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Achieving quantum limited sensitivity in a laser interferometric gravitational wave detector can be hindered
by an opto-mechanical parametric instability of the interferometer. This instability is sustained by a large num-
ber of idle high finesse Stokes modes supported by the system. We show that optimizing geometrical shape of
the mirrors of the detector one reduces the diffraction-limited finesse of unessential optical modes and effec-
tively increases the instability threshold. Utilizing parameters of the Advanced LIGO system as a reference we
found that the proposed technique allows constructing a Fabry-Perot interferometer with round trip diffraction
loss of the fundamental mode not exceeding 5 ppm, whereas the loss of the first dipole as well as the other
high order modes exceeds 1, 000 ppm and 8, 000 ppm, respectively. This is two orders of magnitude higher if
compared with a conventional Advanced LIGO interferometer. The optimization comes at the price of tighter
tolerances on the mirror tilt stability, but does not result in a significant modification of the optical beam profile
and does not require changes in the gravity detector read-out system. The cavity with proposed mirrors is also
stable with respect to the slight modification of the mirror shape.

PACS numbers: 95.55.Ym, 42.60.Da, 42.79.Bh, 42.65.Sf

I. INTRODUCTION

Gravitational wave astronomy inherently relies on high
power resonant optical systems. The power of the probe light
circulating in a cavity is the ultimate lever utilized to increase
the sensitivity of a position measurement of a gravitational
wave detector test masses carrying information about grav-
itational wave signals. The projected power, circulating in
arms, pushes 0.8 MW value in the second generation of grav-
itational wave detectors, such as Advanced LIGO (now in op-
eration), Advanced VIRGO and KAGRA [1–5]. While this
power value is by far lower if compared with the optical dam-
age limit of the cavity mirrors, it is high enough to initiate var-
ious nonlinear processes including parametric instability [6],
thermal lensing [7], and alignment (tilt) instability [8], result-
ing in depletion of the probe light and in generation of optical
harmonics adding noise to the recorded signal and hindering
the desirable sensitivity increase. Technical solution allowing
suppressing the nonlinear interactions are needed to push the
limits of gravitational wave astronomy and to widen the hori-
zon of observable events associated with gravitational wave
emission.

Resonant opto-mechanical oscillations caused by undesir-
able parametric instability (PI) [6, 9–15] are expected to have
the lowest power threshold if compared with the other nonlin-
ear processes in the cavities. The PI occurs due to interaction
of optical cavity modes and mechanical modes of the cavity
mirrors. The photons of the probe light confined in a selected,
usually fundamental, cavity mode pumped at frequency ωp are
parametrically converted to mechanical phonons of the cavity
mirrors (having frequency Ωm) as well as lower frequency, or
Stokes, photons emitted into high order optical modes having
frequency ωs ' ωp − Ωm. The power threshold of the PI is
inversely proportional to the product of quality factors of the
optical and mechanical modes participating in the process, in
other words, desirable reduction of the optical as well as me-
chanical attenuation results in undesirable reduction of the PI

threshold. A method of PI reduction not associated with de-
crease of the quality of the modes is needed.

The phenomenon of PI was studied and validated experi-
mentally in a table top Fabry-Perot resonator [16] as well as in
whispering gallery mode resonators [17–19]. Recently PI was
observed in full scaled Advanced LIGO interferometer [20] at
relatively small circulating power ∼ 50 kW as compared with
800 kW planned in Advanced LIGO. The first observation of
gravitational waves was achieved with 100 kW power [5].

Efficiency of PI depends on phase matching, comprising
nonzero overlap integral and energy conservation, of the opti-
cal and mechanical modes. There is a significant probability
that these conditions are always fulfilled in long-base grav-
itational wave detectors because of dense spectrum of opti-
cal modes of large cavities and dense spectrum of mechanical
modes of large area cavity mirrors. Since the mirrors involved
into the system are not identical, they have slightly different
associated mechanical frequencies that increases PI probabil-
ity.

Several techniques reducing PI impact have been studied
recently. They involve either breaking the phase matching of
the nonlinear process by changing frequency spectra of the
modes participating in the PI process, or reducing PI effi-
ciency by damping nonessential modes.

