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Abstract

We compute the momentum diffusion coefficients of heavy quarks, κ‖ and κ⊥,
in a strong magnetic field B along the directions parallel and perpendicular to B,
respectively, at the leading order in QCD coupling constant αs. We consider a
regime relevant for the relativistic heavy ion collisions, αseB � T 2 � eB, so that
thermal excitations of light quarks are restricted to the lowest Landau level (LLL)
states. In the vanishing light-quark mass limit, we find κLO

⊥ ∝ α2
sTeB in the leading

order that arises from screened Coulomb scatterings with (1+1)-dimensional LLL
quarks, while κ‖ gets no contribution from the scatterings with LLL quarks due to
kinematic restrictions. We show that the first non-zero leading order contributions
to κLO

‖ come from the two separate effects: 1) the screened Coulomb scatterings

with thermal gluons, and 2) a finite light-quark mass mq. The former leads to

κLO, gluon
‖ ∝ α2

sT
3 and the latter to κLO,massive

‖ ∝ αs(αseB)1/2m2
q . Based on our

results, we propose a new scenario for the large value of heavy-quark elliptic flow
observed in RHIC and LHC. Namely, when κ⊥ � κ‖, an anisotropy in drag forces
gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks
do not fully belong to an ellipsoidally expanding background fluid.
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1 Introduction

Heavy ion collisions create Quark-Gluon Plasma (QGP) in the presence of strong electro-

magnetic fields produced by charged constituents of colliding nuclei [1, 2, 3, 4]. When the

collision is non-central with a finite impact parameter, spectator protons produce a net

magnetic field whose initial strength could be comparable to the pion mass scale eB ≥ m2
π.

Experimental consequences from those enormous magnetic fields have attracted much at-

tention of theoretical studies (see Refs. [5, 6, 7, 8] for recent reviews). One particular

example is the chiral magnetic effect (CME) [9] from the interplay of the magnetic field

and the quantum anomaly that has been predicted to induce charge separation. Closely

related to CME, it has been argued that the chiral magnetic wave [10, 11] would cause an

electric quadrupole moment leading to charge-dependent elliptic flow [12, 13]. Meanwhile,

as attempts to seek for a signature of such strong B with/without local parity violation,

possible enhanced anisotropic production of photons and dileptons has been investigated

in literature [14, 15, 16, 17, 18, 19, 20, 21].

Whether the magnetic field leaves observable effects in heavy ion collisions depends on

several key properties in the early stage of QGP. One of the crucial but still open questions

is the thermalization of light quarks in QGP that can potentially induce a sizable electric

conductivity. If the electric conductivity is large enough, decaying magnetic field would

lead to an induced current and this current would elongate the lifetime of the magnetic

field consistently with Lenz’s law [22, 23, 24]. In turn, the strong magnetic field may

also affect QGP thermalization processes via coupling to the light quarks, i.e., quark

production rate should depend on external electromagnetic fields [25, 26, 27]. With these

open questions in mind, exploring and studying observables which are sensitive to the

existence of magnetic field would be important, paving the way towards calibrating the

strength and lifetime of magnetic field and understanding interesting properties of QGP

with the magnetic field.

In this work, we consider one of such important probes, namely, dynamics of heavy

quarks. So far, several studies on magnetic field effects have been carried out for static

properties of open heavy flavors [28, 29, 30] and of quarkonia [31, 32, 33, 34, 35, 36,

37, 38] ∗. The measurements of open heavy flavors and quarkonia in Relativistic Heavy

Ion Collider (RHIC) and Large Hadron Collider (LHC), however, have indicated the

importance of dynamical properties in the real-time evolution inside the created matter,

∗In contrast, by “dynamical” properties we mean real-time processes in a hot and dense medium.
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that is, transport and thermalization of heavy flavors in the QGP [39, 40, 41, 42, 43]

(see also Ref. [44] for a recent review and references therein). This motivates us to study

heavy quark dynamics in QGP in the presence of a strong magnetic field and to compute

transport coefficients that control the drag force and the time scale of thermalization

of heavy quarks. See Ref.[45] for a recent computation of heavy quark drag force in

AdS/CFT correspondence with a weak, linearized magnetic field.

As in the previous studies of heavy quark diffusion without magnetic field [39, 46], we

use weak coupling perturbative QCD techniques to compute the heavy quark diffusion

constant in leading order (LO) of strong coupling constant αs. The heavy quark mass

MQ is assumed to be much larger than the scale of the magnetic field; MQ �
√
eB, which

is a good assumption for charm and bottom quarks, so the heavy quark motions are not

directly affected by magnetic fields†.

At finite temperature, there exist thermally populated light quarks and gluons that can

scatter with the heavy quark, which gives random momentum kicks to diffuse the heavy

quark momentum. At LO in αs these scatterings are mediated by one-gluon exchange and

the scatterers can be regarded as quasi-particles in thermally equilibrated matter. For

magnetic field eB ∼ T 2, it would put the light quark dispersion relation into the Landau

quantized ones (i.e. Landau levels, which will be abbreviated as LL below) in thermal

equilibrium, which will affect both the scattering quark spectrum and its screening effect

on the one-gluon mediation via the gluon self-energy from quark loops. We will show

that the gluon screening mass (that is, the Debye mass) from the Landau quantized

quark 1-loop is m2
D,B ∼ αseB, whereas the one from the gluon 1-loop is αsT

2 as usual

which is suppressed compared to the former quark contribution. Therefore, we include

the screening mass m2
D,B into the Coulomb scattering diagram between the heavy quark

and thermal scatterers, which is necessary for regularize the infrared regime in the soft

gluon exchanges.

The thermal masses of scatterers, i.e., time-like gluons and LLL quarks, have the

same order as m2
D,B. However, since the typical momenta of scattering quarks and gluons

are hard ∼ T , we assume that the self-energy corrections to these hard LLL quarks

and gluons in the present leading-order calculation can be neglected, which specifies a

†More precisely, the thermal velocity of heavy quark is |v| ∼
√
T/MQ, and the Lorentz force is

(dp/dt)Lorentz = ev ×B which is suppressed as ∼ eB
√
T/MQ for large MQ. On the other hand, we will

see that the momentum kicks from thermal scattering with light quarks and gluons that we compute at
LO in this work are not suppressed for large MQ.
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hierarchy αseB � T 2. Note also that, in this regime, one can neglect the self-energy

corrections to the hard thermal particles which compose the internal lines of the gluon

self-energy diagrams, so that the screening mass m2
D,B mentioned above can be obtained

from the simple one-loop calculation.

Although the description of the case of eB ∼ T 2 should involve all the LLs of thermally

equilibrated light quarks (for the calculation of the self-energy with all LLs; see Refs. [47,

48, 49]), we instead consider an extreme limit of strong magnetic field eB � T 2 so that

only the LLL states are thermally occupied. This allows us to obtain some analytic results

that are helpful to unravel the key physics. Thus, in this work, the regime of our interest is

specifically given as αseB � T 2 � eB, and the higher LL occupations are exponentially

suppressed by powers of e−
√
eB/T . In realistic heavy ion collisions, these inequalities are

approximately satisfied.

Our main finding is that in the presence of strong magnetic field, the drag forces or

the momentum diffusion coefficients become highly anisotropic. In particular, the ratio

between the longitudinal momentum diffusion coefficient κ‖ and the transverse one κ⊥

becomes
κ‖
κ⊥
∼ T 2

eB
� 1 , (1.1)

in the regime we are working on. We will discuss the phenomenological implication of

(1.1) to heavy flavor elliptic flow and will propose a new scenario for the sizable elliptic

flow of heavy quarks observed in experiments: a strong magnetic field would enhance the

heavy flavor elliptic flow even without thermalization of heavy quarks with respect to the

expanding plasma, which is in favor of resolving the heavy-flavor puzzle triggered by the

elliptic flow measurement of the D mesons.

