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At the LHC, an effective theory of the Higgs sector allows us to analyze kinematic dis-

tributions in addition to inclusive rates, although there is no clear hierarchy of scales. We

systematically analyze how well dimension-6 operators describe LHC observables in compar-

ison to the full theory, and in a range where the LHC will be sensitive. The key question

is how the breakdown of the dimension-6 description affects Higgs measurements during the

upcoming LHC run for weakly interacting models. We cover modified Higgs sectors with a

singlet and doublet extension, new top partners, and a vector triplet. First, weakly inter-

acting models only generate small relevant subsets of dimension-6 operators. Second, the

dimension-6 description tends to be justified at the LHC. Scanning over model parameters,

significant discrepancies can nevertheless arise; their main source is the matching procedure

in the absence of a well-defined hierarchy of scales. While these issues require vigilance, they

should not present a major problem for future LHC analyses.

I. INTRODUCTION

The Higgs boson [1] discovery announced on July 4th 2012 [2] is a historical milestone in the

physics of the 21st century. The thorough scrutiny of the LHC Run I data has so far confirmed that

the narrow resonance observed at a mass around 125 GeV is compatible with the minimal Standard

Model (SM) agent of electroweak symmetry breaking [3]. To date, this agreement is limited to

around 20% precision in the Higgs couplings [4–7], which is not sensitive to the deviations that one

would expect from typical perturbatively extended Higgs sectors. This accuracy, based on a large

set of on-shell and most recently off-shell Higgs measurements [7], will soon improve with data

from Run II. Odds are high that the upcoming runs will shed light on a possible UV completion

of the Standard Model [8, 9].

Based on everything we know, such an underlying theory should be described by a gauge

field theory. While the measurement of Higgs couplings from inclusive rates has been extremely

successful at Run I, it needs to be extended, for example to include kinematic distributions. For

this purpose, Higgs effective field theories (EFT) [10–12] have become the koiné for discussing
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the phenomenology of extended Higgs sectors. In the effective field theory language, beyond the

Standard Model (BSM) effects are described in terms of a Lagrangian with local operators of

increasing mass dimension d > 4. Each of them includes a suppression by inverse powers of a new

physics scale, which should be well separated from the experimentally accessible scale, in our case

the electroweak scale, Λ� v.

Despite its generality, the EFT approach is known to suffer from its limited applicability when

the hierarchy of scales is not guaranteed. This has fueled intense investigation in the context of

dark matter searches [13]. While in that field EFT-based predictions are usually robust for early-

universe and late-time annihilation rates as well as for dark matter-nucleon scattering, the required

hierarchy of scales can break down for dark matter signals at colliders. Because hadron collider do

not have a well-defined partonic energy, strategies relying on boosted objects and large recoils are

the most critical. While it is not clear that a marginal separation of scales invalidates the EFT

approach, such observables clearly pose a challenge.

There exists a first set of studies of the applicability of EFTs to Higgs physics at the LHC [14–

16]. These questions first arose in studies of tagging jet kinematics in weak boson fusion, which are

sensitive to the UV structure of the theory [17–20]. Similar issues appear in Higgs-strahlung [14]

and in the production of off-shell Higgs bosons in gluon fusion [21, 22]. A key problem is that

Higgs production at hadron colliders does not probe a single energy scale over the full relevant

phase space.

On the other hand, in Ref. [7] is has been shown that a fit of dimension-6 operators to the Higgs

data at Run I is a sensible and practicable extension of the usual Higgs couplings fit. Dimension-

6 operators including derivatives complement the Higgs coupling modifications and allow us to

extract information from kinematic distributions. Because the LHC constraints do not induce a

hierarchy of scales, the EFT approach is not formally well defined. However, there appears to be

no problem in describing the LHC Higgs data in terms of a truncated dimension-6 Lagrangian.

This description induces theory uncertainties if we want to interpret the LHC results in terms of

an effective field theory [23]. On the other hand, these and other theory uncertainties can and

should be separated from the experimental uncertainties [24, 25].

Related to the topic of the validity of the effective theory is the question if, given the exper-

imental performance, the analysis of a UV-complete model offers an advantage compared to the

effective theory [26]. The two approaches are only equivalent if we account for the full correlations

between the effective operators in all analysis steps, and if the effective theory is applicable over
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the full relevant phase space. Unless the experimental collaborations provide their fully correlated

results beyond a Gaussian approximation [7], a direct analysis of full models will be superior.

Given these arguments, the applicability of the dimension-6 description of the Higgs sector has

to be tested on a process-to-process as well as model-to-model basis. In this paper we present a

comprehensive comparison of full models and their truncated EFT description during the LHC

Run II. We select extensions of the Higgs sector of the Standard Model by i) a scalar singlet, ii)

a scalar doublet, iii) a colored top-partner scalar, and iv) a massive vector triplet. Each of these

models is mapped onto an EFT, which we obtain by integrating out the heavy fields and expanding

the operators to dimension 6. We then derive predictions for selected Higgs observables in the full

model and compare them to the EFT results. The key questions we aim to address are:

1. Given the LHC sensitivity, how large do relevant new physics effects have to be?

2. Does the corresponding new physics scale respect a self-consistency condition Λ� v?

3. Which observables are correctly described by the truncated EFT?

4. What are the reasons for the potential failure of this EFT?

5. Do they pose a problem for LHC analyses?

For weakly interacting models, visible effects at the LHC lead us to scenarios in which the heavy

scale is not sufficiently separated from the electroweak scale, and the EFT description is not ob-

viously justified. We will analyze what problems the lack of a clear hierarchy of scales leads to in

practice, and discuss how these might affect global LHC-Higgs fits including kinematic distribu-

tions [7].

It will turn out that two limitations of the EFT description will guide us through the different

models. First, we need to ensure that the new physics scale and with it all new particles are

properly decoupled, in particular when we go beyond total cross sections. Second, when we define

our effective field theory in terms of a Higgs-Goldstone doublet, it is crucial that the electroweak

vacuum expectation value (VEV) does not have a destabilizing effect on the hierarchy of scales.

The remainder of the paper is organized as follows: in Section II we review our theoretical

framework. We discuss how new physics effects in the Higgs sector are accounted for in the full

model and EFT languages, and we identify the reasons why the two methods can deviate from

each other. In Section III we show these ideas at work by explicitly confronting full model versus

EFT predictions for a variety of UV completions and Higgs observables. We give our conclusions in
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Section IV. We hope that the Appendices A 1 – A 5 with exhaustive details on the different models

and their EFT parametrizations will be particularly useful to practitioners.

II. EFFECTIVE THEORY BASICS

Extensions of the SM Higgs sector involve new degrees of freedom with electroweak charges

and / or color charges, coupled to or mixing with the SM-like Higgs boson. Hidden sectors coupled

to the Higgs potential without any SM charge lead to non-standard Higgs decays. Since the Higgs

potential is closely linked to the electroweak sector, any model that affects the SM gauge bosons

will also affect Higgs physics. This way, a wide range of new physics models can be probed in

Higgs signatures at the LHC, both in total rates and kinematic distributions. The simplest effect

are shifted couplings of the observed Higgs boson at 125 GeV [4],

gxxH = gSM
xxH (1 + ∆x) . (1)

In this notation ∆ can reflect both, a truncated EFT or a full new physics model. These coupling

deviations have been used to test an effective light Higgs model with either free or model-specific

couplings [4–7].

A. Higgs effective theory

Effective field theories provide a systematic method to link Higgs measurements to a large class

of high-scale UV completions. Their ingredients are i) the dynamic degrees of freedom and ii)

the symmetries at low energies. The Higgs EFT framework keeps the SM fields and requires an

invariance under the SM gauge group SU(3)× SU(2)× U(1),

Leff = LSM +

∞∑
d=5

∑
ad

C
(d)
ad

Λd−4
O(d)
ad
. (2)

We assume a linear realization of electroweak symmetry breaking. This implies that the Higgs

scalar and the Goldstones of the Standard Model form an SU(2) doublet φ with the vacuum

expectation value v = 246 GeV. This is justified by the level of agreement of the Standard Model

with all available data on the electroweak sector. A non-linear formulation in terms of a general

scalar field h is also possible [27]. The higher-dimensional terms denote a linear combination of

local operators with mass dimension d, weighted by Wilson coefficients Ca and suppressed by

inverse powers of the new physics scale Λ.
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Higher-dimensional operators can be classified depending on whether they include derivatives

to compensate for the mass dimension in 1/Λ2. This leads to momentum-dependent couplings,

scattering amplitudes growing with energy, and eventually the violation of perturbative unitarity.

It reflects the onset of new on-shell contributions, which are integrated out in the EFT.

When we link full models to an EFT description it is useful to categorize the higher-dimensional

operators according to whether they arise from the tree-level exchange of heavy mediators or

through loop effects mediated by the heavy fields [28, 29]. This categorization is only meaningful

for weakly interacting complete models.

For the linear realization there exists a set of 59 dimension-6 operators. Popular bases are the

Warsaw [30], HISZ [31], and SILH bases [32]. All three maximize the use of bosonic operators to

describe Higgs and electroweak observables. They can be mapped onto each other using equations

of motion, integration by parts, field redefinitions, and Fierz transformations [33]. We use the

SILH basis and retain only those operators relevant for Higgs physics at the LHC [32]. The

effective Lagrangian truncated to dimension 6 reads

LEFT =LSM +
c̄H
2v2

∂µ(φ† φ) ∂µ(φ† φ) +
c̄T
2v2

(φ†
←→
D µ φ) (φ†

←→
D µ φ)− c̄6λ

v2
(φ† φ)3

+
igc̄W
2m2

W

(φ† σk
←→
D µφ)DνW k

µν +
ig′c̄B
2m2

W

(φ†
←→
D µ φ) ∂ν Bµν

+
ig c̄HW
m2
W

(Dµ φ†)σk (Dν φ)W k
µν +

ig′c̄HB
m2
W

(Dµφ†) (Dν φ)Bµν

+
g′2c̄γ
m2
W

(φ† φ)Bµν B
µν +

g2
s c̄g
m2
W

(φ† φ)GAµν G
µν A

−
[ c̄u
v2
yu (φ† φ)(φ† · QL)uR +

c̄d
v2
yd (φ† φ)(φQL) dR +

c̄`
v2
y` (φ† φ)(φLL) `R + h.c.

]
. (3)

Here, g = e/sw, g
′ = e/cw, and gs stand for the SM gauge couplings and λ denotes the usual

Higgs quartic coupling. The normalization of the dimension-6 Wilson coefficients ci does not

follow Eq. (2), but includes conventional prefactors which reflect a bias concerning their origin.

We present further details on the EFT setup, the translation between the different bases, and the

connection to Higgs observables in Appendix A 1.

B. Default vs v-improved matching

Matching the dimension-6 Lagrangian to a full model is a three-step procedure. Its starting

point is the definition of a heavy mass scale Λ. Second, we integrate out the degrees of freedom

above Λ, which leads to an infinite tower of higher-dimensional operators. Finally, this effective
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action is truncated so that only the dimension-6 terms, suppressed by 1/Λ2, remain. The matching

is not unambiguous: on the one hand, Λ is usually not uniquely defined. Further ambiguities arise

in the third step because a dimension-6 truncation does not tell us how O(Λ−4) contributions to

the Wilson coefficients of the dimension-6 operators should be treated.

For the linear dimension-6 Lagrangian in terms of the doublet field φ the underlying assumption

Λ� v suggests to match the linear EFT to the full theory in the unbroken electroweak phase. An

obvious choice for the matching scale is then the mass scale of new particles in the limit of v → 0.

We expand the effective action and drop all terms of O(Λ−4). This way, the truncation removes

the parts of the Wilson coefficients of the dimension-6 operators that are suppressed by additional

factors of 1/Λ. This procedure is our default matching scheme.

In the absence of a clear hierarchy of scales, multiple heavy mass scales of the type Λ±gv occur

for instance through mixing effects in mass matrices, even if just one dimensionful parameter Λ

governs the new physics. This raises the question if we can improve the agreement between full

model and dimension-6 Lagrangian by incorporating effects of the non-zero electroweak VEV in

the matching. In the first matching step, we can define Λ as the physical mass of the new particles

in the broken phase, including contributions from v, rather than the mass scale in the unbroken

phase. In addition, the third step gives us the choice to keep (part of) the O(Λ−4) terms of the

Wilson coefficients. This is equivalent to expressing the coefficients in terms of phenomenologically

relevant quantities such as mixing angles and physical masses, again defined in the broken phase.

Both of these prescriptions effectively include effects from dimension-8 operators into the dimension-

6 Lagrangian by once replacing φ†φ→ v2/2. We will use the term v-improved matching for these

alternative EFT definitions.

The truncation of the EFT Lagrangian is formally justified as long as v � Λ and we only

probe energies Ephys � Λ. In this limit the dimension-8 operators as well as the Λ-suppressed

terms in the Wilson coefficients are negligible; our two matching procedures then give identical

results. In the absence of a large enough scale separation, our bottom-up approach allows us to

treat them independently. This way we can use the v-improved matching to enhance the validity

of the dimension-6 Lagrangian.

The external energy scale depends on the specific process and observable, e. g. Ephys ∼ mh

for on-shell Higgs coupling measurements, Ephys ∼ m4` for off-shell Higgs coupling measurements,

Ephys ∼ mhh for Higgs pair production at threshold, or Ephys ∼ pT,h for boosted single or double

Higgs production. In kinematic distributions the high-energy tails can probe significantly larger
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energy scales. This implies that the energy range where the EFT description is applicable is model-

dependent and observable-dependent. Successively adding higher-dimensional operators should

improve the situation, as long as the key scales Ephys,Λ are sufficiently separated. Of course, the

EFT description fails spectacularly in the presence of new resonances in the relevant energy range,

and we have to adjust the field content of the effective Lagrangian.

C. Self consistency at the LHC

Interpreting LHC physics in terms of an effective theory involves a delicate balance between

energy scales. On the one hand, new physics searches often rely on selection criteria which demand

Ephys > mh to separate a high-energy signal from the QCD background. On the other hand, a

model-specific scale Λ limits the validity of the effective theory, as discussed above.

The extraction of Higgs properties during the LHC Run I essentially relies on on-shell single

Higgs production and decay. This allows us to roughly estimate the new physics scales they are

able to probe. Assuming no loop suppression, a deviation from the total single Higgs production

and decay rate lies within the experimental reach of the LHC if∣∣∣∣ σ × BR

(σ × BR)SM

− 1

∣∣∣∣ =
g2m2

h

Λ2
& 0.1 ⇔ Λ <

√
10 gmh ' 280 GeV , (4)

where we assume a weakly interacting theory with g2 ∼ 1/2. Because of the limited precision of

the available data, current Higgs results cannot test very high energy scales, at least for weakly

coupled new physics [7]. For this simple power-counting argument we ignore that new physics

might also change distributions and especially affect the high-energy tails. In this case the EFT

expansion develops in two different directions, E/Λ and gv/Λ.

For loop-induced new physics effects, the corresponding loop suppression factor pulls Λ to even

lower values,∣∣∣∣ σ × BR

(σ × BR)SM

− 1

∣∣∣∣ =
g2m2

h

16π2Λ2
& 0.1 ⇔ Λ <

√
10 gmh

4π
' 20 GeV . (5)

This implies that the cut-off of the effective theory is below the electroweak scale. We can compen-

sate for this by probing phase space regions where mh is not the relevant scale in the numerator.

Only for moderately strongly coupled dynamics with g = 1 . . .
√

4π one can probe large enough

energy scales for the EFT approach to be valid given the precision of the LHC Higgs program,∣∣∣∣ σ × BR

(σ × BR)SM

− 1

∣∣∣∣ =
g2m2

h

Λ2
& 0.1 ⇔ Λ <

√
10 gmh ' 400 GeV . . . 1.4 TeV . (6)
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In fact, the EFT approach to Higgs observables has largely been motivated by the desire to describe

models with strongly interacting electroweak symmetry breaking [32].

The increased statistics and Higgs production cross sections at Run II will enable us to add

a wide range of distributions and off-shell processes to the Higgs observables. They can probe

higher energy scales Ephys � mh, which are more sensitive to differences between the dimension-6

and full model predictions. A well-known example is weak boson fusion, where the details of the

ultraviolet completion can have a huge effect for example on the transverse momenta of the tagging

jets [17–20].