For instance, one can move the opto-mechanical system out
of resonance by controlling and modulating surface tempera-
ture of the mirrors [21–24]. This is possible since the opti-
cal (ωp and ωs) and mechanical (Ωm) eigenfrequencies of the
system depend on the mirror temperature T in different ways,
so the PI favorable condition ωp(T ) = ωs(T ) + Ωm(T ), ul-
timately breaks. The drawback of this technique is related
to its lack of selectivity. All the modes of the optical cavity
move at nearly the same pace, and while one pair of Stokes
and mechanical modes comes out of the resonance, another
pair comes in. This drawback can be partially suppressed by
modulation of the temperature of the mirror surface.

Alternative stabilization method involves damping mechan-
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ical modes either in a passive or an active way. It was pro-
posed acoustic mode damper [25] as well introducing an annu-
lar strip at the rims of cavity mirrors reduces quality (Q-) fac-
tors of elastic modes [22, 26, 27]. However, this strip reduces
Q-factor of the modes within the whole spectrum, including
reception band of the antenna (30 . . . 500 Hz). This is unde-
sirable, since low mechanical attenuation at these frequencies
is essential for achieving the desirable detection sensitivity.

Active electro-mechanical feedback allows reducing Q-
factor of several particular elastic modes [28, 29]. The method
is too selective to suppress all the high-frequency modes in the
entire frequency band of interest (50 . . . 200 kHz) and, hence,
does not solve the problem of instability of highly overmoded
opto-mechanical system. Therefore, a universal method of PI
suppression is still needed.

We here propose a universal solution based on optimization
of the shape of the cavity mirrors leading to increase of the
diffraction losses of all high-order optical modes of the realis-
tic optical cavity and subsequent increase of the PI threshold.
It is known that diffraction loss of selected modes of a cavity
having large area mirrors can be increased rather significantly
by properly shaping the mirrors [30–32]. The Q-factor of the
lowest order (fundamental or main) modes of the cavity does
not suffer in this case. However, this analysis does not work
in the case of realistic finite mirrors, since this kind of mirror
shaping is associated with unacceptable loss increase of the
fundamental family of the cavity.

We have found that the loss increase can be circumvented
and have developed a technique that allows realizing an opti-
cal cavity containing only one family of low loss fundamen-
tal bounded modes for the case of the finite mirror size. We
have demonstrated feasibility of the method using an exam-
ple of a Fabry-Perot interferometer with parameters close to
Advanced LIGO interferometer and have shown that the idea
is feasible for increase of the PI threshold at least by an order
of magnitude keeping diffraction loss of the main mode fam-
ily at an acceptable low level. Since the shaping of the mir-
rors results in enhancement of the dependence of the round
trip diffraction loss on the mirror tilt, we have developed a
semi-analytical theory of this phenomenon and have shown
that such dependence becomes acceptable for the case of care-
fully optimized mirror shape. Finally, we have found that the
optimized cavity can still be interrogated using conventional
Gaussian beams. We discuss the results in what follows.

II. THRESHOLD CONDITION

The lowest intracavity threshold power of the PI evaluated
for a Fabry-Perot (FP) resonator can be found from expression
[6]

Pth =
Mc2Ω2

mL
4ζωsQm

, (1)

ζ =
V
∣∣∫ fp(~r⊥) fs(~r⊥)~uz(~r)d~r⊥

∣∣2∫
|~fp(~r⊥)|2d~r⊥

∫
|~fs(~r⊥)|2d~r⊥

∫
|~u(~r)|2dV

where L is the round trip optical power attenuation coefficient
of the Stokes mode, M is the mass of the mirror, or test mass,
Qm is the quality factor of the elastic mode, c is the speed of
light in the vacuum, ζ is a mismatching factor, V is volume
of the mirror, ~u(~r) is the mechanical mode displacement, uz
is the same normal displacement on the mirror surface, and
fp, fs is the field amplitude mirror surface distribution for the
main and Stokes optical modes. The integration is performed
over the volume (dV ) and surface (d~r⊥) of the mirror.