This paper is organized as follows. In Section 2 we introduce the basic formulation

of how to compute the momentum diffusion coefficients, κ‖ and κ⊥, describing the in-

medium heavy quark motion. At LO we express those transport coefficients using the

Coulomb scattering rate in terms of the longitudinal gluon spectral function. We then

perform our explicit calculations of the spectral function in Section 3. We present the

results in the zero quark mass limit in Section 4 and find κ⊥ ∼ α2
seBT , while κ‖ does

not get such a contribution due to kinematic constraints. To find the first non-vanishing

contribution to κ‖, we then proceed to the hard gluon scattering contribution and also

the finite mass corrections in Section 5. In Section 6, we discuss the phenomenological

implication of our results to a non-thermal origin of the heavy quark elliptic flow induced

by strong magnetic field. We conclude in Section 7.

3



2 Random Forces and Diffusion Coefficients

As a preparation for our computations in the subsequent sections, let us here summarize

the basic formalism for the heavy quark transports. Heavy quarks in a finite temperature

plasma are subject to random kicks from thermally excited light quarks and gluons, and

their motions are described by Langevin equations [39]:

dpz
dt

= −η‖pz + ξz ,
dp⊥
dt

= −η⊥ p⊥ + ξ⊥ . (2.2)

Since the external magnetic field provides a preferred spatial direction, we have a set of

two equations for the heavy quark motions, parallel and perpendicular to the magnetic

field that is oriented in the z-direction. In Eq. (2.2), pz and p⊥ denote the heavy quark

momenta parallel and perpendicular to the magnetic field respectively, and the random

forces, ξz and ξ⊥, as well as the drag coefficients, η‖ and η⊥, should be defined separately

for parallel and perpendicular directions to the magnetic field. The random forces are

assumed to be white noises:

〈ξz(t)ξz(t′)〉 = κ‖δ(t− t′) , 〈ξi⊥(t)ξj⊥(t′)〉 = κ⊥δ
ijδ(t− t′) (i, j = x, y) , (2.3)

and these coefficients, κ‖ and κ⊥, are related to the drag coefficients, η‖ and η⊥, through

the fluctuation-dissipation theorem as

η‖ = 2MQTκ‖ , η⊥ = 2MQTκ⊥ . (2.4)

We will compute anisotropic momentum diffusion coefficients, κ‖ and κ⊥, in the presence

of magnetic field.

The above Langevin picture as well as the separation between longitudinal and trans-

verse dynamics can be justified for a sufficiently large MQ � eB/T . To see this, we should

note that the typical thermal momentum of heavy quark is of the order of
√
MQT , and

its typical velocity is |v| ∼
√
T/MQ. We will see in the following sections that the typ-

ical momentum transfer q⊥ = |q⊥| from the LLL quarks to the heavy quark in the LO

computation ranges in
√
αseB . q⊥ .

√
eB‡ and that the typical momentum trans-

fer from thermal gluons at LO ranges in
√
αseB . |q| . T �

√
eB. Therefore, for

MQ � eB/T � T , the momentum transfer in each scattering is small compared to the

thermal momentum, and it involves many scatterings to change the heavy quark momen-

tum significantly. Then, the description of heavy quark motion should become statistical,

‡This latter inequality can be expected immediately from the size of the LLL wavefunction ∼ 1/
√
eB

that is the inverse of the typical transverse momentum.
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Figure 1: Momentum diffusion of a heavy quark (double line) due to Coulomb scatterings
with thermal quarks and gluons (collectively denoted as a dashed line).

leading to the above Langevin dynamics. The same conclusion can be obtained also by

the condition that the energy transfer ω in each collision should be much smaller than the

temperature, in order for the fluctuation-dissipation relation from the equi-partition theo-

rem to be meaningful, that is, ω ∼ |v ·q| ∼
√
T/MQ ·

√
eB � T holds when MQ � eB/T .

The separation between the transverse and the longitudinal dynamics in Eq. (2.2) sim-

ply follows from that the mixed coefficient κ⊥z should be proportional to the transverse

velocity v⊥ from rotational symmetry, which are of higher order in small velocity limit

|v| ∼
√
T/MQ � 1.

The momentum diffusion coefficients are equivalently defined by

κij ≡ lim
∆t→0

1

∆t
〈∆pi∆pj〉 , (2.5)

where ∆pi = pi(t+∆t)−pi(t), and these are interesting transport coefficients of the QGP

medium. They can be defined in a gauge invariant and non-perturbative way as [50]

κij = lim
ω→0

4παs
dH

∫ +∞

−∞
dt eiωt tr

〈
W (0, t)Ei(t)W (t, 0)Ej(0)

〉
, (2.6)

where Ei and W are the chromoelectric field and the Wilson line in the heavy quark color

representation, respectively. At LO in αs the Wilson line is trivial and we can replace Ei

with ∂iA0 in the static limit of ω → 0. The dimension of the heavy quark representation

dH is canceled by taking the trace in color space, resulting in Casimir CHQ
R given by

CHQ
R = (N2

c − 1)/(2Nc) and Nc, respectively, for heavy quarks in the fundamental and

the adjoint representations. Thus, we need to evaluate the color diagonal part of the

Wightman function of A0 field, which is denoted as G>00. In momentum representation

spatial derivatives translate into momenta, leading to

κij = lim
ω→0

4παsC
HQ
R

∫
d3q

(2π)3
G>00(ω, q)qiqj , (2.7)
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and from rotational symmetry, we have

κ‖ =

∫
d3q

dΓ(q)

d3q
q2
z , κ⊥ =

1

2

∫
d3q

dΓ(q)

d3q
q2
⊥ , (2.8)

where
dΓ(q)

d3q
≡ 4παs

(2π)3
CHQ
R lim

ω→0
G>00(ω, q) =

4παs
(2π)3

CHQ
R lim

ω→0

T

ω
ρL(ω, q) , (2.9)

can be interpreted as the scattering rate of the heavy quark via 1-gluon exchange with

thermal particles per unit volume of momentum transfer q. The ρL is the longitudinal

gluon spectral density and in the last equality we used a thermal relation G>00(ω) =

nB(ω)ρL(ω) which can be expanded as G>00(ω) ≈ (T/ω)ρL(ω) for ω � T .

This interpretation of dΓ(q)/d3q can be clearly seen in the heavy quark damping rate,

which is given by the imaginary part of the heavy-quark self-energy from 1-gluon loop as

in Fig. 1, that is the damping rate can be shown to be given by

γHQ =

∫
d3q

dΓ(q)

d3q
, (2.10)

with the same definition of dΓ(q)/d3q as above. We have ρL = −2 ImG00
R and the expres-

sion (2.9), by cutting rules, describes the Coulomb scattering between thermal particles

and the heavy quark at rest as shown in Fig. 1. The one-gluon mediation is generally

screened by thermal self-energies (blobs in Fig. 1) to have IR divergences tamed. The

screening is provided by contributions of both the LLL quark states and the HTL gluons,

which will be detailed in the next section. In the case of eB � T 2 the LLL contribution to

the screening mass (m2
D ∼ αseB) will dominate over the gluonic contribution (∼ αsT

2).

As a wrap-up, we emphasize that the time-like region, ω2 − |q|2 > 0, of the spectral den-

sity ρL(ω, q) does not contribute to the momentum diffusion coefficients or the scattering

rate (2.9) in the ω → 0 limit.

