermagnetic fields. Although the hypermagnetic helicity is a good conserved quantity

in the early Universe, it slightly changes with time due to the large but finite conductivity

of the Universe. Here, the time-varying helical hypermagnetic fields breaks spontaneously T

symmetry as well as C and CP symmetry, and the baryon asymmetry is generated without

the strong departure from thermal equilibrium like spontaneous baryogenesis [25]. It should

be noted that the mechanism itself does not require any ingredients beyond the SM, which

motivates us to explore this mechanism further.1

We study the mechanism from an opposite side to Ref. [3] in the following way; whereas

Ref. [3] studies the generation of baryon asymmetry in a forward-in-time way from a specific

magnetogenesis mechanism, namely, pseudoscalar inflation, we study it in a backward-in-

time way from the present cosmic magnetic fields, without specifying the magnetogenesis

mechanism. In this sense, our study is complementary to the study in Ref. [3].

Furthermore, compared to Ref. [3], we additionally take into account the following points;

(i) the constraints on the cosmic magnetic fields imposed by observations; (ii) the non-trivial

evolution of the magnetic field governed by the magnetohydrodynamic effect, and (iii) the

contribution from the Yukawa interaction in the Boltzmann equation.

1 Exactly speaking, Ref. [3] considers a physics beyond the SM, namely, a pseudoscalar inflation model with

a dimension-five coupling term between the pseudoscalar and the U(1)Y gauge field, to generate the helical

magnetic field and derives a constraint on the model due to the overproduction of baryon asymmetry.

However, no effect beyond the SM is involved in the generating process of the baryon asymmetry.
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The upper and lower bounds on the strength of the present large-scale magnetic fields B0

are given as 10−17G . B0 . 10−9G by the observations of the Cosmic Microwave Background

(CMB) [26] and the gamma rays from blazars [27–33], respectively. In particular, it should be

remarked that the latter indicates the existence of the large-scale magnetic fields. Provided

that the magnetic fields are helical and generated before the electroweak phase transition,

they must produce some baryon asymmetry via the chiral anomaly. Indeed, it is claimed

that the diffuse gamma ray observation infers a non-vanishing helicity of the present large-

scale magnetic field [34–36]. Reconstructing the properties of the magnetic fields in the

early Universe from these observational results, we entirely explore the amount of produced

baryon asymmetry in the allowed parameter region of the present magnetic fields.

In order to estimate the resultant baryon asymmetry qualitatively, we also take into

account the evolution of the magnetic field governed by the magnetohydrodynamic effect.

It is known that the time evolution of magnetic fields in the Universe is non-trivial in

general, and it is not necessarily the adiabatic evolution in which the physical strength of the

magnetic field decays in proportional to a−2(t), where a(t) is the scale factor. This is because

the magnetohydrodynamical effects may cause the inverse cascade process, which we will

describe in Sec. II. (For recent review on magnetohydrodynamics (MHD) in astrophysics,

see e.q. Ref. [37, 38]). Fortunately, the time evolution of some properties of the magnetic

field, namely the peak strength and the correlation length, can be estimated by an analytical

method [38–40], which enables us to evaluate the properties of magnetic fields around the

electroweak scale from the present observations. Based on this analytical estimate, we will

see that the observed baryon asymmetry can be explained if the magnetic field have been

undergoing the inverse cascade process above the electroweak scale. Note that the adiabatic

evolution is applicable to relatively weaker magnetic fields with longer correlation length.

However, It will be shown that only negligible baryon asymmetry can be produced in that

case for the observationally allowed present strength of the magnetic field. Therefore it

is crucial to take into account the MHD effect in the study of baryogenesis from helical

magnetic fields in our approach.

We here comment on the effect of the Yukawa interaction. It is often discussed that

for the present baryon asymmetric Universe, B − L asymmetry (B and L are baryon and

lepton numbers, respectively.) must be generated, otherwise the B + L violating sphaleron

process washes out the baryon asymmetry even if B + L asymmetry is produced. However,
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this washout process is effective when the sphaleron process as well as all the Yukawa

interactions are in equilibrium [41]. Therefore, in order to evaluate the resultant baryon

asymmetry qualitatively, not only the sphaleron process but also the Yukawa interaction

should be taken into account. We solve the Boltzmann equations which include the Yukawa

interactions as well as the chiral anomaly and the spharelon effects simultaneously. While

the equations are fairly complicated and require numerical calculations, we find an attractor

behavior of the generated baryon asymmetry. The attractor appears when the source of the

baryon asymmetry from the helical hypermagnetic field and the washout effect through the

weakest (electron) Yukawa interaction are balanced. We derive a simple analytical expression

of the resultant baryon asymmetry which shows an excellent agreement with the numerical

result. The attractor is so strong that the baryon asymmetry depends only on the size of the

source term at the electroweak phase transition and the other parameters (e.g. the initial

temperature at which the source becomes effective) are irrelevant.

