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Using large scale Monte Carlo calculations in a simple three dimensional lattice fermion model, we
establish the existence of a second order quantum phase transition between a massless fermion phase
and a massive one, both of which have the same symmetries. This shows that fermion masses can
arise due to dynamics without the need for spontaneous symmetry breaking. Universality suggests
that this alternate origin of the fermion mass should be of fundamental interest.
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Origin of mass in the universe is an interesting prob-
lem in fundamental physics [1]. In continuum quantum
field theory fermion masses arise from local fermion bi-
linear mass terms that are introduced as parameters in
the theory. If symmetries of the theory prevent such
terms, perturbatively fermions remain massless. How-
ever, these symmetries can break spontaneously through
the formation of non-zero fermion bilinear condensates
that can make fermions massive. This mechanism of
mass generation is used in the standard model of parti-
cle physics to give quarks and leptons their masses. Re-
cent progress in the field of topological insulators suggests
the existence of an alternate mechanism for the origin of
fermion mass [2–7]. These studies argue that massless
fermions can become massive even without the forma-
tion of fermion bilinear condensates, at a second order
quantum phase transition where there is no spontaneous
symmetry breaking. Evidence for such a transition has
been found using Monte Carlo calculations on small lat-
tices in complicated models inspired by the physics of
electrons hopping on a honeycomb lattice [8, 9].

If the existence of the above quantum phase transition
can be established firmly in four space-time dimensions,
it will provide a fundamentally new mechanism to un-
derstand the origin of fermion mass in continuum quan-
tum field theory. The physics of such a transition was
proposed long ago as a way to solve the long standing
problem of formulating chiral lattice gauge theories [10].
Unfortunately, the transition was never found and the
subject was abandoned [11]. The recent insights from
the field of topological insulators suggest that such tran-
sitions are natural and proposals to construct chiral lat-
tice gauge theories have begun to appear again [12–14].
However, concrete evidence for the transition so far has
mostly been provided using models with a condensed
matter flavor in three space-time dimensions and through
Monte Carlo calculations on small lattices. Given the
past history and controversial nature of the second order
transition it is important to confirm its existence on large
lattices and compute the associated critical exponents.
Further, if universality holds the same transition should
also be observable in three dimensional lattice field the-

ory models that were studied long ago in the context
of high energy physics. In this work we accomplish both
these tasks and thus bridge the gap between the two com-
munities.

Existence of the second order quantum phase tran-
sition that we establish in this work is also interesting
more broadly. Most phase transitions occur due to a
change in the symmetry properties of the ground state,
described by fluctuations of a local order parameter as-
sociated with the symmetry group. Our transition is dif-
ferent since there is no change in the symmetry between
the two phases. All local symmetry order parameters
vanish in both the phases. Such exotic transitions be-
tween two phases with the same symmetries are believed
to be driven due to a change in quantum entanglement
and topology of the ground state [15, 16]. In certain cases
these transitions are accompanied by fractionalization of
the fundamental degrees of freedom and emergence of
gauge fields [17]. Search for these exotic transitions has
become popular lately [18, 19]. Unfortunately, many pro-
posals for such transitions suffer from sign problems and
are constructed in models relevant to condensed matter
physics. Our work shows that a similar transition exists
in a simple lattice four-fermion model of interest to high
energy physicists. Importantly, the model does not suffer
from sign problems. From the point of view of topologi-
cal insulators, our transition is between a semi-metal and
a trivial insulator, very similar to the one proposed re-
cently in [8, 9], but within a much simpler model.

Our model can be motivated from lattice Higgs-
Yukawa models in the limit where bosons are heavy and
can be integrated out yielding a four-fermion interaction
[20–23]. The four-fermion model can also be constructed
directly by naively discretizing on a cubic space-time lat-
tice, a single continuum four component massless Dirac
field theory with a simple four-fermion interaction ob-
tained by multiplying the four Dirac components with
each other. Since the interaction binds four fermion
fields together into a local singlet at each space-time
lattice site, a massive fermion phase (a trivial insula-
tor) emerges at strong couplings where no symmetries
are spontaneously broken. This phase has the same lat-
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FIG. 1: Two possible scenarios for the phase diagram of lat-
tice models that show the origin of a fermion mass without
spontaneous symmetry breaking. The massless and the mas-
sive fermion phases have the same symmetries. Previous stud-
ies in four space-time dimensions found results consistent with
scenario A, while our work in three space-time dimensions is
consistent with scenario B with a second order quantum crit-
ical point at Uc.

tice symmetries as the massless fermion phase at weak
couplings (a semi-metal). Earlier studies found that the
two phases were separated by a more conventional spon-
taneously broken phase, shown as scenario A in Fig. 1,
both in three [26] and four space-time dimensions [22].
Some mean field theory calculations predicted a direct
first order transition [24, 25]. Absence of a direct second
order transition was taken as evidence that the massive
fermion phase was simply a lattice artifact. However, we
find clear evidence for a direct second order transition
between the two phases in three space-time dimensions.
This is shown as scenario B in Fig. 1.