3 Formalism for computation of scattering rates

As discussed in the previous section, to compute the heavy quark diffusion and drag coef-

ficients at LO, we need the longitudinal spectral density ρL(ω, q) near ω → 0, which can

be obtained from the retarded gluon correlator G00
R (ω, q). To include both the screening

effects from and the scatterings with thermal particles, the one-loop gluon self-energy is

re-summed into the longitudinal propagator G00
R (ω, q). Roughly speaking, the real part of

this self-energy gives the screening effects, while the imaginary part is responsible for the
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spectrum of scattering particles. Fermions (i.e. light quarks) and hard thermal gluons will

contribute to the self-energy, and we denote them as Πµν
R, fermion and Πµν

R, gluon, respectively,

throughout this paper. We first present our computation for Πµν
R, fermion in the LLL approx-

imation as shown in Fig. 2. We investigate general features of the gluon self-energy due

to the polarization of quarks and antiquarks in the LLL states in the next subsection 3.1

and express the resulting spectral density from it in subsection 3.2. The thermal gluon

contribution to the self-energy, Πµν
R, gluon, will be addressed later in section 5.2.

3.1 Gluon self-energy from quark loop

The two-point functions and the self-energy are diagonal in color indices, and so we factor

them out for notational brevity. After taking the color trace, contributions from a particle

species in the representation R to the one-loop self-energy is proportional to the following

pre-factor,

TR ≡
CLQ
R ·Dim(R)

Dim(G)
, (3.11)

where Dim(G) = N2
c − 1 is the dimension of the adjoint representation and CLQ

R is the

light-quark Casimir. We have TR = 1/2 and Nc for the fundamental and the adjoint

representations, respectively. These factors take care of the color representation of light

particles inside the loop.

We will utilize the real-time Schwinger-Keldysh formalism in “ra”-basis. In this lan-

guage, we can express the retarded gluon self-energy as

Πµν
R, fermion(Q) = i4παsTR〈Jµr (Q)Jνa (−Q)〉 , (3.12)

where Jµr,a is the current operator (with color indices amputated as described before) and

the subscript (r,a) refers to the Keldysh basis. Re-summing insertions of the external

magnetic field (see Fig. 2), the real-time quark propagators at finite T in the LLL ap-

proximation are given by (see, e.g., Ref. [51] for an explicit construction of the quark

propagator with B)

Sra(p) = i e−p
2
⊥/|qf eB|

2(/p‖ +mq)P−
p2
‖ −m2

q

∣∣∣∣
p0→p0+iε

, (3.13)

Sar(p) = i e−p
2
⊥/|qf eB|

2(/p‖ +mq)P−
p2
‖ −m2

q

∣∣∣∣
p0→p0−iε

, (3.14)

Srr(p) =

[
1

2
− nF (p0)

][
Sra(p)− Sar(p)

]
≡
[

1

2
− nF (p0)

]
ρF (p) , (3.15)
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Figure 2: One-loop gluon self-energy due to the polarization of a pair of quark and
antiquark LLL states. Indices “a” and “r” denote the Schwinger-Keldysh basis.

where qf is the electric charge of quark species f in unit of e, and the magnetic field is

assumed to be oriented in the z-direction. The metric in the longitudinal two-dimensional

subspace is defined by gµν‖ = diag (1, 0, 0,−1), so that pµ‖ = gµν‖ pν and /p‖ = p0γ0 −
pzγz. The spin-projection operators are defined by P± ≡ (1 ± isgn(qfB)γxγy)/2, which

project quark fields onto the 1+1 dimensional spinors. Note that these operators depend

on the quark charge qf since the spin magnetic moment depends on the quark charge.

Nevertheless, our final result for κ will be independent of the sign of qfB because of the

charge-conjugation invariance. The bare quark spectral density, from Eqs. (3.13) and

(3.14), is given by

ρF (p) = e−p
2
⊥/|qf eB|(/p‖ +mq)P−

2π

p0

[
δ
(
p0 − εpz

)
+ δ
(
p0 + εpz

)]
, (3.16)

where the dispersion relation for the LLL states, εpz =
√
p2
z +m2

q, is purely two dimen-

sional and is independent of qf .

Figure 2 shows two diagrams contributing to Eq. (3.12) in the real-time ra-basis, which

yields

〈Jµr (Q)Jνa (−Q)〉 = −
∫

d4p

(2π)4
tr
[
γνSar(p)γ

µSrr(p+Q) + γνSrr(p)γ
µSra(p+Q)

]
. (3.17)

The first thing to notice is that the integration with respect to p⊥ is trivially factorized

as

4

∫
d2p⊥
(2π)2

e−p
2
⊥/|qf eB| e−(p⊥+q⊥)2/|qf eB| =

|qfeB|
2π

e−q
2
⊥/(2|qf eB|) . (3.18)

This is naturally expected since the transverse dynamics decouples from the longitudinal

dynamics of the LLL states; the operator P− projects the (3+1)-dimensional (Dirac)

fermions onto (1+1)-dimensional ones. The factor of |qfeB|/(2π) can be understood as
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the transverse density of states for the LLL states. Moreover, from the fact that the

transverse γ-matrices (namely, γx and γy collectively denoted by γ⊥) satisfy

P±γ⊥ = γ⊥P∓ , (3.19)

we see that the transverse components of the self-energy are zero, i.e. Π⊥µR = Πµ⊥
R = 0.

This is physically clear from the absence of transverse currents with the LLL states. The

remaining longitudinal part of the self-energy after performing the integral over (p0, pz) in

(3.17) should be equivalent to the corresponding one for (1+1)-dimensional Dirac fermion

at finite temperature.

We thus have, after summing over quark flavors f ,

Πµν
R,LLL(Q) = πs(q⊥) Πµν

R,2D(ω, qz) , s(q⊥) ≡ 4αsTR
∑
f

(
|qfeB|

2π

)
e
− q2⊥

2|qf eB| , (3.20)

where Πµν
R,2D(ω, qz) is the retarded self energy tensor in 1 + 1 dimensions which is dimen-

sionless and is independent of qfB. The gauge-invariance completely fixes its form as

Πµν
R, 2D(ω, qz) ∝

(
q2
‖g

µν
‖ − q

µ
‖ q

ν
‖
)
, so that one can write Πµν

R,LLL as

Πµν
R,LLL(ω, q) ≡ Π̄ LLL(ω, q)

(
q2
‖g

µν
‖ − q

µ
‖ q

ν
‖
)
, (3.21)

which defines Π̄ LLL(ω, q). Note that this is the unique gauge-invariant tensor structure

in (1+1) dimensions, independently of whether (1+1)-dimensional Lorentz symmetry is

broken or not at finite temperature.

From Eq. (3.20) we see that the self-energy from the LLL states is of the order of αseB.

On the other hand, the contributions from hard thermal gluons to the self-energy, for

example to the screening mass m2
D, is of order αsT

2, which is sub-dominant compared to

the LLL contribution by eB � T 2. We can therefore neglect thermal gluon contributions

to the self-energy up to this order. This defines our LO computation in the regime of our

interests, αseB � T 2 � eB. In section 4 we will find, however, that the longitudinal

momentum diffusion coefficient κ‖ vanishes in this LO approximation in the massless limit

(see the next section for more details), which necessitates including the imaginary part of

the thermal gluon contribution to the self-energy to find a non-zero contribution to κ‖.

Then, in this way, we can get a first leading non-zero value of κ‖ in the mq = 0 limit,

which is suppressed by a power of T 2/(eB) as compared to κ⊥ as elucidated in section 5.2.

Thus, our definition of “LO” for κ‖ in the mq = 0 case should be understood in this sense.

We emphasize that our computation for κ‖ in the massless limit at this modified LO is

also systematic and well-defined in accord with αseB � T 2 � eB, as will be explained

in section 5.2.
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3.2 Scattering rate from the spectral density

Based on the above discussion, let us temporarily neglect thermal gluon contributions to

the self-energy for the moment, and the tensor structure of the gluon self energy from the

LLL states is then given in Eq. (3.21). We shall first elaborate the tensor structure of the

resulting gluon two-point correlation function with the above self-energy.