Equation (1) is obtained for the all-resonant case: ωp =
ωs + Ωm. Substituting to Eq. (1) parameters of Advanced
LIGO system, presented in Table (I), and assuming complete
overlap of the modes (ζ = 1) we find that the PI threshold
power, Pth, is more than two orders of magnitude smaller
if compared with the envisioned power level P [6]. To in-
crease the threshold towards the desirable value we propose
to increase L to 8 000 ppm (it corresponds to Pth = 1 MW
at M = 40 kg, Ωm = 5 · 105 sec−1, Qm = 106, ζ = 1
and parameters in Table I) by inducing leakage of the Stokes
light out of the cavity due to enhanced diffraction of the high
order optical modes. This increase results in a small practi-
cally acceptable increase of the attenuation of the fundamental
mode Lp = 5 ppm. The loss limits the degree of improvement
of the sensitivity of the measurements if quantum squeezed
light is used in the system, and Lp = 5 ppm is acceptable for
the realistically projected values of the achievable degree of
squeezing. It also worth noting that in reality the overlap is
not complete (ζ < 1) and the requirement to the reduction of
the finesse for the high order modes is less stringent.

TABLE I: Parameters of Advanced LIGO used in calculations (radii
of curvature are different for input and output mirror in arms of real
Advanced LIGO interferometer, we use mean value for both)

Parameter Value
Arm length, L 4 km
Optical wavelength, λ 1064 nm
Intracavity power, P 800 kW
AS00 (main Gaussian) mode round trip loss, Lp 0.45 ppm
D10 (LG10) dipole mode round trip loss, L 10 ppm
Characteristic cavity length b =

√
Lλ/2π 0.0260 m

Radius of mirrors, rm 0.17 m
Dimensionless mirror radius am = R/b 6.53

Radius w of laser spot at the mirror for TEM00 mode 0.06 m
Radius w0 of laser beam at the waist 0.0115 m
Curvature radius of spherical mirrors, Rc 2076 m
Geometric parameter g = 1− L/Rc of the cavity −0.92649
Gouy phase, arctan

[
(b/w0)

2
]

1.378

The idea of the method relies on a dependence of the at-
tenuation of high order modes of a FP cavity on relatively
small deviation of the cavity mirror shape from the spherical
one. The diffraction loss of the fundamental axially symmet-
ric mode decreases exponentially with the mirror diameter in
a properly designed cavity, while the loss of the other modes
follows a power law dependence on the diameter. The ratio of
round trip loss of the fundamental and the higher order optical
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modes of a cavity should exceed two orders of magnitude to
be acceptable for the application. To compare, the current Ad-
vanced LIGO cavity has this ratio fixed at the level of 20 for
the main and the first dipole modes (see Table I). As shown in
the next section, minute modifications of the Advanced LIGO
mirror shape, keeping the overall mirror size intact, results
in a significant increase of round trip loss of unwanted opti-
cal modes and increase of the PI threshold towards desirable
numbers.

III. MIRROR SHAPE OPTIMIZATION

We consider resonators having nearly Gaussian spatial pro-
file of the lowest order modes to ensure that the conventional
auxiliary optics can be utilized with them. This is essential
for the post-processing of the output light requiring perfect
matching with the modes of conventional filtering cavities as
well as local oscillators involved in the data acquisition. This
condition should be fulfilled if the curvature of the mirrors
stays the same as the curvature of spherical mirrors of the
conventional cavity at the symmetry axis of the cavity. The
curvature deviates from the conventional one away from the
symmetry axis. Finding the optimal shape of the cylindrically
symmetric mirrors is the major task we solve here.

We introduce dimensionless variables and parameters:

x =
r

b
, b =

√
Lλ

2π
, ρ =

Rc
L
, am =

rm
b
, (2)

where r is the distance from centre of mirror, b is scaling fac-
tor, L is distance between mirrors, λ is a wavelength, Rc is
curvature radius of mirror, rm is radius of mirror. The shape
of the mirrors of the FP cavity is described by

y = y0

(
1− e−z−αz

2−βz3
)
, z =

x2

2ρy0
(3)

where α, β and y0 are dimensionless independent parameters
we optimize. The profile (3) transforms into spherical one
y = x2/2ρ at y0 → ∞ (or at x → 0). There are many
ways of defining mirror profile. We selected this particular
one because it allows adjusting radius of mirror curvature in a
very broad range.

