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We present the first search for the rare decay of η′ into K±π∓ in J/ψ → φη′, using a sample
of 1.3 × 109 J/ψ events collected with the BESIII detector. No significant signal is observed,

and the upper limit at the 90% confidence level for the ratio B(η′→K±π∓)

B(η′→γπ+π−)
is determined to be

1.3 × 10−4. In addition, we report the measurement of the branching fraction of J/ψ → φη′ to be
(5.10± 0.03(stat.)± 0.32(syst.))× 10−4, which agrees with previous results from BESII.

PACS numbers: 13.25.Gv, 13.66.Bc, 14.40.Df, 12.38.Mh

I. INTRODUCTION

Non-leptonic weak decays are valuable tools for test-
ing the Standard Model (SM), the Kobayashi-Maskawa
(KM) mechanism, and the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, and for exploring
physics beyond the SM. Among non-leptonic decays, the
decay of the light pseudoscalar meson η′ → K±π∓ is
interesting because it is fundamental to understand the
long-standing problem of the ∆I = 1/2 rule in weak non-
leptonic interactions.
The experimental ∆I = 1/2 rule was first established

in the decay K → ππ. A neutral kaon may decay into
a two-pion final state with isospin I = 0 or I = 2 with
amplitude A0 or A2, respectively. As the real parts of
the amplitudes, ReA0 is dominated by ∆I = 1/2 tran-
sitions and ReA2 receives contributions from ∆I = 3/2
transitions, the former transitions dominate ReA0, which
expresses the so-called ∆I = 1/2 rule [1, 2]

ReA0

ReA2
= 22.35. (1)

Despite nearly 50 years of efforts, the microscopic dy-
namical mechanism responsible for such a striking phe-
nomenon is still elusive. The decay η′ → K±π∓ receives
contributions from both the ∆I = 1/2 and ∆I = 3/2
parts of the weak hamiltonian [3]. It is possible to see
whether the ∆I = 1/2 rule is functional in this type of
decay, and this could shed light on the origin of this rule.
The branching fraction of η′ → K±π∓ decay is predicted
to be of the order of 10−10 or higher [3], with a large
long-range hadronic contribution expected, which should
become observable in high luminosity electron-positron
collisions.

At present, there is no experimental information on
the decay η′ → K±π∓. The world’s largest sample of
1.3× 109 J/ψ events produced at rest and collected with
the BESIII detector therefore offers a good opportunity
to search for this rare decay. In this paper, the mea-

surement of the ratio B(η′→K±π∓)
B(η′→γπ+π−) is presented, where

the η′ is produced in the decay J/ψ → φη′. The ad-
vantage of comparing these two η′ decay channels is that
parts of the systematic uncertainties due to the tracking,
the particle identification (PID), the branching fractions
B(J/ψ → φη′) and B(φ → K+K−), and the number of
J/ψ events cancel in the ratio. A measurement of the
branching fraction J/ψ → φη′ is also presented in which
φ is reconstructed in its K+K− decay mode and η′ is de-
tected in the γπ+π− decay mode. This can be compared
with the results reported by the BESII [4], MarkIII [5],
and DM2 [6] collaborations.

II. DETECTOR AND MONTE CARLO
SIMULATION

BEPCII is a double-ring e+e− collider designed to pro-
vide a peak luminosity of 1033 cm−2s−1 at the center-of-
mass (c.m.) energy of 3.770 GeV. The BESIII [7] detec-
tor, with a geometrical acceptance of 93% of the 4π stereo
angle, is operating in a magnetic field of 1.0 T provided
by a superconducting solenoid magnet. It is composed
of a helium-based drift chamber (MDC), a plastic scin-
tillator Time-Of-Flight (TOF) system, a CsI(Tl) electro-
magnetic Calorimeter (EMC) and a multi-layer resistive
plate chamber (RPC) muon counter system (MUC).
Monte Carlo (MC) simulations are used to determine

the mass resolutions and detection efficiencies. The
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GEANT4-based simulation software BOOST [8] includes
the geometric and material description of the BESIII de-
tector, the detector response, and the digitization mod-
els, as well as the detector running conditions and perfor-
mance. The production of the J/ψ resonance is simulated
with the MC event generator KKMC [9, 10], while the
decays are generated by EVTGEN [11] for known decay
modes with branching fractions set to the Particle Data
Group (PDG) [12] world average values, and by LUND-
CHARM [13] for the remaining unknown decays. The
analysis is performed in the framework of the BESIII of-
fline software system (BOSS) [14].