In this paper, we find that the baryon asymmetry in our Universe can be explained by

magnetic fields with present strength 10−14G . B0 . 10−12G allowing for theoretical uncer-

tainties, if the magnetic fields have entered the inverse cascade regime before the electroweak

phase transition. On the other hand, for 10−12G . B0 . 10−9G the baryon asymmetry is

basically overproduced and hence such strength of the present magnetic fields are disfa-

vored. This problem can be avoided and the present baryon asymmetry can be explained

if the magnetic fields evolve adiabatically before the electroweak phase transition and enter

the inverse cascade regime at a certain time after that. It should be noted that we do not

specify the magnetogenesis mechanism in this paper and keep the analysis as general as

possible. Our results give a further motivation of the study on magnetogenesis mechanisms

that produce helical magnetic fields.2

This paper is organized as follows. In the next section, we discuss the evolution of

magnetic fields, taking into account the inverse cascade process. We also describe the helicity

conservation and the constraints on the large-scale magnetic fields. In Sec. III, we study the

chiral anomaly in the SM and derive the evolution equation for the baryon asymmetry. An

analytical expression for the attractor behavior are also given there. The quantitative results

2 To the best of our knowledge, no mechanism is known to be able to produce magnetic fields which satisfy

the observational lower bound, still less our scenario [42–49]. Therefore it is challenging and intriguing

open question how the magnetic field are generated, while we do not explore it in this paper.
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for the parameter space that can be responsible for the present baryon asymmetry obtained

by numerical calculations are shown in Sec. IV. Final section is devoted to summary and

discussion.

II. EVOLUTION OF HELICAL MAGNETIC FIELDS

In this section we study the evolution of helical magnetic fields from the early Universe

until the present and evaluate their properties. They will act as the source for the baryon

asymmetry which we will discuss in more detail in the next section. Although we do not

specify the generation mechanism of the helical magnetic fields, their time evolution can be

generically obtained from their present properties such as the strength B0 and the correlation

length λ0. Note that the electroweak gauge symmetry is restored at temperatures above the

electroweak scale T ' 102 GeV. We here assume that hypermagnetic fields (U(1)Y gauge

field) are generated at an earlier time and transform into magnetic fields (U(1)EM gauge field)

at the electroweak phase transition.3 Although a part of hypermagnetic fields transforms

into Z boson, the strength of (hyper)magnetic field changes only around 10 % [52]. Thus

hereafter we neglect the effect and the hypermagnetic field is called the magnetic field unless

explicitly stated.

In our Universe, the magnetic fields and the plasma fluid of charged particles can be

significantly coupled and their non-linear interaction may govern their evolution. In that

case, the magnetohydrodynamic (MHD) effect should be taken into account and the phys-

ical strength Bp(t) and the physical correlation length λB(t) of the magnetic field do not

necessarily evolve adiabatically, Bp 6∝ a−2(t) or λB 6∝ a(t), where a(t) is the scale factor.

For instance, the turbulence of the plasma fluid may cause the magnetic correlation scale

λB(t) to grow faster than a(t). Therefore it is not trivial to obtain the precise evolution

of the magnetic fields. In general, dedicated numerical simulations are needed to solve the

non-linear MHD equations. However, as we shall see in this section, the peak strength and

the correlation length of the magnetic field can be estimated by an analytical method which

has been developed in the literature [38–40]. In particular, the helicity of magnetic fields is

3 The possibilities of magnetogenesis at the electroweak phase transition are also discussed (see e.g. ref. [50,

51]). But we here assume that the electroweak phase transition does not significantly affect the evolution

of the (hyper)magnetic fields except for the effect discussed above.
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a useful quantity and it substantially helps the analytic estimation.

A. Three different evolution scenarios

The cosmic magnetic fields are affected by several different effects, the interaction with

turbulent fluid, the viscous diffusion, the free streaming of photon and neutrino, etc [40].

For our purpose, however, we can focus on the effect of the turbulent plasma fluid. Here

we assume that the initial spectrum of the magnetic fields has a peak at λB(tini) and is

blue-tilted on the larger scales, and then the magnetic helicity can be evaluated at the time-

dependent peak scale λB(t) during the course of their evolution. The coupling between the

magnetic field and the turbulent fluid becomes relevant, if the typical scale of the turbulence

λT ' vT t reaches the scale of the magnetic field λB, where vT is the velocity of the fluid and

t is the cosmic time. On the other hand, if the turbulence scale is negligible compared to the

magnetic scale, λB � λT , the adiabatic evolution of the magnetic fields takes place, λB(t) ∝

a(t). Since the turbulence scale grows faster than the adiabatically evolving magnetic scale,

the former eventually catches up the latter. After λB and λT become comparable, the

magnetic correlation length is synchronized with λT , because the smaller scale part of the

magnetic power spectrum is lost due to the interaction with the turbulence. In the developed

turbulence, vT is comparable to the Alfvén velocity, vA(t) ≡ Bp/
√
ρch + pch, where ρch and

pch are the energy density and the pressure of the charged particles interacting with the

magnetic field. One finds [40] (see also [38, 53]),

λB ' vAt '
Bp

2H

√
3

4ρch

=
45BpMPl/T

4

2π2
√
gtot
∗ gch

∗

= 2.6× 10−29Mpc

(
gtot
∗ (T )

106.75

)− 1
2
(
gch
∗ (T )

82.75

)− 1
2
(

Bp

1020G

)(
T

102 GeV

)−4

, (1)

where Mpl = 2.43 × 1018 GeV is the reduced Planck mass, T is the temperature, and gtot
∗

and gch
∗ are the number of degree of freedom of all the particles in the thermal bath and the

U(1) charged particles, respectively. As we shall see soon in Eq. (5), λB grows faster than

the adiabatic case in this regime and this process is called the inverse cascade.

Depending on the time when the inverse cascade starts, we have the following three

different evolution scenarios of the magnetic fields. (i) The solely inverse cascade case: The

magnetic fields undergo the inverse cascade right after their generation. (ii) The transition
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case: First the magnetic fields adiabatically evolve, and subsequently the inverse cascade

starts at a temperature T = TTS. (iii) The solely adiabatic case: The magnetic fields always

evolve adiabatically and never experience the inverse cascade process.

As we will see, the helical magnetic field which has undergone the inverse cascade process

can produce large baryon asymmetry, while the solely adiabatic case produces very little

baryon asymmetry. Therefore, we mainly discuss the case (i) and (ii).