While fundamental understanding of the optimization pro-
cedure can be gained from Born-Oppenheimer approach ap-
plied to a FP cavity, an accurate analytical optimization of the
mirror shape is unfeasible, so numerical simulations have to
be used. We utilize a matrix analogue of Fresnel integral to
find electric field distribution Ψright at the right mirror surface
of the FP resonator using distribution Ψleft at the left mirror
(and vice versa): Ψright = RPRΨleft, where matrix P de-
scribes the propagation from the left plane to the right one
and depends on the mode of the cavity; diagonal matrix R
describes shapes of the mirrors. Equation (RPR)2 Ψ = ΛΨ
is solved numerically and round trip loss is found from L =
1− |Λ|2.

Following the approach described in [33, 34] we define
propagation matrix for axial symmetric (AS) modes through

FIG. 1: Dependence AS00 mode round trip loss (ppm) on mirror
shape parameters in range y0 = 15÷ 50 and α = 0÷ 0.3.

FIG. 2: Dependence attenuation ratio D10 to AS00 on mirror shape
parameters in range y0 = 15÷ 50 and α = 0÷ 0.3.

Hankel transform as

P = H+G(H+)−1, Gkn = exp

(
−i ξ

2
k

2a2

)
δnk, (4)

H+
kn =

4πa2

ξ2NNn
J0

(
ξkξn
ξN

)
, Nn =

[
1 +

1

ξ2n

]
J0(ξ2n), (5)

where a = Sam, S > 1 is the simulation window parame-
ter which may vary between 1.5 to 5, J0 and J1 are Bessel
functions of the first kind, ξn is the set of the first N roots of
characteristic equation J0(ξ)− ξJ1(ξ) = 0.

The propagator P for the azimuthal higher order modes (the
field depends on azimuthal angle φ as ∼ einφ, where n is
integer) is easy to generalize. For example, for dipole modes
with dependence ∼ eiφ we have to substitute J1 instead J0
into (5) and to use roots of characteristic equation J1(ξ) −
ξJ2(ξ) = 0.

The mirror shape is presented numerically by matrix

Rkn = dke
−iy(xn)δkn, xn = ξna/ξN , (6)
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dk =

{
1, if xn < am,

0 if xn > am
(7)

where coefficients dk define reflective surface of the mirror.
Selecting the number of points N = 512 and the parameter

of the window S = 2 we have found dependence of the atten-
uation parameters of various modes of the cavity on the mirror
shape (Fig. 1). As the rule, the first dipole mode (D10) has the
lowest loss with respect to the fundamental axially symmet-
ric mode (AS00). We optimized the problem by identifying
local maxima of the ratio of attenuation of the dipole and the
fundamental mode, as illustrated by Figs. 2, 3. Several iden-
tified local optima for the mirror shape are listed in Table II.
We have selected the radius of curvature in the center of the
deformed mirrors to be Rc = 2014 m, it corresponds to spot
radius w = 0.09 m for the spherical mirror. However, due
to change of the mirror shape, as described below, the spot
size decreased to w ' 0.05 cm, even though the radius of
curvature of the mirrors did not change in the vicinity of the
symmetry axis. The simulation shows that modification of the
mirror shape results in significant increase of diffraction loss
of the high order modes while keeping the attenuation of the
fundamental modes to be low. One can see from Table II that
practically all the higher order modes demonstrate loss larger
than ∼ 8000 ppm level defined in Sec. II, with exception only

for the dipole modes having approximately 1000 ppm loss (all
the modes that are not listed in Table II have higher diffraction
loss, exceeding 8000 ppm).

