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Abstract

We exploit a recent advance in the study of interacting topological superconductors
to propose a solution to the family puzzle of particle physics in the context of SO(18)
(or more correctly, Spin(18)) grand unification. We argue that Yukawa couplings of
intermediate strength may allow the mirror matter and extra families to decouple at
arbitrarily high energies. As was clear from the existing literature, we have to go beyond
the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry
breaking which results in the SU(5) grand unified theory with horizontal or family
symmetry USp(4) = Spin(5) (or more loosely, SO(5)) leaves exactly three light families
of matter and seems particularly appealing. We comment briefly on an alternative
scheme involving discrete non-abelian family symmetries. In a few lengthy appendices
we review some of the pertinent condensed matter theory.

I The family problem

Forces are unified, but matter is not. That quarks and leptons are repeated in three
families is one of the most nagging puzzles in particle physics. Long ago, it was observed
that the spinor representation of orthogonal groups, upon restriction to an orthogonal
subgroup, decomposes into a bunch of spinors of the smaller group in a repetitive
structure highly suggestive of the observed families [1, 2, 3, 4].1 In the SO(18) (strictly,
Spin(18)) grand unified theory (GUT), all known fermions are components of a single
irreducible 256+ spinor representation, and matter is unified at high energy scales.

Unfortunately, in this scheme, in addition to the desired 16+s to which quarks and
leptons belong in SO(10) (strictly, Spin(10)) unification [5], we also obtain an equal
number of 16−s which are unknown experimentally. In the original literature, it was
suggested that these 16−s acquire large masses and/or are permanently confined by a

∗Current affiliation: Institute for Quantum Information and Matter, California Institute of Technology,
Pasadena, CA 91125, USA

1In addition to the highly attractive repetitive structure provided naturally by the theory of orthogonal
groups, we also find it intriguing that spacetime is also governed by an orthogonal group, namely the Lorentz
group SO(3, 1) (or more correctly, Spin(3, 1) = SL(2, C)).
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“heavy color” gauge group. See the references cited above for details.

A seemingly unsurmountable stumbling block is that in the standard Higgs mecha-
nism, large fermion masses necessarily break the gauge symmetry and give the gauge
bosons large masses, contrary to observation. Thus, it was already clear long ago that,
in order for spinorial unification to work, we must somehow evade or go beyond the
Higgs mechanism. Recent developments in condensed matter physics afford us precisely
this opportunity, which we will outline in detail below.

II Mass without mass terms: Kitaev-Wen mechanism

It was recently argued by X. G. Wen that the Spin(10) unified theory can be regular-
ized on a 3d spatial lattice with continuous time [6]. The low energy limit of lattice
gauge theory is necessarily non-chiral [7], so the continuum fermion fields that emerge
from a Spin(10) lattice gauge theory must transform as the reducible representation
16+ ⊕ 16−. The conclusion of Wen’s paper implies that the 16− mirror fermions must
have somehow obtained mass and decoupled from the low energy theory without break-
ing Spin(10) and without giving mass to the gauge bosons. (Later, it was realized that
the method of defect condensation can also be employed to support this conclusion
[8, 9]. See Appendix A.)

The same type of argument was independently proposed by A. Kitaev to show that
the free-fermion classification of 3He-B reduces under interactions from Z to Z16 [10].
This means that 16 copies of topological superconductor2 can be smoothly deformed
into an ordinary superconductor without going through a bulk phase transition and
without breaking time reversal invariance. (This conclusion was later verified by a dif-
ferent approach [13].) This means the protected gapless (2+1)-dimensional edge modes
decouple from the low energy theory even though time reversal symmetry forbids all
mass terms in the Lagrangian. This also means that the (3 + 1)-dimensional bulk the-
ory can be tuned through the point m = 0 without closing the bulk mass gap. Lattice
simulations supporting these types of arguments have also appeared recently [14, 15].3

Therefore, from these recent developments in condensed matter theory, we learn that
in very special cases, one of which serendipitously happens to be the Standard Model
(SM), it is possible for the fermion single particle spectrum to obtain an interaction-
induced energy gap without any explicit fermion mass term in the Lagrangian. We will
refer to this argument for “mass without mass terms” as the Kitaev-Wen mechanism.
We emphasize again that in this approach, in contrast to the Higgs mechanism, the
electroweak gauge symmetry remains unbroken and the gauge bosons remain massless.
(This point will be discussed in Sec. II.2.)

Let us state at the outset that this argument forces us to carefully reconsider some

2The reader who is unfamiliar with the concept of topological superconductor may wish to consult [11]
and [12]. However, it is not necessary to master these references in order to understand our paper.

3After the first draft of our paper was posted, additional numerical work appeared to further support the
idea that this transition can be described by a continuum field theory [16].
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long-standing wisdom about how fermions obtain mass, and it is certainly a radical
departure from the standard orthodoxy in particle physics. We will follow closely the
argument as presented in [6], focusing on those aspects which pertain to particle physics
rather than those pertaining to the continuum limit of lattice gauge theory.