B. Helicity conservation

Since the equations obtained in the previous subsection give only a relationship between

Bp(T ) and λB(t), we need another relation to determine each of them.4 Then it is useful to

introduce the helicity of the magnetic field,

H ≡
∫
V

d3xA ·B =

∫
V

d3xεijkAi∂jAk, (2)

with A being the vector potential and B ≡ ∇ × A. It is well known that the helicity

represents the breaking of the parity (see Appendix A) and it is an approximate conserved

quantity for sufficiently large electrical conductivity σ (see Eq. (8)). The helicity density

averaged over the cosmological scales is also conserved, and we can estimate it in terms of

characteristic physical strength Bp and physical length of the magnetic field λB as

h ≡ lim
V→∞

H
V
' a3(t)λB(t)B2

p(t) ' const. (3)

From the helicity conservation and the relation determined by the inverse cascade process,

we are now ready to determine the properties of magnetic field at a given temperature T .

From Eqs. (1) and (3), as well as the entropy conservation g∗sa
3T 3=const., we find that Bp

and λB in the case (i) or for T < TTS in the case (ii) are given by

BIC
p (T ) ' 9.3× 1019G

(
T

102 GeV

)7/3(
B0

10−14G

)2/3(
λ0

1pc

)1/3

GB(T ), (4)

λIC
B (T ) ' 2.4× 10−29Mpc

(
T

102 GeV

)−5/3(
B0

10−14G

)2/3(
λ0

1pc

)1/3

Gλ(T ). (5)

where the superscript “IC” represents that the magnetic fields undergo the inverse cascade

process, and GB(T ) ≡ (gtot
∗ (T )/106.75)1/6(gch

∗ (T )/82.75)1/6(g∗s(T )/106.75)1/3 and Gλ(T ) ≡

4 However, in the solely adiabatic case (iii), it is trivial that Bp(t) = a2(t)B0 and λB(t) = λ0/a(t).
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(gtot
∗ (T )/106.75)−1/3(gch

∗ (T )/82.75)−1/3(g∗s(T )/106.75)1/3 denote the weak dependence on

the number of the degree of freedom. The temperature dependences of Bp and λB of this an-

alytic estimate coincide with the numerical results in Ref. [54]. In the case (ii), the strength

and correlation length of magnetic field at T > TTS are given by

BAD
p (T ) ' BIC

p (TTS)

(
g∗s(T )

g∗s(TTS)

)2/3(
T

TTS

)2

, (6)

λAD
B (T ) ' λIC

B (TTS)

(
g∗s(TTS)

g∗s(T )

)1/3(
TTS

T

)
, (7)

where the superscript “AD” represents that the magnetic fields experience the transition

from the adiabatic evolution into the inverse cascade regime.

It should be noted that the helicity (density) is not completely conserved. The large but

finite electrical conductivity gives a slight time variation of helicity density, which will be

important for baryogenesis. The time derivative of the helicity density is

ḣ = lim
V→∞

2

V

∫
V

d3xεijkȦi∂jAk = −a2 2

σ
〈B · ∇ ×B〉 ' a3 4π

σ

B2
p

λB
, (8)

where we have used the Ampere’s law and the generalized Ohm’s law5 and the bracket

means that the quantity is averaged over the cosmological scales.6 The sign is chosen for

later convenience.7 We can see that ḣ vanishes for σ → ∞. At the same time, the validity

of the helicity conservation can be confirmed if |ḣ/hH| � 1 is satisfied. We can evaluate it

as ∣∣∣∣∣ ḣHh
∣∣∣∣∣ ' 10−9

(
T

102 GeV

)1/3(
B0

10−14G

)−4/3(
λ0

1pc

)−2/3

Gh(T ), (9)

for the case (i), and smaller for the case (ii) and (iii). Here σ ' 100T [59] and

Gh(T ) ≡ (gtot
∗ (T )/106.75)1/6(gch

∗ (T )/80)2/3(g∗s(T )/106.75)−2/3 are used. Thus we conclude

that helicity has a non-zero time evolution but the helicity conservation is a very good

approximation (see Eqs. (10) and (11)).

5 Here we omit the chiral magnetic effect [55, 56], since it gives only minor changes to the results and is

negligible.
6 If the sign of the helicity is not uniform on the cosmological scale, the averaged value could be much

smaller than Eq. (8). For instance, however, the inflationary magnetogenesis model with the ϕFF̃ coupling

produces the helical magnetic fields with the uniform sign [53, 57, 58].
7 The negative helicity of the hypermagnetic fields leads the positive baryon asymmetry. If it is positive,

negative baryon asymmetry will be generated.
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C. Constraints on the cosmic magnetic fields

In this subsection, we shortly discuss several constraints on the magnetic fields in the

Universe which should be appreciated in our scenario. First, evaluating λB ' vAt at present,

one finds the relation between the present strength B0 and correlation length λ0 of the

magnetic field as [38, 40, 53]

λ0 ' 10−6Mpc

(
B0

10−14G

)
. (10)

This relation should be applied to the magnetic fields which have experienced the inverse

cascade process (i.e. the case (i) and (ii)).

Second, the observations of the gamma ray from blazars and the cosmic microwave back-

ground (CMB) give the lower and upper bound of the present strength of the magnetic field,

respectively. The simultaneous GeV-TeV multi-wavelength observations of blazars infer the

lower bound of the present strength of the magnetic field as [31] (see also [27–30, 32, 33])

B0 & 10−17G×

 (λ0/1Mpc)−1/2 (λ0 < 1Mpc)

1 (λ0 > 1Mpc)
. (11)

On the other hand, the observation of the CMB temperature anisotropy puts the upper

bound on the current strength as B0 . 10−9G on the CMB scales λ0 & 1Mpc [26]. Similarly,

the CMB distortion gives a slightly milder but nontrivial upper bound on B0 on smaller

scales [60]. Combining these constraints, one finds the magnetic field should satisfy 10−14G <

B0 < 10−8G and 1pc < λ0 < 1Mpc in the case (i) or (ii) (see the blue line in Fig. 5). These

constraints are summarized in Fig. 5.