III. MODELS VS EFFECTIVE THEORY

The aim of this paper is to compare a comprehensive set of LHC predictions from specific

new physics models with their corresponding effective field theory predictions. As discussed in

Section II C, the applicability of the effective Lagrangian given in Eq. (3) is by no means guaranteed.

We test it based on detailed comparisons of matched EFTs with the original, more or less UV-

complete models, namely

A. a scalar singlet extension with mixing effects and a second scalar resonance;

B. two Higgs doublets, adding a variable Yukawa structure, a CP-odd, and a charged Higgs;

C. scalar top partners, contributing to Higgs couplings at one loop; and

D. a vector triplet with gauge boson mixing.

For each of these four models we introduce the setup and the main LHC features, discuss the

decoupling in the Higgs sector, define the dimension-6 setup, and finally give a detailed account of

the full and dimension-6 phenomenology at the LHC.

Our comparison covers the most relevant observables for LHC Higgs physics. We evaluate

all amplitudes at tree level and take into account interference terms between Higgs and gauge

amplitudes. Our acceptance and background rejections cuts are minimal, to be able to test the

effective field theory approach over as much of the phase space as possible.

In the case of Higgs production through gluon fusion, we analyze the production process with

a Higgs decay to four leptons or to photons,

pp→ h→ 4` pp→ h→ γγ . (7)
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For the photons we do not apply any cuts, while for ` = e, µ we require

m4` > 100 GeV and msame flavor
`+`− > 10 GeV (8)

to avoid too large contributions from the Z peak and bremsstrahlung.

For Higgs production in weak boson fusion (WBF), we evaluate the production process

ud→ hud→W+W− ud→ (`+ν) (`−ν̄)ud . (9)

We require the standard WBF cuts

pT,j > 20 GeV , ∆ηjj > 3.6 , mjj > 500 GeV ,

pT,` > 10 GeV , /ET > 10 GeV . (10)

Unlike for gluon fusion, the kinematics of the final state can now introduce new scales and a

dependence on the UV structure of the model. The process is particularly interesting in the

context of perturbative unitarity [34]. While the latter is satisfied in a UV-complete model by

construction, deviations from the SM Higgs-gauge couplings in the EFT may lead to an increasing

rate at very large energies [20, 35], well outside the EFT validity range E/Λ� 1. To look for such

signatures, we focus on the high-energy tail of the transverse mass distribution,

m2
T = (ET,`` + ET,νν)2 −

(
pT,`` + pmiss

T

)2
with ET,`` =

√
p2
T,`` +m2

`` ,

ET,νν =
√
/ET +m2

`` . (11)

As the last single Higgs production process we evaluate Higgs-strahlung

qq → V h (12)

with V = W±, Z. We do not simulate the Higgs and gauge boson decays, assuming that we can

always reconstruct for example the full Zh→ `+`− bb̄ final state. No cuts are applied.

Finally, Higgs pair production is well known to be problematic when it comes to the effective

theory description [36],

gg → hh . (13)

Again, neither Higgs decays nor kinematic cuts are expected to affect our analysis, so we leave

them out.
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We test all these channels for the singlet and doublet Higgs sector extensions. For the top

partner and vector triplet models we focus on the WBF and Higgs-strahlung modes, which are the

most sensitive. In the dimension-6 simulations we always include the square of the dimension-6

operator contributions. While these terms are technically of the same mass dimension as dimension-

8 operators, which we neglect, we must keep them to avoid negative values of the squared matrix

element in extreme phase-space regions. Notice that these situations do not necessarily imply

a breakdown of the EFT expansion. On the contrary, they may appear in scenarios where new

physics contributions dominate over the SM part, while the EFT expansion is fully valid (with

E/Λ � 1). In such cases, the bulk effects stem from the squared dimension-6 terms instead of

the interference with the SM, while the effects from dimension-8 operators are smaller and can be

safely neglected.

Tree-level processes we generate with MadGraph5 [37], using publicly available model files [38]

and our own implementations though FeynRules [39], which also provides the corresponding UFO

files [40]. For the dimension-6 predictions we resort to an in-house version of the HEL model file [41].

For all models we evaluate the Higgs-gluon and Higgs-photon couplings with the full one-loop form

factors [42], including top, bottom and W loops as well as new particles present in the respective

models. For Higgs pair production, we use a modified version of Ref. [43].

Other loop effects are analyzed using reweighting: we generate event samples using appropriate

general couplings. Next, we compute the one-loop matrix element for each phase space point and

reweight the events with the ratio of the renormalized one-loop matrix element squared to the

tree-level model. For the one-loop matrix elements we utilize FeynArts and FormCalc [44] with

our own model files that include the necessary counterterms. The loop form factors are handled

with dimensional regularization in the ’t Hooft-Veltman scheme, and written in terms of standard

loop integrals. These are further reduced via Passarino-Veltman decomposition and evaluated with

the help of LoopTools [45].

Generally we create event samples of at least 100 000 events per benchmark point and process

for pp collisions at
√
s = 13 TeV. We use the CTEQ6L pdf [46] and the default dynamical choices

of the factorization and renormalization scale implemented in MadGraph. For the purpose of this

project we limit ourselves to parton level and do not apply a detector simulation. The mass of

the SM-like Higgs is fixed to mh = 125 GeV [47]. For the top mass we take mt = 173.2 GeV [48].

The Higgs width in each model is based on calculations with Hdecay [49], which we conveniently

rescale and complement with additional decay channels if applicable.
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A. Singlet extension

The simplest extension of the minimal Higgs sector of the Standard Model is by a real scalar

singlet [50]. The extended scalar potential has the form

V (φ, S) = µ2
1 (φ† φ) + λ1 |φ†φ|2 + µ2

2 S
2 + λ2 S

4 + λ3 |φ† φ|S2 , (14)

where the new scalar S can mix with the SM doublet φ provided the singlet develops a VEV,

〈S〉 = vs/
√

2. Details on the parametrization, Higgs mass spectrum and coupling patterns are

given in Appendix A 2.

The additional scalar singlet affects Higgs physics in three ways: i) mixing with the Higgs

via the mixing angle α, which leads to a universal rescaling of all Higgs couplings to fermions

and vectors; ii) a modified Higgs self-coupling; and iii) a new, heavy resonance H coupled to the

Standard Model through mixing.

The key parameter is the portal interaction between the doublet and the singlet fields λ3(φ† φ)S2,

which is responsible for the mixed mass eigenstates. The mixing reduces the coupling of the SM-like

Higgs h to all Standard Model particles universally,

∆x = cosα− 1 for x = W,Z, t, b, τ, g, γ, . . . . (15)

It also affects the self-coupling of the light Higgs, which takes on the form

ghhh = 6 cos3 αλ1v − 3 cos2 α sinαλ3vs + 3 cosα sin2 αλ3v − 6 sin3 αλ2vs . (16)

The parameter sinα ' α quantifies the departure from the SM limit α → 0. This limit can be

attained in two ways: first, a small mixing angle can be caused by a weak portal interaction,

|tan(2α)| =
∣∣∣∣ λ3 v vs
λ2v2

s − λ1v2

∣∣∣∣� 1 if λ3 � 1 . (17)

The Higgs couplings to SM particles approach their SM values, but there is no large mass scale

associated with this limit. In the extreme case of λ2, λ3 � λ1 we find small α ≈ −λ3/λ1 × vs/(2v)

even for vs . v. This situation is to some extent the singlet model counterpart of the alignment

without decoupling scenario in the Two-Higgs-doublet model (2HDM) [51, 52] or the MSSM [53, 54].

It relies nonetheless on a weak portal coupling and a small scale separation, which cannot be

properly described by an effective field theory.

Second, the additional singlet can introduce a large mass scale vs � v, giving us

tanα ≈ λ3

2λ2

v

vs
� 1 if v � vs , (18)
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Benchmark
Singlet EFT EFT (v-improved)

mH sinα vs/v ∆singlet
x Λ c̄H ∆EFT

x c̄H ∆EFT
x

S1 500 0.2 10 −0.020 491 0.036 −0.018 0.040 −0.020

S2 350 0.3 10 −0.046 336 0.073 −0.037 0.092 −0.046

S3 200 0.4 10 −0.083 190 0.061 −0.031 0.167 −0.083

S4 1000 0.4 10 −0.083 918 0.183 −0.092 0.167 −0.092

S5 500 0.6 10 −0.200 407 0.461 −0.231 0.400 −0.200

Table I. Benchmarks for the singlet extension. We show the model parameters and the universal coupling

modification for the complete model, as well as the matching scale Λ, the Wilson coefficient c̄H , and the

universal coupling modification in the EFT truncated to dimension 6. We also give these results for an

alternative, v-improved construction. mH and Λ are in GeV.

where λ3/(2λ2) is an effective coupling of up to order one. In this limit the heavy Higgs mass,

which we identify as the heavy mass scale, is given by

mH ≈
√

2λ2 vs ≡ Λ . (19)

In terms of the heavy scale Λ the Higgs couplings scale like

∆x = −α
2

2
+O(α3) ≈ − λ2

3

4λ2

( v
Λ

)2
. (20)

This is a dimension-6 effect. If we require |∆x| & 10% to keep our discussion relevant for the LHC,

this implies

mH ≈ Λ <

√
5λ3√
2λ2

v = 390 GeV× λ3√
λ2
. (21)

If we also assume that the ratio of quartic couplings is of the order of a perturbative coupling,

λ3/
√
λ2 . 0.5, the LHC reach in the Higgs coupling analysis translates into heavy Higgs masses

below 200 GeV. For strongly coupled scenarios, λ3/
√
λ2 . 1 . . .

√
4π, the heavy mass reach increases

to mH . 0.4 . . . 1.5 TeV. This suggests that a weakly coupled Higgs portal will fail to produce a

sizable separation of scales when looking at realistic Higgs coupling analyses. The question becomes

if and where this lack of scale separation hampers our LHC analyses.

In the EFT approach the singlet model only generates OH at dimension 6, with the Wilson

coefficient

c̄H =
λ2

3

2λ2

( v
Λ

)2
. (22)
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We give the details of the EFT description in Appendix A 2. As discussed in the previous section,

the construction of the EFT is not unique. Instead of keeping only the leading term in the expansion

in 1/Λ, we can match the dimension-6 operators to the full, untruncated singlet model. In the

broken phase the Higgs couplings are fully expressed through the mixing angle α, so the v-improved

EFT truncated to dimension-6 operators gives the Wilson coefficient

c̄H = 2(1− cosα) . (23)

We start our numerical analysis by defining five singlet benchmark points in Tab. I. The

first three scenarios are in agreement with current experimental and theoretical constraints. This

includes direct mass bounds from heavy Higgs searches at colliders, Higgs coupling measurements,

electroweak precision observables, perturbative unitarity and vacuum stability [55]. We note that

for S4 and S5 the combination of large heavy Higgs masses together with large mixing angles is

incompatible with perturbative unitarity and electroweak precision constraints. We nevertheless

keep such benchmarks for illustration purposes. Table I also includes the universal shift of the light

Higgs couplings, both for the full singlet model and its dimension-6 EFT descriptions.

In Tab. II we give the ratio of the total Higgs production cross sections in gluon fusion, WBF

and Higgs-strahlung. They confirm what we expect from the coupling modification shown in Tab. I:

qualitatively, the full singlet and the dimension-6 model predict similar shifts in the total rates.

But there are differences in the coupling modifications ∆singlet
x and ∆EFT

x of up to 5%, translating

into a rate deviation of up to 10%. In the v-improved EFT we find that the Higgs couplings and

total rates agree exactly with the full model predictions. The dimension-6 operators are entirely

sufficient to capture the coupling shifts, but a significant part of their coefficients are formally of

O(v4/Λ4).

The most obvious source of discrepancy between the full model and the EFT is the heavy

resonance H. It can for example be produced in gluon fusion and then observed as a peak in the

m4` distribution. By construction, it will not be captured by the dimension-6 model. We illustrate

this in the upper left panel of Fig. 1. For Higgs-strahlung production (Fig. 1, right panel), where

the novel H resonance does not appear in an intermediate Born-level propagator and hence has no

impact, we find instead excellent agreement between both descriptions over the entire phase space.

The second Higgs has a second, more subtle effect. In the full model, both Higgs exchange

diagrams are needed to unitarize WW scattering. Correspondingly, the EFT description breaks
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Benchmark
σEFT/σsinglet σv-improved EFT/σsinglet

ggF WBF V h ggF WBF V h

S1 1.006 1.006 1.004 1.001 1.001 1.000

S2 1.019 1.021 1.019 1.000 1.001 1.000

S3 1.119 1.118 1.118 1.000 0.999 1.000

S4 0.982 0.982 0.982 0.999 0.999 1.000

S5 0.925 0.925 0.925 0.999 0.999 1.000

Table II. Cross section ratios of the matched dimension-6 EFT approximation to the full singlet model at

the LHC. We show the leading Higgs production channels for all singlet benchmark points. The statistical

uncertainties on these ratios are below 0.4%.

perturbative unitarity roughly at the scale [35]

m2
WW =

16πv2

c̄H

(
1− c̄H

4(1 + c̄H)

) ≈ (1.7 TeV

sinα

)2

. (24)

In our benchmark point S5, this is around 2.8 TeV. The incomplete cancellations between Higgs

and gauge amplitudes means that the dimension-6 model tends to have a larger rate at energies

already below this scale. For this specific benchmark choice, this can be seen in the lower left panel

of Fig. 1, where we show the distribution of the transverse mass defined in Eq. (11) in the process

ud → W+W− ud → (`+ν) (`−ν̄)ud, to which WBF production of both h and H contributes. We

observe that the dimension-6 model predicts a slightly higher rate at large mT than both the full

singlet model and the SM. Given the very mild signal, which results from the fast decrease in

the parton densities and the small mixing angle for realistic scenarios, such effect is likely of no

relevance for LHC physics.

A more interesting channel to study in the singlet model is Higgs pair production. The Higgs

self-coupling is the only Higgs coupling which gains a momentum dependence in the matched EFT.

In addition, there exists an approximate cancellation between the two leading amplitudes in the SM

at threshold [56]. This induces a second relevant scale and with it a sensitivity to small deviations

in the Higgs couplings. In Fig. 1 we give the mhh distribution in the full and dimension-6 models.

In addition, we show how the distributions would look in the full model without a H state, and

in the EFT without the momentum-dependent (derivative) terms given in Eq. (A31). Already

at threshold and far away from the H resonance, the interference of the SM-like terms with the
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Figure 1. Kinematic distributions in the singlet model. The different curves show the SM, full singlet

model and singlet-matched dimension-6 predictions respectively, as indicated in each panel. Top left: m4`

distribution in the gg → h→ 4` channel after loose acceptance cuts for S2 in the full and effective models.

Top right: mV h distribution in V h production for S1. Bottom left: mT distribution in the WBF h →

`+`− /ET channel for S5. Bottom right: mhh distribution in Higgs pair production for S4. For mhh we show

several contributions in the full theory and the dimension-6 approach. In all plots, the error bars give the

statistical uncertainties.

H diagrams makes up a significant part of the amplitude. In the EFT, the derivative terms are

similarly relevant already at low energies. Close to threshold, the dimension-6 approximates the
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full model well. This agreement becomes worse towards the H pole [36]. The question of how the

Wilson coefficients are expanded in v2/Λ2 does not play a role here.

If we limit ourselves to Higgs properties relevant for single Higgs production at the LHC, the

modifications from a singlet extension are very simple: all Standard Model couplings acquire a

common scaling factor, and no relevant new Lorentz structures appear at tree-level. The dimension-

6 setup reproduces this effect correctly: the reduced couplings to all SM fields alone do not require

a large hierarchy of scales. An EFT construction in which the dimension-6 coefficients are not

truncated at O(v2/Λ2) gives perfect agreement with the full theory, while expanding the coefficients

to leading order in v2/Λ2 may lead to sizeable deviations from the full model. Higgs pair production

is different. There is a large contribution from off-shell H, while in the EFT the h self-coupling

involves a derivative. These different structures lead to discrepancies between full and effective

description that increase with momentum transfer. Finally, the effective theory by definition does

not include the second resonance, so it fails whenever a heavy Higgs appears on-shell in the full

theory.