II.1 Single particle spectrum in Spin(10) unification

Let ψ transform as a left-handed chiral spinor of the Lorentz group and as a 16+ chiral
spinor of Spin(10):

ψ ∼ (2, 1) of Spin(3, 1) , ψ ∼ 16+ of Spin(10) . (II.1)

We use the two-component Weyl spinor notation for the Lorentz group but the reducible
Dirac spinor notation for the Spin(10) flavor group. The field ψ has 2× 32 = 64 com-
ponents, half of which are set to zero by the condition 1

2 (I32×32 − ΓF )ψ = 0, where ΓF

is the chirality matrix of Spin(10).

As is well known, since 16+ ⊗S 16+ = [1] ⊕ [5]+ (where [k] denotes the k-index an-
tisymmetric tensor, and the superscript + on the right-hand side denotes self-duality)
we can introduce scalar fields φ transforming as [1] and [5]+ and write down the fol-
lowing Yukawa interactions:

LYuk = −1
2 ψ

T
(
iσ2 ⊗ (y10 φaCΓa + y126 φa1...a5CΓa1 ...Γa5)

)
ψ + h.c. (II.2)

Here a = 1, ..., 10 labels the vector representation of Spin(10), and Γa and C are the
gamma matrices and charge conjugation matrix for Spin(10), which are 32-by-32 ma-
trices. The 5-index tensor φa1...a5 has an implied total antisymmetry and self-duality

condition in Spin(10) and hence has 1
2

(
10
5

)
= 126 independent components.

Let us set y126 = 0 and only consider the coupling to φa ∼ 10. (We will briefly
consider the 126 in Appendix A.2.) If this field condenses, say 〈φa〉 = v δa,10, then the
Spin(10) theory breaks to Spin(9), and all fermions obtain mass. (The 16+ and 16−

of Spin(10) become the same 16-spinor of Spin(9), and a bare mass term would be
allowed in a Spin(9) theory.)

The usual assumption is that when this field does not condense, i.e. 〈φa〉 = 0, the
fermions are massless. In fact this assumption is based on weak coupling perturbation
theory and must be re-examined when the coupling is strong enough so as to inval-
idate a simple perturbative expansion. Moreover, strong coupling methods such as
those employed in [17] roughly correspond to an expansion around y = ∞, and those
methods may have to be re-examined when y is not so large. This means we are inter-
ested in the region of intermediate coupling [18], heuristically meaning y ∼ 1/y or y ∼ 1.

To study the single particle dispersion relation in the regime of intermediate Yukawa
coupling, we will pass to the Hamiltonian formalism and a Majorana description of the
fermions. If ψ is a left-handed Weyl spinor, then we can define a 4-component Majorana
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spinor4

Ψ ≡

(
ψ

−iσ2ψ
∗

)
. (II.3)

For further convenience, also define the matrix-valued fields

ΦR ≡ 1
2{C,Γ

a}φa = 1
2

5∑

i=1

{C,Γ2i}φ2i , ΦI ≡
1
2i [C,Γ

a] = 1
2i

5∑

i=1

[C,Γ2i−1]φ2i−1 . (II.4)

The Hamiltonian density for a Majorana spinor with the Yukawa interaction in Eq. (II.2)
with y126 = 0 is:

H = −1
2Ψ
{
γi ⊗ I i∂i + y10

(
I ⊗ ΦR − iγ5 ⊗ ΦI

)}
Ψ . (II.5)

Let us analyze this Hamiltonian using a Born-Oppenheimer approximation in which we
treat φa as a slowly varying background field. Then to leading order we can drop the
gradients of φa and then Fourier transform to momentum space to obtain

∫
d3xH =∫ d3p

(2π)3
1
2Ψ̃

†(~p )H(~p, ~φ ) Ψ̃(~p ), where

H(~p, ~φ ) = γ0γi ⊗ I pi − y10
(
γ0 ⊗ ΦR − iγ0γ5 ⊗ ΦI

)
. (II.6)

Since P ≡ γ0γi ⊗ Ipi anticommutes with M ≡ −y10
(
γ0 ⊗ΦR − iγ0γ5 ⊗ΦI

)
, and since

Φ 2
R =

(∑5
i=1 φ

2
2i

)
I, Φ 2

I =
(∑5

i=1 φ
2
2i−1

)
I, and {ΦR,ΦI} = 0, we can square the

above Hamiltonian to obtain the single particle dispersion relation:

E(~p, ~φ )2 = ~p 2 + y210
~φ 2 . (II.7)

The energy required to produce a single fermion above the vacuum is then:

∆(~φ) ≡ |E(~p = 0, ~φ)| = |y10|(~φ
2)1/2 . (II.8)

In the path integral for φa, the quantity (~φ 2)1/2 in Eq. (II.8) should be understood as
〈~φ 2〉1/2. If the field φa has zero mean then the Spin(10) symmetry remains unbroken:

〈~φ〉 = 0 (no symmetry breaking) . (II.9)

If the field φa satisfies Eq. (II.9), then the variance

σφ ≡
(
〈~φ 2〉 − 〈~φ 〉2

)1/2
(II.10)

simply equals 〈~φ 2〉1/2, namely the quantity in Eq. (II.8). Therefore, if the symmetry
is unbroken, it nevertheless costs nonzero energy to create a fermion provided that the
field also satisfies:

〈~φ 2〉 6= 0 (nonzero gap) . (II.11)

If Eqs. (II.9) and (II.11) are satisfied simultaneously, the fermions appear to have mass
without symmetry breaking.

