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ABSTRACT

We calculate the Kaluza-Klein spectrum of spin-2 fluctuations around the N = 3 warped

AdS4 ×M6 solution in massive IIA supergravity. This solution was conjectured to be dual

to the D = 3 N = 3 superconformal SU(N) Chern-Simons matter theory with level k and 2

adjoint chiral multiplets. The SO(3)R × SO(3)D isometry of the N = 3 solution is identified

with the SU(2)F × SU(2)R global symmetry of the dual N = 3 SCFT. We show that the

SO(3)R × SO(3)D quantum numbers and the AdS energies carried by the BPS spin-2 modes

match precisely with those of the spin-2 gauge invariant operators in the short multiplets of

operators in the N = 3 SCFT. We also compute the Euclidean action of the N = 3 solution

and the free energy of the N = 3 SCFT on S3, in the limit N ≫ k. Remarkably, the results

show a complete agreement.
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1 Introduction

Since the seminal work of ABJM [1], many progresses have been made in understanding the

D = 3 superconformal Chern-Simons matter theories and construction of their holographic

duals. ABJM theory is a U(N) × U(N) Chern-Simons matter theory with explicit N = 6

supersymmetry. In a certain regime, its gravity dual is the AdS4 × CP
3 solution in IIA

found long ago by [2]. One can consider deformations of ABJM theory by adding relevant

superpotential or fundamental matter and its generalizations to quiver type gauge theories.

These lead to new proposals of AdS4/CFT3 [3–20], in which the dynamics of the IR CFTs

are still governed by certain superconformal Chern-Simons matter theories with more than

one gauge groups. 1

In three dimensions, there exist also superconformal Chern-Simons matter systems with

a single gauge group [26, 27]. It is then natural to quest whether some of them possess

supergravity duals. It was shown in [28, 29] that in general, D = 3 Chern-Simons matter

theories with a single gauge group admit at most N = 3 supersymmetry. The spectra of BPS

operators in N = 2, 3 superconformal SU(N) Chern-Simons matter theories with adjoint

chiral matter fields were studied in [30], which demonstrated that most of the superconformal

Chern-Simons matter theories with a single gauge group did not have supergravity duals when

the ’t Hooft coupling is large, due to the presence of light protected higher spin operators

and a Hagedorn growth in the specta 2. Recently, a new N = 2 warped AdS4 × S6 solution

in massive IIA was found in [31] by uplifting the N = 2 U(1) × SU(3) invariant stationary

point in D = 4 dyonic ISO(7) gauged maximal supergravity [32,33]. The detailed derivation

of the uplift formulas is given in [34]. It was further proposed [31] that this solution is

holographically dual to a D = 3 N = 2 superconformal Chern-Simons matter theory with a

single SU(N) gauge group, 3 adjoint chirals and a cubic superpotential. This theory can be

viewed as the IR fixed point of an RG flow in the worldvolume theory of N D2 branes with

a Chern-Simons term induced by the Romans mass. The Chern-Simons level k is related to

the Romans mass m by m = k/(2πℓs). Some evidence for this proposal was provided by

comparing the Euclidean action of the supergravity solution with the free energy of the dual

CFT on S3 [31]. A generalization of this proposal has been put forward in [35], by considering

a system of N D2 branes probing a generic Calabi-Yau threefold singularity in massive IIA.

In this case, the dual CFT was conjectured to be the IR fixed point of the low energy effective

N = 2 Chern-Simons quiver gauge theory. Some previous work on supersymmetric AdS4×M6

type solutions in (massive) type IIA supergravity can be found in [36–43].

1Earlier proposals for superconformal duals to AdS4 have been made in [21–25].
2The analysis of [30] requires nontrivial R-symmetry, thus it does not apply to N = 1 theories.
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The D = 4 dyonic ISO(7) gauged maximal supergravity admits an N = 3 stationary

point [44], which was uplifted to a warped AdS4 ×M6 solution in massive IIA [45], utilizing

formulas given in [31]. The bosonic isometry of the N = 3 solution is the SO(3)R × SO(3)D

subgroup of SO(7) [45], which can be characterized by starting from SO(4)×SO(3)V ∈ SO(7).

The factor SO(3)R then comes from SO(4) ≃ SO(3)R × SO(3)L, and the factor SO(3)D is

the diagonal in SO(3)L × SO(3)V
3. The N = 3 solution in massive IIA was conjectured [31]

to be the gravity dual of the N = 3 superconformal SU(N) gauged Chern-Simons matter

theory with 2 adjoint chirals and a quartic superpotential studied in [27]. Interestingly, it

was noticed in [30] that the BPS spectrum of the N = 3 SCFT includes only states of spins

≤ 2, indicating the existence of a supergravity dual. The radius of curvature of the string

frame metric in string units scales like R/ℓs ∼ (N/k)
1

6 , whilst the string coupling scales as

gs ∼ 1/(N
1

6k
5

6 ). Thus supergravity description is valid when N is much larger than k. Also,

one can see that gs < ℓs/R, which is in agreement with previous observation that “massive

IIA cannot be strongly coupled” [48], in other words, the string coupling must be small if the

curvature is small.

In [45], we made the first attempt of testing the conjectured duality between the N = 3

solution in massive IIA and the N = 3 superconformal SU(N) Chern-Simons matter theory.