In general the expression for the A0 gluon propagator, G00
R , depends on the gauge

choice. Nevertheless, the final expression for the Coulomb scattering rate of a static

heavy quark is physical and is gauge invariant. A simple way to see the gauge invariance

is to note that the gauge transformation of A0 is of a form, A0 → A0 + ωα, and since

〈A0〉 = 0, the correction to G00
R is of order ω2, which vanishes in Eq.(2.9) for the scattering

rate in ω → 0. We will demonstrate the gauge invariance with two choices of gauge fixing;

the covariant and the Coulomb gauges. Inserting the self-energy (3.21), we can write down

the general form of the gluon retarded propagator in the covariant gauge as [49]

G00
R (Q) =

ω2

Q4
ε

(
q2
⊥
q2
‖
− ξ
)

+
q2
z

q2
‖

[
1

Q2 − q2
‖Π̄LLL(ω + iε, q)

]
, (3.22)

where Q2
ε ≡ (ω + iε)2 − q2 and ξ is a gauge parameter. Note that we do not insert iε in

Q2 and q2
‖ that appear in the above, especially in the second part, since they come from

the tensor structure in Eq. (3.21) and an iε in Π̄LLL is sufficient to keep the imaginary

part correctly. On the other hand, in the Coulomb gauge we have,

G00
R (Q) =

1

q2

1

Q2 − q2
‖Π̄LLL(ω + iε, q)

[
Q2 +

(Q2 − q2
‖)ω

2Π̄LLL(ω + iε, q)

q2

]
−ξ ω

2

|q|4
. (3.23)

We can readily confirm that the above two expressions give an identical form for the

scattering rate in the ω → 0 limit, i.e.

dΓ(q)

d3q
=

4παs
(2π)3

CHQ
R lim

ω→0

T

ω
(−2)Im[G00

R (ω, q)] =
αsT

π2
CHQ
R

fLLL(q)[
q2 + Re Π00

R,LLL(ω = 0, q)
]2 ,

(3.24)

where we introduced Im Π00
R,LLL(ω, q) = ωfLLL(q) for small ω as it is an odd function of

ω in general, and we have used Eq. (3.21) to find Π00
R,LLL(0, q) = −q2

zΠ̄ LLL(0, q).

Before moving to the computation of Π00
R,LLL(Q) which will be addressed in the next

subsection, it would be instructive to recall the well-known picture of heavy quark scat-

terings (without a strong magnetic field), and compare it with our case of the LLL states.

Without magnetic field, the imaginary part of G00
R,B=0 comes from the imaginary part
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of Π00
R,B=0 in the covariant gauge (which is an odd function of ω) or more precisely ex-

pressed as F (Q) ≡ (−Q2/q2)Π00
R,B=0 in the common convention of Ref. [52]. As discussed

shortly, from the HTL contribution to Π00
R,B=0 for soft Q (i.e. from hard thermal gluons

and quarks), the resulting spectral density ρL,B=0(Q) = −2Im[G00
R,B=0(Q)] receives the fol-

lowing two contributions: (i) The plasmon pole located in a time-like region (|ω| > |q|).
(ii) The continuous part along the space-like interval (|ω| < |q|) originating from the

Landau damping.

The plasmon pole remains gapped even in the |q| → 0 limit by the plasma fre-

quency, ω2 → m2
pl = m2

D,B=0/3, with the Debye mass m2
D,B=0 ≡ ReΠ00

R,B=0(ω = 0) =

(4παs/3)(Nc +TRNf )T
2. Thus, in our limit of ω → 0, the plasmon pole (i) decouples and

only the continuous Landau damping part (ii) is relevant. In this case, we can smoothly

take the ω → 0 limit for ρL(Q)/ω, that is,

lim
ω→0

(−2)
Im[G00

R,B=0(Q)]

ω
= lim

ω→0

2

ω

ImΠ00
R,B=0(Q)

[Q2 − ReΠ00
R (Q)]2 + [ImΠ00

R,B=0(Q)]2
=

2f(q)

(q2 +m2
D,B=0)2

,

(3.25)

where we can write ImΠ00
R,B=0(ω ∼ 0) = ωf(q) because ImΠ00

R,B=0(ω) is an odd function

of ω§, and thus we find a finite scattering rate. From the cutting rules, the physics

interpretation is clear; f(q) is an integrated spectrum of scattering particles of momentum

transfer q weighted by thermal distributions, while 1/(q2 +m2
D,B=0)2 is the square of the

screened Coulomb amplitude.

We find that a similar physics interpretation is also possible for the spectral density

from the LLL contributions in (3.24). There exists a time-like plasmon pole determined

by

Q2 = q2
‖ Re Π̄LLL(ω, q) (3.26)

with a mass of order m2
pl ∼ αseB, and the spectral density from this pole is irrelevant in

the ω = 0 limit. In the space-like region (and on the light-cone in the massless limit),

especially near ω = 0, we will explicitly show that there exists a finite spectral density

coming from the Landau damping with the LLL states. In fact, Eq. (3.24) has the precisely

same structure as in Eq. (3.25). As mentioned below Eq. (3.25), the factor fLLL(q) from

the imaginary part again represents the integrated spectrum of the scatterers, namely

the quarks thermally populated in the LLL states. On the other hand, the real part in

§More explicitly, we have f(q) = πm2
D/2|q| for soft q2 ∼ αsT

2, while for ultra hard |q| � T , it is
Boltzmann suppressed by f(q) ∼ e−|q|/T . Also, it can be shown that Re[Π00

R,B=0(ω = 0, q)] behaves as

∼ αsT
4/q2 for ultra hard |q|.

11



the denominator of Eq. (3.24) provides a screening for the Coulomb scattering with the

screening mass, m2
D,B ∼ αseB. We will find that the LO contributions to κ⊥ come from

the momentum transfer region
√
αseB . |q⊥| .

√
eB as we mentioned below Eq. (2.4).

The upper cutoff,
√
eB, arises from the Gaussian factor of the quark propagator, and it

reflects the fact that the LLL states carry intrinsic transverse momentum of order ∼
√
eB

even at T = 0 due to their transverse size l ∼ 1/
√
eB, and the transverse momentum

transfer is bounded not by thermal distribution of the scattering LLL particles (for which

the energy levels are independent of q⊥) but by
√
eB. This explains why the upper cutoff

is not given by T from the Boltzmann factor e−|q|/T , which would normally be the case

in other finite-T calculations.

4 Massless limit

In this section we consider the case where the light quarks (of representation R) in the

LLL states are massless, i.e. mq = 0. We will find some special features originating from

the nature of chiral fermions. To evaluate the spectral density in Eq. (3.24), we need to

determine Π00
R,LLL which, according to Eq. (3.20), is cast into the problem of computing

Πµν
R,2D(ω, qz) from the massless fermion one-loop in 2D. In this case we can use a powerful

technique of bosonization that maps (1+1)-dimensional massless fermions into bosons [53].