B. Two-Higgs-doublet model

The two-Higgs-doublet model (2HDM) [57] adds a second weak doublet with weak hypercharge

Y = +1 to the SM Higgs sector. The combined potential reads

V (φ1, φ2) =m2
11 φ

†
1φ1 +m2

22 φ
†
2φ2 +

λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3 (φ†1φ1) (φ†2φ2) + λ4 |φ†1 φ2|2

+

[
−m2

12 φ
†
1φ2 +

λ5

2
(φ†1φ2)2 + h.c.

]
. (25)

The physical degrees of freedom are two neutral CP-even scalars h0, H0, one neutral CP-odd scalar

A0, and a set of charged scalars H±. The relevant model parameters are the mixing angle between

the CP-even scalars α, the ratio of the VEVs tanβ = v2/v1, and the mixed mass term m12. The

latter induces a soft breaking of the discrete Z2 symmetry φi → (−1)i φi (for i = 1, 2). The two-

doublet structure allows for a rich variety of Higgs couplings to fermions. We refer the reader to

Appendix A 3 for a detailed account of the model setup, Higgs spectrum, coupling patterns, and

matched effective description.

Just as the singlet extension, the 2HDM predicts two types of LHC signatures: i) scalar and

VEV mixing lead to modified light Higgs couplings. Unlike for the singlet extension, these coupling

modifications are not universal and reflect the more flexible flavor structure as well as the multiple
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scales of the model. ii) There exist three heavy resonances H0, A0, H±, which should have near-

degenerate masses to avoid custodial symmetry breaking.

The light Higgs coupling to weak bosons V = W,Z always scales like

∆V = sin(β − α)− 1 = −cos2(β − α)

2
+O(cos4(β − α)) . (26)

We can insert the leading contribution of a mass-degenerate heavy Higgs sector and find

∆V ≈
sin2(2β)

8

(
v

mA0

)4

. (27)

While in the singlet model the light Higgs coupling to gauge bosons is shifted at O(v2/Λ2), Eq. (20),

the same coupling is now affected at O(v4/m4
A0), corresponding to a dimension-8 effect.

Two aspects turn the decoupling in the general 2HDM into a challenge: first, delayed decoupling

effects appear after electroweak symmetry breaking [58]. For example, in type-II models we find [5]

∆b = − tanβ
√
|2∆V |+ ∆V +O(∆

3/2
V ) ≈ − tanβ

sin(2β)

2

(
v

mA0

)2

. (28)

This correction to the bottom Yukawa coupling corresponds to a dimension-6 effect, and already

moderate values of tanβ significantly delay the decoupling of the heavy 2HDM states in the Yukawa

sector.

Second, unlike in the MSSM the Higgs self-couplings λ1 . . . λ5 and m12 are not bounded from

above. In combinations like λjv
2 they contribute to the interactions of the SM-like Higgs state,

effectively inducing a new energy scale through terms of the kind
√
|2∆V |

√
λjv or proportional

to m12. They are significantly less suppressed than we would expect for the usual suppression√
|2∆V |— in particular if an additional factor tanβ appears in this coupling deviation.

This additional, effectively lower mass scale driven by v leads to problems with any EFT derived

from and matched to the full theory assuming only one new physics scale. While this should not

be viewed as a problem of the EFT approach in general, it will require a v-improved matching

procedure.

We first match the effective theory to the 2HDM in the unbroken phase. For this we define the

new physics scale in terms of the mass terms in the potential of Eq. (25) and ratio of VEVs [16] as

Λ2 = M2 ≡ m2
11 sin2 β +m2

22 cos2 β +m2
12 sin(2β) . (29)

The 2HDM generates a number of dimension-6 operators at tree level, for which the Wilson

coefficients depend on the flavor structure. While the up-type Yukawa coupling is always modified
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Benchmark
2HDM

Type tanβ α/π m12 mH0 mA0 mH±

D1 I 1.5 −0.086 45 230 300 350

D2 II 15 −0.023 116 449 450 457

D3 II 10 0.032 157 500 500 500

D4 I 20 0 45 200 500 500

Table III. Benchmarks for the 2HDM extension. We show the model parameters and the heavy Higgs masses.

All masses are in GeV.

the same way, the down-type and lepton couplings are different for type-I and type-II. We find

c̄u = c̄I
d = c̄I

` =
sin(2β) cotβ

2

[
λ1

2
− λ2

2
+

(
λ1

2
+
λ2

2
− λ3 − λ4 − λ5

)
cos(2β)

]( v
Λ

)2
,

c̄II
d = c̄II

` = −sin(2β) tanβ

2

[
λ1

2
− λ2

2
+

(
λ1

2
+
λ2

2
− λ3 − λ4 − λ5

)
cos(2β)

]( v
Λ

)2
, (30)

where the superscripts I and II denote the type of the flavor structure.

Upon electroweak symmetry breaking, the physical heavy Higgs masses mH0 , mA0 , and mH±

acquire VEV-induced contributions ∼ λiv
2 in addition to contributions from the heavy scale M .

As in the singlet model, we therefore also consider a v-improved matching where the matching

scale is Λ = mA0 and the Wilson coefficients are expressed in terms of mass eigenstates. In this

setup, Eq. (30) remains unchanged, except that Λ is identified with mA0 .

The two matching schemes exhibit significant differences in the 2HDM; for instance, the pseu-

doscalar mass is given by m2
A0 = m2

12/(sinβ cosβ) − λ5 v
2. This means that it does not coincide

with M , unless we enforce a single mass scale m11 ≈ m22 ≈ m12 and tanβ ≈ 1.

The 2HDM benchmark points in Tab. III are in agreement with all current constraints, im-

plemented with the help of 2HDMC [59], HiggsBounds [60], SuperIso [61], and HiggsSignals [62].

To better illustrate certain model features, in some scenarios we tolerate deviations between 1σ

and 2σ in the Higgs couplings measurements. The key physics properties of the different 2HDM

scenarios can be summarized as:

D1 moderate decoupling: with Higgs couplings shifts of up to 2σ in terms of the LHC constraints.

This generates ∆τ,b,t ≈ O(15%) as well as a large h0H+H− coupling. Additional Higgs

masses around 250 . . . 350 GeV can leave visible imprints.
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D2 supersymmetric: reproducing the characteristic mass splittings and Higgs self-couplings of

the MSSM with light stops [63].

D3 sign-flipped bottom Yukawa: this is possible in type-II models at large tanβ, as shown in

Eq. (28) [64]. This can be viewed as a manifestation of a delayed decoupling [58].

D4 fermiophobic heavy Higgs: possible only in type-I models for sinα = 0. The heavy Higgs

H0 is relatively light, but essentially impossible to observe at the LHC [65, 66].

In Tab. IV we show the heavy scales Λ and the Wilson coefficients for both the EFT matched in

the unbroken phase and the v-improved EFT construction. In contrast to the singlet model, a

significant v-dependence of the heavy masses occurs even for parameter points in agreement with

all relevant experimental and theoretical constraints. Only in one of our four benchmark scenarios

does the heavy scale M approximate the physical mass mA0 . The matching in the unbroken phase

is particular pathological in benchmark D1, where M2 is negative and the signs of the Wilson

coefficients are switched compared to the v-improved matching.

Table V confirms that matching in the unbroken phase does not reproduce the modified Higgs

couplings, while the v-improved matching essentially captures the coupling shifts without a strong

requirement on the hierarchy of scales. For our purpose we conclude that the expansion in powers

of v/M is not well controlled, and we have to rely on v-improved matching for the 2HDM.

However, even in the v-improved EFT, the dimension-6 truncation can present an important

source of deviations. According to Tab. V the operators Ou, Ou, and O` modify the Higgs couplings

similarly to the mixing, at least in the limit of small mixing angles. This is clearly visible e. g. in

Benchmark
EFT EFT (v-improved)

|Λ| [GeV] c̄u c̄d,` Λ [GeV] c̄u c̄d,` c̄γ

D1 100 −0.744 −0.744 300 0.082 0.082 1.61 · 10−4

D2 448 0.000 0.065 450 0.000 0.065 4.16 · 10−6

D3 99 0.465 −46.5 500 0.018 −1.835 1.05 · 10−4

D4 142 0.003 0.003 500 0.000 0.000 1.48 · 10−4

Table IV. Matching scales and Wilson coefficients for the effective theory matched to the 2HDM. We give

these results both for the EFT matching in the unbroken phase as well as for the v-improved matching with

Λ = mA0 .
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Benchmark
∆V ∆t ∆b = ∆τ

2HDM EFT (both) 2HDM EFT EFT (v-improved) 2HDM EFT EFT (v-improved)

D1 −0.05 0.00 0.16 −0.74 0.08 0.16 −0.74 0.08

D2 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.07

D3 −0.02 0.00 0.00 0.46 0.02 −2.02 −46.5 −1.84

D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table V. Normalized tree-level couplings of the light Higgs in our 2HDM benchmarks.

the MSSM-like scenario D2 as well as the fermiophobic scenario of benchmark D4, which are very

well described by the dimension-6 Lagrangian, in spite of the lacking scale separation.

In Tab. VI we show LHC rate predictions by the dimension-6 approach and the full 2HDM.

Depending on the benchmark, the dimension-6 truncation leads to up to 10% departures. A

particularly interesting scenario is described by benchmark D3. In the full model, the bottom

Yukawa is exactly sign-flipped, a signature hardly visible at the LHC. Generating such a signature

from higher-dimensional operators requires their contributions to be twice as large as the SM

Yukawa coupling due to the enhancement of v/Λ by a large coupling. The EFT with default

matching is certainly not valid anymore, and even the v-improved prescription fails to capture this

coupling shift fully, leading to a significantly different coupling pattern.

In the left panel of Fig. 2 we illustrate the coupling deviations in gluon fusion Higgs production

with a decay h→ τ+τ−. The full 2HDM and the EFT give substantially different predictions for

Benchmark
σv-improved EFT/σ2HDM

ggF WBF V h

D1 0.872 1.109 1.108

D2 1.001 1.000 1.000

D3 1.022 1.042 1.042

D4 1.001 1.001 1.003

Table VI. Cross section ratios of the matched dimension-6 EFT approximation to the full 2HDM at the

LHC. We show the leading Higgs production channels for all 2HDM benchmark points. The statistical

uncertainties on these ratios are below 0.4%.
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the size of the Higgs signal, but do not affect the remaining distribution.

In addition, the charged Higgs contributes to the Higgs-photon coupling, an effect which is

mapped onto the operator Oγ . Within the v-improved EFT, one finds

cγ = −g
2 (tanβ + cotβ)

12 288π2

[(
λ1 + λ2 − 2λ3 + 6λ4 + 6λ5 − 8

m2
h0

v2

)
sin(2β)

+ 2(λ1 − λ2) sin(4β) + (λ1 + λ2 − 2λ3 − 2λ4 − 2λ5) sin(6β)

] (
v

mA0

)2

. (31)

There appear no non-decoupling term of O(Λ0), because the charged Higgs loop decouples in the

limit mA0 → ∞ with finite λi. If instead we keep m12 fixed and let one of the couplings λi grow

with mA0 , the charged Higgs does not decouple. Interestingly, Eqs. (30) – (31) show that in this

model it is possible to realize alignment without decoupling scenarios [51–54], where the limit of

SM-like couplings is achieved via very small prefactors of (v/mA0)2, while the additional Higgs

states can remain moderately light — and hence potentially within LHC reach.

For all our benchmarks we find good agreement between the full 2HDM and the v-improved

dimension-6 approach for on-shell Higgs decays to photons. In Tab. VII the rescaling of the Higgs-

photon couplings shows slight discrepancies which can nearly entirely be traced back to the different

couplings of the Higgs to the top and bottom in the loop due to the inaccurate truncation and are

not related to the H± contribution.

This changes for off-shell Higgs production. At mγγ & 2mH± , the H± in the loop can resolve

the charged Higgs, enhancing the size of its contribution significantly. This effect is not captured by

the effective operator and leads to a different behavior of the amplitude gg → h0 → γγ between the

full and effective model, as shown in the right panel of Fig. 2. However, the tiny rate and the large

combinatorial background mean that this discrepancy will be irrelevant for LHC phenomenology.

Similar threshold effects have been computed for the top-induced Higgs-gluon coupling and appear

to be similarly irrelevant in practice [67].

The situation in Higgs pair production resembles the observations in the singlet model. The

agreement can be worse already at threshold if the inaccurate truncation leads to differences in the

Higgs–top couplings between the full and effective model.

Leaving the discussion of individual benchmarks behind, in Fig. 3 we demonstrate how devi-

ations in the signal rates µp,d can be correlated, cf. Ref. [24]. The upper panels illustrate the

dependence on the decoupling parameter sin(β − α). In all cases we choose tanβ = 1.5, m12 = 0,

degenerate heavy Higgs masses mH±,H0,A0 = 500 GeV, and restrict ourselves to sin(β−α) ≥ 0.98.
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Benchmark
∆g ∆γ

2HDM EFT (v-improved) 2HDM EFT (v-improved)

D1 0.16 + 0.00 i 0.08 + 0.00 i −0.16 (−0.05) −0.10 (−0.07)

D2 0.00 + 0.00 i 0.00 + 0.00 i 0.00 ( 0.00) 0.00 ( 0.00)

D3 0.07− 0.09 i 0.02 + 0.00 i −0.08 (−0.05) −0.05 (−0.05)

D4 0.00 + 0.00 i 0.00 + 0.00 i −0.05 (−0.05) −0.05 (−0.05)

Table VII. Normalized couplings of the light Higgs to gluons and photons in our 2HDM benchmarks. The

bottom loop leads to small imaginary parts of ∆g and ∆γ . For the Higgs-photon coupling, these imaginary

parts are always smaller than 1% of the real part of the amplitude and neglected here. The numbers in

parentheses ignore the modification of the Higgs-fermion couplings, allowing us to separately analyze how

well the H± loop is captured by Oγ .

All signal strength deviations are obtained by rescaling the SM production cross section, branching

ratio and total width [68].

In the limit sin(β − α) → 1 or ∆V → 0 we find perfect agreement between the full model

and the v-improved dimension-6 model. The latter also captures the non-decoupling part of the

Higgs-photon coupling in the SM limit, µγγ 6= 1. Away from the SM-like limit the dimension-6

model slightly overestimates the signal strengths. This can for instance be attributed to ∆V ; it

remains zero in the EFT while it decreases via O(v4/Λ4) corrections in the full model. Through

the W loop this is also the main reason for the deviation in the γγ final states. Truncated negative

O(v4/Λ4) corrections to ∆τ are also in part responsible for the slight upward shift of µggF,ττ in the

dimension-6 model. The behavior of the down-type Yukawas in type-II models, which are governed

by ∆b,τ = − cos(β − α) tanβ + O(v4/Λ4), leads to the strongly increased γγ rates at large tanβ,

a feature which is well reproduced by the EFT.

Eventually, the 2HDM discussion leads us to the same conclusion as the singlet model: as long

as the mixing is small, the new resonances do not contribute significantly, all the LHC probes in

single Higgs production is a set of three coupling modifications ∆x. New Lorentz structures do not

play any role for the models considered. Barring the special case of Higgs pair production [65, 69]

the EFT captures most relevant aspects of Higgs phenomenology. A naive construction of the EFT

by matching the effective dimension-6 Lagrangian to the 2HDM in the gauge symmetric phase fails

to correctly describe the modified Higgs boson dynamics in typical 2HDM scenarios, since formally

suppressed terms in v2/Λ2 as well as delayed decoupling or additional scales can become important
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Figure 2. Left: mττ distribution in the ggF h0 → τ+τ− channel. Right: off-shell behavior of the process

pp(gg) → h0 → γγ in 2HDM benchmark D1, only taking into account the Higgs diagrams. At mγγ &

2mH± = 700 GeV, the charged Higgs threshold is visible.

for the phenomenologically relevant scenarios to be tested at the LHC.