It was found that at the lowest level, the SO(3)R × SO(3)D quantum numbers and the AdS

energies of the fluctuations around the N = 3 background match with those of the short

multiplets of gauge invariant operators in the N = 3 SCFT. In this paper, we provide

further evidence for this conjectured duality. We first perform an explicit analysis of the

Kaluza-Klein (KK) spectrum of the spin-2 fields in AdS4. Solving the spin-2 spectrum in a

warped AdS background with inhomogeneous internal space has been encountered in previous

studies [13,16,17]4 , where it was found that the analytic solutions for the spin-2 fluctuations

involve hypergeometric functions. Similarly, solutions for the spin-2 fluctuations around the

N = 3 solution in massive IIA also include hypergeometric functions. The squared masses

of the gravitons obtained by imposing regularity of the solution, depend quadratically on

the quantum numbers associated with SO(3)R × SO(3)D and SO(3)V . These results holds

for both the BPS and non-BPS spin-2 excitations, which respectively belong to the short

and long graviton multiplets of OSP(3|4). The SO(3)R × SO(3)D quantum numbers and the

AdS energy carried by the BPS gravitons agree precisely with those of the gauge invariant

spin-2 operators present in the spectrum of BPS operators of the dual N = 3 SCFT. We

3The SO(3)R × SO(3)D invariant subsector in the ω-deformed family of SO(8)-gauged N = 8 four-

dimensional supergravities [46] was studied in [47].
4Earlier work on KK spectrum in a warped AdS background with homogeneous internal space can be found

in [49–55].
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then compare the free energy of the supergravity solution with that of the N = 3 SCFT on

S3, in the limit N ≫ k. Remarkably, the results show a complete agreement.

This paper is organized as follows. In Sec. 2, we give an explicit derivation of the KK

spectrum for the spin-2 fluctuations around the N = 3 solution in massive IIA. In Sec. 3,

we proceed with identifying the CFT operators dual to the short graviton multiplets in the

spectrum of the bulk theory. In Sec. 4, we compute the Euclidean action of the supergravity

background and the free energy of the N = 3 superconformal SU(N) Chern-Simons matter

theory on S3. We conclude and discuss possible future directions in Sec. 5.

2 Kaluza-Klein spectrum of Spin-2 fluctuations

In solving the KK spectrum of the spin-2 modes, only the metric of the N = 3 solution is

needed. The complete solution involving various form fields can be found in [45] (Its form

in vielbein basis is given in the appendix of this paper.). In terms of the seven auxiliary

coordinates on S6

µ1 = sin ξ cos θ1 cosχ1, µ2 = sin ξ cos θ1 sinχ1, µ3 = sin ξ sin θ1 cosψ,

µ4 = sin ξ sin θ1 sinψ, ν1 = cos ξ cos θ2, ν2 = cos ξ sin θ2 cosχ2,

ν3 = cos ξ sin θ2 sinχ2, (2.1)

which satisfy
∑4

A=1 µ
AµA +

∑3
i=1 ν

iνi = 1, the metric of the N = 3 solution in massive IIA

takes the form [45]5

dŝ210 = ∆−1(
3
√
3

16
ds2AdS4) + gmndy

mdyn, (2.2)

in which

∆ = 3
9
8 2−

3
4 (cos 2ξ + 3)−

1
8Ξ−1

4 , Ξ = (24 cos 2ξ + 3cos 4ξ + 37), (2.3)

and the internal metric on the deformed S6 is given as

gmndy
mdyn = 3

√
3

4 (∆Ξ)−1

[
− sin2 2ξdξ2 + 8(cos 2ξ + 3)dµ · dµ + 4(cos 2ξ + 3)dν · dν

+16µAηiABdµ
Bǫijkνjdνk − 16

cos 2ξ + 3
(dµAηiABµ

Bνi)2
]
, (2.4)

where ηi’s are the generators of SO(3)L embedded in SO(4) ≃ SO(3)R × SO(3)L,

η1 =




0 0 0 −1
0 0 −1 0

0 1 0 0

1 0 0 0



, η2 =




0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0



, η3 =




0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0



. (2.5)

5In this section, we will choose g = 1, m = 2 for convenience.
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As explained in [45], this solution respects an SO(3)R×SO(3)D symmetry, which is embedded

in ISO(7) via the chain

ISO(7) ⊃ SO(7) ⊃ SO(3)R × SO(3)L × SO(3)V ⊃ SO(3)R ×
[
SO(3)L × SO(3)V

]
D
, (2.6)

where
[
SO(3)L × SO(3)V

]
D

means the diagonal subgroup of SO(3)L × SO(3)V , which we

denote by SO(3)D. The preserved N = 3 supersymmetry transforms as 3 of SO(3)D. Thus,

via holography SO(3)D should be identified with the R-symmetry of the dual SCFT, whilst

SO(3)R plays a role of the flavor symmetry. Later, we will solve the spin-2 fluctuations around

the N = 3 solution, and compare the results with the gauge invariant spin-2 BPS operators

in the dual CFT. To avoid the confusion from the notation, we relabel the two SO(3) groups

as

SO(3)R → SO(3)F , SO(3)D → SO(3)R, (2.7)

where now SO(3)R and SO(3)F correspond to theR-symmetry group and the flavor symmetry

group of the dual SCFT respectively.