Large lattice calculations are essential to confirm the
transition given that it separates two phases with the
same symmetries and does not fall under the usual
Landau-Ginzburg paradigm. Unfortunately, fermion al-
gorithms are known to scale poorly with system size, es-
pecially near a critical point. Recently we discovered that
in the fermion bag approach [27, 28], with sufficient mem-
ory, the information necessary to perform all updates can
be stored. Using this idea we can perform fast updates
within large regions of space-time and update a 603 lat-
tice within about five hours on a single CPU core and
a memory of about 8GB. Such large scale calculations
are unprecedented and help us establish the nature of
the phase transition firmly and compute its properties.
Some other technical details of our work on small lattices
have already appeared earlier in [29] and have been ver-
ified recently in [30]. But the broad ramifications of our
work across fields have so far remained unappreciated.

Our model contains four flavors of massless reduced
lattice staggered fermions on a cubical space-time lat-
tice with an onsite four-fermion interaction. Each lattice
fermion flavor describes a single four-component Dirac
fermion in the continuum due to fermion doubling [31–

FIG. 2: An example of a monomer configuration [n] showing
free fermion bags on a two dimensional lattice. The filled
circles represent monomers and the connected regions without
monomers form free fermion bags.

33]. The model can be obtained from a Higgs-Yukawa
model in the limit where the Higgs field hopping term
vanishes [22, 23]. We also believe that our model has a
Hamiltonian formulation very similar to the honeycomb
lattice models studied recently, but with much simpler
interactions [8, 9]. We use four-component Grassmann
valued fields, ψx,i, i = 1, 2, 3, 4, on each lattice site x to
describe the fermion fields. Then, the Euclidean action
of our model is given by :

S =

4∑
i=1

∑
x,y

ψx,i Mx,y ψy,i−U
∑
x

ψx,1ψx,2ψx,3ψx,4 (1)

where M is the well known massless staggered fermion
matrix given by

Mx,y =
∑

α̂=1,2,3

ηx,α̂
4

[δx,y+α̂ − δx,y−α̂], (2)

where ηx,α̂ are phases that introduce a π-flux through
all plaquettes. In our work we study cubical lattices of
equal size L in each direction with anti-periodic boundary
conditions. Observables are defined as usual through the
Grassmann integral

〈O〉 =
1

Z

∫ (∏
i,x

[dψx,i]
)
O e−S . (3)

where Z is the partition function.
The action given in Eq. (1) is symmetric under the

usual space-time lattice transformations and an internal
SU(4) flavor transformations [29]. Using weak coupling
and strong coupling perturbation theory, it is easy to ar-
gue that all lattice symmetries remain unbroken at both
weak and strong couplings. Thus, the essential question
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is whether there is a single transition between the two
phases or is there an intermediate phase where some of
the lattice symmetries are broken. Previous studies in
four space-time dimensions do seem to find such an in-
termediate phase. Here we present clear evidence from
large lattices for a single second order transition between
the two phases in three space-time dimensions and esti-
mate the critical exponents at the transition.

We perform calculations using the fermion bag ap-
proach [27] where the problem is converted into a sta-
tistical mechanics of monomer configurations [n], defined
through a binary lattice field nx = 0, 1 which denotes the
absence or presence of a monomer at the site x respec-
tively. Figure 2 shows an illustration of a monomer con-
figuration on a two dimensional lattice. Each monomer
represents a four-fermion interaction and free fermions
hop on sites that do not contain monomers. The fermion
bag approach also gives a very intuitive picture of the un-
derlying physics: At small couplings the monomer den-
sity is small and fermions are essentially free, while at
strong couplings the lattice is filled with monomers with
very few empty sites for free fermions to hop making
them massive. Details of our computational approach,
including algorithms that we use can be found in [29].

In our earlier work we presented evidence for a sin-
gle continuous phase transition between the massless
and the massive phases up to lattice sizes of L = 28.
The main result is summarized in Fig. 3 where we plot
the monomer density ρm = U

∑
x〈ψx,1ψx,2ψx,3ψx,4〉/L3

and one of the fermion bilinear susceptibilities χ1 =∑
x〈ψ0,1ψ0,2ψx,1ψx,2〉, as a function of U for various val-

ues of L. The behavior of these observables is consistent
with a single phase transition around U ≈ 1. Most im-
portantly, the bilinear susceptibility never increases like
L3 showing the absence of any local fermion bilinear con-
densate for all values of U . Recently it was also confirmed
that other discrete lattice symmetries, like the shift sym-
metry, also remain unbroken for all values of U [30].