Finally, the energy fraction of the magnetic field is an increasing function of T ,

ΩIC
B (T ) =

(BIC
p )2

2ρtot

' 6× 10−9

(
T

102 GeV

)2/3(
B0

10−14G

)4/3(
λ0

1pc

)2/3

GΩ(T ), (12)

for the case (i) and for T < TTS in the case (ii). On the other hand, it does not

depend on T , ΩAD
B (T ) = ΩIC

B (TTS), for T > TTS in the case (ii). Here we define

GΩ(T ) ≡ (gtot
∗ (T )/106.75)−2/3 (gch

∗ (T )/80)1/3 (g∗s(T )/106.75)2/3. Therefore, the magnetic

energy density would overwhelm that of radiation at

T > Tdom ≡ 2× 102 GeV

(
B0

10−10G

)−2(
λ0

10−2Mpc

)−1

(13)
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FIG. 1: The parameter region where the magnetic fields would dominate the energy density of the

Universe ΩB > 1 in the solely inverse cascade case (i) is shown as the shaded region. The dashed

line represents the electroweak scale. In the case of B0 > 10−10G or λ0 > 10−2Mpc, the magnetic

fields must be generated or make the transition from the adiabatic evolution to the inverse cascade

regime at the lower temperatures than the electroweak phase transition.

for the case (i) and for TTS > Tdom in the case (ii), as shown in Fig. 1. In this paper,

we do not consider the case where such a magnetic dominated Universe emerged prior to

the standard radiation dominated Universe. Thus the magnetic fields must be generated

or experience the transition from the adiabatic evolution to the inverse cascade regime at

T < Tdom. In particular, in the case of B0 > 10−10G or λ0 > 10−2Mpc, we do not expect

that there are magnetic fields that undergo the inverse cascade process at the electroweak

phase transition.

III. CHIRAL ANOMALY IN THE STANDARD MODEL AND BARYOGENESIS

FROM HELICAL MAGNETIC FIELD

Now we study the chiral anomaly in the SM and see how the baryon asymmetry is gener-

ated through the background helical magnetic field. The SM based on the SU(3)C×SU(2)L×

U(1)Y contains three types of gauge bosons (Y for U(1)Y ,W for SU(2)L, G for SU(3)C),
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TABLE I: The coefficients in Eq. (14). i = 1, 2, 3 are the generation indices.

Cy Cw Cs

Qi NcNwq
2
Q Nc Nw

uiR −Ncq
2
u 0 −1

diR −Ncq
2
d 0 −1

Li Nwq
2
L 1 0

eiR −q2
e 0 0

three generations of quarks and leptons, and the Higgs scalar (ϕ). The SM fermion currents

are known to be anomalous due to the coupling to gauge bosons and are not conserved even

in the massless and free limit [61]

∇µj
µ
f = Cf

y

αy

4π
YµνỸ

µν + Cf
w

αw

8π
W a
µνW̃

aµν + Cf
s

αs

8π
Gb
µνG̃

bµν , (14)

where ∇µ is the covariant derivative, the current of the Weyl fermion species χf is defined as

jµf ≡ χ†f σ̄
µχf for the left-handed fermions and jµf ≡ χ†fσ

µχf for the right-handed fermions,

αY,(W,C) ≡ g2
1,(2,3)/4π are the fine structure constants of each gauge symmetry,

X̃µν ≡ (1/2)εµνρσXρσ/
√
−det(gµν) = (1/2)a−3(t)εµνρσXρσ(X = Y,W,G) are the dual gauge

field strength tensors, and the coefficients Cf
i are summarized in Table I. Nc = 3, Nw = 2

are the number of degrees of freedom of the color and weak isospin states of leptons and

quarks, respectively, and qQ = 1/6, qu = 2/3, qd = −1/3, qL = −1/2, and qe = −1 are the

hypercharge of each quarks and leptons.

The second and third terms in the right hand side of Eq. (14) induce so-called weak and

strong sphaleron processes [62, 63]. The SU(2) and SU(3) gauge theories have degenerate

vacua, whose Chern-Simons (CS) number (NCS) are integers. The sphaleron processes are

the transition process from one vacuum to another, which results in the change of number

of quarks and leptons. In particular, the weak sphaleron is accompanied by the violation of

B and L numbers (but not B−L), and hence it plays the crucial role in many baryogenesis

mechanisms [64, 65]. At high temperatures above the electroweak scale, the sphaleron rate

or the CS diffusion rate is estimated by the numerical simulations as Γw ' 25α5
wT for the

weak sphaleron [66, 67] and Γs ' 100α5
sT for the strong sphaleron [68].

On the other hand, the vacuum structure of the U(1) gauge theory is trivial, and hence
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the sphaleron-like effect does not occur in the hypercharge sector in the vacuum.8 However,

as we have seen in the previous section, there can be time-varying non-trivial hypermagnetic

field with a net helicity in the early Universe, which contributes to the anomalous process

[3]. (See also Refs. [2, 4–24].) Note that the volume average of Yµν Ỹ
µν is proportional to

the rate of change of the helicity density ḣ,

lim
V→∞

1

V

∫
V

d3xYµνỸ
µν = 2a−3 ḣ. (15)

Thus the fermionic currents are not conserved when ḣ 6= 0 and their divergence has a source

term proportional to ḣ. As a result, at temperatures above the electroweak scale, B (and

L) is not conserved (while B−L is conserved), and the anomalous process can generate the

baryon asymmetry of the Universe.