We consider fluctuations of the metric around the N = 3 background

ĝMN → ḡMN + ĥMN . (2.8)

Similar to the cases studied in [13, 16, 17, 56, 57], applying the separation of variables to the

transverse and traceless (with respect to the AdS4 metric g4µν without the warp factor) part

of ĥµν ,

ĥµν = hµν(x)Y (y), ∇µ
4hµν = 0, gµν4 hµν = 0, (2.9)

we find that the spin-2 modes solving the homogenous linearized Einstein equation satisfy

Y (y)L−2
0 (�4 + 2)hµν + hµνOY (y) = 0, L2

0 =
3
√
3

16
, (2.10)

where �4 is the Laplacian on the unit AdS4, and the operator O is given by

OY (y) =
∆−1

√−ḡ10
∂M (
√−ḡ10ḡMN∂N )Y (y)

=
1√
g̊6
∂m(∆−1

√
g̊6ḡ

mn∂n)Y (y), (2.11)

where g̊6 is the metric on the round S6. The operator O can be written explicitly as

L2
0O ≡ Õ =

1

2
∂2ξ +

1

2
(3 cot ξ − 2 tan ξ)∂ξ +

1

2
sec2 ξCV + (2 csc2 ξ − 1)CF +

CR − CL

2
, (2.12)

where CV , CF , CR and CL are the quadratic Casimirs associated with SO(3)V , SO(3)F ,

SO(3)R and SO(3)L. When acting on scalars, these Casimirs can be expressed as bilinears of
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Lie derivatives associated with Killing vectors generating the corresponding SO(3). Killing

vectors associated with SO(3)V are given by

ξiV = ǫijkνj
∂

∂νk
, (2.13)

whilst Killing vectors associated with SO(3)F and SO(3)L take the form

ξiF = −µA(T i
F )AB

∂

∂µB
, ξiL = −µA(T i

L)AB
∂

∂µB
. (2.14)

In the expressions above ,

T 1
F = −1

2
(R12 −R34), T 2

F = −1

2
(R13 −R42), T 3

F = −1

2
(R14 −R23), (2.15)

T 1
L =

1

2
(R12 +R34), T 2

L =
1

2
(R13 +R42), T 3

L =
1

2
(R14 +R23), (2.16)

where the Rij are the SO(4) generators, with (Rij)ij = −(Rij)ji = 1, and all other elements

equal to zero. Then the quadratic Casimirs are given by

CF = Lξi
F
Lξi

F
, CL = Lξi

L
Lξi

L
, CV = Lξi

V
Lξi

V
, CR = (Lξi

L
+ Lξi

V
)(Lξi

L
+ Lξi

V
). (2.17)

The harmonic function Y (y) satisfies ÕY (y) = −m2Y (y) leading to

(�4 + 2)hµν −m2hµν = 0. (2.18)

From the equation above, one can solve for the AdS energies carried by the spin-2 modes.

For each m2, we have

E0 =
1

2
(3 +

√
9 + 4m2). (2.19)

To find eigenmodes for the operator Õ, it is useful to know the eigenfunctions of vari-

ous Casimirs. We recall that spin-0 harmonics on a round 6-sphere are characterized by

(n, 0, 0), n = 1, 2 · · · representations of SO(7) and also form a complete basis for smooth

scalar functions on manifold with S6 topology. Thus, the decomposition of the SO(7) har-

monics under the SO(3)F × SO(3)R subgroup should give rise to a complete functional basis

on the internal space of the N = 3 solution (2.4) which is a smooth deformation of S6. Since

the SO(3)F × SO(3)R subgroup is embedded in SO(7) via the chain

SO(7) ⊃ SO(4)× SO(3)V ≃ SO(3)F × SO(3)L × SO(3)V ⊃ SO(3)F × SO(3)R, (2.20)

we first branch the (n, 0, 0) irrep under the SO(4)×SO(3)V subgroup. This yields a sequence

of irreps of SO(4) × SO(3)V of the form (ℓ, 0)jV , where (ℓ, 0) correspond to the highest

weights of the SO(4) irrep. Here ℓ, jV are non-negative integers. Under the isomorphism
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SO(4) ≃ SO(3)F × SO(3)L, the highest weights (ℓ1, ℓ2) of SO(4) are related to the isospins

(jF , jL) of SO(3)F × SO(3)L by

jF = 1
2(ℓ1 + 2ℓ2), jL = 1

2ℓ1. (2.21)

This means further branching of (ℓ, 0) under SO(3)F × SO(3)L leads to a sequence of ir-

reps with jF = jL. The analysis above suggests that the eigenfunctions of the Casimirs

CF , CL, CV should take the form

f(ξ)(αA1A2···Ap

p=2jF∏

k=1

µ̃Ak)(βi1i2···iq

q=jV∏

m=1

ν̃im), jF ∈
1

2
Z
+ ∪ {0}, jV ∈ Z

+ ∪ {0}, (2.22)

where

µ̃A =
µA

sin ξ
, A = 1 · · · 4, ν̃i =

νi

cos ξ
, i = 1 · · · 3, (2.23)

and f(ξ) is a function of ξ which cannot be determined by group theoretical analysis. Coeffi-

cients αA1A2...Ap and βi1i2...iq are totally symmetric, traceless with respect to their indices and

transform according to the (jF , jF , jV ) irrep of SO(3)F × SO(3)L × SO(3)V . Since SO(3)R

is the diagonal of SO(3)L × SO(3)V , the eigenfunctions of its Casimir can be obtained by

decomposing the product of αA1A2···Ap and βi1i2···iq in terms of irreps of SO(3)R using Clebsch-