4This satisfies Ψ = Ψc with Ψc ≡ iγ2Ψ∗.
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The condition in Eq. (II.11) could be violated if the scalar field theory admits topological
defects, since the Euclidean action would have a nonzero imaginary part5. However, for
a fixed value of the Spin(10)-invariant magnitude ||φ|| ≡ (~φ 2)1/2, the angular variables
φ̂a ≡ φa/||φ|| satisfy:

φ̂a ∈ S9 . (II.16)

The topological charges of defects take values in the homotopy groups Πk(S
9) for k =

0, ...,D, where D is the number of physical spatial dimensions. Since

Π0(S
9) = Π1(S

9) = Π2(S
9) = Π3(S

9) = 0 (II.17)

there are no stable topological defects. Configurations for which 〈~φ 2〉 = 0 contribute
with measure zero to the scalar field path integral, and the quantity ∆(~φ) in Eq. (II.8)
is nonzero.

However, even when there are no defects and both conditions Eqs. (II.9) and (II.11)
are satisfied, the effective action for φa may in principle contain a Θ term. Depending
on the value of Θ the theory may still contain massless particles (see Appendix B).
Fortunately, we have

Π4(S
9) = 0 (II.18)

so there is no Θ term in the effective action for φa. The single particle spectrum is
indeed fully gapped as indicated by Eq. (II.8).

Furthermore, in 3+1 dimensions the quantity

〈~φ 2〉 ≡ lim
y→x

〈~φ(x)~φ(y)〉 (II.19)

5Consider the following toy example from ordinary statistics. Let φ ∈ (−∞,+∞) be a real random
variable drawn from the gaussian distribution

P (φ) = e−
1
2m

2φ2

, m2 > 0 . (II.12)

The partition function is Z =
∫∞

−∞
dφP (φ), and the quantity

〈φ2〉 =
1

Z

∫ ∞

−∞

dφP (φ)φ2 =
1

m2
(II.13)

is obviously positive. Now consider a modified distribution:

P̃ (φ) ≡ P (φ) e
1
2 iπ sgn(φ) . (II.14)

Then we have:

∫ ∞

−∞

dφ P̃ (φ)φ2 =

∫ ∞

0

dφP (φ) (+i)φ2 +

∫ 0

−∞

dφP (φ) (−i)φ2 = i

(∫ ∞

0

dφP (φ)φ2 − (−1)2
∫ ∞

0

dφP (φ)φ2
)

= 0 .

(II.15)

The modified partition function Z̃ =
∫∞

−∞
dφ P̃ (φ) itself vanishes, so strictly speaking the expectation values

are indeterminate. For the bosonic path integral in Euclidean signature, if the action without topological
terms is denoted S0 and the topological contributions are denoted iStop (with S0 and Stop real), then the

quantity P (φ) plays the role of e−S0 , and the quantity P̃ (φ) plays the role of e−S0+iStop .
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is a quantity of the order of magnitude of the energy cutoff in the theory. In this paper
we will assume complete ignorance as to the appropriate resolution of the hierarchy
problem, and therefore we treat cutoff-dependent quantities in scalar field theory as
free parameters. So not only do the fermions have mass, but they have a mass which
may in principle be much higher than the scale of Spin(10) unification.

Note that this is consistent with the unitarity bounds obtained by Appelquist and
Chanowitz [19]. The reason is that they introduce bare fermion mass terms which
explicitly break the SU(2) × U(1) electroweak gauge symmetry. Their analysis is per-
fectly self-consistent, but it does not provide any bound on the single-particle gap
generated via the Kitaev-Wen mechanism, in which explicit mass terms never appear,
and SU(2)× U(1) remains unbroken.

So far we have treated Spin(10) as a global symmetry and have said nothing about
the corresponding gauge theory. If this method is to have any relevance to unification
in particle physics, we must explain why the gauge bosons remain massless while the
fermions obtain mass.

II.2 Massless gauge bosons

At this stage, the goal is to explain how to recover the GUT-scale phenomenology of
the Spin(10) unified theory: massless ordinary fermions, massless gauge bosons, and
no mirror fermions. So if we are to embed the theory in Spin(18), then the condition
of “no mirror fermions” means “decouple the mirror fermions at energy scales above
MGUT ∼ 1016 GeV.”

Concretely, for one family of matter ψ ∼ 16+ and one family of mirror matter ψ′ ∼ 16−,
we are interested in the following Lagrangian:

L = 1
2tr (XµνX

µν) + 1
2(Dµφ)

T (Dµφ) + ψ†σ̄µiDµψ + ψ′†σ̄µiDµψ
′

− 1
2

10∑

a=1

(
y10ψ

T iσ2 ⊗CΓaψ + y′10 ψ
′T iσ2 ⊗ CΓaψ′ + h.c.

)
φa . (II.20)

Here Xµν = ∂µXν −∂νXµ+
1
2g[Xµ,Xν ] is the Spin(10) field strength, Xµ is the matrix

of Spin(10) gauge fields, (Dµφ)a = (δab∂µ + gXab
µ )φb is the Spin(10) gauge covariant

derivative for the scalar field φa ∼ 10, and Dµψ = (I∂µ + gXab
µ (12ΣabP+))ψ, Dµψ

′ =
(I∂µ + gXab

µ (12ΣabP−))ψ′ are the Spin(10) covariant derivatives6 for the fermions ψ ∼
16+, ψ′ ∼ 16−.