C. Scalar top partners

New colored scalar particles are, strictly speaking, not an extension of the SM Higgs sector, but

they can lead to interesting modifications of the LHC observables. We consider a scalar top-partner

sector mimicking the stop and sbottom sector of the MSSM. Its Lagrangian has the form

L ⊃ (Dµ Q̃)† (DµQ̃) + (Dµ t̃R)∗ (Dµ t̃R)− Q̃†M2 Q̃ −M2 t̃∗R t̃R

− κLL (φ · Q̃)† (φ · Q̃)− κRR (t̃∗Rt̃R) (φ† φ)−
[
κLRM t̃∗R (φ · Q̃) + h.c.

]
. (32)

Here, Q̃ and t̃R are the additional isospin doublet and singlet in the fundamental representation

of SU(3)C . Their mass terms can be different, but for the sake of simplicity we unify them to a

single heavy mass scale M . The singlet state b̃R is assumed to be heavier and integrated out. This

leaves us with three physical degrees of freedom, the scalars t̃1, t̃2 and b̃2 = b̃L. The eigenvalues of

the stop mass matrix κLL
v2

2
+M2 κLR

vM√
2

κLR
vM√

2
κRR

v2

2
+M2

 (33)
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Figure 3. Signal strength modifications in the 2HDM. The solid lines show the full model, while the dashed

lines give the EFT predictions. Top: signal strength µp,d for different Higgs production modes and decay

channels in exemplary 2HDM setups, as a function of sin(β−α). In the upper horizontal axis we track down

the distance with respect to the SM-like limit through the coupling shift ∆V (27). Bottom: signal strength

correlations µp1,d1 versus µp2,d2 between different channels for variable sin(β − α).

define two masses mt̃1
< mt̃2

and a mixing angle θt̃. Again, we provide a detailed description of

the model setup in Appendix A 4.

The main new physics effects in the Higgs sector are loop-induced modifications of the Higgs

interactions, most significantly to ∆g, ∆γ , ∆V , possibly including new Lorentz structures. The

Yukawa couplings do not change at one loop, because we do not include gauge boson partners.

As a side remark, the 2HDM described in Sec. III B combined with the scalar top partners given

here corresponds to the effective description of the Minimal Supersymmetric Standard Model in

the limit of infinitely heavy gauginos, sleptons, and light-flavor squarks.

Adding the top parters, the correction to the hV V coupling in the limit of small θt̃ scales like

∆V ≈
κ2
LL

16π2

(
v

mt̃1

)2

. (34)
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Benchmark
Scalar top-partner model

M κLL κRR κLR mt̃1
mt̃2

θt̃

P1 500 −1.16 2.85 0.147 500 580 −0.15

P2 350 −3.16 −2.82 0.017 173 200 −0.10

P3 500 −7.51 −7.17 0.012 173 200 −0.10

Table VIII. Scalar top-partner Lagrangian parameters (left) and physical parameters (right) for representa-

tive model benchmarks. All masses are in GeV.

This shift can be sizeable for relatively low stop and sbottom masses, but also for large couplings

κij to the Higgs sector.

As already noted for the 2HDM, the decoupling of the heavy scalars becomes non-trivial in the

presence of a Higgs VEV. Following Eq. (33) the masses of the heavy scalar are not only controlled

by M in the gauge symmetric phase, but they receive additional contributions of the type κLR vM ,

κLLv
2, or κRRv

2 after electroweak symmetry breaking. This leads to a mass splitting of order v

between masses of order M . Large values of κLR increase this splitting. This means that in the

full model the decoupling is best described in terms of mt̃1
< M .

This motivates us to again define two different matching schemes. First, we stick to our default

prescription and carry out the matching of the linear EFT Lagrangian to the full model in the

unbroken phase. The matching scale Λ it then dictated by the intrinsic heavy field mass scale M ,

and completely unrelated to v. The suppression scale of loop effects in the complete model and

this matching scale in the EFT only agree in the limit M −mt̃1
�M .
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Benchmark
EFT EFT (v-improved)

Λ c̄H c̄W c̄HW Λ c̄H c̄W c̄HW

P1 500 0.0062 −3.11 · 10−7 3.99 · 10−7 500 0.0062 −3.11 · 10−7 3.99 · 10−7

P2 350 0.0043 −2.55 · 10−4 2.55 · 10−4 173 0.0176 −1.04 · 10−3 1.04 · 10−3

P3 500 0.0166 −2.97 · 10−4 2.97 · 10−4 173 0.1388 −2.48 · 10−3 2.48 · 10−3

Table IX. Matching scales (in GeV) and selected Wilson coefficient for the top partner benchmarks, both

for default and v-improved matching.

In this dimension-6 approach the stop loops generate a number of operators,

cg =
m2
W

24 (4π)2M2

[
κLL + κRR − κ2

LR

]
cγ =

m2
W

9 (4π)2M2

[
κLL + κRR − κ2

LR

]
cB = −

5m2
W

12 (4π)2M2

κLL − 31

50
κ2
LR

 cW =
m2
W

4 (4π)2M2

κLL − 3

10
κ2
LR


cHB =

5m2
W

12 (4π)2M2

κLL − 14

25
κ2
LR

 cHW = −
m2
W

4 (4π)2M2

κLL − 2

5
κ2
LR


cH =

v2

4(4π)2M2

[
2κ2

RR − κ2
LL −

(
κRR −

1

2
κLL

)
κ2
LR +

κ4
LR

10

]

cT =
v2

4(4π)2M2

κ2
LL −

κLL κ
2
LR

2
+
κ4
LR

10

 . (35)

In addition, we define a v-improved matching at the scale Λ = mt̃1
in the broken phase. The

Wilson coefficients we obtain are the same as in Eq. (35), except that M is replaced by mt̃1
.

Unlike in the previous two models, the top partner loops do not only induce modifications

to the SM Higgs couplings, but induce new Lorentz structures. In Tab. VIII we define a set of

parameter space configurations, all with light and almost degenerate states and small mixing. The

corresponding Wilson coefficients in our two matching schemes are given in Tab. IX. Unrealistic

parameter choices with strong couplings are necessary to generate sizable loop corrections to the

hV V couplings [70]. For fixed masses and mixing, the Higgs couplings to the top partners depend

on the interplay between M2 and the coupling constants κ. For small mixing and large M2,

light top partner masses require large four-scalar couplings κii. Conversely, if M2 is close to the

physical masses, the Yukawa couplings can be small. This illustrates the balance between the
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Figure 4. Kinematic distributions for the top partner model in benchmark P2. Left: tagging jet properties

in WBF Higgs production. Right: mV h distribution in Higgs-strahlung.

VEV-dependent (non-decoupling) and the explicit (decoupling) mass contributions.

Since the contributions from scalar top partners to the Higgs production in gluon fusion are

well known [71], we focus on corrections to the hV V coupling in WBF and Higgs-strahlung, shown

in Tab. X. In benchmark P1 the WBF cross section is reduced by about 0.6% compared to the

Standard Model, with good agreement between effective and full description. Such a scenario is not

relevant for LHC measurements in the foreseeable future. In more extreme corners of the parameter

space the loop effects in the full model grow, higher-dimensional terms in the EFT become larger,

the validity of the latter worsens, and discrepancies between both increase. In benchmarks P2 and

P3 the WBF rate is reduced by 9.1% and 43.5% with respect to the Standard Model. In the left

panel of Fig. 4 we show that this change in the total rate does not have dramatic effects in the

kinematic distributions. By construction, the EFT based on the default matching captures only the

formally leading term at O(v2/Λ2), only giving a reduction of 0.5% and 2.0%. The corresponding

difference is again independent for example of the tagging jet’s transverse momentum. With the

v-improved matching, the cross section is reduced by 2.4% and 17.7%, still far from the result of

the full model.

The results for Higgs-strahlung look similar: in the moderate benchmark P1 the predictions

of the full model and the dimension-6 Lagrangian agree within 0.1%, but in this scenario the

overall deviation from the Standard Model is negligible. In scenarios with larger loop effects, the
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Benchmark
σEFT/σtriplet σv-improved EFT/σtriplet

WBF V h WBF V h

P1 1.000 0.999 1.000 0.999

P2 1.095 1.100 1.074 1.049

P3 2.081 1.904 1.749 1.363

Table X. Cross section ratios of the matched dimension-6 EFT approximation to the full scalar top-partner

model at the LHC. We give the results both for the default matching scheme with matching scale Λ = M

as well as for the v-improved matching at Λ = mt̃1
. The statistical uncertainties on these ratios are below

0.4%.

dimension-6 predictions fails to capture most of the full top partner loops. We demonstrate this in

the right panel of Fig. 4. As for WBF, the agreement between EFT and full model becomes even

worse in benchmark P3, with numerical results similar to those given for WBF Higgs production.

Again the v-improved matching performs better than the default matching.

To summarize, the top partner model for the first time generates a large set of dimension-6

operators through electroweak loops. However, in realistic scenarios with a large scale separation

the loop corrections for example to the hV V vertex are tiny. Pushing for loop effects that are

large enough to leave a visible imprint in WBF and Higgs-strahlung requires breaking the scale

separation between the observed Higgs scalar and the top partners. In that case the EFT fails

already for the total rates, kinematic distributions hardly add to this discrepancy.

D. Vector triplet

Heavy vector bosons appear in many new physics scenarios and possibly also in data [72]. Their

properties can be tested in Higgs measurements, provided they are connected to the gauge-Higgs

sector of the Standard Model [14, 73, 74]. For these analyses the key property of new vector

resonances are their SM charges. We analyze a massive vector field V a
µ which is a triplet under

SU(2), couples to a scalar and fermion currents, and kinetically mixes with the weak gauge bosons

of the Standard Model [14, 74]. The Lagrangian includes the terms

L ⊃ − 1

4
V a
µν V

µν a +
M2
V

2
V a
µ V

µa + i
gV
2
cH V

a
µ

[
φ†σa

←→
D µ φ

]
+

g2
w

2gV
V a
µ

∑
fermions

cFFL γ
µ σa FL

+
gV
2
cV V V εabc V

a
µ V

b
ν D

[µV ν]c + g2
V cV V HH V

a
µ V

µa φ† φ − gw
2
cV VW εabcW

µν V b
µ V

c
ν . (36)
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Benchmark
Triplet model

MV [GeV] gV cH cF cV V HH mξ [GeV]

T1 591 3.0 −0.47 −5.0 2.0 1200

T2 946 3.0 −0.47 −5.0 1.0 1200

T3 941 3.0 −0.28 3.0 1.0 1200

T4 1246 3.0 −0.50 3.0 −0.2 1200

T5 846 1.0 −0.56 −1.32 0.08 849

Table XI. Benchmark points for the vector triplet model.

The new field-strength tensor is V a
µν = DµV

a
ν − Dν V

a
µ and the covariant derivative acts on the

triplet as Dµ V
a
ν = ∂µ V

a
ν + gV ε

abc V b
µV

c
ν . The coupling constant gV is the characteristic strength

of the heavy vector-mediated interactions, while gw denotes the SU(2) weak gauge coupling. It

will turn out that cV VW and cV V V are irrelevant for Higgs phenomenology at the LHC. We give

details of the model and the matching to the corresponding EFT in Appendix A 5.

The feature setting the vector triplet apart from the singlet, doublet, and top partner models

is that it directly affects the weak gauge bosons. The mixing of the new states with the W and

Z bosons has two consequences: i) a modification of the Higgs couplings to SM particles, and ii)

new heavy states ξ0, ξ±.

The definition of mass eigenstates from the heavy vector and the SM-like gauge fields links the

observable weak coupling g and the Lagrangian parameter gw. For the coupling modifications this

shift in the gauge coupling and the direct heavy vector coupling to the Higgs doublet combine to

∆V ≈
g2cF cH

4

(
v

MV

)2

−
3g2
V c

2
H

8

(
v

MV

)2

∆f ≈
g2cF cH

4

(
v

MV

)2

−
g2
V c

2
H

8

(
v

MV

)2

. (37)

The contribution from the shift in the weak coupling is identical for both coupling modifications.

In addition, contributions from virtual heavy states ξ modify the phase-space behavior of Higgs

signals in many ways.

Just as for the 2HDM and the top partners, the mass matrix for the massive vectors contains

both the heavy scale MV , which will eventually become the matching scale, and terms proportional

to some power of v multiplied by potentially large couplings. The new vector states have roughly
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Benchmark
EFT EFT (v-improved)

Λ [GeV] c̄W c̄H c̄6 c̄f Λ [GeV] c̄W c̄H c̄6 c̄f

T1 591 −0.044 0.000 0.000 0.000 1200 −0.011 0.000 0.000 0.000

T2 946 −0.017 0.000 0.000 0.000 1200 −0.011 0.000 0.000 0.000

T3 941 0.006 0.075 0.100 0.025 1200 0.004 0.046 0.061 0.015

T4 1246 0.006 0.103 0.138 0.034 1200 0.007 0.111 0.149 0.037

T5 846 −0.007 −0.020 −0.027 −0.007 849 −0.007 −0.020 −0.027 −0.007

Table XII. Matching scales and Wilson coefficients for the effective theory matched to the vector triplet

model. We give these results both for the EFT matching in the unbroken phase as well as for the v-improved

matching with Λ = mξ0 .

degenerate masses

m2
ξ

M2
V

≈ 1 + g2
V cV V HH

(
v

MV

)2

+
g2
V c

2
H

4

(
v

MV

)2

. (38)

Even if there appears to be a clear scale separation MV � v, large values of gV , cV V HH , or cH can

change mξ significantly and effectively induce a second mass scale. Just as for the top partners, a

problem for the dimension-6 approach arises from virtual ξ diagrams contributing for example to

WBF Higgs production. If mξ < MV ≡ Λ the lightest new particles appearing in Higgs production

processes have masses below the matching scale of the linear representation. The way out of a

poor agreement between the full model and its dimension-6 description is again switching to a

v-improved matching in the broken phase with matching scale Λ = mξ.

Integrating out the heavy vector triplet at tree level leaves us with dimension-6 Wilson coeffi-

cients

c̄H =
3 g2 v2

4M2
V

[
c2
H

g2
V

g2
− 2 cF cH

]
c̄6 =

g2 v2

M2
V

[
c2
H

g2
V

g2
− 2 cF cH

]
c̄f =

g2 v2

4M2
V

[
c2
H

g2
V

g2
− 2 cF cH

]
c̄W = −

m2
W

M2
V

cF cH , (39)

and four-fermion contributions that are irrelevant for Higgs physics. Additional loop-induced

contributions will be further suppressed and do not add qualitatively new features, so we neglect

them. As in the 2HDM, we compare this default matching to an alternative v-improved matching

with matching scale Λ = mξ0 . The coefficients in Eq. (39) remain unchanged, except that MV is

replaced by mξ0 .
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The main phenomenological features of this model reside in the Higgs-gauge interactions. In the

dimension-6 description, these modifications are mapped (amongst others) onto OW , which induces

momentum-dependent changes to the hWW and hZZ couplings. Therefore, our analysis focuses

on WBF Higgs production and Higgs-strahlung, where the intermediate t-channel and s-channel

gauge bosons can transfer large momenta.

As for the other models we study a set of benchmark points, defined in Tab. XI and Tab. XII.

Some of them are meant to emphasize the phenomenological possibilities of the vector triplet

model. For those we ignore experimental constraints or parameter correlations from an underlying

UV completion:

T1-2 All dimension-6 EFT operators except for OW vanish along the line cH/cF = 2g2/g2
V . We

aim for a large effect only in the hV V couplings. The large couplings induce different scales

MV and mξ.

T3 The sign in front of OW changes on another line in the (cH , cF ) space. The remaining

operators do not vanish.

T4 The vector triplet couplings and masses satisfy the leading constraints from direct collider

searches. For weak couplings (gV ≤ 1) resonances typically decaying to di-lepton and neu-

trino final states have to stay above 3 TeV. For the strongly interacting case (gV > 1) decays

to di-bosons tend to exclude masses below 1− 1.5 TeV [74, 75].