Gordan coefficients. In the end, we achieve the mutual eigenfunctions for CF , CL, CV , CR

labeled by the quantum numbers

(jF , jF , jV , jR), jR = |jV − jF |, · · · , jV + jF , jF ∈
1

2
Z
+ ∪ {0}, jV ∈ Z

+ ∪ {0}. (2.24)

For simplicity, we denote the eigenfunction obtained through the above procedure by the

abstract symbol

|ψ〉 = |jF , jF , jV , jR〉. (2.25)

It satisfies

CF |ψ〉 = cF |ψ〉, cF = −jF (jF + 1),

CL|ψ〉 = cL|ψ〉, cL = −jF (jF + 1),

CV |ψ〉 = cV |ψ〉, cV = −jV (jV + 1),

CR|ψ〉 = cR|ψ〉, cR = −jR(jR + 1), (2.26)

which also illustrates the normalization of the Casimirs. Substituting the ansatz

Y (y) = f(ξ)|jF , jF , jV , jR〉, (2.27)

into (2.12) and making the change of variable

u = cos2 ξ, f̃(u) ≡ f(ξ), (2.28)
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we arrive at an equation for f̃(u)

(1− u)2u2f̃ ′′(u) +
1

2
(7u3 − 10u2 + 3u)f̃ ′(u) (2.29)

+

(
1

4
u(3u + 1)cF +

1

4
(1− u)cV +

1

4
u(1− u)(cR + 2m2)

)
f̃(u) = 0.

By a further change of variable

f̃(u) ≡ ujV /2(1− u)jFH(u), (2.30)

the equation above is brought to the form of a standard hypergeometric differential equation

u(1− u)d
2H

du2
+

(
c− (a+ b+ 1)u

)dH
du
− abH(u) = 0, (2.31)

where the constants are given by

a =
1

4
(−

√
12j2F + 12jF − 4j2R − 4jR + 8m2 + 25 + 4jF + 2jV + 5),

b =
1

4
(
√

12j2F + 12jF − 4j2R − 4jR + 8m2 + 25 + 4jF + 2jV + 5),

c = jV +
3

2
, (2.32)

There are two independent solutions to the hypergeometric differential equation above

2F1(a, b, c, u), and u1−c
2F1(1 + a− c, 1 + b− c, 2− c, u). (2.33)

The second solution should be discarded, since the corresponding f(u) is singular at u = 0.

The first solution converges for |u| < 1. It can be proved that for (1−u)jF 2F1(a, b, c, u) to be

regular at u = 1, the coefficient a must be a non-positive integer. Regularity of the solution

thus dictates the mass squared m2 to depend on the quantum numbers quadratically

m2 =
1

2

(
2n(4jF + 2jV + 5) + 4jF jV + j2F + 7jF + 4n2 + j2R + jR + j2V + 5jV

)
, (2.34)

where n ∈ Z
+ ∪ {0}. A typical spin-2 excitation with AdS energy being an integer is given

by n = 0, jF = 0 and jV = jR, which leads to

m2 = jR(jR + 3), E0 = jR + 3, jR ∈ Z
+ ∪ {0}. (2.35)

It should be noted that gravitons with the same SO(3)F ×SO(3)R quantum numbers and AdS

energies appear in the short graviton multiplet DS(2, jR+3/2, jR|3) of OSP(3|4) [53,58]. Since
the supergravity background preserves N = 3 superconformal symmetry, the spin-2 states

(2.35) must form complete DS(2, jR + 3/2, jR|3) multiplets together with other lower spin

states with proper quantum numbers and AdS energies. The spin-2 states (2.35) are singlets
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with respect to SO(3)F , which means all the states belonging to the short graviton multiplets

are singlets of the flavor symmetry. On the CFT side, the spectrum of BPS operators in

the N = 3 superconformal SU(N) Chern-Simons-matter theory with 2 adjoint chirals has

been studied by [30]. It was shown that the short multiplets DS(2, jR +3/2, jR|3) composed

by gauge invariant operators are singlets of the flavor symmetry. Therefore, our results

demonstrate a perfect matching between the short graviton multiplets in the KK spectrum

of fluctuations around the N = 3 vacuum in massive IIA and the short multiplets involving

spin-2 operators in the N = 3 superconformal SU(N) Chern-Simons matter theory with two

adjoint chirals.

A list of the bulk spin-2 states labeled by their quantum numbers is given in Table

1, from which one can see that the spectrum includes long graviton multiplets with rational

dimensions. This feature has been observed for other M-theory and string theory backgrounds

[13, 23–25, 50, 55]. A class of long multiplets with rational dimensions was termed as the

“shadow” multiplets [25]. From the bulk point of view, shadowing mechanism is related to

the fact that the same harmonics also appear in other fields belonging to short multiplets. In

the spectrum obtained here, the long graviton labeled by (jF , jV , jR, n) = (1, r, r, 0) carries

E0 = r + 4. The corresponding long graviton multiplets are shadows of vector multiplets.

3 Matching short spin-2 multiplets

We can go further to identify the CFT operators dual to the bulk spin-2 modes satisfying

(2.35). Before doing so, we first briefly review the N = 3 superconformal SU(N) Chern-

Simons matter theory with 2 adjoint chirals. In D = 3, the N = 3 superconformal symmetry

must have an SO(3) R-symmetry. As a consequence, in the vector multiplet, the fermions

are a triplet and a singlet of SU(2)R, and the three scalar fields are a triplet (as are the three

auxiliary fields). In the chiral multiplets, all fields are doublets of SU(2)R. Let a, b, · · · be
the SU(2)R indices and I, J, · · · be the indices for the fundamental representation of SU(2)F .