Let T ab
i = −T ba

i (i = 1, ..., 45) generate the 10-representation of Spin(10), and let
Xab

µ ≡
∑45

i=1X
i
µT

ab
i . If we expand the kinetic term for the scalar field, we find the

usual quadratic interaction for the gauge fields:

Xi
µM

2
ijX

jµ , M
2
ij = g2 φa(TiTj)abφb = g2

10∑

a=1

φ 2
a . (II.21)

6Here Σab ≡ −i 12 [Γa,Γb] and P± ≡ 1
2 (I ± ΓF ).
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If we naively compare this to Eq. (II.8), we might worry that this strong coupling ar-
gument also gives mass to the gauge bosons and hence does not reproduce the usual
GUT-scale phenomenology. But the formula on its own may be misleading, and we
have to be more careful when interpreting the interactions of the various fields with
the scalar. To understand this, let us reconsider the difference between the ordinary
fermions and the mirror fermions.

Since the coupling of the ordinary fermions to the Higgs field is taken to be weak
(y10 ≪ 1), the ordinary fermions perceive the Higgs field as a collection of individual
bosons which can be exchanged with an amplitude y10. However, since the coupling of
the mirror fermions to the Higgs field is not taken to be weak (y′10 ∼ 1), the mirror
fermions see a wildly fluctuating scalar field instead of a collection of particles. There-
fore, as far as the mirror fermions are concerned we may replace the “fluctuations”
by the slowly-varying “trend,” and thereby drop the Higgs kinetic term and replace φa
with a constant.

The issue of whether the gauge bosons obtain mass then depends on whether the gauge
coupling g is weak. Since the usual scheme is to assume perturbative unification, we
should have g small: as far as the gauge bosons are concerned we cannot drop the Higgs
kinetic term, and we have massless gauge bosons exchanging individual Higgs bosons
as in the usual picture.

II.3 Physical picture

The claim that, in certain special situations, fermions can obtain mass without mass
terms in the Lagrangian is so counter to the standard orthodoxy in particle physics that
we should at least attempt to provide some physical picture for what might be going
on. One precise way to think about this phenomenon is to focus on the propagator for
the fermion field. The Lehmann-Kallen decomposition for the fermion propagator is7:

−iD(p) =

∫ ∞

0
ds

ρ1(s) 6p+ s1/2ρ2(s)I

p2 − s+ iε
. (II.22)

The spectral density functions ρ1(s) and ρ2(s) are constrained by positivity to satisfy
the following inequalities [20]:

ρ1(s) ≥ 0 , ρ1(s) ≥ |ρ2(s)| . (II.23)

Consider the transformation ψ → γ5ψ that flips the sign of the mass bilinear ψ̄ψ. Under
this transformation, the function ρ1(s) is even while the function ρ2(s) is odd. If this
transformation is a symmetry of the effective Lagrangian, then ρ2(s) must be zero. If
there is an isolated single particle pole at s = ∆2 with residue 1, then the propagator
for a theory of “massive fermions without mass terms” takes the form:

−iD(p) =

(
1

p2 −∆2 + iε
+

∫ ∞

mth

ds
σ(s)

p2 − s+ iε

)
6p (II.24)

where σ(s) ≡ ρ1(s)− δ(s−∆2) is the spectral density without the single-particle pole,
and the scale mth determines the onset of the multiparticle continuum. Note that,

7We use metric signature ηµν = diag(+,−,−,−).
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while unfamiliar, the condition ρ2(s) = 0 is perfectly consistent with the constraints in
Eq. (II.23).

The rank of the matrix M ≡ ρ1(s)γ
µpµ is double the rank of the matrix M ′ ≡

ρ1(s)γ
µpµ + s1/2ρ2(s)I, so one physical interpretation of the Kitaev-Wen mechanism is

that the interactions generate a new “soliton”-like sector of the theory with the same
quantum numbers as the original particles. In this sense, we may think of the Kitaev-
Wen mechanism as a “particle doubling” effect [21] that only becomes possible when
the number of chiral fermions is a multiple of 16 (in 3+1 dimensions).

We will now argue that the Kitaev-Wen mechanism from condensed matter physics
and lattice gauge theory allows us to propose a novel solution to the family puzzle in
the context of the Spin(18) theory of family unification.

III Family unification with Spin(18)

The usual symmetry breaking pattern for the Spin(18) model is Spin(18) → Spin(10)×
Spin(8). Another potentially interesting pattern is the breaking to the maximal unitary
subgroup, i.e. Spin(18) → U(9). We will explore both possibilities.