T5 A weakly coupled UV completion can be based on the gauge group SU(3)×SU(2)×SU(2)×

U(1) [76], arising for instance from deconstructed extra dimensions [77]. Its vector triplet

phenomenology is effectively described by the parameter α = gV /
√
g2
V − g2

w together with

the symmetry breaking scale f [74],

M2
V = α2g2

V f
2 , cH = −αg

2
w

g2
V

, cV V HH = α2

[
g4
w

4g4
V

]
,

cF = −α , cV VW = 1 , cV V V = −α
3

gV

[
1− 3g2

w

g2
V

+
2g2
w

g4
V

]
. (40)

In Fig. 5 we show a set of kinematic distributions in WBF Higgs production. In addition to

the predictions of the full vector triplet model and the matched EFT, we show distributions of the

vector triplet model without contributions from ξ propagators. The corresponding production cross

section ratios between full vector triplet model and EFT are given in Tab. XIII. For the full model

we observe a significant modification of the rate relative to the Standard Model, especially towards
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Figure 5. Tagging jet distributions in WBF Higgs production in the vector triplet model. Top: pT,j1

distribution in benchmark T1, focusing on the low (left) and high (right) transverse momentum regions.

Bottom left: ∆φjj distribution above a certain pT,j1 threshold for T1. Bottom right: pT,j1 distribution for

scenario T5.

large momentum transfers. They can be traced to the ξ fusion and mixed W -ξ fusion diagrams,

which increase strongly with energy. In comparison, the modification of the hWW coupling only

leads to a relatively mild rescaling. These contributions from ξ propagators can become relevant

already at energy scales well below mξ. The weak boson virtualities inducing a momentum flow into
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Benchmark
σEFT/σtriplet σv-improved EFT/σtriplet

WBF V h WBF V h

T1 1.299 0.299 0.977 0.794

T2 1.045 0.737 0.992 0.907

T3 0.921 1.066 0.966 1.024

T4 1.026 0.970 1.012 0.978

T5 1.001 1.043 1.002 1.043

Table XIII. Cross section ratios of the matched dimension-6 EFT approximation to the full vector triplet at

the LHC. To avoid large contributions from the ξ resonance in the V h channel, we only take into account

the region mV h < 600 GeV. The statistical uncertainties on these ratios are below 0.4%.

the Higgs coupling are not the only source of deviation from the Standard Model; the azimuthal

correlation between the tagging jets is well known to be sensitive to the modified Lorentz structure

of the hWW vertex [19].

Qualitatively, the dimension-6 approach captures the features of the full model, driven by OW .

In T1 and T2 a negative Wilson coefficient yields a non-linear increase of the cross section with

energy. Conversely, the positive coefficient in T3 reduces the rate with energy, eventually driving

the combined amplitude through zero.

Comparing full and effective model for the more realistic benchmark points T4 and T5 we see

good agreement in the bulk of the distribution. The deviations from the Standard Model are

captured by the dimension-6 operators, including the momentum dependence coming from the ξ

diagrams. Only at very large momentum transfer the validity of the EFT breaks down. For our

realistic benchmark points the LHC is likely not sensitive to these subtle effects.

In the more strongly coupled benchmark points T1 – T3, the full model predicts shifts in the

jet distributions that are large enough to be relevant for the upcoming LHC run. We find good

agreement between the full model and the default EFT only at low momentum transfer, where the

effects of new physics are small. In particular in benchmark T1, this naive dimension-6 approach

loses its validity already around pT,j & 80 GeV, a phase space region highly relevant for constraints

on new physics [7].∗ This does not signal a breakdown of the E/Λ expansion, but a too large

civ
2/Λ2. It is linked to the difference between the scales mξ and MV as given in Eq. (38), which

∗ Note, however, that these scenarios are already in tension with bounds from electroweak precision observables, but

we nevertheless show them to illustrate the qualitative aspects of EFT breakdown.
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Figure 6. Higgs-strahlung distributions in the vector triplet model. Top: mV h distribution for benchmark

T2, focusing on the low (left) and high (right) invariant mass regions. Bottom left: pT,V distribution for

the same benchmark. Bottom right: mV h distribution for T4.

the default matching procedure is blind to. Indeed, with the v-improved matching the agreement

is significantly better, and the dimension-6 description departs from the full model only at high

energies, pT,j1 & 300 GeV.

The situation is similar in Higgs-strahlung, shown in Fig. 6. In the full model the ξ propagators

again dominate over the the modified hWW interaction. In addition, the interference with the ξ-
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mediated diagrams leads to a significant change of the rate and introduces a momentum dependence

already far below the actual resonance. The relative sign of the interference between ξ amplitudes

and SM-like diagrams is opposite to that in WBF.

In the EFT the operator OW induces the corresponding strong energy dependence. A positive

Wilson coefficient leads to a non-linear increase of the cross section with the energy scale, probed

by either mV h or the pT,V . A negative coefficient leads to a decreasing amplitude with energy,

including a sign flip. Like for the full model, these OW terms have the opposite effect on the rate

as in WBF.

The full and effective models agree relatively well in the more weakly coupled benchmarks at

low energies. In the realistic scenarios T4 and T5, this agreement extends over the most relevant

part of the phase space, and the EFT successfully describes how the ξ propagators shift the Higgs-

strahlung kinematics. With increasing energy, momentum-dependent effects in both the full model

(due to the resonance) and the EFT (due to OW ) become more relevant. While the sign of the

effect is the same in full model and EFT, the size and energy dependence is different, and the

EFT eventually fails to be a good approximation. At even higher energies, the “dips” at different

energies in the full model and EFT as well as the ξ resonance in the full model mark the obvious

failure of the effective theory.

For benchmark T1 to T3, where the effects are numerically much more relevant for the LHC,

the range of validity of the default EFT is limited. The couplings are so large that in spite of

a resonance mass mξ ∼ 1 TeV the dimension-6 description already fails at mV h & 220 GeV.

Switching to the v-improved matching again ameliorates the dimension-6 approximation. Even

then, this mismatch between full model and EFT is more pronounced in Higgs-strahlung than in

WBF, because ξ contributions play a larger role in these s-channel diagrams than in the t-channel

WBF amplitudes.

In Fig. 7 we again go beyond individual benchmark points, and examine the agreement between

full model and its dimension-6 description in terms of signal strengths, correlated for different Higgs

production modes and decay channels. For definiteness, we assume vector triplet parameters in

line with the benchmarks T1 and T2, and vary the heavy vector mass scale MV = 0.5 . . . 5 TeV.

The dimension-6 coefficients are based on the default matching.

The huge deviations in the WBF signal strength are due to the sizable momentum-dependent

effects in the fusion process. As discussed above, this behavior is poorly captured by the EFT

for large vector couplings, and fails dramatically for light mass scales. The same differences are
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Figure 7. Signal strength modifications in the vector triplet. The solid lines show the full model, while

the dashed lines give the dimension-6 predictions for the default matching. Left: signal strength µp,d for

different Higgs production modes and decay channels for an exemplary vector triplet setup as a function of

MV . In the upper horizontal axis we show the deviation from the SM-like limit through the coupling shift

∆V , Eq. (37). Right: signal strength correlations µp1,d1 versus µp2,d2 between different channels for variable

MV .

visible from the different trajectories in the correlated signal strength plane, shown in the left panel.

The mild offset from µp,γγ = 1 in the limit MV � v can be traced back to the non-decoupling

ξ±-mediated contribution to the hγγ loop. The O(cF cH v
4/m4

V ) contributions of dimension eight

and higher are responsible for the additional upward enhancement of the fermion Yukawas in the

full model, which is in particular visible for µgg,ττ , where the full model predictions systematically

surpass the EFT. Finally, we find that an enhanced top-W interference in ∆γ pulls the full model

γγ rates below the dimension-6-based predictions. The accidental counterbalance of the higher

dimension effects missing in the EFT explains the remarkable agreement with the full model for

µggF,γγ .

Like the additional scalar models discussed before, the vector triplet model offers regions in

parameter space where the EFT works up to large momentum transfer for realistic scenarios. It

successfully captures the virtual ξ contributions in the momentum dependent contribution from

OW , but these numerical effects are small. Relevant effects for the LHC occur if the separation of

scales is spoiled by large couplings or light new particles. In this case we find substantial dimension-

6 departures from the full model predictions for example in the bulk of the WBF distributions,
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which typically further increase with the energy scale. A modified dimension-6 description incor-

porating v-dependent effects improves the EFT accuracy such that large deviations only occur in

the high-energy tails of distributions.

IV. SUMMARY

An effective field theory for the Higgs sector offers a theoretically well-defined, efficient, and

largely model-independent language to analyze extensions of the Standard Model in both rate

measurements and kinematic distributions. A fit of dimension-6 operators to LHC Higgs measure-

ments works fine [7] and constitutes the natural extension of the Higgs couplings analyses of Run I.

Most of the relevant higher-dimensional operators correspond to simple coupling modifications,

supplemented by four operators describing new Lorentz structures in the Higgs coupling to weak

bosons [7].

In this paper we have studied the validity of this approach from the theoretical side. We know

that at the LHC a clear hierarchy of electroweak and new physics scales cannot be guaranteed,

the question is whether dimension-6 operators nevertheless capture the phenomenology of specific

UV-complete theories with sufficient accuracy. We have systematically compared a singlet Higgs

portal model, a two-Higgs doublet model, scalar top partners, and a heavy vector triplet to their

dimension-6 EFT descriptions, based on the linear realization of electroweak symmetry breaking

with a Higgs doublet. We have analyzed the main Higgs production and decay signatures, covering

rates as well as kinematic distributions.

We have found that the dimension-6 operators provide an adequate description in almost all

realistic weakly coupled scenarios. Shifts in the total rates are well described by effective opera-

tors. Kinematic distributions typically do not probe weakly interacting new physics with sufficient

precision in the high-energy tails to challenge the effective operator ansatz. This is obvious for the

extended scalar models, where new Lorentz structures and momentum-dependent couplings with

dramatic effects in LHC distributions only appear at the loop level. A loop-suppressed effective

scale suppression E2/(4πΛ)2 has to be compared with on-shell couplings modifications propor-

tional to v2/Λ2. Only phase space regions probing energies around 4πv ≈ 3 TeV significantly

constrain loop contributions in the Higgs sector and eventually lead to breakdown of the effective

field theory. In turn, a simple dimension-6 descriptions will capture all effects that are expected to

be measurable with sufficient statistics at the LHC Run II. On the other hand, the vector triplet

model shows that modifications of the gauge sector can generate effects in LHC kinematics at tree
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Model Process EFT failure

resonance kinematics matching

singlet on-shell h→ 4`, WBF, V h, . . . ×

off-shell WBF, . . . (×) ×

hh × × ×

2HDM on-shell h→ 4`, WBF, V h, . . . ×

off-shell h→ γγ, . . . (×) ×

hh × × ×

top partner WBF, V h ×

vector triplet WBF (×) ×

V h × (×) ×

Table XIV. Possible sources of failure of dimension-6 Lagrangian at the LHC. We use parentheses where

deviations in kinematic distributions appear, but are unlikely to be observed in realistic scenarios.

level. However, we again find that for weakly interacting models and phenomenologically viable

benchmark points they are described well by an appropriate set of dimension-6 operators.

Three sources for a possible breakdown of the dimension-6 description are illustrated in

Tab. XIV†: First, the EFT cannot describe light new resonances. Such a signature at the LHC

would be an obvious signal to stop using the EFT and switch to appropriate simplified models.

Second, selected kinematic distributions fail to be described by the dimension-6 Lagrangian, in par-

ticular for Higgs pair production. Deviations in the high-energy tails of WBF and Higgs-strahlung

distributions on the other hand are too small to be relevant in realistic weakly coupled scenarios.

These two cases do not threaten LHC analyses in practice.

The third issue with the dimension-6 EFT description is linked to matching in the absence

of a well-defined scale hierarchy. Even with only one heavy mass scale in the Lagrangian, the

electroweak VEV together with large couplings can generate several new physics scales, defined

by the masses of the new particles. A linear EFT description, which is justified by the SM-like

properties of the newly discovered Higgs boson, should in principle be matched in the phase where

the electroweak symmetry is unbroken. Such a procedure is blind to additional scales induced by the

electroweak VEV, potentially leading to large errors in the dimension-6 approximation. Including

† Forcing the EFT approach into a spectacular breakdown was the original aim of this paper, but to our surprise

this did not happen.
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v-dependent terms in the Wilson coefficients, which corresponds to matching in the broken phase,

can significantly improve the EFT performance. We have explicitly demonstrated this for all the

models considered in this paper.

Barring the detection of new light resonances, none of these complications with the dimension-6

description presents a major problem in using effective operators to fit LHC Higgs data. Most of

them are purely theoretical issues that only need to be considered for the interpretation of the

results.
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Appendix A: Models and matching

1. Operator bases

As mentioned in Sec. II A, we here adopt the notation and conventions of Ref. [41], which is

based on the SILH framework with the decomposition and normalization of the Wilson coefficients

defined in Ref. [32]. For our purposes, it is enough to single out the subset that encodes all

possible new physics contributions to the Higgs sector compatible with CP conservation and the

flavor structure of the SM. These are given in Tab. XV and correspond to the Lagrangian in Eq. (3).

The conventions for how covariant derivatives act on the Higgs, fermion and gauge vector fields

are fixed as follows:

Dµφ = ∂µφ−
ig′

2
Bµφ− ig

σa

2
W a
µ φ ,

DµFL = ∂µFL − ig′
YFL

2
BµFL − ig

σa

2
W a
µ FL ,

DµV
a
ν = ∂µV

a
ν + g εabcW b

µ V
c
ν ,

DµW
a
νρ = ∂µW

a
νρ + g εabcW b

µW
c
νρ . (A1)

While the effective Lagrangian in Eq. (3) is written in terms of the fundamental SM gauge fields,

the connection to physics observables is more easily seen in the mass-eigenstate basis, which we

Higgs fields

ÔH = ∂µ(φ† φ) ∂µ (φ† φ)

Ô6 = (φ† φ)3

ÔT = (φ†
←→
D µ φ) (φ†

←→
D µ φ)

Higgs and fermion fields

Ôu = (φ† φ) (φ† · QL)uR

Ôd = (φ† φ) (φQL) dR

Ô` = (φ† φ) (φLL) lR

Higgs and gauge boson fields

ÔHB = (Dµφ†) (Dνφ)Bµν

ÔHW = (Dµφ†)σk (Dν φ)W k
µν

Ôg = (φ† φ)GAµν G
µν A

Ôγ = (φ† φ)Bµν B
µν

ÔB = (φ†
←→
D µ φ) (∂ν Bµν)

ÔW =
(
φ† σk

←→
D µφ

)
(DνW k

µν)

Table XV. Dimension-6 operators considered in our analysis. These correspond to a subset of the most

general effective operator basis [32] describing new physics effects to the SM Higgs sector with CP-invariance

and SM-like fermion structures.



41

can write as

L ⊃−
m2
H

2v
g

(1)
HHH HHH +

1

2
g

(2)
HHH H(∂µH) (∂µH)

− 1

4
gggH G

µν AGAµν H −
1

4
gγγH F

µν Fµν H

− 1

4
g

(1)
Z Zµν Z

µν H − g(2)
Z Zν ∂µ Z

µν H +
1

2
g

(3)
Z ZµZ

µH

− 1

2
g

(1)
W WµνW †µν H −

[
g

(2)
W W ν ∂µW †µνH + h.c.

]
+ g

(3)
W mW W †µW

µH

−
[
gu

1√
2

(ūPRu)H + gd
1√
2

(
d̄PRd

)
H + g`

1√
2

(
¯̀PR`

)
H + h.c.

]
, (A2)

with the different effective couplings gi quoted in Tab. XVI. More details on the notation and

conventions can be found in Ref. [41].

Note that the Higgs-fermion coupling shift is given by gf ∝ yf (1− c̄H/2 + 3c̄f/2), but Ôf also

shifts the fermion masses to mf = yfv(1 + c̄f/2)/
√

2, yielding the result given above. Similarly,

ÔH and Ôγ generate additional contributions to the Higgs-boson and gauge-boson kinetic terms,

which are restored to their canonical form by the field re-definitions

H → H

(
1− 1

2
cH

)
, Zµ → Zµ

(
1 +

4s4
w

c2
w

cγ

)
,

Aµ → Aµ
(
1 + 4s2

w cγ
)
− Zµ

(
8s3
w

cw
cγ

)
. (A3)

None of the operators considered in this basis affects the relations between g, mW , v and GF , so

the SM relations

mW =
g v

2
, GF =

√
2 g2

8m2
W

=
1√
2v2

, (A4)

can always be used to translate these coupling shifts from one scheme of input parameters to

another.