Now we study the evolution of the asymmetry of the fermions. Since the 0-th component

of the fermionic current represents the net number density of the fermion (number density of

particle minus anti-particle; nf−nf̄ ), the evolution equations for the fermion number density-

to-entropy ratio ηf ≡ j0
f/s with s ≡ 2π2g∗sT

3/45 averaged over the present cosmological

8 However, the thermal fluctuations of the hypermagnetic helicity can affect the evolution of the baryon

and lepton asymmetry [16, 24]. Although the effect is expected to be small, these works leaving it open

ended whether this effect makes much difference to the baryogenesis calculations or not.
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scales as well as that of the Higgs ϕ in the radiation dominated era are given by [3] 9,

∂ηQi

∂x
=−NcNwq

2
Qγy −Ncγw

∑
j

(ηQj + ηLj)−Nwγs

∑
j

(ηQj − ηuj − ηdj)

−
∑
j

γuij
(ηQi

6
+
ηϕ
2
− ηuj

3

)
−
∑
j

γdij
(ηQi

6
− ηϕ

2
− ηdj

3

)
, (16)

∂ηLi

∂x
=−Nwq

2
Lγy − γw

∑
j

(ηQj + ηLj)−
∑
j

γeij
(ηLi

2
− ηϕ

2
− ηej

)
, (17)

∂ηui

∂x
=Ncq

2
uγy + γs

∑
j

(ηQj − ηuj − ηdj) +
∑
j

γuji
(ηQj

6
+
ηϕ
2
− ηui

3

)
, (18)

∂ηdi

∂x
=Ncq

2
dγy + γs

∑
j

(ηQj − ηuj − ηdj) +
∑
j

γdji
(ηQj

6
− ηϕ

2
− ηdi

3

)
, (19)

∂ηei

∂x
=q2

eγy +
∑
j

γeji
(ηLj

2
− ηϕ

2
− ηei

)
, (20)

∂ηϕ
∂x

=−
∑
i,j

γuij
(ηQi

6
+
ηϕ
2
− ηuj

3

)
+
∑
i,j

γdij
(ηQi

6
− ηϕ

2
− ηdj

3

)
+
∑
i,j

γeij
(ηLi

2
− ηϕ

2
− ηej

)
.

(21)

Here we take into account the Yukawa interactions, and the time variable x is defined

as x ≡
√

90/π2g∗Mpl/T . Note that in the radiation dominated era, H = 1/2t and

3H2M2
pl = (π2g∗/30)T 4. The dimensionless interaction rates γ are given by γw = Γw/T '

25α5
w, γs = Γs/T ' 100α5

s , and γu(d,e)ij = Γu(d,e)ij/T = |yiju(d,e)|2/8π with yiju(d,e) being the

Yukawa coupling matrices for up-type quarks, down-type quarks, and electron-type leptons,

respectively. Note that i = 1, 2, 3 runs the generation. γy in the source term from the helical

magnetic field is defined as

γy ≡ a−3 αy

2πs

ḣ

T
. (22)

(See Appendix B for the numerical values of these constants.) By solving the 16 evolution

equations Eqs. (16)-(21) from the emergence of thermal plasma of SM particles or magne-

togenesis, whichever comes later,10 to the electroweak scale T = Tf ' 140 GeV at which the

9 Here we assume that there are no other back reaction effects to the helicity of magnetic fields than the

chiral magnetic effects (which we have confirmed is does not change our result significantly). It may be

true if the helical magnetic fields act as catalyzers in the chiral anomaly. Even if there are other unknown

back reaction effects, we expect that it is negligible since the asymmetric part of the energy density of

baryons are smaller than that of magnetic fields.
10 If magnetogenesis took place before reheating, modified evolution equations before reheating should be

used. However, the resultant baryon asymmetry is determined by the dynamics around the electroweak
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weak sphaleron process shuts off 11 [69], we can estimate the baryon asymmetry

ηB ≡
1

3

∑
i

(ηQi + ηui + ηdi) (23)

generated by this process. Note that here we take into account the Yukawa interaction and

hence chemical potential for the Higgs field, as discussed in the introduction. It relates all

the chemical potential of quarks and leptons non-trivially. Therefore we must solve all 16

evolution equations simultaneously to acquire the precise results. In the case where the

present magnetic field is maximally helical (see Appendix A for its definition), the source

term from the helical magnetic field is given by

γy ' 1.7× 10−26C
(

B0

10−14G

)2(
λ0

10−6Mpc

)−1

×


(

T

1GeV

)4/3

for T < TTS(
TTS

1GeV

)4/3

for T > TTS

' 1.1× 10−2C
(

B0

10−14G

)
×

 x−4/3 for T < TTS

x
−4/3
TS for T > TTS

(24)

where xTS ≡
√

90/π2g∗Mpl/TTS. Here we used Eq. (10) and introduce a numerical factor

C to take into account the uncertainty caused by the approximated equations which have

been used so far such as λB ' vAt or σ ' 100T . We expect that the uncertainty is at most

0.1 . C . 10. In this case, the baryon asymmetry which is consistent with the present

observation can be generated as we will see in detail in the next section.