III.1 Spin(18) → Spin(10)× Spin(8)

The fermions will be denoted by Ψ ∼ 256+. The Higgs fields which can couple to the
fermion mass bilinears in this model transform as [1] = 18, [5] = 8568, and [9]+ = 24310.
Consider the smallest Higgs representation and introduce a scalar field ΦM ∼ [1], where
M = 1, ..., 18 labels the Spin(18) vector:

LYuk = Y18

18∑

M =1

ΦM ΨT iσ2 ⊗ CG
MΨ+ h.c. (III.1)

Here G
M and C are the gamma matrices and charge conjugation matrix for Spin(18),

which are 512-by-512 matrices. Suppose Spin(18) gets broken to Spin(10) × Spin(8)
at a scale MUV. The fermions break up into

ψ ∼ (16+, 8+) , ψ′ ∼ (16−, 8−) (III.2)

and the Higgs field breaks up into

φa ∼ (10, 1) , ϕi ∼ (1, 8v) . (III.3)

At energy scales below MUV, we end up with Yukawa interactions of the form:

LYuk =

10∑

a=1

φa
(
y10 ψ

T iσ2 ⊗ CΓa ⊗ C ψ + y′10 ψ
′ T iσ2 ⊗ CΓa ⊗ C ψ′)

+ y8

8∑

i=1

ϕi

(
ψT iσ2 ⊗ C ⊗ CGi ψ′ + ψ′T iσ2 ⊗ C ⊗ CGi ψ

)
+ h.c. (III.4)
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with the couplings y10, y
′
10, and y8 no longer being equal. (As before, Γa and C denote

the gamma matrices and charge conjugation matrix for Spin(10), and we have intro-
duced Gi and C as the corresponding matrices for Spin(8).)

Suppose for the moment that the field ϕi ∼ (1, 8) plays no essential role. Then we
have 8 copies of the situation described previously plus 8 copies of the same situation
for mirror matter. Let MIR be an intermediate energy scale far below MUV but far
above v ∼ 246 GeV at which SU(2)× U(1) is broken:

v ≪MIR ≪MUV . (III.5)

The mirror matter will decouple via the Kitaev-Wen mechanism while the ordinary
matter will remain massless provided that the mass-squared parameter M2

φ for the
φa ∼ 10 is positive and the Yukawa couplings satisfy:

y10(MUV) = y′10(MUV) ≡ Y18(MUV) , y10(MIR) ≪ y′10(MIR) ∼ 1 . (III.6)

The success of this approach rests completely on the dynamical plausibility of the
conditions in Eq. (III.6). Since we are interested in a strong coupling effect, it is
difficult to say more about this issue.

III.2 Spin(18) → U(9)

Now we will study an alternative symmetry breaking pattern based on Spin(2n) →
U(n). For the case at hand (n = 9), the positive-chirality spinor decomposes as:

256+ → [0]⊕ [2]⊕ [4]⊕ [6]⊕ [8] = 1⊕ 36⊕ 126 ⊕ 84∗ ⊕ 9∗ . (III.7)

The equality denotes the dimension of the representation in SU(9), which has a 9-index
invariant epsilon symbol that can be used to raise and lower indices. It is convenient
to think in terms of the familiar SU(5) GUT, so we will organize the discussion in
terms of the subgroup SU(5) × SU(4) of SU(9) defined by breaking the fundamental
representation in the obvious way:

9 → (5, 1) ⊕ (1, 4) . (III.8)

To further organize the discussion, it is useful to introduce the notation

(a, b)[k] . (III.9)

This denotes a representation “a” of SU(5), a representation “b” of SU(4), and the
representation [k] of SU(9) in which the (a, b) of SU(5)× SU(4) is contained.8 In this
notation, the matter and mirror matter of the Spin(18) GUT transform as:

• Matter:

(5∗, 1)[8] , (5∗, 1)[4] , (5∗, 6)[6] , (10, 1)[2] , (10, 1)[6] , (10, 6)[4] . (III.10)

8This notation also reminds us that the U(1) charge in U(9) = (SU(9)/Z9) × U(1) of the representation
[k] is simply k.
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• Mirror matter:

(5, 4)[4] , (5, 4∗)[2] , (10∗, 4)[4] , (10∗, 4∗)[6] . (III.11)

The decomposition in Eq. (III.7) also results in 16 SM-singlet antineutrinos, as it must.
The representations which are invariant under SU(5) but transform nontrivially under
SU(4) are (1, 6)[2], (1, 4)[6], and (1, 4∗)[8]. The representations which are fully invariant
under SU(5)× SU(4) are (1, 1)[0] and (1, 1)[4].

Notice that the matter comes in real representations of SU(4) while the mirror matter
comes in the vectorlike combination 4⊕ 4∗. Therefore, all SU(4) anomalies cancel for
the matter and mirror matter separately, and anomaly matching does not impose an
obstacle for decoupling the mirror matter.

Recall that in SU(5) the mass terms come from the products 5∗⊗10 and 10⊗A10, which
couple to a 5∗ and 5 of Higgs, respectively. In SU(4), we have 4 ⊗ 4∗ = 1 ⊕ 15adjoint,
so we can write down the following Yukawa interactions for the mirror fermions ψ′ ∼
(5⊕ 10∗, 4⊕ 4∗) and a Higgs field Hi ∼ 5:

LYuk = Hi

(
yD ψ

′T
jαiσ2 ψ

′[ij]α + y′D ψ
′Tα
j iσ2 ψ

′[ij]
α

)
+H†iǫijkℓm

(
yU ψ

′T [jk]
α iσ2 ψ

′[ℓm]α
)
+ h.c.