The mapping rule is well established as (see for example Ref. [54] and also Ref. [55] for

the application to QCD in strong magnetic field)

Jµ2D =

√
1

π
εµν∂νφ , JA,µ2D =

√
1

π
∂µφ , (4.27)

between the vector (axial) current Jµ2D (JA,µ2D ) and a real scalar field φ. We note that

〈φr(q‖)φa(−q‖)〉 =
i

(ω + iε)2 − q2
z

(4.28)

for any temperature T and chemical potential µ, since the retarded two point function of

a free theory is independent of (T, µ). Using this correspondence, we can easily get the

retarded current-current correlator in (1+1) dimensions as

Πµν
R,2D(ω, qz) ≡ i〈Jµr (q‖)J

ν
a (−q‖)〉2D =

iεµαενβq‖αq‖β
π

〈φr(q‖)φa(−q‖)〉

=
1

π [(ω + iε)2 − q2
z ]

(
q2
‖g

µν
‖ − q

µ
‖ q

ν
‖

)
. (4.29)
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We have explicitly checked the cancelation of all T dependent terms in a direct compu-

tation of the fermion loop in Eq. (3.17) at finite T . Consequently, comparing Eqs. (3.20)

and (3.21) with Eq. (4.29), we find

Re Π00
R,LLL(ω, q) = −s(q⊥)

q2
z

q2
‖
, (4.30a)

Im Π00
R,LLL(ω, q) =

π

2
s(q⊥)ω

[
δ(ω − qz) + δ(ω + qz)

]
. (4.30b)

As we discussed previously, the spectral density inferred from the imaginary part of

G00
R (Q) has two pieces; a plasmon pole and a continuous part from the Landau damping¶.

It is easy to find that Eq. (3.26) gives rise to a time-like plasmon with the following

dispersion relation,

ω2 = q2 + s(q⊥) = q2 + 4αsTR
∑
f

(
|qfeB|

2π

)
e
− q2⊥

2|qf eB| , (4.31)

where we have used the real part shown in Eq. (4.30). This is nothing but a plasmon

carrying a mass of order of m2
pl ∼ αseB for q2

⊥ . eB. This plasmon mass, that exists

even in the mq = 0 limit, can be interpreted as a result of Schwinger’s anomalous mass

generation in (1+1)-dimensional massless gauge theory [57], which is in the present case

extended to a theory in (3+1) dimensions with the overall transverse Landau degeneracy

factor. It is clear that this time-like plasmon is gapped and it produces no contribution

to the static spectral density.

Now, a finite contribution to the Coulomb scattering is obtained by inserting Eq. (4.30)

into Eq. (3.24) as
dΓ(q)

d3q
=
αsT

π
CHQ
R

s(q⊥)

[q2 + s(q⊥)]2
δ(qz) , (4.32)

where the static limit ω → 0 in Eq. (4.30) results in the delta function of qz → 0±, and

we repeat the definition of s(q⊥)

s(q⊥) = 4αsTR
∑
f

(
|qfeB|

2π

)
e
− q2⊥

2|qf eB| . (4.33)

¶There is a Q2 = 0 pole in the covariant gauge that does not exist in the Coulomb gauge, and one
may wonder how they can be consistent. This difference is well-known. As explained in Ref. [56], the
Coulomb gauge has two polarizations corresponding to the physical modes, while the covariant gauge has
extra two unphysical modes. Those additional degrees of freedom give rise to Q2 = 0 pole in such a way
not to affect physical observables, and so we can discard this pole safely.
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This is a central result in this section. One can easily compute the leading order heavy

quark damping rate from this.

This delta function δ(qz) associated with the LLL states can be understood from a

simple kinematic constraint with (1+1)-dimensional massless fermions. These fermions

have dispersion relations, E(p) = ±pz, where the sign refers to the chirality. Since per-

turbative QCD interactions do not flip the chirality, the energy-momentum transfer from

these massless fermions, (∆E,∆pz) = (ω, qz), must satisfy ω = ±qz. Then, the static

limit ω → 0 imposes the vanishing longitudinal momentum transfer, which is represented

by the delta function δ(qz).

First, we immediately conclude from Eqs. (2.8) and (4.32) that the longitudinal mo-

mentum diffusion coefficient from the LLL states is strictly zero because of the vanishing

longitudinal momentum transfer constrained by the kinematics in the massless case at

LO. In contrast to this, as we will see in section 5.1, a finite light quark mass introduces

κ‖ ∝ m2
q 6= 0 at LO. We will also see in section 5.2 that κ‖ acquires a non-zero contribu-

tion from the scatterings with the hard thermal gluons (but the exchanged gluon is still

screened by the LLL states at LO). The resulting κ‖ is smaller than κ⊥ by a factor of

T 2/eB.

From the above leading order scattering rate, we can finally obtain the transverse

momentum diffusion coefficient as

κ⊥ =
αsT

2π
CHQ
R

∫
d2q⊥|q⊥|2

s(q⊥)

[ |q⊥|2 + s(q⊥) ]2
= 2α2

sTC
HQ
R TR

(
eB

2π

)
K(a) , (4.34)

where we defined an integral as

K(a) =

∫ ∞
0

dx
x
∑

f |qf |e−x/|qf |

[x+ a
∑

f |qf |e−x/|qf |]2
, (4.35)

with dimensionless variables x ≡ |q⊥|2/2eB and a ≡ αsTR/π. It is easy to see that the

leading log contribution in αs comes from the range αs . x . 1 or equivalently
√
αs eB .

|q⊥| .
√
eB as pointed out before. In this range, the integrand is approximately 1/x,

and the integration produces the leading log behavior as ∼ log(1/αs). A more careful

evaluation gives the full LO result including the constant under the logarithm as

κLO
⊥ = 2α2

sTC
HQ
R TR

(
eB

2π

)
·Qem

[
log

(
1

αs

)
− log

(
TR
π

)
− γE − 1 +

∑
f

|qf |
Qem

log(
|qf |
Qem

)

]
,

(4.36)
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Figure 3: Integral (4.35) for the transverse momentum diffusion coefficient. Lines show
the analytic expressions given in between the brackets in Eqs. (4.36), which are confirmed
by the numerical integration shown by filled circles.

where γE ≈ 0.577 is the Euler-Mascheroni constant, and the sum of electric charges is

defined by Qem =
∑

f |qf |. As shown in Fig. 3, we have numerically checked that this

final form is a good approximation to Eq. (4.34) as long as a ∼ αs � 1.

Let us briefly discuss contributions of the higher Landau levels (hLLs) which are

suppressed both in the vacuum and the thermal parts of the gluon self-energy in the

strong B limit. First, we should note that the momentum transfer q corresponds to

the external momentum of the gluon self-energy and that only the space-like momentum

transfer (q2
‖−q2

z < 0) contributes to the heavy quark momentum diffusion. In the vacuum

part, contributions from the hLLs are suppressed because quarks and antiquarks have

the dispersion relation, p2
‖ = m2

q + 2neB (n ≥ 1), and the off-shellness is of order of

eB, which is because the momentum q2
‖ is located away from the pair creation threshold

(i.e. on-shell point) by eB [49]. Therefore, one can conclude that contributions from the

hLLs are suppressed at least by O(1/eB) when either a quark or an antiquark is excited

to a hLL, and by O(1/eB2) when both of them belong to hLLs. As for the thermal

part, contributions from the hLL are exponentially suppressed by the Boltzmann factor

∼ e−
√

2neB/T .
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5 Finite contributions to the longitudinal momentum

diffusion coefficient

As we have seen in the previous section, the longitudinal momentum diffusion coefficient

vanishes when we consider only the massless quarks in the LLL states. This is a con-

sequence of the massless (1+1)-dimensional dispersion relation of the LLL states, which

does not allow for any longitudinal momentum transfer at ω = 0. In this section, we

examine light-quark mass corrections and thermal gluon contributions.

5.1 Light-quark mass effects

In this subsection we consider finite mass corrections to κ‖, which can relax the constraint

of the longitudinal momentum transfer that is strictly prohibited in the massless case.

First we emphasize that the basic structure of the gluon self-energy shown in Eqs. (3.20)

and (3.21) are still valid regardless of the quark mass. Then, one will immediately find

that the expression of the spectral density (3.24) is also intact and that the problem

reduces to computation of Πµν
R,2D(ω, qz) that should replace the massless (4.29) with the

massive one.