III. DATA ANALYSIS

A. J/ψ → φη′, η′ → γπ+π−

For the decay J/ψ → φη′, φ → K+K−, η′ → γπ+π−,
candidate events are selected by requiring four well recon-
structed charged tracks and at least one isolated photon
in the EMC. The four charged tracks are required to have
zero net charge. Each charged track, reconstructed us-
ing hits in the MDC, is required to be in the polar angle
range | cos θ| < 0.93 and pass within ±10 cm of the inter-
action point along the beam direction, and within ±1 cm
in the plane perpendicular to the beam, with respect to
the interaction point. For each charged track, informa-
tion from the TOF and the specific ionization measured
in the MDC (dE/dx) are combined to form PID confi-
dence levels (C.L.) for the K, π and p hypotheses, and
the particle type with the highest C.L. is assigned to each
track. Two of the tracks are required to be identified as
kaons and the remaining two tracks as pions.
Photon candidates are reconstructed by clusters of en-

ergy deposited in the EMC. The energy deposited in the
TOF counter in front of the EMC is included to im-
prove the reconstruction efficiency and the energy res-
olution. Photon candidates are required to have a de-
posited energy larger than 25 MeV in the barrel re-
gion (| cos θ| < 0.80) and 50 MeV in the end-cap region
(0.86 < | cos θ| < 0.92). EMC cluster timing require-
ments are used to suppress electronic noise and energy
deposits that are unrelated to the event. To eliminate
showers associated with charged particles, the angle be-
tween the cluster and the nearest track must be larger
than 15◦.
A four-constraint (4C) kinematic fit is performed to the

γK+K−π+π− hypothesis. For events with more than
one photon candidate, the candidate combination with
the smallest χ2

4C is selected, and it is required that χ2
4C <

50.
The scatter plot of M(γπ+π−) versus M(K+K−)

is shown in Fig. 1, where the J/ψ → φη′ decay
is clearly visible. To extract the number of φη′

events, an unbinned extended maximum likelihood fit
is performed to the M(γπ+π−) versus M(K+K−) dis-
tribution with the requirements of 0.988 GeV/c2 <

2) GeV/c
-

K+M(K
1.00 1.02 1.04 1.06 1.08

2
) 

G
eV

/c
- π+ πγ

M
(

0.88
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FIG. 1. Scatter plot of M(γπ+π−) versus M(K+K−) .

M(K+K−) < 1.090 GeV/c2 and 0.880 GeV/c2 <
M(γπ+π−) < 1.040 GeV/c2. Assuming zero correlation
between the two discriminating variablesM(K+K−) and
M(γπ+π−), the composite probability density function
(PDF) in the 2-dimensional fit is constructed as follows

F = Nsig × (Fφsig · F
η′

sig)

+Nnon-η′

bkg × (Fφsig · F
non-η′

bkg )

+Nnon-φ
bkg × (F non-φ

bkg · F η
′

sig)

+Nnon-φη′

bkg × (F non-φ
bkg · F non-η′

bkg ).