The components of the matter fields are scalars qIa and fermions ψIa subject to the reality

conditions6

(q)†Ia = ǫIJǫabq
Jb, ψ̄Ia = iσ2ǫIJǫabψ

Jb. (3.1)

6We will generally adhere to the notations and conventions of [27]
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(jF , jV , jR) n m2 E0 S(hort)/L(ong)

(0, 0, 0) 0 0 3 S

(0, 0, 0) 1 7 1

2
(3 +

√
37) L

(0, 0, 0) 2 18 6 L

(0, 1, 1) 0 4 4 S

(0, 1, 1) 1 13 1

2
(3 +

√
61) L

(0, 1, 1) 2 26 1

2
(3 +

√
113) L

(1
2
, 0, 1

2
) 0 9

4

1

2
(3 + 3

√
2) L

(1
2
, 0, 1

2
) 1 45

4

1

2
(3 + 3

√
6) L

(1
2
, 0, 1

2
) 2 97

4

1

2
(3 +

√
106) L

(1
2
, 1, 1

2
) 0 25

4

1

2
(3 +

√
34) L

(1
2
, 1, 1

2
) 1 69

4

1

2
(3 +

√
78) L

(1
2
, 1, 1

2
) 2 129

4

1

2
(3 +

√
138) L

(1
2
, 1, 3

2
) 0 31

4

1

2
(3 + 2

√
10) L

(1
2
, 1, 3

2
) 1 75

4

1

2
(3 + 2

√
21) L

(1
2
, 1, 3

2
) 2 135

4

15

2
L

(1, 0, 1) 0 5 1

2
(3 +

√
29) L

(1, 0, 1) 1 16 1

2
(3 +

√
73) L

(1, 0, 1) 2 31 1

2
(3 +

√
133) L

(1, 1, 0) 0 9 1

2
(3 + 3

√
5) L

(1, 1, 0) 1 22 1

2
(3 +

√
97) L

(1, 1, 0) 2 39 1

2
(3 +

√
165) L

(1, 1, 1) 0 10 5 L

(1, 1, 1) 1 23 1

2
(3 +

√
101) L

(1, 1, 1) 2 40 8 L

Table 1: An incomplete list of the KK spectrum of spin-2 states. The “Short” and “Long”

refer to the short and long multiplets which the spin-2 states belong to. Here we remind the

reader that jR = |jV − jF |, · · · , jV + jF , jF ∈ 1
2Z

+ ∪ {0}, jV ∈ Z
+ ∪ {0}.
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The Lagrangian of N = 3 superconformal SU(N) Chern-Simons matter theory with manifest

SU(2)R × SU(2)F symmetry can be written as [27]

L =
k

4π

[
CS(A) + Tr(Dabsab −

1

2
χabχab + χχ+

1

6
sab[sbc, s

c
a])

]

+
1

2
|∇µqIa|2 +

1

2
qIaD

abqIb −
1

4
|sabqIc|2

+
i

2
ψIaγ

µ∇µψ
Ia − 1

2
ψ a
I sabψ

Ib + iq a
I χabψ

Ib + iqIaχψ
Ia. (3.2)

We will formulate the short spin-2 multiplets in the N = 3 SCFT in terms of N = 2

superfields, due to the complicity of the N = 3 superspace. The decomposition of Osp(3|4)
multiplets under Osp(2|4) was studied in [53]. For instance, the decomposition of a generic

N = 3 long spin-2 multiplet is given by7

DS(2,∆0 > J0 + 3/2, J0|3) →
J0⊕

y=−J0

DS(2,∆0 + 1/2, y|2) ⊕
J0⊕

y=−J0

DS(3/2,∆0, y|2) (3.3)

⊕
J0⊕

y=−J0

DS(3/2,∆0 + 1, y|2) ⊕
J0⊕

y=−J0

DS(1,∆0 + 1/2, y|2).

Specific to an N = 3 spin-2 multiplet, the multiplet is shortened when ∆0 = J0 + 3/2 [58].

Accordingly, the short multiplet decomposes into less N = 2 multiplets

DS(2, J0 + 3/2, J0|3)→
J0⊕

y=−J0

DS(2, J0 + 2, y|2) ⊕
J0⊕

y=−J0

DS(3/2, J0 + 3/2, y|2), (3.4)

where DS(2, J0 + 2, J0|2) and DS(3/2, J0 + 3/2, J0|2) denote the N = 2 short graviton and

short gravitino multiplets respectively. The detailed structure of Osp(2|4) supermultiplets

can be found in [6, 59]. In N = 2 notation, the scalars qIa can be parametrized by two

complex scalar fields (Z1, Z2)

qI1 = (Z1, Z2), qI2 = (−Z̄2, Z̄1). (3.5)

The U(1) R-symmetry of N = 2 supersymmetry is embedded in SU(2)R in such a way

that the U(1) charges carried by Z1 and Z2 are both equal to 1
2 as required by the N = 3

superconformal symmetry. We introduce two chiral superfields Z1 and Z2 whose lowest

components are given by scalars Z1 and Z2. Using the stress tensor superfield T (0)
αβ