(III.12)

Here i, j = 1, ..., 5 label the fundamental of SU(5), and α = 1, ..., 4 labels the funda-
mental of SU(4). Since H is a 5-component complex vector, we can define real fields
χ2i−1 ≡ Re(Hi) and χ2i ≡ Im(Hi) and observe that H†H =

∑10
I=1 χ

2
I is actually in-

variant under SO(10) transformations. So the Kitaev-Wen argument in this case is
exactly the same as before:

SU(5)/SU(4) = SO(10)/SO(9) = S9 , Πk(S
9) = 0 , k = 0, ..., 4 . (III.13)

If M2
Φ is positive, and if y′D and y′U are not perturbatively small, then the mirror

fermions can obtain UV-scale masses and decouple at low energy.

IV Three families with SU(5)× USp(4) symmetry

We have argued that the mirror matter can decouple if certain conditions such as
Eq. (III.6) for the Yukawa couplings are satisfied at energies below the Spin(18) unifi-
cation scale. To reproduce only the experimentally observed families, we want the extra
families of ordinary matter to decouple from the low energy theory as well. For this
purpose we will explore a further symmetry reduction of the horizontal gauge group.
(In this section we will continue to imagine that the symmetry reduction occurs via
Spin(18) → U(9) → SU(5)× SU(4).)

The breaking of SU(4) = Spin(6) into USp(4) = Spin(5) can be understood as the
breaking of SO(6) into SO(5) defined by leaving one component of the 6-vector fixed:

6 → 5⊕ 1 . (IV.1)
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The 4 and 4∗ then become two copies of the same 4-component irreducible Dirac spinor
of Spin(5). The matter and mirror matter then transform as:

(5∗ ⊕ 10, 1 ⊕ 1⊕ 1)︸ ︷︷ ︸
known matter

⊕ (5∗ ⊕ 10, 5)︸ ︷︷ ︸
extra matter

⊕ (5⊕ 10∗, 4⊕ 4)︸ ︷︷ ︸
mirror matter

(IV.2)

Thus, as observed in Ref. [1, 2, 3], we are left with three families of matter which trans-
form trivially under the horizontal gauge group.

If USp(4) were to remain asymptotically free and induce an SU(5)-breaking fermion
bilinear condensate, we would need to explain how the five extra families of 5∗ ⊕ 10
could have masses much larger than 1 TeV while the known fermions have their experi-
mentally measured masses. This was the original problem with the “heavy color” idea.

However, if there is a sufficiently large quantity of matter such that the USp(4) gauge
group is not asymptotically free, then we can use the Kitaev-Wen argument again, this
time to decouple the extra families of ordinary matter. If we simply posit that the
Yukawa couplings for the extra matter are also large, then the interactions with an
appropriate scalar field (with positive mass-squared parameter) would decouple these
fermions as well.

V SU(5)× SU(2) and non-abelian discrete groups

Since we no longer require the confinement of heavy color to conceal the extra families,
we could take a different point of view regarding the breaking of the SU(4) horizon-
tal gauge group9 and instead suppose that the nontrivial representations describe the
known families [23]. Then one could hope that the quark and neutrino mixing matrices
could be explained by group theory [24, 25, 26, 27].

For example, let us continue the train of thought that lead to USp(4) and further
break the horizontal group down to Spin(3) = SU(2). Then we have 5 → 3⊕ 1⊕ 1, so
we get:

(5∗ ⊕ 10, 1 ⊕ 1⊕ 1⊕ 1⊕ 1⊕ 1)︸ ︷︷ ︸
extra matter

⊕ (5∗ ⊕ 10, 3)︸ ︷︷ ︸
known matter

(V.1)

where we have accordingly switched the identification of extra matter and known mat-
ter. It is then possible to conceive of a Higgs sector which would break this down
to a discrete non-abelian subgroup of SO(3) [28, 29]. For example, in the breaking
SO(3) → A4, the three families would transform as an irreducible triplet [30].

However, part of the attraction of the group A4 is its two nontrivial singlet repre-
sentations, the 1′ and 1′′. In SO(3) → A4, these come from the traceless symmetric
tensor, 5S → 1′ ⊕ 1′′ ⊕ 3. (For a review, see Ref. [31].) In our scheme based on
SU(9) embedded in Spin(18), the fermions will always transform as antisymmetric
tensor representations [k] of SU(9), which will only give us spinors and vectors of

9C. Luhn has studied in detail the breaking of an SU(3) horizontal gauge group into non-abelian discrete
subgroups [22].
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SU(4) = Spin(6), USp(4) = Spin(5), SU(2) × SU(2) = Spin(4), or SU(2) = Spin(3).

Along these lines, if we began with the 256− spinor of Spin(18) instead of the 256+, then
the resulting representations of SU(4) would be swapped: the matter would transform
as 4⊕ 4∗, and the mirror matter would transform as 1⊕ 1⊕ 6. Under SU(4) → SU(2),
we would have the 4 and 4∗ each breaking up into 2⊕ 2.