Dimension-6 operators result in a modified pattern of Higgs interactions, leading to coupling

shifts gxxH ≡ gSM
xxH(1 + ∆x) and also genuinely novel Lorentz structures. Interestingly, in general

more than one of the effective operators in Tab. XV contributes to a given Higgs interaction in the

mass basis, implying that it is in general not possible to establish a one-to-one mapping between

Wilson coefficients and distorted Higgs couplings.

Note that the Wilson coefficients of the operators ÔT and ÔB + ÔW are strongly constrained

by electroweak precision data [32]. In this work, we allow ourselves, on occasion, to ignore these

bounds to more distinctly illustrate the effects in the Higgs sector.

Translations between effective operator bases can be performed with the help of equations of

motion, field redefinitions, integration by parts and Fierz identities. Here we quote a number of
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Coupling Operators Expression

g
(1)
Z ÔHB , ÔHW , Ôγ 2g

mW c2w

[
c̄HBs

2
w − 4c̄γs

4
w + c2w c̄HW

]
g

(2)
Z ÔHW , ÔHB , ÔW , ÔB g

mW c2w

[
(c̄HW + c̄W )c2w + (c̄B + c̄HB)s2

w

]
g

(3)
Z ÔH , ÔT , Ôγ gmW

c2w

[
1− 1

2 c̄H − 2c̄T + 8c̄γ
s4w
c2w

]
g

(1)
W ÔHW 2g

mW
c̄HW

g
(2)
W ÔHW , ÔW g

mW
[c̄W + c̄HW ]

g
(3)
W ÔH g(1− 1

2 c̄H)

gf ÔH , Ôf (f = u, d, `)
√

2mf
v

[
1− 1

2 c̄H + c̄f
]

gg ÔH , Ôg gH − 4c̄gg
2
sv

m2
W

gγ ÔH , Ôγ aH − 8gc̄γs
2
w

mW

g
(1)
HHH ÔH , Ô6 1 + 5

2 c̄6 −
1
2 c̄H

g
(2)
HHH ÔH g

mW
c̄H

Table XVI. Subset of the dimension-6 operators which enter the different leading-order Higgs couplings

which are relevant for LHC phenomenology, in the notation and conventions of Ref. [41] (see text). The

different superscripts denote the various terms in the Lagrangian in Eq. (A2) and correspond to either a

SM-like interaction with a rescaled coupling strength or to genuinely new Lorentz structures. The weak

coupling constant is written as g ≡ e/sw. The SM contribution to the loop-induced Higgs coupling to the

gluons (photons) is denoted by gH (aH).

such relations which turn out to be particularly useful for the practitioner. For example, in addition

to the effective operators in the SILH basis, we often find the operators

Ôr = φ† φ (Dµφ)2 , Ô′HF =
(
f̄L γ

µ σa fL
) (
φ† σa

←→
D µ φ

)
,

ÔD =
(
D2 φ

)2
, Ô′HH =

(
φ† σa

←→
D µ φ

)(
φ† σa

←→
D µ φ

)
. (A5)

Ô′HH can be replaced by using the completeness relation of the Pauli matrices, which for arbitrary
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SU(2) doublets ξ, χ, η, ψ leads to

(ξ†σaχ)(η†σaψ) =
∑
ijkl

ξ∗i σ
a
ijχj η

∗
kσ

a
klψl

=
∑
ijkl

(2δilδjk − δijδkl)ξ∗i χj η∗kψl = 2(ξ†ψ)(η†χ)− (ξ†χ)(η†ψ) . (A6)

Thus we find

Ô′HH = (φ† σaDµφ)2 + ((Dµφ†)σa φ)2 − 2((Dµφ†)σa φ)(φ† σaDµφ)

= (φ†Dµφ)2 + ((Dµφ†)φ)2 − 2
[
2((Dµφ†)Dµφ)(φ†φ)− ((Dµφ†)φ)(φ†Dµφ)

]
= ÔH − 4Ôr . (A7)

The equation of motion for the W fields,

DνW a
µν = −ig φ†σ

a

2

←→
D µφ− g

∑
f

f̄L
σa

2
γµfL , (A8)

gives rise to the identity ∑
f

Ô′HF =
2

g
ÔW − i ÔH + 4i Ôr . (A9)

A global redefinition φ→ φ+ α (φ† φ)φ/v2 generates a shift in the Wilson coefficients

cH → cH + 2α , cr → cr + 2α , c6 → c6+4α , cf → cf+α , (A10)

so that with the choice α = −cr/2 one can eliminate the operator Or in favor of other operators:

Ôr ↔
{
−1

2
ÔH + 2λ Ô6 +

∑
f

[
1

2
yf Ôf + h.c.

]}
. (A11)

Finally, ÔD can be exchanged for others using the equation of motion for φ,

D2φ = −µ2 φ− 2λφ† φφ−
∑
gen.

[
yu Q̄

T
L uR + yd d̄RQL + y` ¯̀

R LL
]
. (A12)

This leads to

ÔD = µ4 φ† φ+ 4λµ2 (φ† φ)2 + µ2
∑
f

yf f̄LφfR + 4λ2 (φ† φ)3 + 2λ
∑
f

yf φ
† φ
(
f̄LφfR

)
. (A13)

The first three terms lead to a renormalization of the SM parameters µ, λ, yf , without any impact on

physical observables. The last two terms, however, means that OD is equivalent to the combination

ÔD ↔ 4λ2 Ô6 + 2λ
∑
f

(
yf Ôf + h.c.

)
. (A14)
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HLM basis

O′′H = 1
2 ∂

µ(φ† φ) ∂µ(φ† φ)

O′′6 = (φ† φ)3

O′′T = 1
2

(
φ†
←→
D µ φ

) (
φ†
←→
D µ φ

)
O′′B = ig′

2

(
φ†
←→
D µ φ

)
∂ν Bµν

O′′W = ig
2

(
φ† σk

←→
D µφ

)
(DνW k

µν)

O′′GG = g2
s(φ† φ)GAµν G

µν A

O′′BB = g′2(φ† φ)Bµν B
µν

O′′WW = g2(φ† φ)W k
µνW

µν k

O′′WB = gg′
(
φ†σkφ

)
BµνW

µν k

HISZ basis

O′φ1 = (Dµφ)†φφ†(Dµφ)

O′φ2 = 1
2∂

µ(φ†φ) ∂µ(φ†φ)

O′φ3 = 1
3 (φ† φ)3

O′GG = (φ† φ)GAµν G
µν A

O′BB = φ† B̂µν B̂
µν φ = − g

′2

4 φ
† φBµν B

µν

O′WW = φ† Ŵµν Ŵ
µν φ = − g

2

4 φ
† φW k

µνW
µν k

O′BW = φ† B̂µν Ŵ
µν φ = − g g

′

4 (φ†σkφ)BµνW
µν k

O′B = (Dµφ)†B̂µν(Dνφ) = i g2 (Dµφ†)(Dνφ)Bµν

O′W = (Dµφ)†Ŵµν(Dνφ) = i g2 (Dµφ†)σk(Dνφ)W k
µν

Table XVII. Bosonic CP-conserving Higgs operators in the HLM basis (left) and the HISZ basis (right).

Here B̂µν = ig′/2Bµν and Ŵµν = igσk/2W k
µν .

HLM basis

Aside from the relatively simple case of the multi-Higgs sector extensions, we make use of the

covariant derivative expansion [78, 79] to analytically carry out the matching between the different

UV completions to their corresponding EFT description. The method has been recently reappraised

in Ref. [26] and employed in a number of studies [15, 16, 80, 81]. By applying this method, the

Wilson coefficients are readily obtained in a different operator basis (henceforth dubbed HLM),

LHLM =
∑
i

ki
Λ2
O′′i . (A15)

The HLM operators involving Higgs fields and their interaction with gauge bosons are listed in

Tab. XVII. In addition, the HLM basis contains a subset of operators with no direct correspondence

to the bosonic SILH operators, which must be rewritten with the help of equations of motion and

field redefinitions, as we discuss below.

The operators in Tab. XVII translate to the SILH basis via

O′′H =
1

2
ÔH , O′′6 = O6 , O′′T =

1

2
ÔT , O′′B =

ig′

2
ÔB , O′′W =

ig

2
ÔW ,

O′′GG = g2
sÔg , O′′BB = g′2Ôγ , O′′WB = 2ig′ÔB − 4ig′ÔHB − g′2Ôγ ,

O′′WW = −2ig′ÔB + 2igÔW + 4ig′ÔHB − 4igÔHW + g′2Ôγ .

(A16)
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In addition, the HLM basis contains extra operators with no SILH counterpart,

O′′R = φ† φ (Dµ φ)† (Dµ φ) , O′′D =
(
D2φ

)2
, (A17)

which can be eliminated using Eq. (A11) and Eq. (A14), respectively. The Wilson coefficients ki

of the HLM basis translate to the SILH coefficients c̄i as follows:

c̄H =
v2

Λ2
(kH − kR) , c̄B =

v2

Λ2

g2

4
(kB + 4 kWB − 4 kWW ) ,

c̄T =
v2

Λ2
kT , c̄W =

v2

Λ2

g2

4
(kW + 4 kWW ) ,

c̄6 = − v
2

Λ2

(
k6

λ
+ 2 kR + 4λ kD

)
, c̄HB =

v2

Λ2
g2 (kWW − kWB) ,

c̄g =
v2

Λ2

g2

4
kGG , c̄HW = − v

2

Λ2
g2 kWW ,

c̄γ =
v2

Λ2

g2

4
(kBB − kWB + kWW ) , c̄f = − v

2

Λ2

(
1

2
kR + 2λ kD

)
, (A18)

where for the sake of completeness we have included the coefficients of the redundant operators

given in Eq. (A17).

HISZ basis

We also give the conversion to the popular HISZ basis [31] (see also Refs. [7, 82] for recent

studies in this framework)

LHISZ =
∑
i

fi
Λ2
O′i , (A19)

with Higgs-gauge operators given in Tab. XVII. We use the same conventions for the covariant

derivative as above (note that this is not the case in some of the cited literature). The operators

can then be translated via the relations

ÔH = 2O′φ2 , ÔW =
2i

g

(
O′WW +O′BW − 2O′W

)
, ÔHW = −2i

g
O′W ,

ÔT = 2O′φ2 − 4O′φ1 , ÔB =
2i

g′
(
O′BB +O′BW − 2O′B

)
, Ôg = O′GG ,

Ô6 = 3O′φ3 , ÔHB = −2i

g′
O′B , Ôγ = − 4

g′2
O′BB . (A20)
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The HISZ basis also includes the redundant operator O′φ4 = (Dµφ)†(Dµφ)φ†φ, which can be

removed using Eq. (A11). For the coefficients, we find

c̄H =
v2

Λ2

(
1

2
fφ1 + fφ2

)
, c̄W = − v

2

Λ2

g2

4
fWW ,

c̄T = − v
2

Λ2

1

2
fφ1 , c̄B =

v2

Λ2

g2

4
(fWW − fBW ) ,

c̄6 = − v
2

Λ2

1

3λ
fφ3 , c̄HW =

v2

Λ2

g2

8
(fW + 2fWW ) ,

c̄g =
v2

Λ2

g2

4g2
s

fGG , c̄HB =
v2

Λ2

g2

8
(fB + 2fBW − 2fWW ) ,

c̄γ =
v2

Λ2

g2

16
(fBW − fBB − fWW ) . (A21)

2. Singlet extension

For the sake of simplicity we consider a minimal version of the singlet model, in which a discrete

Z2 parity precludes additional (e. g. cubic) terms in the potential. The SM is then extended by

including a real scalar singlet with the Lagrangian

L = (Dµφ)† (Dµ φ) + (∂µ S)2 − V (φ, S) ,

V (φ, S) = µ2
1 (φ† φ) + λ1 |φ†φ|2 + µ2

2 S
2 + λ2 S

4 + λ3 |φ† φ|S2 . (A22)

The scalar doublet and singlets fields are expanded into components as

φ =

 G+

1√
2

(v + l0 + iG0)

 and S =
1
√

2
(vs + s0) , (A23)

where v ≡
√

2〈φ〉 = 246 GeV and vs ≡
√

2〈S〉 denote their respective VEVs. The minimization

condition for the potential of Eq. (A22) can be used to eliminate the parameters µ1,2 in favor of

v and vs. The CP-even components l0 and s0 mix to form a light (h) and a heavy (H) mass

eigenstate,

h = l0 cosα− s0 sinα ,

H = l0 sinα+ s0 cosα , where tan(2α) =
λ3vvs

λ2v2
s − λ1v2

. (A24)

Their masses are

m2
h,H = λ1 v

2 + λ2 v
2
s ∓ |λ1 v

2 − λ2 v
2
s |
√

1 + tan2(2α) (A25)
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with m2
H ≈ 2λ2v

2
s � m2

h in the limit v2 � v2
s .

To perform the matching to the EFT, we identify the UV scale Λ ≡
√

2λ2vs ≈ mH for vs � v.

From the singlet-doublet mixing one then finds a universal coupling shift of the SM-like light Higgs

to all other SM particles in Eq. (1), given by

∆ ≈ −sin2 α

2
≈ −

g2
eff

2

( v
Λ

)2

, geff =
λ3√
2λ2

. (A26)

Integrating out the heavy Higgs boson we find

Leff ⊃
sin2 α

2v2
∂µ(φ†φ)∂µ(φ†φ) +O(Λ−4) . (A27)

We thus see that, up to dimension-6 operators the heavy-singlet–induced BSM effects in Higgs

production and decay are completely captured by the operator ÔH (cf. Tab. XV) with coefficient

c̄H =
λ2

3

2λ2

( v
Λ

)2
+O

(
v4

Λ4

)
. (A28)

The light Higgs couplings to fermions and gauge bosons in the singlet model are universally

suppressed relative to the SM. In the full model and the EFT, respectively, they are given by

1 + ∆x = cosα , 1 + ∆EFT
x = 1− 1

2
c̄H . (A29)

A more complex pattern emerges for the self-interactions involving at least one heavy Higgs

field. We find

ghhH = −
geff (2m2

h +m2
H)

vs

1 + geff

v2

v2
s

+O
(
v3

v3
s

) ∼ λ3vs +O(v) ,

ghHH =
geffv (m2

h + 2m2
H)

v2
s

[
1− geff +O

(
v

vs

)]
∼ 2λ3v

(
1− λ3

2λ2

)
+O

(
v2

vs

)
, (A30)

in which we observe a characteristic non-decoupling behavior which manifests itself as a linear

growth of ghhH with the heavy Higgs mass. In the EFT, the leading self-interaction contribution

enters via a dimension-8 operator, which is neglected in our dimension-6 analysis. Therefore, the

sole Wilson coefficient c̄H = sin2 α defines the singlet model EFT up to dimension 6.

On the other hand, let us emphasize a key structural difference between the ÔH -induced and

the UV-complete singlet model contributions to the Higgs self-coupling hhh. At variance with
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the latter, the effective operators also induces a new momentum structure into the self coupling,

namely adding derivatives in the Lagrangian or energy dependent terms in the Feynman rules

L ⊃−
m2
h

2v

[(
1− cHv

2

2Λ2

)
h3 − 2cHv

2

Λ2m2
h

h ∂µh ∂
µh

]
= −

m2
h

2v

(
1− 1

2
c̄H

)
h3 +

g

2mW
c̄H h∂µh∂

µh, (A31)

which means that the SM-like h3 term is not only rescaled but also endowed with new Lorentz

structures involving derivatives. This kind of momentum dependence is encoded in the split into

g
(1)
HHH and g

(2)
HHH in Eq. (A2). This effect does not correspond to the Higgs singlet mixing, where

such a momentum dependence can only be generated via loop-induced heavy particle exchange

with momentum-dependent couplings like a heavy fermion triangle.