We now have results from much larger lattices (up to
L = 60) that further confirm a single second order tran-
sition. We can also roughly estimate the critical expo-
nents if we assume the absence of corrections to scal-
ing on lattices above L = 36. Here we focus on the
two independent bosonic correlation functions C1(0, x) =
〈ψ0,1ψ0,2ψx,1ψx,2〉 and C2(0, x) = 〈ψ0,1ψ0,2ψx,3ψx,4〉
where x is varied along the time direction. Near the criti-
cal point both these correlation functions are comparable
to each other, while C2(0, x) vanishes at U = 0. For the
purpose of comparing different lattice sizes, we extract
the correlation ratios R1 = C1(0, L2 − 1)/C1(0, 1) and

R2 = C2(0, L2 )/C2(0, 0) as a function of L. For large L,
these ratios are expected to scale as 1/L4 in the massless
phase, as 1/L1+η at the critical point and as exp(−mL)
in the massive phase. Here η is one of the standard criti-
cal exponents. Our data is consistent with this behavior
for L ≥ 32. In table I we show the combined fit results
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FIG. 3: Plots of ρm and χ1 as a function of U for various
values of L. The susceptibility shows a peak and the average
monomer density shows a sharp rise at the phase boundary
(U ∼ 1).

U η χ2 U η χ2

/DOF /DOF
0.000 3 – 0.850 2.34(4) 2.5
0.920 1.64(5) 4.6 0.930 1.44(3) 1.9
0.940 1.22(2) 1.0 0.945 1.00(2) 0.7
0.950 0.77(2) 1.1 0.960 0.63(5) 6.4

TABLE I: Fit results obtained by fitting both R1 and R2 to
the form 1/L1+η for various values of U . For small U we
approach η ≈ 3 consistent with the free theory, while in the
critical region 0.93 < U < 0.96 we again find good fits with a
different η.

of our data to the form 1/L1+η near the critical region.
As an illustration of the goodness of our fits, in Fig. 4
we plot R1 as a function of L along with the fits. Based
on this we estimate that the critical point is somewhere
in the region 0.930 < U < 0.96. For U ≥ 0.96 a single
power law no longer fits the data well, but an exponential
fit begins to work well. For example, a fit to the form
R1 ∼ exp(−0.07L) at U = 1.03 is shown in Fig. 4.

In order to locate Uc accurately, we analyzed a dif-
ferent scaling region of U where R1, R2 show a peak.
In Fig. 5 we plot the behavior of the correlation ratio
R1 as a function of the coupling U for different lat-
tices sizes [34]. We have computed the maximum val-
ues R1,p(L), R2,p(L) and their locations U1,p(L), U2,p in
the range 24 ≤ L ≤ 44. From scaling theory, we expect
Ra,p = ba/L

1+η and Ua,p = Uc + da/L
ν . We find that

R1,p fits well to this expected form for 24 ≤ L ≤ 44,
while R2,p does not. However if we keep only the data
from the largest lattices for both R1,p and R2,p we can
again perform combined fits to the expected scaling form
without the need for corrections to scaling. Interestingly,
allowing a scaling correction only for R2,p allows us to fit
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FIG. 4: Plot of R1 as a function of L for various values of U
near the critical region. The solid lines are fits to the form
1/L1+η where η values are given in table I, except at U = 1.03
where the solid line has the form exp(−0.07L) suggesting the
fermions are already massive.

FIG. 5: Plots of R1 as a function of U for various lattice sizes
showing peaks. The values of the peaks R1,p and their loca-
tions U1,p are also marked. These are determined by approx-
imating the function to be a quadratic near the maximum.

the entire data set. Two of these fits are shown in the left
plot of Fig. 6. Using these fits and including various sys-
tematic errors we estimate η = 1.05(5). Combining this
result with that of Table I, we constrain Uc = 0.943(2).
Using this result along with our data for Ua,p and its
expected scaling form we can again perform combined
fits to obtain ν. One such fit is shown in the right plot
of Fig. 6. Using these fits we estimate ν = 1.30(7). In
Fig. 7 we verify if our large lattice data falls on a sin-
gle universal scaling function when we fix Uc = 0.943,
η = 1.05 and ν = 1.30. The fact that the data falls on
a single curve gives us confidence that this is indeed the
case. However, we must note that if we allow for scaling
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FIG. 6: Plots of R1,p and R2p as a function of L (left figure)
and U1,p and U2,p as a function of L. The solid lines represent
fits to the form Ra,p = ba/L

1+η and Ua,p = Uc + da/L
ν with

Uc = 0.943 fixed. The dashed line is a fit including correction
to scaling of the form R2,p = b2/L

1+η + c2/L
1+η+ω, where

ω ≈ 1.
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FIG. 7: Evidence for universal scaling in our large lattice data
with Uc = 0.943, η = 1.08, and ν = 1.30. Our data may also
be consistent with Uc = 0.945, η = 1, and ν = 1 expected
from large N analysis (shown in the inset), but only after
including corrections to scaling.

corrections to be present in our fits we cannot rule out
Uc = 0.945, η = 1.0 and ν = 1.0 as expected from large
N four-fermion models [35]. The universal scaling with
these exponents is shown in the inset of Fig. 7.

To summarize, we have established the existence of
a three dimensional exotic second order phase transi-
tion between a massless and a massive fermion phase,
both of which have the same lattice symmetries. Such a
transition implies that fermion mass generation can be a
dynamical phenomenon not necessarily driven by spon-
taneous symmetry breaking. Such transitions may also
exist in four space-time dimensions.
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