(2)

Here, the signal shape for φ (i.e. Fφsig) is modeled with
a relativistic Breit-Wigner function convoluted with a
Gaussian function taking into account the detector res-

olution; the signal shape for η′ (i.e. F η
′

sig) is described
by a normal Breit-Wigner function convoluted with a
Gaussian function. The widths and masses of φ and η′

are free parameters in the fit. The background shape

of φ (F non-φ
bkg ) is described by a second order Chebychev

polynomial function, and the background shape of η′

(F non-η′

bkg ) is described by a first order Chebychev poly-
nomial function. All parameters related to the back-
ground shapes are free in the fit. Nsig is the number of
J/ψ → φη′, φ→ K+K−, η′ → γπ+π− signal events. The
backgrounds are divided into three categories: non-φη′

background (i.e. J/ψ → γK+K−π+π−); non-φ-peaking
background (i.e. J/ψ → K+K−η′); and non-η′-peaking
background (i.e. J/ψ → φγπ+π−). The parameters

Nnon-φη′

bkg , Nnon-φ
bkg and Nnon-η′

bkg are the corresponding three
background yields.
The resulting fitted number of signal events is Nsig =

(31321±201); the projections of the fit on theM(K+K−)
andM(γπ+π−) distributions are shown in Figs. 2 (a) and
(b), respectively. The detection efficiency, 32.96±0.04%,
is obtained from the MC simulation in which the angular
distribution and the shape of M(π+π−) are taken into
account according to a previous BESIII measurement for
η′ → π+π−e+e− [15], where the non-resonant contribu-
tion (known as the “box anomaly”) is included in the



5

)2) (GeV/c
-

K+M(K

1.00 1.02 1.04 1.06 1.08

2
E

ve
nt

s 
/ 1

.0
 M

eV
/c

1

10

210

310

410

)2) (GeV/c
-

K+M(K

1.00 1.02 1.04 1.06 1.08

2
E

ve
nt

s 
/ 1

.0
 M

eV
/c

1

10

210

310

410

(a)

)2) (GeV/c-π+πγM(
0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

2
E

ve
nt

s 
/ 1

.0
 M

eV
/c

1

10

210

310

410

)2) (GeV/c-π+πγM(
0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

2
E

ve
nt

s 
/ 1

.0
 M

eV
/c

1

10

210

310

410

(b)

FIG. 2. Distributions of (a)M(K+K−) and (b)M(γπ+π−) with projections of the fit result superimposed for J/ψ → φη′, φ→
K+K−, η′ → γπ+π−. The dots with errors are for data, the solid curve shows the result of the fit to signal plus background
distributions, the long-dashed curve is for φη′ signal, the dot-dashed curve shows the non-η′-peaking background, the dotted
curve shows the non-φ-peaking background, and the short-dashed curve is for non-φη′ background.

simulation of η′ → γπ+π−.

B. J/ψ → φη′, η′ → K±π∓

To search for η′ → K±π∓, the two-body decay
J/ψ → φη′ is chosen because of its simple event topol-
ogy, K+K−K±π∓, and because the narrow φ meson is
easy to detect through φ→ K+K− decay. The selection
criteria for the charged tracks are the same as that for
the J/ψ → φη′, η′ → γπ+π− decay. Three tracks are
required to be identified as kaons with the combination
of TOF and dE/dx information and the remaining one
is required to be identified as a pion.
A 4C kinematic fit imposing energy-momentum con-

servation is performed under the K+K−K±π∓ hypoth-
esis, and a requirement of χ2

4C < 50 is imposed. To
suppress the dominant background contamination from
J/ψ → φπ+π−, the χ2

4C of the K+K−K±π∓ hypothesis
is required to be less than that for the K+K−π+π− hy-
pothesis. Candidates for φ → K+K− are reconstructed
from the K+K− combination with invariant mass closest
to the nominal mass value. The remaining kaon together
with the pion form the η′ candidate.
Fig. 3 (a) shows the scatter plot to the invariant mass

M(K+K−) versus M(K±π∓). The process φη′(η′ →
K±π∓) would result in an enhancement of events around
the nominal masses of the φ and η′ mesons, while no ev-
ident cluster is seen. Within three standard deviations
of the φ mass, |M(K+K−) −M(φ)| < 15 MeV/c2, the
K±π∓ invariant mass distribution is displayed in Fig. 3
(b); a few events are retained around the η′ mass region,
shown as the dots with error bars. To estimate the num-
ber of signal events passing the selection criteria, a region
of ±3σ around the η′ nominal mass is selected, that is
|M(K±π∓) −M(η′)| < 7 MeV/c2, where σ = 2.2 MeV
is the mass resolution determined from MC simulation.
Only one event survives in the signal region for further
analysis.