T (0)
αβ = D̄(αZ̄iDβ)Zi + iZ̄i

←→
∂ αβZi, (3.6)

7Slightly different from the notation used in [53], here we use ∆0 to denote the lowest conformal weight in

an Osp(3|4) multiplet instead of E0, since the latter has been used for the AdS energy of the graviton.
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the short spin-2 multiplet DS(2, J0 + 2, J0|2) of gauge invariant operators can be expressed

as

Tr
[
T (0)
αβ (ZkZk)

J0
]
, (3.7)

which possesses the correct conformal dimension and U(1)R charge and also satisfies the

shortening condition. The spin-2 component in this multiplet has conformal dimension E0 =

3 + J0. The N = 2 short gravitino multiplet DS(2, J0 + 3/2, J0|2) can be realized as [6]

Tr
[
Zk(DαZk)(ZiZi)

J0
]
, (3.8)

where the conformal dimension and the U(1)R charge associated with the supercovariant

derivative Dα are 1
2 and −1. Other N = 2 long multiplets present in the decomposition (3.4)

can be obtained by employing a sequence of SU(2)R transformations on the short graviton

and gravitino multiplets. We summarize the results in Table 2.

N = 2 multiplet Operator

DS(2, J0 + 2, J0|2) Tr
[
T (0)
αβ (ZiZi)

J0
]

DS(2, J0 + 2, J0 − 1|2)
J0∑
n=1

Tr
[
T (0)
αβ (Zi1Zi1) · ·(Z̄inZin + ZinZ̄in) · ·(ZiJ0ZiJ0

)
]

...
...

DS(2, J0 + 2,−J0|2) Tr
[
T (0)
αβ (Z̄kZ̄k)

J0
]

DS(3/2, J0 + 3/2, J0|2) Tr
[
Zk(DαZk)(ZiZi)

J0
]

DS(3/2, J0 + 3/2, J0 − 1|2)
Tr

[
Z̄i(DαZi)(ZjZj)

J0 + Zi(DαZ i)(ZjZj)
J0

+
J0∑
n=1
Zk(DαZk)(Zi1Zi1) · ·(Z̄inZin + ZinZ̄in) · ·(ZiJ0ZiJ0

)
]

...
...

DS(3/2, J0 + 3/2,−J0|2) Tr
[
Z̄k(D̄αZ̄k)(Z̄iZ̄i)

J0
]

Table 2: In this table, we show how an N = 3 short graviton multiplet DS(2, 3/2 + J0, J0|3)
decomposes into N = 2 graviton and gravitino multiples. It should be noted that all the N =

2 multiplets are singlets of SU(2)F . Since all the superfields are in the adjoint representation

of SU(N), the single trace operators are defined up to certain ordering.

On the bulk side, the harmonics associated with the spin-2 states in the short graviton

multiplet DS(2, jR + 3/2, jR|3) take the form

Y (y) ∼ βi1i2···iq
q=jR∏

m=1

νim , (3.9)
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where νi is defined in (2.1). By a comparison with the short spin-2 multiplets on the CFT

side listed in Table 2, we can make the identification

(ν1 + iν2, ν1 − iν2, ν3)→ (ZkZk, Z̄kZ̄k, Z̄kZk +ZkZ̄k), Z̄k ≡ (Zk)∗, (3.10)

where the SU(2)F indices are raised and lowered by ǫij and ǫij. It can be checked that the right

hand side of the above expression resides in the same representation of SO(3)F×SO(3)R as νi.

This identification is somewhat counterintuitive in the sense that usually bulk coordinates

transverse to the brane are related to the scalar fields on the brane linearly. In fact, the

mapping (3.10) can be made linear by using the fact that the equation of Dab derived from

the Lagrangian (3.2) implies

sab ∼ [qI(a, q
I
b)]. (3.11)

Therefore, νi can also be identified as sab. This identification is more natural for the reason

below. The N = 3 SCFT studied here can be viewed as the IR limit of the N = 4 supersym-

metric Yang-Mills gauge theory with the same matter content, and deformed by an N = 3

Chern-Simons term [1]. Due to the presence of the Chern-Simons term, all the dynamical

fields in the N = 4 vector multiplet become massive and may be integrated out at energy

scale much lower than the mass scale, leading to the action (3.2). In the supersymmetric

Yang-Mills theory, scalars sab are dynamical. Together with Z1 and Z2, the seven dynami-

cal scalars, comprise the pullback of the seven coordinates in the directions transverse to N

coincident D2 branes. Based on the symmetry property with respect to SO(3)F × SO(3)R,

one can also identify µA with qIa. However, to test this identification requires the knowledge

of the harmonics associated with fluctuations of spins < 2, which is beyond the scope of this

paper and deserves future investigation.

4 Matching free energies

We now turn to compute the free energy of the N = 3 solution in massive IIA and that of

the N = 3 CFT on S3 in the limit N ≫ k. This limit ensures the validity of the supergravity

approximation of massive IIA string and also simplifies the expression for the CFT free energy

obtained from a saddle point approximation. We show these two quantities agree with each

other precisely. In this section, we recover the g and m dependence of the supergravity

solution as they are important for the comparison.