Then we could conceive of breaking SU(2) down to a discrete non-abelian subgroup,
such as the double cover of A4, which we call A′

4 [32]. However, in this particular
scheme one would have to deal with at least four families since all of the matter fields
would transform as doublets. Furthermore, the interesting representations 2′ and 2′′ of
A′

4 would come from the spin-32 representation of SU(2) via 4 → 2′ ⊕ 2′′ (for a review,
see Ref. [33]) and hence could not come from SU(9) unification.

VI Discussion

We have argued that in principle it is possible for the mirror matter in Spin(18) uni-
fication to completely decouple from the effective field theory at scales far above the
weak scale without breaking SU(2) × U(1). The extra ordinary matter beyond the
three known families can also decouple by the same argument. The main open issue is
to determine convincingly that conditions such as Eq. (III.6) can be satisfied in models
of this kind.

Since the parameter M2
φ in the Higgs potential is taken positive (remember that we

do not want φa to condense), we can integrate out φa in Eq. (II.2) and obtain a low-
energy effective 4-fermion interaction:

Leff = ψ†σ̄µi∂µψ +
y 2
10

M2
φ

(ψT iσ2 ⊗ CΓaψ + h.c.)(ψT iσ2 ⊗ CΓaψ + h.c.) . (VI.1)

If perturbation theory is applicable, then the fermions are clearly massless since there is
no mass term in the Lagrangian, and the 4-fermion interaction is an irrelevant operator.
But if perturbation theory in y is not applicable, then we cannot drop this operator in
the low-energy theory.

On the other hand, if the coupling is not too large, then we cannot directly apply
strong-coupling methods such as those of [17], and we might expect that the dynamics
are not so strong as to generate an expectation value for the bilinear ψT iσ2⊗CΓaψ. In
this case, the fermion single particle spectrum should have a gap ∆ given by Eq. (II.8),
which could be pushed up arbitrarily high above the usual scale of unification, while
the Spin(10) symmetry remains unbroken.

Therefore, an alternative way to view the Kitaev-Wen argument is to say that the
4-fermion interaction generates mass without a mass term if |y10| is large enough such
that perturbation theory is not applicable but not so large that dynamical symmetry
breaking occurs. The situation is summarized as follows:

• y10 ≪ 1: massless fermions exchanging scalar particles

12



• y10 ∼ 1: massive fermions with Spin(10) invariance and hence without mass terms

• y10 ≫ 1: dynamical symmetry breaking Spin(10) → Spin(9) and massive fermions

Once the extra matter has decoupled, the phenomenology becomes that of the usual
Spin(10) or SU(5) unified models. We have intentionally emphasized only the situ-
ation in which none of the extra fermions have any influence below the usual scale
MGUT ∼ 1016 GeV, but this was just the simplest choice. We invite the interested
reader to re-evaluate the possible importance of the additional states for TeV-scale
physics.

Given the phenomenological success of the Higgs mechanism in particle physics, one
could ask whether the Kitaev-Wen mechanism could also do the job without sponta-
neous symmetry breaking. (We have already explained in Sec. II.2 that this mechanism
will not give mass to the gauge bosons, so this question pertains only to the fermion
mass.)

The physical intuition from Sec. II.3 implies that a fermion whose mass comes from the
Kitaev-Wen mechanism has a propagator of the form

6p

p 2 −∆2
=

1

p 2 −∆2
1
2 [(6p +∆) + (6p−∆)] (VI.2)

below the multiparticle threshold. This expresses the physical distinction between a
fermion mass obtained from the Higgs mechanism and one obtained from the Kitaev-
Wen mechanism. It is still unclear what the full phenomenological implications would
be for an alternative version of particle physics based on this mechanism for generating
fermion masses.
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A Condensation of topological defects

According to Eqs. (II.7) and (II.8), it costs an energy ∆(~φ) to create a single fermion
above the vacuum. As long as 〈φa〉 = 0 the Spin(10) symmetry is unbroken, and as
long as 〈~φ 2〉 6= 0, the energy gap ∆(~φ) remains nonzero. [Recall Eqs. (II.9) and (II.11).]
If there are topologically nontrivial configurations of φa, then the condition 〈~φ 2〉 6= 0 is
violated. Since Πk(S

9) = 0 for k = 0, 1, 2, 3, the Spin(10) theory with a 10-vector Higgs
field does not admit stable topological defects, and the required conditions are satisfied.

As an alternative argument for decoupling the mirror matter in Spin(18) unification
at scales far above the electroweak breaking scale v ∼ 246 GeV, it is enlightening to
consider a situation with a smaller symmetry group than Spin(10) in which there are

topological defects.

Then we could ask whether it is possible to Higgs the theory, generate fermion masses,
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and then restore the electroweak subgroup without closing the fermion gap by condens-
ing the operator which creates topological defects.10 Then the fermions would have
mass without mass terms even in a theory which violates Eq. (II.11). Since generating
mass without mass terms is the main underlying theoretical difficulty, we then expect
that the symmetry can be enlarged to Spin(10) without any dynamically induced spon-
taneous symmetry breaking.