We should notice that the transverse dynamics of LLL quarks are not directly affected

by mass corrections as clearly seen in the propagators (3.13)–(3.15). Therefore, the gluon

self-energy can be written in the same form as Eq. (3.20):

Πµν
R (ω, qz) = π s(q⊥)ΠR,2D(ω, qz)

(
q2
‖g

µν
‖ − q

µ
‖ q

ν
‖
)
, (5.37)

ΠR,2D(ω, qz) = Πvac
R,2D(q2

‖) + Πth
R,2D(ω, qz) . (5.38)

This is due to the fact that there is only one gauge-invariant tensor structure in (1+1)

dimensions, so that the tensor structure in Eq. (3.21) also persists without modification

at finite T . Since we have an overall factor of eB, the coefficient functions, Πvac
R,2D(q2

‖) and

Πth
R,2D(ω, qz), are dimensionless. We note that, while Πvac

R,2D(q2
‖) depends on q2

‖ in a boost

invariant manner, Πth
R,2D(ω, qz) depends on ω and qz separately due to finite temperature

effects.

First, let us consider the vacuum part. The vacuum part has been explicitly computed
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previously in Refs. [49, 51, 58] and takes the following form

Πvac
R,2D(q2

‖) =
1

π
[
(ω + iε)2 − q2

z

][1− (2mq)
2√

q2
‖[(2mq)2 − q2

‖]
arctan

(
q2
‖√

q2
‖[(2mq)2 − q2

‖]

)]
,

(5.39)

for q2
‖ ≤ 0. We can deduce an expression for q2

‖ > 0 using the analytic continuation.

The first term corresponds to the massless Schwinger model as discussed in section 4,

and the mass correction has an overall factor of m2
q. Therefore, as expected from the

dimensional argument, the mass correction comes with a function of the dimensionless

ratio m2
q/q

2
‖. We will shortly see that the leading order result comes from the momentum

transfer range |q|2 ∼ m2
D,B ∼ αseB, so that m2

q/q
2
‖ ∼ m2

q/(αseB). In realistic situations,

the light quark mass, mq ∼ 5 MeV, is much smaller than other scales, so that we will

explore a specific regime, m2
q � αseB, and compute the longitudinal momentum diffusion

coefficient κLO,massive
‖ to the first non-vanishing order in terms of m2

q/(αseB). Within this

hierarchy, we can safely neglect the mq 6= 0 correction to the real part of the self-energy,

that is m2
D,B, which is of order m2

q/(αseB) smaller compared to the massless case.

In contrast to the massless case, Πvac
R,2D(q2

‖) acquires an imaginary part above the

threshold of the pair creation at q2
‖ = (2mq)

2 > 0. However, this imaginary part in the

time-like region does not contribute to the heavy quark momentum diffusion in the static

limit.

We next compute the thermal part starting with Eq. (3.17), which can be finally cast

into the following form (introducing a compact notation Q = (ω, qz)),

Πth
R,2D(Q) =

m2
q

q2
‖

[
J0(Q) + 2

qz
q2
‖
J1(Q)

]
, (5.40)

with the definition

Jβ(Q) ≡
∫ ∞
−∞

dpz
2π

[
n+(εpz) + n−(εpz)

εpz

]
pβz

(pz − 1
2
qz)2 − ω2

4q2‖
[q2
‖ − (2mq)2]− iωε

, (5.41)

where β = 0, 1 and we introduce εpz ≡
√
p2
z +m2

q and n±(εp) ≡ [e(εp∓µ)/T + 1]−1. We

simplified the retarded iε-prescription (i.e. ω → ω+ iε) in Eq. (5.41) for small ω. We note

that Πth
R,2D(Q) again has an overall factor of m2

q as in the vacuum part. Therefore, the

mass correction goes like m2
q/q

2
z and m2

q/T
2 and they are negligible for the real part of

the self-energy or the screening mass.

The only important effect for us is the mass corrections to the imaginary part of

Πth
R,2D(Q), which appear from the singularities in the integral at ω2 = 0 and ω = (2mq)

2.

17



The imaginary part appearing from the factor of 1/q2
‖ is again the contribution of the

forward scattering as in the massless case, so that it does not contribute to the longitudinal

momentum diffusion. It is instructive to see another expression which can be obtained by

taking the static limit ω → 0 in Eq. (17) of Ref. [59] (in the absence of charge chemical

potential) as

lim
ω→0

[
Im Π00

R (Q)

ω

]
=

1

2T

∫
dkz

(
1 +

kzk
′
z +m2

q

εkzεk′z

)
nF (εkz)

[
1− nF (εkz)

]
δ(εkz − εk′z) , (5.42)

where we defined k′z = kz + qz. The expression in the curly brackets in Eq. (5.42) agrees

with the four-dimensional analogue of Eq. (4) in Ref. [46]. The δ-function in (5.42) can

be worked out explicitly as

δ(εkz − εk′z) =
εqz/2
|qz|

δ(kz + qz/2) , (5.43)

which indicates that only a backward scattering kz = −k′z = qz/2 contributes to the

momentum diffusion of heavy quarks because of the static limit in (1+1) dimensions.

We should note again that even such backward scatterings were not allowed for massless

quarks as already discussed in Sec. 4.

By performing the kz integration in Eq. (5.42) or by taking the ω → 0 limit in

Eq. (5.40), we find

lim
ω→0

[
ImΠ00

R,LLL(Q)

ω

]
= m2

q

πs(q⊥)

T |qz|ε qz
2

nF (ε qz
2

)
[
1− nF (ε qz

2
)
]
, (5.44)

where s(q⊥) is defined in Eq. (3.20). Plugging this into Eq. (3.24) as before, we can obtain

the scattering rate dΓ(q)/d3q, and then the finite mass correction to κ‖ as

κLO,massive
‖ =

αs
π
CHQ
R m2

q

∫
d3q

s(q⊥)[
q2 + s(q⊥)

]2 |qz|εqz/2

1

1 + cosh(εqz/2/T )
. (5.45)

Now, it is clear from this expression that the dominant contribution indeed comes from

a region, |q| ∼ (αseB)
1
2 , as claimed before. In this region the Gaussian is approximated

as e−q
2
⊥/(2eB) ∼ 1, and we can replace s(q⊥) by an effective Debye mass in the presence of

the magnetic field as

m2
D,B ≡ s(q⊥ = 0) = 4αsTR

∑
f

(
|qfeB|

2π

)
. (5.46)

Furthermore, at the leading order in m2
q/αseB, we can approximate the quasi-energy as

ε qz
2

=
√

(qz/2)2 +m2
q ∼ |qz/2| (5.47)
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in Eq. (5.45). Since qz ∼ (αseB)1/2 � T , we can also make an approximation as

cosh(εqz/2/T ) ' 1 in Eq. (5.45). Putting those pieces together, we arrive at

κLO,massive
‖ ' αs

2π
CHQ
R m2

q

∫
d3q

m2
D,B

(q2 +m2
D,B)2

=
π

2
αsC

HQ
R m2

qmD,B =
1

2
αsC

HQ
R m2

q

√
αseB

√
2πTRQem . (5.48)

We should note that this result is independent of T after dropping terms in our assumed

regime: m2
q � αseB � T 2 � eB. Thus, if mq or qz ∼ (αseB)1/2 were comparable to T ,

the mass correction would be a T dependent function of mq/T and (αseB)1/2/T , which

are all dropped systematically in our approximation.