3. Two-Higgs-doublet model

The most general gauge invariant, CP-conserving potential with two scalar fields reads

V (φ1, φ2) = m2
11 φ

†
1φ1 +m2

22 φ
†
2φ2 −

[
m2

12 φ
†
1φ2 + h.c.

]
+
λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3 (φ†1φ1) (φ†2φ2) + λ4 |φ†1 φ2|2

+

[
λ5

2
(φ†1φ2)2 + λ6 (φ†1φ1) (φ†1φ2) + λ7 (φ†2φ2) (φ†1φ2) + h.c.

]
, (A32)

where the mass terms m2
ij and the dimensionless self-couplings λi are real parameters and vj =

√
2〈φ0

j 〉. The ratio of VEVs is denoted as tanβ = v2/v1, whereas v2
1 + v2

2 = v2 = (246 GeV)2

to reproduce the known gauge boson masses. For the Yukawa couplings, there are four possi-

ble scenarios that satisfy the SM flavor symmetry and preclude tree-level flavor-changing neutral

currents [83]:

• type-I, where all fermions couple to just one Higgs doublet φ2;

• type-II, where up-type (down-type) fermions couple exclusively to φ2 (φ1);

• lepton-specific, with a type-I quark sector and a type-II lepton sector; and

• flipped, with a type-II quark sector and a type-I lepton sector.

In all four cases, the absence of tree-level FCNCs is protected by a global Z2 discrete symmetry

φi → (−1)i φi (for i = 1, 2). The symmetry demands that λ6,7 = 0 in Eq. (A32), but it can be
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softly broken by dimension-two terms in the Lagrangian, viz. Lsoft ⊃ m2
12 φ

†
1 φ2 + h.c.

The Higgs mass-eigenstates follow from the set of rotationsH0

h0

 = R(α)

h0
1

h0
2

 ,

G0

A0

 = R(β)

a0
1

a0
2

 ,

G±
H±

 = R(β)

h±1
h±2

 , (A33)

where

φk =

 h+
k

1√
2

(vk + h0
k + iak)

 , R(θ) =

 cos θ sin θ

− sin θ cos θ

 . (A34)

Since the two doublets contribute to giving masses to the weak gauge bosons, custodial symmetry

will impose tight constraints on the viable mass spectrum of the model [84, 85]. Analytic relations

linking the different Higgs masses and mixing angles with the Lagrangian parameters in Eq. (A32)

can be found e. g. in Appendix A of [5]. The conventions 0 < β < π/2 and 0 ≤ β−α < π guarantee

that the Higgs coupling to vector bosons has the same sign in the 2HDM and in the SM. As we will

next show, the decoupling limit implies that the light Higgs interactions approach the alignment

limit, where cosβ ∼ | sinα| and the couplings become SM-like [51].

A 2HDM with large mass hierarchy between the light Higgs mh0 = O(v) and its heavier com-

panions mH0,H±,A0 � mh0 can be readily mapped onto an EFT [16, 51, 86]. In the unbroken

phase, we match by first rotating φ1 and φ2 into the so-called Higgs basis, where only one Higgs

doublet obtains a vacuum expectation value, 〈φl〉 = v/
√

2, 〈φh〉 = 0 [16, 87]. This doublet φl is

then identified with the SM-like Higgs doublet, while the other doublet φh is integrated out. Its

decoupling is described by the mass scale

Λ2 = M2 = m2
11 sin2 β +m2

22 cos2 β +m2
12 sin(2β) (A35)

and the expansion parameter

x ≡ v2 sin 2β

2M2

[
λ1

2
− λ2

2
+

(
λ1

2
+
λ2

2
− λ3 − λ4 − λ5

)
cos 2β

]
+O

(
v4

M4

)
� 1 (A36)

where we assume perturbative couplings, λi . O(1).

As discussed in Section III B, the dimension-6 EFT defined this way does not provide a good

approximation for scenarios where the LHC will have sensitivity to discover new physics. A more

appropriate effective theory is obtained by matching at a physical mass instead of M . Specifically,

this v-improved EFT is given by replacing M → mA0 in Eqs. (A35) and (A36).
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Similar to the singlet extension, see Eq. (A27), mixing between the two CP-even Higgs boson

at tree-level causes the h0 kinetic term to be rescaled, leading to

c̄H = x2 = O(Λ−4). (A37)

This corresponds to a dimension-8 term, which we neglect here. However, there exists a dimension-6

contribution to the triple light Higgs scalar interaction,

g
(1)
h0h0h0

= 1 + x2

[
3

2
− 4m2

12

m2
h0

sin 2β

]
+O(x3) = 1− x2M

2

λv2
+O(M−3) . (A38)

Non-trivial contributions to dimension-6 operators also arise in the Yukawa sector. For definiteness,

we concentrate on 2HDM type I and II. At tree-level and up to O(Λ−2), we find for the Wilson

coefficients

type I : c̄u = x cotβ , c̄d = x cotβ , c̄` = x cotβ , (A39)

type II: c̄u = x cotβ , c̄d = −x tanβ , c̄` = −x tanβ . (A40)

The above expressions hold both in the standard EFT and the v-improved EFT, with the obvious

replacement M → mA0 for the latter. The operators ÔHB, ÔHW , ÔW , ÔB, ÔT and Ôγ receive

contributions only at loop-level, while Ôg = 0 since there are no new colored particles in the 2HDM.

The operator Ôγ receives a correction from the charged Higgs loop. Expanding this contribution,

and using m2
h0/m

2
H± = O(x), we find

∆γ =
1

gSM
Hγγ

e2

720π2 v

[
30

(
1− [cotβ + tanβ]

m2
12

m2
H±

)
+

(
19− 4[cotβ + tanβ]

m2
12

m2
H±

)
m2
h0

m2
H±

− 30 cot(2β)[cotβ + tanβ]
m2

12

m2
H±

x

]
+O(x2) , (A41)

where in the first row we identify characteristic non-decoupling terms contributing to O(x0). On

the other hand, the operator

Leff ⊃
g′2c̄γ
m2
W

(φ†φ)BµνB
µν (A42)

leads to

∆EFT
γ =

1

gSM
Hγγ

16 s2
w c̄γ
v

. (A43)
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Identifying these expressions, we find within the v-improved EFT framework

c̄γ =
g2

11 520π2

[
30

(
1− [cotβ + tanβ]

m2
12

m2
H±

)

+

(
19− 4[cotβ + tanβ]

m2
12

m2
H±

)
m2
h0

m2
H±
− 30 cot(2β)[cotβ + tanβ]

m2
12

m2
H±

x

]
.

(A44)

In the full type-I 2HDM, the tree-level couplings shifts g2HDM
h0xx /gSM

hxx = 1 + ∆x of the light Higgs

are given by

1 + ∆V = sin(β − α) , 1 + ∆t =
cosα

sinβ
, 1 + ∆b =

cosα

sinβ
, 1 + ∆τ =

cosα

sinβ
, (A45)

while in the type-II 2HDM they read

1 + ∆V = sin(β − α) , 1 + ∆t =
cosα

sinβ
, 1 + ∆b = − sinα

cosβ
, 1 + ∆τ = − sinα

cosβ
, (A46)

The light Higgs coupling to a charged Higgs pair is given in all cases by

gh0H+H−

gSM
hhh

=
1

3m2
h0

[
sin(β − α)

(
2m2

H± −m
2
h0
)

+
cos(α+ β)

sin(2β)

(
2m2

h0 −
2m2

12

sinβ cosβ

)]
, (A47)

with gSM
hhh = −3m2

h/v. Note that at tree level custodial symmetry ensures that both couplings to

the weak gauge bosons V = W,Z scale with the same factor sin(β − α), a degeneracy that can be

mildly broken by quantum effects [5].

In the effective model, we have‡

∆EFT
V = 0 , ∆EFT

t = c̄u , ∆EFT
b = c̄d , ∆EFT

τ = c̄` . (A48)

The loop-induced couplings are more involved, giving

1 + ∆g =
1

ASM
gg

[ ∑
f=t,b

(1 + ∆f )Af (τf )

]
, (A49)

1 + ∆γ =
1

ASM
γγ

[ ∑
f=t,b

NC Q
2
f (1 + ∆f )Af (τf ) +Q2

τ (1 + ∆τ )Af (ττ ) + (1 + ∆W )Av(τW )

− gh0H+H−
mW sw
em2

H±
As(τH±)

]
, (A50)

‡ Note that the operator Ôγ introduces a new Lorentz structure for the h0V V interaction, representing a charged

Higgs loop. The results in Section III B reveal how large this effect turns out to be in practice.
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Coupling 2HDM EFT

1 + ∆t

type I: x cotβ − x2

2 +O(x3) c̄u = x cotβ

type II: x cotβ − x2

2 +O(x3) c̄u = x cotβ

1 + ∆b

type I: x cotβ +O(x3) c̄d = x cotβ

type II: −x tanβ +O(x3) c̄d = −x tanβ

1 + ∆τ

type I: x cotβ +O(x3) c̄` = x cotβ

type II: −x tanβ +O(x3) c̄` = −x tanβ

1 + ∆V 1− x2

2 +O(x3) Od8

1 + ∆h0 1− x2
(

3
2 −

4m2
12

m2
h0

sin 2β

)
+O(x3) c̄6 = −x2 M2

λv2

Table XVIII. Tree–level Higgs coupling shifts ∆x as a function of the 2HDM parameters. In the last column,

the Wilson coefficients for the relevant dimension-6 operators in Tab. XV are matched to the 2HDM in the

limit of decoupling heavy scalars x ' v2/M2 � 1 (cf. Eq. (A36)).

where ASM
xx are the corresponding contributions in the SM. The conventional loop form factors read

As(τ) = −τ
2

[1− τf(τ)] = 1/6 +O(τ−1),

Af (τ) = τ [1 + (1− τ) f(τ)] = 2/3 +O(τ−1),

Av(τ) = −1

2

[
2 + 3τ + 3(2τ − τ2) f(τ)

]
= −7/2 +O(τ−1), (A51)

f(τ) =


−1

4

[
log

1 +
√

1− τ
1−
√

1− τ
− iπ

]2

for τ < 1[
arcsin

1√
τ

]2

for τ ≥ 1 ,

(A52)

and τx = 4m2
x/m

2
h0 . In the effective model, we find

1 + ∆EFT
g =

1

ASM
gg

[ ∑
f=t,b

(1 + c̄f )Af (τf )

]
, (A53)

1 + ∆EFT
γ =

1

ASM
γγ

[ ∑
f=t,b

NC Q
2
f (1 + c̄f )Af (τf ) +Q2

τ (1 + c̄`)Af (ττ ) +Av(τW ) +
64π2c̄γ
g2

]
.

(A54)

The comparison of couplings in the full 2HDM and the EFT is summarized in Tab. XVIII.
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4. Scalar top partners

The simplified scalar top-partner generation sector is described by the Lagrangian

L ⊃ (Dµ Q̃)† (DµQ̃) + (Dµ t̃R)∗ (Dµ t̃R)− Q̃†M2 Q̃ −M2 t̃∗R t̃R︸ ︷︷ ︸
Lmass

− κLL (φ · Q̃)†(φ · Q̃)− κRR (t̃∗Rt̃R) (φ† φ)︸ ︷︷ ︸
LHiggs

−
[
κLRM t̃∗R (φ · Q̃) + h.c.

]
︸ ︷︷ ︸

Lmixing

. (A55)

We use the customary notation for the SU(2)L invariant product φa · Q̃b ≡ εab φa Q̃b, with the help

of the antisymmetric pseudo-tensor εab ≡ (iσ2)ab, so that ε12 = −ε21 = 1.

Notice that the term LHiggs gives rise to scalar partner masses proportional to the Higgs VEV,

mirroring the supersymmetric F-term contribution to the squark masses. By a similar token,

the explicit mass terms Lmass are analogous to the squark soft-SUSY breaking mass terms; while

Lmixing is responsible for the mixing between the gauge eigenstates, as a counterpart of the MSSM

A-terms. In the absence of an underlying supersymmetry, the Lagrangian in Eq. (A55) features

no equivalent of the D-term contributions.

Collecting all bilinear terms from Eq. (A55) we get

L ⊃ (t̃∗L t̃
∗
R)

M2
LL M2

LR

M2
RL M2

RR

t̃L
t̃R

 (A56)

where

M2
LL = κLL

v2

2
+M2 , M2

LR = M2
RL = κLRM

v
√

2
, M2

RR = κRR
v2

2
+M2 .

(A57)

Assuming all parameters in Eq. (A55) to be real, the above mass matrix can be diagonalized

through the usual orthogonal transformation R(θt̃) which rotates the gauge eigenstates (t̃L, t̃R)

onto the mass basis (t̃1, t̃2),

R(θt̃)M
2
t̃
R†(θt̃) = diag(m2

t̃1
,m2

t̃2
) ,

t̃1
t̃2

 = R(θt̃)

t̃L
t̃R

 =

 cos θt̃ sin θt̃

− sin θt̃ cos θt̃

t̃L
t̃R

 . (A58)

The physical scalar partner masses and the mixing angle are then given by

m2
t̃1

= M2
LL cos2 θt̃ +M2

RR sin2 θt̃ + 2M2
LR sin θt̃ cos θt̃ ,

m2
t̃2

= M2
LL sin2 θt̃ +M2

RR cos2 θt̃ − 2M2
LR sin θt̃ cos θt̃ , (A59)

tan(2θt̃) =
2M2

LR

M2
LL −M2

RR

. (A60)
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As we assume the right-handed partner b̃R to be heavy and thus decoupled, the sbottom-like scalar

eigenstate b̃L undergoes no mixing and can be readily identified with the physical eigenstate.

To derive the effective theory, we compute the effective action at one loop with the help of

the covariant derivative expansion [26, 78, 79], which is fully consistent with our mass degeneracy

setup. Notice that, since the Lagrangian Eq. (A55) lacks any linear terms in the heavy scalar

fields Ψ ≡ (Q̃, t̃∗R), the tree-level exchange of such heavy partners cannot generate any effective

interaction at dimension 6.

Following our default matching prescription, we set the matching scale as Λ = M . The relevant

Wilson coefficients in the SILH basis then read:

c̄g =
m2
W

24 (4π)2M2

[
(κLL + κRR)− κ2

LR

]
c̄γ =

m2
W

9 (4π)2M2

[
(κLL + κRR)− κ2

LR

]
c̄B = −

5m2
W

12 (4π)2M2

κLL − 31

50
κ2
LR


c̄W =

m2
W

4 (4π)2M2

κLL − 3

10
κ2
LR


c̄HB =

5m2
W

12 (4π)2M2

κLL − 14

25
κ2
LR


c̄HW = −

m2
W

4 (4π)2M2

κLL − 2

5
κ2
LR


c̄H =

v2

4(4π)2M2

(2κ2
RR − κ2

LL)−
(
κRR −

1

2
κLL

)
κ2
LR +

κ4
LR

10


c̄T =

v2

4(4π)2M2

κ2
LL −

κLL κ
2
LR

2
+
κ4
LR

10

 . (A61)

We also consider a v-improved matching. The only difference to the default matching is the

choice of the matching scale Λ = mt̃1
, which manifests itself as a rescaling of the Wilson coefficients
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in Eq. (A61) by a factor of M2/m2
t̃1

.

The scalar partner couplings to the Higgs boson can be written as

ght̃1 t̃1/v = κLL cos2 θt̃ + κRR sin2 θt̃ + sin(2θt̃)κLR ,

ght̃2 t̃2/v = κLL sin2 θt̃ + κRR cos2 θt̃ − sin(2θt̃)κLR ,

ghb̃Lb̃L/v = κLL . (A62)

5. Vector triplet

We consider a real vector triplet field V a=1,2,3
µ transforming under the SM gauge group as

(rc, rL, rY ) = (1,3, 0). Its dynamics can be effectively described by means of the Lagrangian [74]

L ⊃−
1

4
V a
µν V

µν a +
M2
V

2
V a
µ V

µa + i gV cH V
a
µ

[
φ†τa

←→
D µ φ

]
+
g2
w

gV
V a
µ cF

∑
F

FL γ
µ τa FL

+
gV

2
cV V V εabc V

a
µ V

b
ν D

[µV ν]c + g2
V cV V HH V

a
µ V

µa φ† φ −
gw

2
cV VW εabcW

µν V b
µ V

c
ν , (A63)

where the vector triplet field-strength tensor is V a
µν ≡ DµV

a
ν −Dν V

a
µ and τa ≡ σa/2 are the SU(2)L

generators in the fundamental representation. The covariant derivative acts on the vector triplet

field as Dµ V
a
ν = ∂µ V

a
ν + gεabc V b

µV
c
ν .