The number of massive D2 branes which is equal to the rank of the gauge group is

determined by the quantized Page charge [60,61].
∫

S6

F̃(6) =

∫

S6

e
1

2
φ∗̂F(4) +A(2) ∧ dA(3) +

1

6
mA(2) ∧A(2) ∧A(2) = −(2πℓs)5N. (4.1)
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Plugging the N = 3 solution [45], we get

1

(2πℓs)5g5
16π3

3
= N. (4.2)

On the other hand, the gravitational free energy is inversely proportional to the effective

D = 4 Newton’s constant

Fgravity =
πℓ2

2G4
, ℓ2 =

3
√
3

16
g−7/3(m/2)1/3, (4.3)

where ℓ is the radius of AdS4 and the effective D = 4 Newton’s constant is related to the

string length by
1

16πG4
=

2π

(2πℓs)8g6
Vol(S6). (4.4)

In the equation above , Vol(S6) = 16
15π

3 is the area of a unit S6. Finally, using the relation

between the Romans mass parameter and the induced Chern-Simons level [8]

m = F(0) =
k

2πℓs
, (4.5)

we can express the free energy of the N = 3 supergravity solution in terms of k and N

Fgravity =
9π

40
31/6k1/3N5/3. (4.6)

Various field strengths

F(2) = dA(1) +mA(2), F(3) = dA(2),

F(4) = dA(3) +A(1) ∧ dA(2) +
m

2
A(2) ∧A(2), (4.7)

are invariant under the gauge transformations

A(1) → A(1) − dΛ(0) −mΛ(1), A(2) → A(2) + dΛ(1),

A(3) → A(3) + dΛ(3) − dΛ(0) ∧A(2) −mΛ(1) ∧A(2) −
m

2
Λ(1) ∧ dΛ(1). (4.8)

However, apparently the Page charge (4.1) is not gauge invariant. The charge density in (4.1)

is shifted by terms of the form

F̃(6) → F̃(6) + dΛ(0) ∧ d(A(2) ∧A(2)) + dΛ(1) ∧ dA(3) −
m

2
· d(Λ(1) ∧A(2) ∧A(2)). (4.9)

Because the internal space of the N = 3 solution is a smooth deformation of S6, its topology

must be the same as that of S6. We know H1(S
6) = 0 and H2(S

6) = 0, hence Λ(0) in dΛ(0)

and Λ(1) in dΛ(1) are globally defined. We also checked that all the gauge potentials are

globally defined too. Thus, the Page charge (4.1) is in fact gauge invariant.
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The free energy for a generic D = 3 N = 2 Chern-Simons quiver theory on S3 has been

investigated in [35]. For a theory with G SU(N) gauge fields and some number of bifunda-

mental and adjoint chiral multiplets, giving the R-charge spectrum {∆I : I ∈ matter fields},
in the limit N ≫ k, the free energy reads

F =
3
√
3π

20 · 21/3
{
G+

∑

I∈matter fields

(1−∆I)
(
1− 2(1 −∆I)2

)}2/3

k1/3N5/3. (4.10)

In N = 2 notation, the N = 3 theory possesses a single SU(N) gauge group and two chiral

multiplets. The N = 3 superconformal symmetry determines the value of the U(1)R-charge

carried by the lowest component in the chiral multiplet to be 1
2 . Therefore, from (4.10), we

obtain

FN=3
SCFT =

9π

40
31/6k1/3N5/3, (4.11)

which agrees precisely with the free energy of the N = 3 solution. Comparing the free energy

of the N = 3 SCFT with that of the N = 2 SCFT [31], we see

FN=3
SCFT < FN=2

SCFT, (4.12)

which is compatible with the expectation from F-theorem [62] in D = 2+1 dimensions, since

the N = 3 SCFT can be arrived via an RG-flow starting from the N = 2 SCFT in the

UV [27].

5 Discussions and conclusions

In this paper we use direct KK reduction to calculate the spectrum of spin-2 modes around

the N = 3 warped AdS4 × M6 solution in massive IIA supergravity. This solution was

conjectured to be dual to the N = 3 superconformal SU(N) Chern-Simons matter theory

with 2 adjoint chirals [34]. The SO(3)R×SO(3)D isometry of the N = 3 solution is identified

with the SU(2)F × SU(2)R global symmetry of the dual N = 3 SCFT. The KK spectrum

of spin-2 modes includes both BPS states and non-BPS states. The former belong to the

short graviton multiplets DS(2, jR + 3/2, jR|3) of OSP(3|4) whilst the latter fall into the

long graviton multiplets. The SO(3)R × SO(3)D quantum numbers and the AdS energies

carried by the BPS spin-2 excitations match precisely with those carried by the spin-2 gauge

invariant operators in the spectrum of BPS operators of the N = 3 SCFT. The harmonics

associated with the BPS spin-2 modes in the bulk also provide clues for the expressions

of the spin-2 gauge invariant operators on the boundary CFT. It would be interesting to

extend the analysis performed in the paper to KK excitations of different AdS4 spins. This

15



is made harder by the relatively small amount of symmetry in this background and by fairly

complicated expressions for the background metric and various form fluxes.

We performed a further check of the conjectured duality by comparing the free energy of

the supergravity solution with that of theN = 3 superconformal SU(N) Chern-Simons matter

theory with 2 adjoint chirals. We show that these two quantities agree with each other. We

expect this agreement still holds when the AdS vacuum is replaced by an AdS black hole and

the dual CFT is at non-zero temperature. However, to confirm this expectation, one needs

black hole solutions asymptotic to the N = 3 warped AdS vacuum in massive IIA. Thus it

should be interesting to look for such black hole solutions. Another interesting solution is the

N = 2 domain wall solution interpolating between the N = 2 solution [31] and the N = 3

solution [45], since the CFT dual to the N = 2 solution flows to the one dual to the N = 3

solution when one of the three chiral multiplets acquires a mass term [27].