One may wonder if the weak sphaleron washes out the baryon asymmetry generated by

this process and the resultant asymmetry is exponentially suppressed, since this mechanism

does not generate B − L asymmetry.12 However, it is not the case for two reasons. First,

the washout mechanism significantly works only after all the Yukawa interactions as well

as the weak sphaleron process become active. But electron Yukawa coupling ye11 ∼ 10−6

is so small that it becomes effective only at temperatures below T = 105−6 GeV, or x >

1012−13. Therefore, relatively large baryon asymmetry can be produced at a temperatures

above T = 105−6 GeV. Second, when the electron Yukawa interaction becomes effective,

scale, as we see below. Thus we do not explore it assuming that reheating took place before the electroweak

phase transition.
11 At temperature below the electroweak scale, the anomalous process from the helical magnetic field does

not violate B (and L) and hence B (and L) asymmetries do not change anymore.
12 Indeed, one can explicitly show ∂tηB−L = 0 from Eqs. (16)-(21).
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the baryon asymmetry would decay exponentially if there is no source term from the helical

magnetic field. However, with the aid of the source term, the decay of the baryon asymmetry

significantly slows down and it is no longer the exponential damping but is only at most

a power-law of T . Although the precise estimate can be done only by solving all the 16

evolution equations numerically, the qualitative behavior of the evolution of the baryon

asymmetry can be understood by examining the following simplified equation,

∂ηB(x)

∂x
= γy(x)− γe11ηB(x). (25)

Note that the electron Yukawa interaction is the last piece requi to activate the wash-out

effect of the baryon asymmetry as explained above. At later times x � γ−1
e11 ≈ 3 × 1012,

the source term and damping force equilibrate, and hence the baryon asymmetry has an

attractor solution,

ηB(x) ∼ γy(x)

γe11
. (26)

In other words, although the sphaleron and Yukawa interactions try to damp the baryon

asymmetry exponentially, the source term from the helical magnetic field prevents it by

continuously producing ηB. Eq. (26) picts the following simple behavior of ηB which will be

confirmed by numerical calculations in the next section: If the inverse cascade process takes

place above the electroweak scale, namely the case (i) or the case (ii) with Tf ' TEW < TTS,

the baryon asymmetry evolves as ηB ∝ γy ∝ x−4/3 for γ−1
e11 < x < xf . If the helical magnetic

field adiabatically evolves, namely the case (ii) with Tf ' TEW > TTS or the case (iii), ηB

becomes constant.

IV. NUMERICAL RESULT

Here we examine the scenario numerically and give quantitative evaluations. We assume

that the magnetic field indicated by the blazar observation is maximally helical 13 and gen-

erated before the electroweak phase transition.14 The initial temperature in our calculation

13 It should be noted if magnetic fields are partially helical at their generation, the helical part decays slower

than the non-helical part due to the inverse cascade process and they eventually reach the maximal helical

state [40, 54]. Therefore our assumption that the present magnetic fields are maximally helical is valid for

a broad class of initial conditions. Furthermore, since only the helical part of the magnetic field contribute

to produce the baryon asymmetry through the chiral anomaly, we do not need to regain the non-helical

part which decays during the evolution.
14 We also assume that reheating took place before the electroweak phase transition.
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Tini is understood as the temperature at which magnetogenesis finishes or the reheating

temperature in the case of inflationary magnetogenesis. In the following we neglect the

running of gauge and Yukawa couplings since they run only logarithmically with respect to

the energy scales.

Tini =

107 GeV 106 GeV 105 GeV 104 GeV 103 GeV

T=Tf

∼0.3γy (x)  γe
11

1011 1012 1013 1014 1015 1016

10-10

10-8

10-6

107 106 105 104 103 102
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FIG. 2: The evolution of baryons asymmetry for B0 = 10−13G in the solely inverse cascade case

(Tini < TTS) is shown. The horizontal axis denotes x ≡
√

90/π2g∗Mpl/T . The initial temperature

is taken as Tini = 107 GeV, 106 GeV, 105 GeV, 104 GeV, and 103 GeV from left to right. The

dotted line shows that the asymptotic behavior at T < 105 GeV is well fitted by 0.3γy/γe11 .

Figure 2 shows the time evolution of the baryon asymmetry forB0 = 10−13 G (and λ0 = 10

pc) in the case (i) (the solely inverse cascade case; TTS > Tini). γy(x) is evaluated by Eq. (24)

with C = 1. We take the initial temperature as Tini = 107 GeV, 106 GeV, 105 GeV, 104 GeV,

and 103 GeV with the initial condition ηf = 0. We can see that ηB evolves as

ηB(x) ' 0.3
γy(x)

γe11
' 10−10C

(
B0

10−13G

)(
x

xf

)−4/3

, (27)

where xf ≡
√

90/π2g∗Mpl/Tf . Therefore the numerical results show an excellent agreement

with the analytic estimate in the previous section (Eq. (26)). We can also see that the

resultant asymmetry is independent of the initial time, if the initial temperature is sufficiently

larger than the electroweak scale. This is because the source term and damping force from
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FIG. 3: The final baryon asymmetry with respect to the present magnetic field is shown in the

solely inverse cascade case (i) and the transition case with TTS < Tf . The blue shaded region

represents the theoretical uncertainty, which is parameterized by the parameter C. The line shows

the observed baryon asymmetry. The gray shaded region is disfavo from the condition ΩB > 1 at

T > TEW (see Fig. 1).

electron Yukawa interaction determine the final asymmetry as the attractor solution Eq. (26).

Note that the case (ii) with Tini > TTS > Tf ' TEW show the same behavior.

