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We comment on the treatment of asymptotic black-disk scattering in a recent paper of Nastase and
Sonnenschein, Phys. Rev. D 92, 015028 (2015), on scattering in an updated version of the Heisenberg
model which gives pp and p̄p cross sections which increase at very high energies as ln2 s. We show
that the total cross section they define does not correspond to that measured in experiments, with
the result that their limit for the ratio σelas/σtot is too small by a factor 2. The correct ratio for
black-disk scattering, σelas/σtot → 1/2 for s → ∞, is strongly supported by experiment.

PACS numbers: 13.85.Dz, 13.85.Lg, 13.85.-t

In an interesting recent paper on Heisenberg’s model for nucleon-nucleon scattering which gives a total cross section
that increases as ln2 s at very high energies, Nastase and Sonnenschein [1] studied the possible approach to “black-
disk” scattering. Their result, that σelas/σtot → 1/4 for s → ∞ in this model, which they supported by reference to
the recent TOTEM data [2, 3] from the Large Hadron Collider (LHC), disagrees with the standard black-disk result,
σelas/σtot → 1/2. The latter is strongly favored by a comprehensive fit [4] to all the pp and p̄p data including those
on total, elastic, and inelastic cross sections, the ratio ρ of the real to the imaginary parts of the forward scattering
amplitudes, and on the forward slope parameters B for the differential elastic scattering cross sections. We show here
that the disagreement arises from an incorrect definition of the total cross section that does not correspond to the
cross section actually measured. We also summarize the experimental evidence for a black-disk limit in pp and p̄p
scattering.
The standard relation between the total scattering cross section and the imaginary part of the forward elastic

scattering amplitude f(s, t) given by the optical theorem follows from the unitarity of the S matrix for the scattering
[5], S†S = 11, or writing S as S = 11 + iT , i

(

T † − T
)

= T †T . Specializing to the case of forward elastic two-body
scattering |i〉 → |i〉, this gives

2 ImTii =

∫

(2π)4δ4(Pi′ − Pi) |Ti′i|2 dρi′ +
∑

k 6=i′

∫

(2π)4δ4 (Pk − Pi)T
∗
kiTkidρk, (1)

where the state |i′〉 differs from the initial state |i〉 only in the momenta of the scattered particles, and the sums over
the final states include integrations dρk over the phase space of the final-state |k〉 subject to the conservation of the
total 4-momenta P .
The right-hand side of Eq. (1) is the sum of the transition rates from the initial state |i〉 to all possible final states.

Dividing by the incident flux 4p
√
s in the initial state, we obtain the total cross section σtot = ImTii/2p

√
s, where

p and s are the momentum of either particle and the square of the total energy in the center-of-mass system, and
t = −2p2(1 − cos θ) is the square of the 4-momentum transfer in the scattering, with θ the scattering angle. The
elastic scattering cross section is given by the first term in the sum, σelas =

∫

dΩ |Ti′i|2/64π2s. The remainder of the
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sum gives σinel. These definitions correspond to experimental practice, where the cross sections are defined as the
ratios of the yields or interactions per unit time to the incident fluxes.
We will write the differential elastic scattering cross section dσelas/dΩ in terms of the scattering amplitude

f(s, t) = Ti′i/8π
√
s with dσelas/dΩ = |f(s, t)|2 [12]. With this definition, Eq. (1) gives the familiar relation

σtot = (4π/p) Im f(s, 0)—the optical theorem—for pp or p̄p scattering.
Given angular momentum conservation, the scattering amplitude can be expanded in the usual partial-wave series,

f(s, t) =
∑

j(2j + 1)fj(s)Pj(cos θ). The sum can be converted to an integral at high energies, where many partial

waves j contribute to the scattering, by using the relation Pj(cos θ) ≈ J0(b
√
−t) where pb =

√

j(j + 1). This gives
the impact-parameter or eikonal representation of the scattering amplitude [6],

f(s, t) = ip

∫ ∞

0

db b
(

1− eiχ(b,s)
)

J0
(

b
√
−t

)

. (2)

Here Sii = eiχ(b,s) is written in terms of its magnitude and phase through the complex eikonal function χ(b, s) =
χR(b, s) + iχI(b, s) with χI ≥ 0. Using the optical theorem, we obtain the total cross section as

σtot(s) = 4π

∫ ∞

0

db b
(

1− cosχR(b, s)e
−χI(b,s)

)

. (3)

We obtain the elastic scattering cross section by squaring f(s, t) and integrating over angles using the orthogonality
relations for the Bessel functions,

σelas(s) = 2π

∫ ∞

0

db b
(

1− 2 cosχR(b, s)e
−χI(b,s) + e−2χI(b,s)

)

. (4)

The inelastic cross section is given by the difference between Eq. (3) and Eq. (4),

σinel = 2π

∫ ∞

0

db b
(

1− e−2χI (b,s)
)

. (5)

In the high-energy limit, we expect the scattering to be strongly absorptive with e−χI(b,s) ≈ 0 out to a maximum
impact parameter bmax = R(s) ∝ ln (