To investigate the potential background contributions,
a study with an inclusive MC sample of 1.2× 109 generic
J/ψ decays is performed. It is found that the remaining
background events mainly come from J/ψ → φπ+π−.
Therefore an exclusive MC sample of 1.3 × 106 J/ψ →
φπ+π− events is generated in accordance with the par-
tial wave analysis results of Ref. [16]. This sample cor-
responds to twice the expected J/ψ → φπ+π− events
in data. After normalizing to the world average value
for B(J/ψ → φπ+π−), 2.0 events are expected in the
Kπ mass range of [0.88, 1.04] GeV/c2, with a total of 0.5
events in η′ signal region, as shown by the solid histogram
in Fig. 3 (b).
To conservatively estimate the upper limit, it is as-

sumed that the only event in the signal region is a signal
event. According to the Feldman-Cousins method [17],
the corresponding upper limit of the number of events is
NUL = 4.36 at the 90% C.L.

IV. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in branching fraction
measurement originate mainly from the differences of
data and MC on tracking efficiency, photon reconstruc-
tion, PID efficiency, and the 4C kinematic fit, different
fitting range and background shape, uncertainties from
B(φ → K+K−) and B(η′ → γπ+π−), total number of
J/ψ events and MC statistics. Other uncertainties re-
lated to the common selection criteria of the channels
J/ψ → φη′, η′ → K±π∓ and J/ψ → φη′, η′ → γπ+π−

cancel to first order in the ratio between the branching
fractions.
The systematic uncertainties associated with the track-

ing efficiency and PID efficiency have been studied in the
analysis of J/ψ → pp̄π+π− and J/ψ → K0

SK
±π∓ [18,

19]. The results indicate that the kaon/pion tracking and
PID efficiencies for data agree with those of MC simula-
tion within 1%.
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FIG. 3. (a) Scatter plot ofM(K+K−) versusM(K±π∓), where the box indicates the signal region with |M(K+K−)−M(φ)| <
15 MeV/c2 and |M(K±π∓) −M(η′)| < 7 MeV/c2. (b) The K±π∓ invariant mass distribution, where the arrows show the
signal region. The dots with error bars are for data, the dashed histogram is for the signal MC with arbitrary normalization,
and the solid histogram is the background contamination from a MC simulation of J/ψ → φπ+π−.

The photon detection is estimated by the study of
J/ψ → ρπ [18]. The difference in the detection efficiency
between data and MC is less than 1% per photon, which
is taken as the systematic uncertainty because of the only
photon in the J/ψ → φη′, η′ → γπ+π− channel.
The uncertainty associated with the 4C kinematic fit

comes from the difference between data and MC simu-
lation. The method used in this analysis is to correct
the tracking parameters of the helix fit to reduce the dif-
ference between MC and data, as described in Ref. [20].
This procedure yields a systematic uncertainty of 0.3%
and 1.0% for the measurement of B(J/ψ → φη′) and the
search of η′ → K±π∓, respectively.
To estimate the systematic contribution due to the fit

ranges, several alternative fits in different ranges are per-
formed. The maximum difference on the number of sig-
nal events from alternative fits in different mass ranges
is 0.1%, and this value is taken as systematic uncer-
tainty. To estimate the systematic contribution due to
the background shape, a fit is performed replacing the
2nd-order Chebychev polynomial function with an Ar-
gus function [21]; the change of signal yields is found to
be 0.04%, which is negligible.
The decay J/ψ → φη′, φ → K+K−, η′ → γπ+π− is

used as control sample to estimate the uncertainty from
the φ mass window criterion in the search of η′ → K±π∓.
The φ mass window criterion is applied to the control
sample, and a fit is performed to M(γπ+π−). After con-
sidering the efficiency difference, the difference of 1.2%
in the number of signal events between this fit and the
nominal 2D fit is taken as the uncertainty from the φ
mass window.
The uncertainties on the intermediate-decay branching