5.2 Thermal gluon contributions

We can capture the scatterings with thermal gluons by including the imaginary part of

the self-energy, Π00
R, gluon, coming from hard thermal gluons. A quick power counting shows

that it is enough to keep only the imaginary part of Π00
R, gluon, not the real part, for a first

non-vanishing contribution to κ‖, which we will refer to as “leading order” and will denote

by κLO, gluon
‖ . The real part will be a sub-leading correction to the leading-order screening

mass from the quark loop m2
D,B ∼ αseB, and we can neglect the gluon contribution in our

regime. We will find that the final result of κLO, gluon
‖ is relatively suppressed by T 2/(eB)

compared to κLO
⊥ obtained in the preceding subsection. Consequently, to leading order

we can replace Eq. (3.25) with

lim
ω→0

(−2)Im

[
G00
R, gluon(Q)

ω

]
= lim

ω→0

2

ω

Im Π00
R, gluon(Q)

[Q2 − Re Π00
R,LLL(Q)]2

, (5.49)

neglecting the thermal gluon contribution to the screening mass as compared to Π00
R,LLL(Q)

from the LLL quarks.

The dominant contribution to the imaginary part of the self-energy comes from thermal

gluons with hard momenta∼ T , which is understood based on the interplay between phase

space volume and the Boltzmann suppression. The dispersion relation of these hard gluons

could get modified in general by thermal effects. Since αseB � αsT
2, however, the main

source of the correction appears from LLL quark loops, and in our regime, T 2 � αseB,

we should neglect such corrections and treat hard gluons as free quasi-particles.

As a result, the imaginary part, Im Π00
R, gluon(Q) is identical to the one without B,

given by a cut of gluon one-loop contribution to Π00
R, gluon which is equal to the integrated
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spectrum of scattering thermal gluons with Coulomb vertex. Equivalently, we can follow

Ref. [39] and work out directly the t-channel scattering rate with thermal gluons with the

screened Coulomb propagator given above. In this way the scattering rate reads:

(2π)32MQ
dΓ gluon

d3q

=
1

2MQ

∫
d3k

(2π)32|k|
d3k′

(2π)32|k′|
(2π)4δ(4)(k′ +Q− k)

∣∣M∣∣2nB(|k|)
[
1 + nB(|k′|)

]
,

(5.50)

where the t-channel amplitude with incoming and outgoing gluons of color and polariza-

tion (b, εµ) and (c, ε̃µ) is given by

Mbc = −i4παsfabc
[
Ū(P +Q)γ0taRU(P )

]
G00
ra(Q)(|k|+ |k′|)(ε · ε̃∗) , (5.51)

where we included only A0 Coulomb interaction for heavy quarks in the static limit

P = (MQ,0). In this case the heavy quark spinors can simplify as

Ū(P +Q)γ0U(P ) ' Ū †(P )U(P ) = 2MQ . (5.52)

Color summation in the squared amplitude gives∑
a,a′,b,c

fabcfa
′bc(taRt

a′

R) = Nc

∑
a

taRt
a
R = NcC

HQ
R 1 , (5.53)

and the polarization sum is ∑
ε,ε̃

|ε · ε̃∗|2 = 1 + cos2 θkk′ , (5.54)

where θkk′ is the angle between k and k′. In the static limit we have |k′| = |k| and from

this the scattering rate becomes

dΓ gluon

d3q
= 4α2

sNcC
HQ
R

∫
d3k

(2π)3
δ
(
|k|−|k−q|

)
|G00

ra(Q)|2(1+cos2 θkk′)nB(|k|)
[
1+nB(|k|)

]
.

(5.55)

We can carry out the θkk′-angle integration of k using δ(|k| − |k− q|) = |q|−1δ[cos θkq −
|q|/(2|k|)]Θ(|k| − |q|/2) and cos θkk′ = 1− |q|2/(2|k|2), and after all we obtain

dΓ gluon

d3q
=
α2
s

π2
NcC

HQ
R

|G00
ra(Q)|2

|q|

∫ ∞
|q|/2

dk k2

[
1 +

(
1− q2

2k2

)2
]
nB(k)

[
1 + nB(k)

]
, (5.56)

where the screened Coulomb amplitude is

|G00
ra(Q)|2 =

1[
q2 + Re Π00

R,LLL(Q)
]2 . (5.57)
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We note that in the computation of κ‖ rotational asymmetry arises only from s(q⊥) =

Re Π00
R,LLL(ω = 0, q) as defined in Eq. (4.30).

The Boltzmann suppression in dΓ/d3q restricts k . T , and this in turn gives |q| . T

from the integration boundary. Since T 2 � eB, the asymmetric factor e−q
2
⊥/(2eB) in s(q⊥)

is nearly the unity up to corrections in powers of T 2/(eB). Therefore, at LO we recover

rotational symmetry that allows us to replace (qz)
2 with q2/3 ≡ |q|2/3, and we arrive at

κLO, gluon
‖ =

4α2
s

3π
NcC

HQ
R

∫ ∞
0

dq
q3

(q2 +m2
D,B)2

∫ ∞
q/2

dk k2

[
1+

(
1− q2

2k2

)2
]
nB(k)

[
1+nB(k)

]
.

(5.58)

Apart from the value of the Debye mass m2
D,B defined in Eq. (5.46), this integral is appar-

ently identical to the conventional one without B shown in Ref. [39, 46]. Therefore, the

result of the integral can be obtained by simply substituting our mD,B for the conventional

Debye mass in Refs. [39, 46] as

κLO, gluon
‖ =

4πα2
s

9
NcC

HQ
R T 3

[
log

(
1

αs

)
− log

(
TRQem eB

2πT 2

)
+ 2ξ

]
, (5.59)

where ξ = 1
2
−γE+ ζ′(2)

ζ(2)
' −0.64718. This result is T 2/(eB) smaller than κLO

⊥ in Eq. (4.36).

The above evaluation is systematic and consistent with our basic assumption αseB �
T 2 � eB. First, as discussed in the beginning of this section, we neglected the the

thermal gluon contribution to the Debye mass ∼ gT � mD,B. Next, in Ref. [39, 46], the

authors obtained the LO result from the contributions of the hard thermal gluons & T , and

neglected corrections of the order of m2
D/T

2 ∼ g2 from the contributions of the soft gluons

∼ mD. In our case, we can also neglect these corrections ∼ m2
D,B/T

2 ∼ αseB/T
2 � 1

along with the above hierarchy in the present analysis at the LO accuracy. We leave

studies of the higher-order contributions for the future work, which also have relevance

to the QCD Kondo effect recently discussed in Refs. [60, 61].

It is instructive to compare the LO hard thermal gluon contribution (5.59) with the

LO massive light quark contribution to κ‖ in Eq. (5.48). The ratio is found to be,

κLO,massive
‖

κLO, gluon
‖

∼
αs(αseB)1/2m2

q

α2
sT

3
=

(
m2
q

αseB

)(
αseB

T 2

)1/2(
eB

T 2

)
. (5.60)

The first two factors are small according to our working regime, but the last factor can be

large. Therefore, the massive contribution κLO,massive
‖ could be in principle as comparably

large as κLO, gluon
‖ , and this happens when eB ∼ αs(T

6/m4
q). Then, to be consistent with
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Figure 4: Schematic illustration for the mechanism to derive an additional contribution
to the elliptic flow of heavy quarks. Because of κ⊥ � κ‖ heavy quarks are more dragged
along the in-plane than along the out-of-plane.

our assumed regime, αs eB � T 2, we have a constraint of αs � m2
q/T

2, which is not quite

likely true in the heavy ion collisions. Hence, in realistic heavy ion experiments, κLO, gluon
‖

is dominant contribution to the longitudinal diffusion coefficient.