A N = 3 Solution in vielbein basis

In this appendix, we present a vielbein system for the N = 3 solution which inherits the

SO(3)R × SO(3)D isometry of the metric. This vielbein system should be useful for solving

the spectrum of fermionic fluctuations around the N = 3 vacuum. We first introduce a few

definitions

ℓi1 ≡ ∂φ2
(
νi

cos ξ
), ~ℓ1 = (0, − sinφ2, cosφ2),

~ℓi2 ≡ ∂θ2(
νi

cos ξ
), ~ℓ2 = (− sin θ2, cos θ2 cosφ2, cos θ2 cosφ2),

~ℓi3 ≡
νi

cos ξ
, ~ℓ3 = (cos θ2, sin θ2 cosφ2, sin θ2 sinφ2),

Ki ≡ µAηiABdµ
B , J i ≡ ǫijkνjdνk. (A.1)

From now on, we will set g = 1, m = 2 for brevity. The dependence on generic values of

g, m can be recovered using the scaling symmetry [45]. A choice of the SO(3)R × SO(3)D
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invariant vielbein system is the following

ê0 = 3
3
4
4 ∆−1

2 e0, ê1 = 3
3
4
4 ∆−1

2 e1,

ê2 = 3
3
4
4 ∆−1

2 e2, ê3 = 3
3
4
4 ∆−1

2 e3,

ê4 =
3
3
4

sin ξ

√
2(3 + cos 2ξ)

Ξ∆
ℓi1(Ki +

sin2 ξ

3 + cos 2ξ
J i),

ê5 =
3
3
4

sin ξ

√
2(3 + cos 2ξ)

Ξ∆
ℓi2(Ki +

sin2 ξ

3 + cos 2ξ
J i),

ê6 =
3
3
4

sin ξ
√

2(3 + cos 2ξ)∆
ℓi3Ki,

ê7 =
3
3
4

2 cos ξ
√
∆
ℓi1(

νidξ√
2

+
J i

√
3 + cos 2ξ

),

ê8 =
3
3
4

2 cos ξ
√
∆
ℓi2(

νidξ√
2

+
J i

√
3 + cos 2ξ

),

ê9 =
3
3
4

2 cos ξ
√
∆
ℓi3(

νidξ√
2

+
J i

√
3 + cos 2ξ

), (A.2)

in which e0, · · · , e3 comprise a vierbein system of the “unit” AdS4. In the vielbein basis given

above, the field strengths take the form

F̂2 =

[
16∆ cos ξ sin2 ξ

3
√
3(3 + cos 2ξ)2

ê4 ∧ ê5 + 4Ξ
1
2∆sin ξ(5 + cos 2ξ)

3
√
6(3 + cos 2ξ)2

(ê4 ∧ ê8 − ê5 ∧ ê7)

+
32∆ sin2 ξ

3
√
3(3 + cos 2ξ)3/2

ê6 ∧ ê9 − 16∆ cos ξ(5 + cos2 ξ)

3
√
3(3 + cos 2ξ)2

ê7 ∧ ê8
]
, (A.3)

F̂3 = 8∆
3
2 3−

5
4

[
8
√
2(2 + 9 cos2 ξ + 5cos4 ξ)

(3 + cos 2ξ)Ξ
ê4 ∧ ê5 ∧ ê9 + (3 + cos 2ξ)

3
2√

Ξ
ê4 ∧ ê6 ∧ ê7

+
4cos ξ(4 + 3 cos2 ξ + cos4 ξ)

(3 + cos 2ξ)
√
Ξ

ê4 ∧ ê8 ∧ ê9 + (3 + cos 2ξ)
3
2√

Ξ
ê5 ∧ ê6 ∧ ê8

−4 cos ξ(4 + 3 cos2 ξ + cos4 ξ)

(3 + cos 2ξ)
√
Ξ

ê5 ∧ ê7 ∧ ê9 +
√
2 sin ξ

3 + cos 2ξ
ê7 ∧ ê8 ∧ ê9

]
, (A.4)

F̂4 = 16
9 ∆

2

[
− 2 cos ξ(4 + 3 cos2 ξ + cos4 ξ)

(3 + cos 2ξ)3/2
ê4 ∧ ê5 ∧ ê6 ∧ ê9 + (5 + 3 cos 2ξ)

2
ê4 ∧ ê5 ∧ ê7 ∧ ê8

+

√
Ξsin ξ√

2(3 + cos 2ξ)3/2
ê4 ∧ ê6 ∧ ê8 ∧ ê9 −

√
Ξsin ξ√

2(3 + cos 2ξ)3/2
ê5 ∧ ê6 ∧ ê7 ∧ ê9

−2 cos ξ(4 + 9 cos2 ξ + 3cos4 ξ)

(3 + cos 2ξ)3/2
ê6 ∧ ê7 ∧ ê8 ∧ ê9

]
+

3
√
3

8
e0 ∧ e1 ∧ e2 ∧ e3. (A.5)

Finally, the dilaton is given by

e−
3

2
φ̂ =

∆Ξ

3
√
3(cos 2ξ + 3)

. (A.6)
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