fractions of φ→ K+K− and η′ → γπ+π− are taken from
world average values [12].
The above systematic uncertainties together with the

uncertainties due to the number of J/ψ events [22, 23]
and MC statistics are all summarized in Table I, where
the uncertainties associated with MDC tracking, PID,

branching fraction of φ → K+K− cancel in the ratio
B(η′→K±π∓)
B(η′→γπ+π−) . The total systematic uncertainty is taken

to be the sum in quadrature of the individual contribu-
tions.

V. RESULTS

At the 90% C.L., the upper limit on the ratio of B(η′ →
K±π∓) to B(η′ → γπ+π−) is given by

B(η′ → K±π∓)

B(η′ → γπ+π−)
<
NUL · εγπ+π−

Nsig · εK±π∓

1

(1− σsyst)
, (3)

where NUL is the upper limit of the number of observed
events at the 90% C.L. for η′ → K±π∓; εK±π∓ and
εγπ+π− are the detection efficiencies of J/ψ → φη′ for the
two decays which are obtained from the MC simulations;
σsyst is the total systematic uncertainty in the search of
η′ → K±π∓. The 90% C.L. upper limit on the ratio
B(η′→K±π∓)
B(η′→γπ+π−) is determined to be 1.3× 10−4 by using the

values of different parameters listed in Table II.
The branching fraction of J/ψ → φη′ decay is calcu-

lated with the equation

B(J/ψ → φη′)

=
Nsig/εγπ+π−

NJ/ψB(η′ → γπ+π−)B(φ→ K+K−)
,

(4)

where NJ/ψ = 1310.6× 106 is the number of J/ψ events
as determined by J/ψ inclusive hadronic decays [22, 23].
The obtained value for the branching fraction of J/ψ →
φη′ is (5.10± 0.03(stat.)± 0.32(syst.))× 10−4.

VI. SUMMARY

Based on the 1.3 × 109 J/ψ events accumulated with
the BESIII detector, a search for the non-leptonic weak
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TABLE I. Summary of systematic uncertainty sources and their contributions (in %).

Source B(J/ψ → φη′) B(η′ → K±π∓)/B(η′ → γπ+π−)
Tracking efficiency 4.0 -

PID efficiency 4.0 -
Photon reconstruction 1.0 1.0

4C kinematic fit 0.3 1.0
Fit range 0.1 0.1

Background shape - -
φ mass window - 1.2
B(φ→ K+K−) 1.0 -
B(η′ → γπ+π−) 2.0 -

NJ/ψ 0.8 -
MC statistic of η′ → γπ+π− 0.1 0.1

MC statistic of η′ → K±π∓ - 0.1
Total 6.2 1.9

TABLE II. Values used in the calculations of the branching
ratios, including the fitted signal yields, N (or 90% C.L. upper
limit) and the detection efficiency, ε.

Decay mode ε (%) N
η′ → K±π∓ 36.75±0.04 <4.36 (90% C.L.)
η′ → γπ+π− 32.96±0.04 31321±201

decay η′ → K±π∓ is performed for the first time through
the J/ψ → φη′ decay. No evidence for η′ → K±π∓

is seen, and the 90% C.L. upper limit on the ratio of
B(η′→K±π∓)
B(η′→γπ+π−) is measured to be 1.3 × 10−4. Using the

world average value of B(η′ → γπ+π−) [12], the corre-
sponding upper limit on B(η′ → K±π∓) is calculated to
be 3.8× 10−5.

For the determination of the ratio of B(η′→K±π∓)
B(η′→γπ+π−) ,

the J/ψ → φη′ decay with φ → K+K−, η′ → γπ+π−

is analyzed and the corresponding branching fraction is
B(J/ψ → φη′) = (5.10±0.03(stat.)±0.32(syst.))×10−4.
It is the most precise measurement to date and in agree-
ment with the world average value.
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