It is important to confirm that the cavity with the de-
formed mirrors can be interrogated using conventional Gaus-
sian beams. We have found that the amplitude distribution of
the modes of interest only slightly differs from the Gaussian
fit having the same full width at the half maximum (corre-
sponding to spot radius about 0.05 m), as shown in Fig. 4,
in spite of significant difference of mirror shapes shown in
Fig. 5. Normalizing the electric field amplitude of the modes
over the beam cross section according to

∫
|E|2dS = 1 we

have found that the mismatch between the matching Gaus-
sian beam and the cavity eigenmode is small for any of
the selected mirror shape. The mismatch is determined as∫

(|EAS00| − EGauss)
2
dS < 10−3. In particular, for param-

eters set 3 in Table II we calculated the overlap integral in
form

∫
(|EAS00|EGauss)

2
dS ' 0.9995, whereas with account

of imaginary part |
∫

(EAS00EGauss)
2
dS| ' 0.9768, which

also confirms that the cavity with the optimized mirrors can
be pumped using Gaussian beams and the quantum state of
the light exiting the resonator can be analyzed using Gaussian
shaped local oscillator beam.

TABLE II: Values of the round trip loss (ppm) for FP cavities having spherical and deformed mirrors, calculated numerically with points
number N = 512 and window parameter S = 2. We used Advanced LIGO parameters summarized in Table I for the FP with spherical
mirrors according to laser spot radius of w = 0.06 m on mirror. AS, D, Q, and M , stand for the axial symmetric, dipole, quadrupole, and
hexapole modes.

Modes AS00 AS01 AS02 D10 D11 Q20 Q21 M30 M31

Spherical 0.45 170 6500 8.9 1050 100 5100 470 20 000
1 y0 = 20, α = 0.1525, β = 0.35 2.2 46 000 43 000 940 20 000 19 000 30 000 10 000 28 000
2 y0 = 27.5, α = 0.21, β = 0 2.6 46 000 19 000 1100 41 000 23 000 16 000 11 000 30 000
3 y0 = 30, α = 0.175, β = −0.05 3.3 37 000 20 000 1600 36 000 19 000 17 000 8800 12 000

The tolerance requirements for approaching the physical
parameters described in Table (II) are reasonable. For exam-
ple, for the variant 3 in Table II the parameters y0, α, and β
have to hold with accuracy about±0.25,±0.005, and±0.005
respectively to keep the value of the loss within 3 dB of the
predicted values. It means that the shape of the mirrors has to
be kept accurate with tolerance ±0.03λ, which is practically
feasible. The mirror has to be smooth enough at the wave-
length scale for this estimation to be valid.

The considered model of a FP resonator is a simplification
of the realistic Advanced LIGO system with one exception.
The last one includes two FP resonators and a recycling mir-
ror that allows increasing the effective finesse of the multi-
resonator system. It is possible to show that the LIGO res-

onator effective loss is proportional to T1T2/4 + L1, where
T1 and T2 are power transmission coefficients of the input and
recycling mirrors, respectively, and L1 is the attenuation per
round trip in the FP resonator. In the Advanced LIGO inter-
ferometer T1 = 0.014 and T2 = 0.03 [3], so the effective
transmission coefficient is about Teff = T1T2/4 = 100 ppm,
whereas diffraction loss L1 ' 0.45 ppm. The attenuation
of the main mode of the resonator has to be small to allow
increasing sensitivity of the measurement utilizing nonclassi-
cal states of light. Increase of diffraction loss of this mode by
about an order of magnitude (to 5 ppm) seems to be acceptable
to use the nonclassical (squeezed) state of light characterized
with squeezing parameter L00/Teff ' 0.02. The increase of
the attenuation of the dipole mode beyond 100 ppm results in



5

FIG. 3: Searching of local optimum point under following condi-
tions: AS00 round trip loss (red curve) not exceeds 5 ppm, D10

round trip loss (blue curve) is approximately 103 ppm and ratio of
these losses (green curve) reach a local maximum. This figure corre-
sponds to the 1 parameters set in Table (II).
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FIG. 4: Amplitude distribution of main AS mode corresponding to
parameters set 3 in Table II and main Gaussian one on mirror’s sur-
face.

reduction of parametric instability in accordance with Eq. 1.
Another important factor to consider is related to the dy-

namic stability of the modified FP cavity. This is discussed in
the next section.