6 Phenomenological implications

In the previous sections, we have computed the heavy quark momentum diffusion coeffi-

cients, κ⊥ and κ‖, in the QGP in the presence of strong magnetic field eB � T 2 at LO

in αs, and have found
η‖(B)

η⊥(B)
=
κ‖(B)

κ⊥(B)
∼ T 2

eB
� 1 . (6.61)

We now study the phenomenological implications of Eq. (6.61).

To give a (semi-)quantitative estimate of its influence on the elliptic flow of heavy

quarks, we will implement the anisotropic κ⊥,‖ in description of the evolution of an open

heavy quark in the expanding QGP (see Fig. 4 for a schematic illustration of our physical

picture). Following conventions in the heavy ion collision literature, we will take the in-

plane and out-of-plane direction as x- and y-direction, respectively. We will assume an

external magnetic field along the y-direction. Therefore, κxx = κx = κ⊥ and κyy = κy =

κ‖. In realistic situations in the heavy ion collisions, the background flow ux,y of plasma

fireball depends on space and time. In what follows we limit ourselves to some spatial

regions where we can treat ux,y as spatially homogeneous fields.

The evolution of a heavy quark is described by the Langevin equation with the homo-

geneous flow effects (MQ is the heavy quark mass)

dpx
dτ

= −ηx(τ)
[
px−MQux(τ)

]
+ ξx(τ) ,

dpy
dτ

= −ηy(τ)
[
py−MQuy(τ)

]
+ ξy(τ) (6.62)
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with

〈ξx(τ)ξx(τ
′)〉 = κxδ(τ − τ ′) , 〈ξy(τ)ξy(τ

′)〉 = κyδ(τ − τ ′) . (6.63)

Equivalently to Eq. (6.62), we can translate these equations into the Fokker-Planck equa-

tion as

∂τP (px, py; τ) = −
[
ηx(τ)∂px

{
[px −MQux(τ)] + [MQT (τ)] ∂px

}
+ ηy(τ)∂py

{
(py −MQuy(τ)) + (MQT (τ)) ∂py

}]
P (px, py; τ) ,

(6.64)

where P (px, py; τ) denotes the probability of finding a heavy quark at px and py, and T (τ)

is the time-dependent temperature of the background plasma.

The Green’s function to Eq. (6.64), i.e. the probability of finding a heavy quark in

(px, py) at time τ under the initial condition in (p0
x, p

0
y) can be found analytically as

〈px, py|p0
x, p

0
y〉 =

∏
i=x,y

1√
2π∆x(τ)

exp

{
−
[
pi − p̄i(τ)− p0

i e
−Γi(τ)

]2
2∆i(τ)

}
. (6.65)

Here we introduced new variables:

Γi(τ) ≡
∫ τ

τ0

dτ ′ ηi(τ
′) , (6.66)

p̄i(τ) ≡MQ e
−Γi(τ)

∫ τ

τ0

dτ ′ eΓi(τ
′) ηi(τ

′)ui(τ
′) , (6.67)

∆i(τ) ≡ 2MQ e
−2Γi(τ)

∫ τ

τ0

dτ ′ e2Γi(τ
′)
[
T (τ ′)ηi(τ

′)
]
. (6.68)

With Eq. (6.65) the solution to Eq. (6.64) under the initial condition P0(px, py; τ0) can be

written as

P (px, py; τ) =

∫
dp0

x dp
0
y 〈px, py|p0

x, p
0
y〉P0(p0

x, p
0
y; τ0) . (6.69)

The physical meaning of each term in Eq. (6.66) is rather transparent: Γi(τ) is the

effective damping factor which will wash out the memory of earlier distribution of heavy

quarks. Indeed, a large value of Γi(τ) would suppress p0
i dependence in the Green’s

function. p̄i is nothing but the solution to the Langevin equation (6.64) with homogenous

initial condition pi = 0 after averaging over the noise. It characterizes the heavy quark

flow due to dragging by the expanding QGP medium. Finally, ∆i(τ) is generated by the

noise during the Langevin dynamics, which would blur the information contained in the

initial distribution.

The modified distribution of heavy quarks has a characteristic structure as illustrated

in Fig. 5. For low momentum, i.e. pT . |u|MQ, the anisotropy in η⊥,‖ or κ⊥,‖ gives rise
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Figure 5: Schematic illustration for the effects of the magnetic field on the heavy quark
elliptic flow.

to a positive contribution to v2 of heavy quarks. This is because, when ηx � ηy, heavy

quarks will gain more momenta in the x-direction than that in the y-direction, which is

embodied in p̄i terms in Eq. (6.65). In contrast, for high momentum, i.e. pT & |u|MQ, the

magnetically induced contribution to the v2 is opposite. This is because, for an isotropic

initial distribution, more memory is washed out in the x-direction than in the y-direction,

which is embodied in pi e
−Γi terms in Eq. (6.65). More elaborate numerical simulations

are under progress.

7 Summary

In this work, we have computed heavy quark momentum diffusion rate κ of a quark-

gluon plasma in the presence of strong magnetic fields eB � T 2 at the leading order in

αs. While the contribution from thermal gluons is still isotropic at the leading order in

T 2/eB (c.f. section 5.2), we found that the fermionic contribution becomes anisotropic.

Indeed, in the massless limit, the fermionic contribution to the longitudinal diffusion κ‖

vanishes under the LLL approximation (c.f section 4), while their contributions in the

transverse direction shown in Eq. (4.36) is non-vanishing κ⊥ ∼ α2
seBT and is dominant

over the gluonic contributions. As a result, we have a large anisotropy

η‖
η⊥

=
κ‖
κ⊥
∼ T 2

eB
� 1 . (7.70)

We call this anisotropy in the drag force coefficients “magnetic drag anisotropy.”

Turning to the phenomenological implications of “magnetic drag anisotropy”, we first

recall that for heavy quarks in an expanding plasma, the drag force will push them to

co-move with the medium. For low momentum heavy quarks, the anisotropy η‖ < η⊥

implies that those heavy quarks will gain more momentum in the in-plane direction than

in the out-of-plane direction, as the magnetic field points to the out-of-plane direction.
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Therefore “magnetic drag anisotropy” will generate positive elliptic flow v2 for those low

pT heavy quarks.

A body of conventional study on heavy quark dynamics is based on isotropic drag

coefficients. In those studies [40, 41, 42], there are some tensions in simultaneously de-

scribing the nuclear modification factor RAA and the elliptic flow v2 of open heavy flavors

in the low pT regime. If one tries to reproduce the experimentally measured RAA which

is not significantly suppressed in this regime (see Ref. [44] for a review), the estimate of

resulting v2 typically undershoots the experimental data. This is because, as pointed out

in Ref. [39], RAA and v2 are tightly correlated; namely, when suppression of RAA is mod-

erate, the thermalization of heavy quarks takes a long time, meaning a significantly small

v2 of heavy quarks compared to that of the medium. A common assumption involved in

such estimates is the isotropy of the drag coefficients. It is thus tempting to propose a

new scenario for resolution of this issue, the so-called “heavy-flavor puzzle”, on the basis

of the anisotropic drag coefficients η‖ � η⊥ shown in the present work. As discussed in

Sec. 6, the anisotropic drag force coefficient will be able to generate an additional positive

contribution to the elliptic flow in the low pT regime without significantly changing RAA.

While our discussion on the consequence of anisotropic drag force coefficients would apply

to any microscopic mechanism which would induce η‖ � η⊥, we indeed identified one such

origin of the mechanism, namely the strong magnetic field. Quantitative study on the

basis of the dynamical modeling discussed in Sec. 6 will be an interesting future work.

Our results for η can be readily implemented in those computations.

As the last comment, “magnetic drag anisotropy” discussed here has a deep connection

to non-dissipative nature of anomalous transport [45, 62, 63] and this connection deserves

a further study. We leave those interesting directions for the future study.
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