Figure 3 illustrates the resultant baryon asymmetry for varying B0 in the case where

the helical magnetic field enters the inverse cascade regime before the electroweak phase

transition (TTS > Tf ' TEW). We take into account the theoretical uncertainty of the

source term (Eq. (24)) by means of the parameter 0.1 < C < 10. We can see that for

10−14G < B0 < 10−12G, the present baryon asymmetry can be explained within the theoret-

ical uncertainties. In contrast, the region 10−12G < B0 < 10−10G picts the over production

of baryon asymmetry. Such parameter regions are disfavo for the case (i) or the case (ii)
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with TTS > TEW. Consequently, if future observations suggests B0 > 10−12G satisfying

Eq. (10), the magnetogenesis or the transition from the adiabatic evolution to the inverse

cascade regime must take place after the electroweak phase transition.

TTS =10-1 GeV

10-2 GeV

10-3 GeV

10-4 GeV

T=Tf

∼0.3γy (x)  γe
11 (TTS=10

-1GeV)
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FIG. 4: The evolutions of baryon asymmetry for B0 = 10−9G with various TTS(< TEW) are shown.

The transition temperature is taken as TTS = 10 GeV, 1 GeV, 10−1 GeV, 10−2 GeV, and 10−3 GeV.

dashed line shows that the asymptotic behavior at T < 105 GeV for TTS = 10−2 GeV is well fitted

by 0.3γy/γe11 .

The baryon overproduction problem for large B0 can be relaxed by supposing the tran-

sition case (ii) with TTS < Tf ' TEW. Figure 4 shows the time evolution of the baryon

asymmetry with B0 = 10−9G with various TTS in that case. We take the transition temper-

ature as TTS = 10−1 GeV, 10−2 GeV, 10−3 GeV, and 10−4 GeV. We can see that the baryon

asymmetry saturates at T ' 105 GeV, as suggested by the attractor behavior (Eq. (26)).

As is the case of TTS > Tf ' TEW, the asymptotic behavior of the baryon asymmetry can

be expressed as

ηB(x) ' 0.3
γy(x)

γe11
' 10−10C

(
B0

10−13G

)(
xTS

xf

)−4/3

. (28)

In particular, even if the magnetogenesis or reheating took place before the electroweak phase

transition and the present magnetic field is stronger than 10−12G, ηB = ηobs
B ' 0.86× 10−10
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is realized for

TTS ' 10−1 GeVC−3/4

(
B0

10−9G

)−3/4

≡ T b
TS. (29)

If the transition is too early TTS > T b
TS or too late TTS < T b

TS, however, the resultant baryon

asymmetry becomes larger or smaller than the observed value, respectively. Note that we

require that magnetic fields never dominates the energy density of the Universe, TTS < Tdom

(Eq. (13)). In order to be consistent, T b
TS < Tdom must be satisfied, which turns to be

the upper bound on the strength of the present magnetic field that can explain the baryon

asymmetry of our Universe,

B0 < 10−9G× C1/3. (30)

Here Eq. (10) is used.

For completeness, let us make a comment on the solely adiabatic case (iii). Roughly

speaking, this case can be seen as the special case of the transition case (ii) whose transition

temperature TTS is lower than the present temperature T0 ≈ 2 × 10−13 GeV. As seen in

Fig. 4, in the limit TTS → 0, the baryon asymmetry becomes negligible. The only difference

between the case (iii) and the case (ii) with TTS < T0 is that the present correlation length

λ0 can be longer in the case (iii) than the case (ii), because Eq. (10) is not applied. However,

since ḣ ∝ λ−1
B , the longer correlation length leads to smaller baryon asymmetry. Therefore

the solely adiabatic evolution case (iii) cannot explain the observed baryon asymmetry.

V. SUMMARY AND DISCUSSION

In this paper, we study the generation of baryon asymmetry from the helical magnetic

field in the primordial Universe through the chiral anomaly. In this mechanism, the time-

varying helicity of hypermagnetic field spontaneously breaks T symmetry as well as C and

CP symmetry. The chiral anomaly then breaks B symmetry, and the source term from the

time-varying helicity prevents the system from entering the complete thermal equilibrium.

As a result, the Sakharov’s condition [1] is satisfied within the SM and the baryon asymmetry

can be generated.

We assume that there exist helical magnetic fields with negative sign whose typical

strength and correlation length are 10−14G < B0 < 10−8G and 1pc < λ0 < 1Mpc in the

present Universe, satisfying Eq. (10), as the observations indicate and they started to un-

dergo the inverse cascade process before the electroweak phase transition. Here we take into
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account the MHD effect on the magnetic field evolution and all relevant particle interactions

including the Yukawa interaction carefully. It is found that the present baryon asymmetry

ηB ' 10−10 can be generated for 10−14G < B0 < 10−12G allowing for the theoretical uncer-

tainties. On the other hand, for stronger helical magnetic fields with 10−12G < B0 < 10−10G,

this mechanism basically causes the overproduction of baryon asymmetry and hence such

strength of present magnetic fields is ruled out. The case with 10−10G < B0 < 10−8G is

already excluded due to the unwanted magnetic field domination of the Universe.

Our result is summarized in Fig. 5. Interestingly, the favo strength of the helical magnetic

field is larger than the observational lower bound by the factor of O(1) − O(102). There-

fore the helical magnetic field which undergo the inverse cascade and generate the baryon

asymmetry is expected to be tested in the future observation. Furthermore, as shown in

the line in Fig. 5, the evolution path of the magnetic field is picted and hence it would be

interesting to target such relationship between the strength and the correlation length for

high-z observations.

The baryon overproduction problem for B0 > 10−12G can be relaxed if the magnetic fields

evolved adiabatically before the electroweak phase transition and ente the inverse cascade

regime at a time after that. If the temperature of this transition is T b
TS (Eq. (29)), the present

baryon asymmetry is explained. In this case, the present magnetic fields whose strength is

up to B0 < 10−9G have a chance to explain the baryon asymmetry of our Universe. However,

such late-time transitions are generally difficult to be realized in the following reasons.