IV. TILT STABILITY

The optimization of the mirrors shape results in increase
of the diffraction loss of the higher order FP modes. As the
consequence, the diffraction loss of the main mode increases
stronger with the tilt of the mirrors as compared with a con-
ventional FP resonator. The tilt lifts orthogonality and results
in linear coupling among the optical modes. The coupling is
the largest for the axial symmetric and the dipole modes. It
is reasonable to expect that the angle sensitivity of the cavity

Dimensionless radial coordinate

0 2 4 6 8 10

y

0

10

20

30

40

50
Profiles

Sphere

Profile 1

Profile 3

FIG. 5: Mirror shapes (3) for spherical mirror and mirrors corre-
sponding to sets 1 and 3 in Table II.

attenuation is approximately proportional to the square root of
the clipping loss value of the dipole mode.

There is no known way of accurate analytical evaluation
of the loss increase due to mirror tilt. Moreover, the numer-
ical simulations become rather involved since the tilt breaks
the symmetry of the system. To evaluate this effect we use
method of successive approximations that is based on fusion
of the both numerical and analytical methods. According to
this method, the round trip loss depends on small tilt angle θ
of one of the mirrors of the FP cavity as

L̃00 ' L00

{
1 +

θ2

θ2perm

}
,

1

θ2perm
=
kLSU
L00

, (8)

SU ≡ <

U00,00 − 2
∑
j

Λ2
j

∣∣Uj,00∣∣2
Λ2
j − Λ2

00

 , (9)

U00,00 ≡
∫
|ψ00(x)|2 x3 dx,

∫
|ψj(x)|2x dx = 1 ,

Uj,00 ≡
∫
ψ∗j (x)ψ00(x)x2 dx . (10)

where k is the wave number, Λj and ψj are the calculated
numerically forward trip eigenvalue and eigenvector of the
unperturbed problem (no tilt), θperm is a permissible angle to
characterize the tilt stability.

Numeric calculations for parameters sets 1,2,3 listed in Ta-
ble II give the following permissible tilt angles:

θ(1)perm ' 0.12 µrad, θ(2)perm ' θ(3)perm ' 0.08 µrad (11)

To figure out if these values are small enough, we calculate
similar number for the current Advanced LIGO interferom-
eter (Table I) and find θLIGO ' 0.6 µrad. In other words,
the dynamic range of the angle deviation of the mirrors of the
conventional interferometer is an order of magnitude better
than one of the interferometer with the modified mirrors. This
is expected as the loss parameter of the first dipole mode is
approximately 1,000 ppm (10 ppm) for the single mode (con-
ventional) resonator.
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V. CONCLUSION

In this paper we have shown that it is possible to reduce
spectral density in a long base optical interferometer by prop-
erly shaping its mirrors. The mode spectral density reduction
is needed to reduce the impact of the parametric instability
on the sensitivity of an interferometric gravitational wave de-
tector. The improvement stems from the dependence of the
threshold of the instability on the losses of the optical modes
involved in the process. Modification of the mirror shape en-
hances the diffraction loss of the higher order optical modes
resulting in the instability threshold increase, occurring at the
cost of scrutinizing the mirror tilt stability requirements.

To explain and circumvent this effect, we have created a
semi-analytical model of the diffraction loss of a Fabry-Perot
cavity having an arbitrary mirror shape. We have found that
optimizing the ratio of the losses of the cavity modes it is pos-
sible to achieve a significant suppression of the opto-mechanic
instability and also keep acceptable tolerances of the system
implementation. We validated results of our predictions with

numerical simulations.
We considered a simplified version of a Fabry-Perot cavity

similar to the cavities used in arms of an Advanced LIGO in-
terferometer. The result of our work is rather suggestive and
a deeper both theoretical and experimental study is needed
to adopt the technique to a full scaled Advanced LIGO sys-
tem. The intensity profile of the proposed modes are close to
Gaussian one, however, changing of the interferometer optics,
impact of the modification of the mirror profile on the optical
alignment and quantum squeezing of the light escaping the
dark port requires further investigation.
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