The coupling constant gV stands for the characteristic strength of the heavy vector-mediated

interactions, while gw denotes the SU(2)L weak gauge coupling (which differs from the coupling

strength g of the observable W boson due to W -V mixing, see below). The different dimensionless

coefficients ci quantify the relative strengths of the individual couplings. This parametrization

weights the extra V and φ field insertions by one factor of gV each, while gauge boson insertions

are weighted by one power of the weak coupling. An exception is made for the couplings to

fermions, where an extra weighting factor g2
w/g

2
V is introduced for a convenient power counting in

certain UV embeddings [74]. For simplicity, it is assumed that the fermion current in Eq. (A63) is

universal.

Equation (A63) is the most general Lagrangian compatible with the SM gauge group and CP

invariance, provided that V a
µ transforms as V a

µ (x, t)
CP−→ −(−1)δa2 V a

µ (−x, t) as the SM vectors.

Moreover, the Lagrangian obeys a global SO(4) = SU(2)L × SU(2)R symmetry, which is typical

of strongly interacting dynamics.

Since V a
µ is not manifestly gauged, this simplified vector triplet model in itself is not renor-

malizable. However, it can be easily linked to a gauge-invariant theory e. g. via the Higgs or the
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Stückelberg mechanisms [74].

An alternative model setup, which is particularly useful to construct the effective theory, intro-

duces an explicit kinetic V -W mixing via the Lagrangian

L ⊃−
1

4
V a
µν V

µν a +
M̃2
V

2
V a
µ V

µa + gV c̃H V
a
µ J

µ,a
H +

g2
w

2gV
V a
µ c̃F

∑
F

Jµ,aF + c̃WV

gw

2gV
D[µ V

a
ν]W

µν a

+
gV

2
c̃V V V εabc V

a
µ V

b
ν D

[µV ν]c + g2
V c̃V V HH V

a
µ V

µa φ† φ −
gw

2
c̃V VW εabcW

µν V b
µ V

c
ν , (A64)

where for convenience we have introduced the Higgs, fermion and vector current bilinears

JH,aµ =
i

2

[
φ† σa

←→
D µ φ

]
, JF,aµ = FLγµ σ

a FL , JW,aµ = DνW a
µν . (A65)

An appropriate field redefinition absorbs the kinetic mixing term V µa (DνWµν)a [88] and connects

the parameters in the tilded basis of Eq. (A64) and untilded basis of Eq. (A63) through the relations

M2
V =

g2
V

g2
V − c̃2

WV g
2
w

M̃2
V ,

cH =
gV√

g2
V − c̃2

WV g
2
w

[
c̃H +

g2
w

g2
V

c̃WV

]
,

cF =
gV√

g2
V − c̃2

WV g
2
w

[c̃F + c̃WV ] ,

cV V HH =
g2
V

g2
V − c̃2

WV g
2
w

[
c̃V V HH +

g2
w

2g2
V

c̃WV c̃H +
g4
w

4g4
V

c̃2
WV

]
,

cV VW =
g2
V

g2
V − c̃2

WV g
2
w

[
c̃V VW −

g2
w

g2
V

c̃2
WV

]
,

cV V V =
g2
V(

g2
V − c̃2

WV g
2
w

)3/2 [c̃V V V − g2
w

g2
V

c̃WV (c̃V VW + 2) + 2
g2
w

g4
V

c̃3
WV

]
. (A66)

Spectrum

The heavy vector sector in the gauge basis contains one neutral state V 0
µ ≡ V 3

µ and two charged

states V ±µ ≡ (V 1
µ ∓V 2

µ )/
√

2. Upon EWSB only one vector state remains massless, which we readily

identify with the standard photon field Aµ = cw Bµ + swW
3
µ . Here, the Weinberg angle is linked

as usual to the electroweak gauge couplings e = gw sw = g′ cw, although at this stage we cannot

yet relate it to electroweak observables before the mixing with the heavy vectors is included. The

latter involves, for the neutral fields, the heavy vector component V 0 and the linear combination

of B,W 3 orthogonal to the photon field. A similar mixing pattern appears in the charged sector,
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involving the field components V 1,2
µ ,W 1,2

µ . The physical mass eigenstates can be written as

Zµ = cos θN
(
−swBµ + cwW

3
µ

)
+ sin θN V

3
µ ,

ξ0
µ = − sin θN

(
−swBµ + cwW

3
µ

)
+ cos θN V

3
µ ,

W±µ = cos θC
W 1
µ ∓W 2

µ√
2

+ sin θC
V 1
µ ∓ V 2

µ√
2

,

ξ±µ = − sin θC
W 1
µ ∓W 2

µ√
2

+ cos θC
V 1
µ ∓ V 2

µ√
2

. (A67)

The mass eigenvalues are given by

m2
Z/ξ0 =

1

2

[
m̂2
V + m̂2

Z ∓
√(

m̂2
Z − m̂2

V

)2
+ c2

H g
2
V m̂

2
Z v̂

2

]

=


m̂2
Z

(
1−

c2
Hg

2
V

4

v̂2

m̂2
V

+O(v̂4/m̂4
V )

)
m̂2
V

(
1 +

c2
Hg

2
V

4

v̂2

m̂2
V

+O(v̂4/m̂4
V )

)
,

(A68)

m2
W±/ξ± =

1

2

[
m̂2
V + m̂2

W ∓
√(

m̂2
W − m̂2

V

)2
+ c2

H g
2
V m̂

2
W v̂2

]

=


m̂2
W

(
1−

c2
Hg

2
V

4

v̂2

m̂2
V

+O(v̂4/m̂4
V )

)
m̂2
V

(
1 +

c2
Hg

2
V

4

v̂2

m̂2
V

+O(v̂4/m̂4
V )

)
.

(A69)

For the mixing angles, we find

tan(2θN ) =
cH gV v̂ m̂Z

m̂2
V − m̂2

Z

=
cH g gV

2 cw

v̂2

m̂2
V

+O(v̂4/m̂4
V ) ,

tan(2θC) =
cH gV v̂ m̂W

m̂2
V − m̂2

W

=
cH g gV

2

v̂2

m̂2
V

+O(v̂4/m̂4
V ) , (A70)

or

sin θC =
cH g gV

4

v2

M2
V

+O(v̂4/m̂4
V ) . (A71)

Here we define

m̂Z =
gw v̂

2 cw
m̂W =

gw v̂

2
m̂2
V = M2

V + g2
V cV V HH v̂

2 (A72)

where v̂ is the actual vev of φ, which does not necessarily have the SM value of v = 2mW /g ≈

246 GeV.

Notice that the V -W mixing also affects the weak current interactions, which are no longer

governed by gw. Instead, the physical Wff ′ coupling reads

g = cos θC gw − sin θC cF
g2
w

gV
= gw

(
1− cF cH g

2
w

4

v2

M2
V

)
+O(v4/M4

V ) . (A73)
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The relation between v̂ and v can be read off from Eq. (A69), giving approximately

v̂

v
= 1 +

c2
H g

2
V

8

v2

M2
V

− cF cH g
2
w

4

v2

M2
V

+O(v4/M4
V ) . (A74)

The global SU(2)V custodial symmetry connects the charged and neutral current strengths

through m2
W m2

ξ± = c2
wm

2
Z m

2
ξ0 , which generalizes the SM relation m2

W = c2
wm

2
Z . Compatibility

with EWPO enforces nearly mass-degenerate states mξ0 ' mξ± for phenomenologically viable

scenarios. In practice, we set up our model in the mW -g scheme, i. e. taking as input parameters g,

mW , α, mh0 , αs; the model-specific parameters ci; as well as the physical masses mξ± . The mass

spectrum and mixing angles we obtain by solving Eq. (A68) and Eq. (A69) iteratively.

Effective theory

To construct the vector triplet EFT following the default matching, we identify the new physics

scale Λ = MV . Starting from the heavy triplet Lagrangian defined by Eq. (A64), we first integrate

by parts the kinetic mixing term,

c̃WV
gw
2gV

D[µ V
a
ν]W

µν a = c̃WV

gw

gV
V µ,a (DνW a

µν) = c̃WV

gw

gV
V µ,a JW a

µ , (A75)

such that we can rewrite it in terms of the gauge current from Eq. (A65). Integrating out the

heavy vector field V a
µ one obtains the effective Lagrangian

Leff ⊃
M̃2
V

2
V µ,a V a

µ + V a
µ

gV c̃H Jµ,aH +
g2
w

2gV
c̃F
∑
F

Jµ,aF + c̃WV

gw

gV
JW a
µ

+O(V 3) , (A76)

where we neglect those contributions involving higher powers in the heavy field, as they play no

role in our analysis.

The Euler-Lagrange equation for V a
µ ,

[∂µ∂ν − gµν ∂2 − M̃2
V ]V a

ν = gV c̃H J
µ,a
H +

g2
w

2gV
c̃F
∑
F

Jµ,aF + c̃WV

gw

gV
Jµ,aW + h.o. terms in V a

µ ,

leads to

V µ,a = −
1

M̃2
V

c̃WV

gw

gV
Jµ,aW + gV c̃H J

µ,a
H +

g2
w

2gV
c̃F
∑
F

Jµ,aF

+O(p2
V /M̃

4
V ) +O(V 2). (A77)
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Plugging Eq. (A77) into Eq. (A76), Leff can be expressed in terms of current products as

Leff ⊃ −
g4
w c̃

2
F

8g2
V M̃

2
V

Jµ,aF JF aµ −
g2
V c̃

2
H

2 M̃2
V

Jµ,aH JH a
µ −

g2
w c̃F c̃H

2 M̃2
V

Jµ,aH JF aµ −
gw c̃H c̃WV

M̃2
V

Jµ,aH JW a
µ

−
g2
w c̃

2
WV

2 g2
V M̃

2
V

Jµ,aW JW a
µ −

g3
w c̃F c̃WV

2 g2
V M̃

2
V

Jµ,aW JF aµ . (A78)

In the following, we disregard 4-fermion operators since they are irrelevant for our analysis. The

remaining five current products in Eq. (A78) can be expressed in terms of two independent ones

by using Eq. (A8) (with the replacement g → gw), which corresponds to Jµ,aW = gwJ
µ,a
H + gwJ

µ,a
F /2:

Leff ⊃ −
(g2
V c̃H + g2

w c̃WV )2

2 g2
V M̃

2
V

Jµ,aH JH a
µ −

g2
w (c̃F + c̃WV ) (g2

V c̃H + g2
w c̃WV )

2 g2
V M̃

2
V

Jµ,aH JF aµ + 4-fermion.

(A79)

Using Eq.(A.4) in [74], it can be checked that this equation is invariant when changing between

the tilded and untilded bases. With the help of Eqs. (A7), (A9), and (A11) (and again relabeling

g → gw in these relations) the two independent current products can be expressed in terms of

dimension-6 operators as follows:

Jµ,aH JH a
µ = −

1

4
(ÔH − 4 Ôr) = −

1

4

3ÔH − 8λÔ6 − 2
∑
f

[
yf Ôf + h.c.

]
Jµ,aF JH a

µ =
i

2
Ô′HF =

iÔW
gw

+
1

2

3ÔH − 8λÔ6 − 2
∑
f

[
yf Ôf + h.c.

] (A80)

where yf denotes the bare Yukawa coupling yf ≡
√

2mf/v. Plugging the above into Eq. (A79),

one can easily read off the relevant Wilson coefficients of the EFT:

c̄H =
3 g2

w v
2

4 M̃2
V

c̃2
H

g2
V

g2
w

− 2c̃F c̃WV

g2

g2
V

− 2 c̃F c̃H−c̃2
WV

g2

g2
V

 ,
c̄6 =

g2
w v

2

M̃2
V

c̃2
H

g2
V

g2
w

− 2c̃F c̃WV

g2

g2
V

− 2 c̃F c̃H−c̃2
WV

g2

g2
V

 ,
c̄f =

g2
w v

2

4 M̃2
V

c̃2
H

g2
V

g2
w

− 2c̃F c̃WV

g2

g2
V

− 2 c̃F c̃H−c̃2
WV

g2

g2
V

 ,
c̄W =

m2
W

M̃2
V

−c̃F c̃H − c̃H c̃WV − c̃F c̃WV

g2
w

g2
V

− c̃2
WV

g2

g2
V

 . (A81)
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In the untilded basis, these correspond to

c̄H =
3 g2

w v
2

4M2
V

[
c2
H

g2
V

g2
w

− 2 cF cH

]
,

c̄6 =
g2
w v

2

M2
V

[
c2
H

g2
V

g2
w

− 2 cF cH

]
,

c̄f =
g2
w v

2

4M2
V

[
c2
H

g2
V

g2
w

− 2 cF cH

]
,

c̄W = −
m2
W

M2
V

cF cH . (A82)

with f = u, d, `. Other than that, only four-fermion interactions are generated at tree level and at

O(v2/M2
V ); these are not relevant for our analysis and are not considered here.

As in the 2HDM and scalar partner models, we define an additional v-improved EFT by Λ =

mξ0 , leading the same Wilson coefficients as above except that MV is replaced by mξ0 .

Higgs couplings

On the EFT side, it is illustrative to discuss the origin of the Higgs coupling shifts within two

different approaches. First we consider the EFT that keeps the fermionic operator Ô′HF (i. e. instead

of using the conventional replacement in Eq. (A9) that maximizes the use of bosonic operators).

In this case, similar to Eq. (A73), a renormalization effect of the weak coupling occurs from V -W

mixing,

g = gw(1− ic̄′HF ) (A83)

where g is the observable coupling between the W boson and SM fermions. In this EFT and using

the untilded basis, the relevant Wilson coefficients are

c̄H = c2
H

3g2
V v

2

4M2
V

, c̄f=
1

3
c̄H , c̄′HF = −icF cH

g2
wv

2

4M2
V

. (A84)

Instead, if we now consider the EFT with the bosonic operator ÔW , i. e. after applying the replace-

ment in Eq. (A9), there is no additional renormalization of the weak coupling, so that g = gw. The

relevant Wilson coefficient are given in Eq. (A82).

Now we are in a position to determine the Higgs coupling shifts in the three models. For the
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Yukawa couplings we find

Full model: ∆full
f =

gw
g

v

v̂
− 1 =

1

cθC − cF
gw
gV
sθC

v

v̂
− 1

= c2
H

g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

+O(M−4
V )

EFT with Ô′HF : ∆
Ô′HF
f =

c̄H
2

+ c̄f =
c̄H
2

+ c̄f + ic̄′HF

= c2
H

g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

EFT with ÔW : ∆ÔWf =
c̄H
2

+ c̄f

= c2
H

g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

(A85)

Similarly for the Higgs coupling to on-shell W bosons we get

Full model: ∆full
W =

1

gmW

(
c2
θC
g2v̂

2(cθC − cF
gw
gV
sθC )2

− cH
sθCcθCggV v̂

cθC − cF
gw
gV
sθC

+ 2cV V HHs
2
θC
g2
V v̂

)
− 1

= c2
H

3g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

+O(M−4
V ) ,

EFT with Ô′HF : ∆
Ô′HF
W =

gw
g

(
1− c̄H

2

)
− 1 =

c̄H
2

+ ic̄′HF

= c2
H

3g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

,

EFT with ÔW : ∆ÔWW =
c̄H
2

+ 2c̄W

= c2
H

3g2
V v

2

8M2
V

+ cF cH
g2v2

4M2
V

. (A86)
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R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Phys. Rev. Lett. 109, 101801 (2012); T. Plehn and

M. Rauch, Europhys. Lett. 100, 11002 (2012).



62
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[hep-ph].

[35] T. Han, D. Krohn, L. T. Wang and W. Zhu, JHEP 1003, 082 (2010).

[36] U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. Lett. 89, 151801 (2002); M. Gillioz, R. Grober,
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