In this paper we do not specify the generation mechanism of the helical magnetic field.

However, even if we do not assume a specific model, by focusing on a class of magneto-

genesis mechanisms and introducing the temperature Tgen at which the magnetic field was

generated15, we can further explore the scenario. If the helical magnetic fields are generated

by a process which occurs within the Hubble horizon, the parameter region is constrained.

By using the temperature Tgen, one can rewrite Eq. (7) as

TTS ' 1GeV

(
λAD
B

H−1
(Tgen)

)−3/2(
Tgen

102 GeV

)3/2(
B0

10−11G

)3/2

. (31)

Note that λB at the generation time ti cannot exceed the Hubble radius H−1(Tgen) in the

case of such a generation mechanism and that gives the lower bound on TTS. Then one

15 Here we focus on the magnetogenesis mechanisms taking place after reheating.
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FIG. 5: The constraints on the comoving strength and the comoving correlation length of the

helical magnetic fields. The blue and orange shaded region show the constraints from the CMB

and blazar observations, respectively. In the gray shaded region, although the magnetic fields are

allowed to exist, the sufficient baryon asymmetry cannot be generated via the chiral anomaly. In

the green region, the helical magnetic field causes the overproduction of baryon asymmetry unless

the transition from the adiabatic evolution into the inverse cascade is sufficiently late (TTS ≤ T b
TS).

The white region shows the window in which the observed baryon asymmetry can be successfully

generated. The arrow represents the evolution path of the helical magnetic field undergoing the

inverse cascade process and eventually reaches the blue thick line (Eq. (10)).

obtains the maximum B0 to produce ηobs
B as

B0 ' 1.7× 10−11G C−
1
3

(
λAD
B

H−1
(Tgen)

) 2
3
(

Tgen

102 GeV

)− 2
3

. (32)

Consequently, as long as a process taking place within the horizon is concerned, a mag-

netogenesis mechanism before the electroweak phase transition that results in the present

strength of magnetic fields B0 > 10−11G is ruled out due to baryon overproduction. Here,

21



the transition temperature TTS is roughly estimated as

TTS ∼ 2.3
g∗s(TIC)/g∗s(Tgen)√
gtot
∗ (TTS)gch

∗ (TTS)

Bp(Tgen)MPl

λB(Tgen)T 3
gen

. (33)

We stress again that these restrictions may not be applicable to inflationary magnetogenesis.

To the best of our knowledge, no magnetogenesis mechanism which consistently produces

strong and large-scale helical magnetic fields has been established [42–49]. For instance,

the natural inflation model or its relatives naturally generate the helical magnetic field by

introducing a coupling between the U(1) gauge field and the axion [53, 57, 58], but the

produced magnetic field is too weak to satisfy the observational lower bound in a minimum

setup. However, only simplest possibilities have been explo so far, and many other studies

are need to be done. Our result motivates future additional work on helical magnetogenesis

mechanisms.

For other theoretical aspects of our scenario, several issues also remain. One is that there

remain theoretical uncertainties in the numerical parameters in the model, parameterized C

in this paper. More precise determination of the parameters are requi to give more precise

piction of the baryon asymmetry. This will be accomplished by the further cosmological

MHD studies with a concrete initial magnetic spectrum. The other is that we assume that

the evolution of magnetic fields does not receive any effects from the baryon asymmetry

generation. If there are some effects, they may give further insights on baryogenesis as

well as the magnetogenesis mechanisms. We also assumed that the weak sphaleron and the

source term from the helical hypermagnetic field switch off instantly and simultaneously at

T = Tf . In order to determine the resultant baryon asymmetry precisely, the validity of this

assumption should be also examined.
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Appendix A: The helicity of magnetic fields

In this appendix, we describe the helicity of magnetic fields defined in Eq. (2). To

illustrate its nature, we introduce the following decomposition of the vector potential:

Ai(t,x) =
∑
±

∫
d3k

(2π)3
eik·xe

(±)
i (k̂)

[
a

(±)
k A(±)(k, t) + a

(±)†
−k A

∗
(±)(k, t)

]
, (A1)

where e
(±)
i (k̂) are the right/left-handed polarization vectors which satisfy kie

(±)
i (k̂) = 0

and εijlkje
(±)
l (k̂) = ∓ike(±)

i (k̂), and a
(±)†
k , a

(±)
k are the creation/annihilation operators which

satisfy the usual commutation relation, [a
(λ)
k , a

(σ)†
−k′ ] = (2π)3δ(k + k′)δλσ. With this decom-

position, one can show that the helicity density is written as

h =

∫
d3k

(2π)3
k
(
|A+|2 − |A−|2

)
. (A2)

Thus the helicity (density) represents the breaking of the parity symmetry. Magnetic fields

with h 6= 0 is called helical magnetic field and those with either polarization is negligible

compa with the other, namely |A−| � |A+| or |A+| � |A−|, are said to be maximally

helical.

Appendix B: Numerical constants

Here we summarize the numerical values of gauge and Yukawa couplings we have used in

our numerical calculations;

αy ≈ 0.017, αw ≈ 0.033, αs ≈ 0.11, (B1)

yiju ≈


1.1× 10−5 0 0

0 7.1× 10−3 0

0 0 0.94

 , (B2)

yijd ≈


2.7× 10−5 6.3× 10−6 2.4× 10−7

1.2× 10−4 5.4× 10−4 2.2× 10−5

8.3× 10−5 9.8× 10−4 2.4× 10−2

 , (B3)

yije ≈


2.8× 10−6 0 0

0 5.8× 10−4 0

0 0 1.0× 10−2

 . (B4)
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