√
s) [4, 7], and to be essentially negligible at larger impact parameters. The

effect of the real part of the eikonal function through the factors cosχR is small, with (1− cosχR)e
−χI ≈ 0 except in

a narrow “edge” region centered on R(s) [7, 8], with its overall contribution vanishing as 1/R(s) ∝ 1/ ln s relative to
the cross sections. Replacing cosχR by 1 and integrating Eqs. (3) and (4) from b = 0 to R(s), we obtain the so-called
“black disk” limit corresponding to scattering from a completely absorbing disk of radius R(s), with σtot → 2πR2,
σelas → πR2, and σelas/σtot → 1/2. Similarly, σinel → πR2 and σinel/σtot → 1/2.
The inelastic cross section in this limit, familiar in wave optics for strong absorption and short wavelengths,

corresponds to the geometrical area of the target. The elastic cross section arises entirely from wave diffraction
around the absorbing region, with the cross sections equal (Babinet’s principle), so the total cross section is twice the
absorption cross section.
In the case of nucleon-nucleon scattering, the black-disk radius R(s) is expected to grow as ln (

√
s) at high energies,

consistently with the Froissart-Martin [9, 10] bound on total cross sections. This behavior is characteristic of models
in which χI(b, s) grows in magnitude as a power of s but is cut off exponentially in its b dependence at large b [7].
The Heisenberg model studied in [1] gives an example. In that model, the growth of the cross section is ascribed

to the growth in pion production with increasing energy. The maximum impact parameter at which pion production
occurs for a cutoff ∝ e−mπb determines R(s), giving R(s) =

(

π/m2
π

)

ln (
√
s/〈k0〉) where 〈k0〉, the average energy per

pion of the pions emitted in the collision, is assumed by Heisenberg to be constant.
The cross section σ = πb2max = πR2 calculated in [1] following Heisenberg is that for pion production—the absorptive

or inelastic cross section—and not the total cross section. It was unfortunately taken as the total cross section in
[1], and the optical theorem then used to determine the normalization of their model amplitude for elastic black-disk
scattering. As a result, the scattering amplitudes used in the analysis of black-disk scattering in Sec. VIII B of that
paper are not consistent with the discussion above, with the result that their total cross section is too small by a
factor of 2, and their elastic cross section, by a factor of 4. This gives the asymptotic ratio σelas/σtot → 1/4, and, for
σtot = σelas + σinel, σinel/σtot → 3/4. As they note, these predictions differ from the usual ratios 1/2.
Aside from the theoretical problem, the predicted ratios are not consistent with experiment. In [4], we have

presented strong evidence that the pp and p̄p scattering amplitudes approach those expected for scattering from a
completely absorptive or “black” disk with a logarithmically increasing radius R(s) at very high energies. As noted
above, this conclusion was based on a fit to the high-energy pp and p̄p scattering data on total, elastic, and inelastic
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cross sections, ρ values, and forward slope parameters B for the differential cross sections. The expressions used for
the cross sections were quadratic in ln s, with extra rapidly falling Regge-like terms that are significant only at lower
energies. The total cross sections were constrained to match smoothly to the low-energy cross sections at 4 GeV.
Details are discussed in [4].
Comparing the coefficients of the terms in ln2 s in σtot, σelas, and B, we found in a fit unconstrained at high energies

that σelas/σtot → 0.528±0.108 and B → (0.990±0.415)σtot/8π, consistent with the expected results σelas/σtot → 1/2
and B → σtot/8π. If we imposed these conditions as extra, high-energy, constraints in the fitting procedure, we
obtained an equally good fit, with significantly reduced uncertainties.
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FIG. 1: Fits, top to bottom, to the total, inelastic, and elastic scattering cross sections using the low-energy analyticity
constraints on the cross sections discussed in [7], plotted as functions of the center-of-mass energy W =

√
s: σp̄p

tot and σp̄p

elas
(red)

squares and dashed (red) line; σpp

tot and σpp

elas
(blue) dots and solid (blue) line; σp̄p

inel
(black) diamonds and line; σpp

inel
(purple)

triangles. The fit used only data on center-of-mass energies W ≥ 6 GeV for σtot, W ≥ 30 GeV for σelas, and W ≥ 540 GeV for
σinel. The curve for σelas includes data down to 10 GeV to show how the cross section is tied down at lower energies. Outlying
points not used in the fit are shown with large open symbols surrounding the central points; the size of those symbols does not
reflect the quoted errors of the measurement.

We show the fit we obtained to the cross sections without using the high-energy constraints in Fig. 1. It is clearly
quite good, with a χ2 per degree of freedom of 1.2 for 145 degrees of freedom.
In Fig. 2, we show the ratios of the independently measured elastic and inelastic cross sections to the fitted σtot.

The convergence of the fitted ratios σelas/σtot and σinel/σtot toward the common value 1/2 is clearly evident. We
note also that σelas/σtot exceeds 1/4 at Tevatron energies of 1800 GeV and above. We emphasize that these results
follow from a comprehensive analysis of all the high-energy data, and do not depend simply on the few highest-energy
points. Indeed, the values of the cross sections measured at the Large Hadron Collider at 7 and 8 TeV and in the
AUGER cosmic ray experiment at 57 TeV had been predicted successfully using a model of this type in an analysis
that used data only up to 1800 GeV [11], all that existed at the time.
We conclude that the data—including the newer points—are inconsistent with the prediction in [1]. The problem in

those authors’ treatment of the total and elastic scattering cross sections and the black-disk limit of nucleon-nucleon
scattering does not appear to affect the remainder of that paper.
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FIG. 2: The ratios σinel/σtot (top curves) and σelas/σtot (bottom curves) for pp scattering (blue dots) and p̄p scattering (red
squares), plotted as functions of the center-of-mass energy W =

√
s. Outlying points not used in the fit are shown with

large open symbols surrounding the central points as in Fig. 1. The plotted ratios use the cross sections with only low-energy
constraints from [7]. The points shown for σinel/σtot and σelas/σtot are from independent measurements of σinel and σelas and
the fitted σtot.
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