This approach to regularizing the SM on a 3d spatial lattice was first proposed by
BenTov, You, and Xu [8] (motivated by the arguments of Wang and Senthil [34]) and
then carried out to completion by You and Xu [9] for the Pati-Salam (PS) model [35]
with gauge group

GPS = Spin(6)× Spin(4) = SU(4) × (SU(2)L × SU(2)R) . (A.1)

Under the breaking Spin(10) → GPS, the matter fields break up as11:

16+ → (4+, 2+)⊕ (4−, 2−) = (4, 2, 1) ⊕ (4∗, 1, 2) . (A.4)

In the first expression on the right we use the notation appropriate for Spin(6)×Spin(4),
and in the second expression we use the SU(4) notation 4+ ≡ 4, 4− ≡ 4∗, and the
SU(2)L×SU(2)R notation 2+ ≡ (2, 1), 2− ≡ (1, 2). Similarly, for the mirror matter we
have:

16− → (4+, 2−)⊕ (4−, 2+) = (4, 1, 2) ⊕ (4∗, 2, 1) . (A.5)

We will use the SU(4) × SU(2)L × SU(2)R notation and express all fermions as left-
handed Weyl spinors of the Lorentz group with the following gauge group indices:

ψAα ∼ (4, 2, 1) , ψ̄Aα̇ ∼ (4∗, 1, 2) , A = 1, ..., 4 , α = 1, 2 , α̇ = 1, 2 . (A.6)

Here the bar is part of the name of the field and does not denote any sort of conjugation.
Remember that, in contrast to the Lorentz group12 SL(2, C) ≃ SU(2) × SU(2), here
the two SU(2) groups are self-conjugate, so hermitian conjugation raises and lowers
dotted and undotted indices instead of exchanging them.

All mass terms in 3 + 1 dimensions are forbidden by GPS invariance. The Dirac-type
fermion bilinear transforms as

ψT
Aαiσ2ψ̄

Bβ̇ ∼ (1⊕ 15adj, 2, 2) . (A.7)

10For example, in the Ising model, one can imagine the disordered phase as the phase in which the kink
operators have a nonzero vacuum expectation value.

11Under the breaking of GPS to the SM gauge group

GSM = SU(3)color × SU(2)weak × U(1)hypercharge (A.2)

the matter fields further break up as:

(4, 2, 1) → (3, 2,+ 1
6 )⊕ (1, 2,− 1

2 ) ,

(4∗, 1, 2) → (3∗, 1,+ 1
3 )⊕ (3∗, 1,− 2

3 )⊕ (1, 1,+1)⊕ (1, 1, 0) . (A.3)

12Here the symbol “≃” denotes only local equivalence.
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Since the (2, 2) representation of SU(2)L × SU(2)R is the 4-vector representation of
Spin(4), we can introduce a Higgs field

φm = (φ1, ..., φ4) ≡ σmαα̇Φ
α̇α ∼ (1, 2, 2) , σmαα̇ ≡ (i~σ, I) . (A.8)

If this Higgs were to condense, then it would break Spin(4) → Spin(3) and give all
fermions a mass through the following Yukawa interaction:

LYuk = −y ψT
Aαiσ2 ε

αβσm
ββ̇
ψ̄Aβ̇φm + h.c. (A.9)

The two Majorana-type fermion bilinears transform as:

ψT
Aαiσ2ψBβ ∼ (10+, 3, 1) ⊕ (6, 1, 1) , ψ̄Aα̇T iσ2ψ̄

Bβ̇ ∼ (10−, 1, 3) ⊕ (6, 1, 1) (A.10)

where in Spin(6) language, the 10+ is the self-dual 3-form, the 10− is the anti-self-dual
3-form, and the 6 is the vector.

The fermion content in Eq. (A.6) is of course chiral, which is why until the argu-
ments of Kitaev and Wen it was not known how to regularize the SM on a purely 3d
lattice. However, Kaplan [36] showed that it is possible to obtain this chiral theory as
the boundary of a non-chiral (4 + 1)-dimensional topological superconductor. (This is
a generalization of the original Jackiw-Rebbi calculation [37].) It is this setup in which
the method of defect condensation can be used to provide independent support for the
validity of the Kitaev-Wen mechanism [8, 9].

We will now review this argument. Consider a (4 + 1)-dimensional spacetime with
the gauge group GPS. In 4 + 1 dimensions the Lorentz group is Spin(4, 1), and the
4-component Dirac spinor is irreducible. This means we need to augment the matter
content in Eq. (A.6) with a collection of mirror fermions:

ψ
′A
α ∼ (4∗, 2, 1) , ψ̄

′ α̇
A ∼ (4, 1, 2) . (A.11)

Both ψ′ and ψ̄′ are also written as left-handed Weyl spinors in (3 + 1)-dimensional
notation. In (4 + 1)-dimensional notation, ψ and ψ′ form an irreducible Dirac spinor,
and ψ̄ and ψ̄′ form another irreducible Dirac spinor13:

Ψ
(1)
Aα ≡

(
ψAα

−iσ2 ψ
′∗
Aα

)
∼ (4, 2, 1) , Ψ(2)Aα̇ ≡

(
ψ̄Aα̇

−iσ2 ψ̄
′∗Aα̇

)
∼ (4∗, 1, 2) . (A.12)

Since the (4 + 1)-dimensional theory is not chiral, a GPS-invariant Dirac mass with a
domain wall profile can be written down for both of these spinors:

L
4+1
mass = −m(x4)

(
Ψ(1)

Aα
Ψ

(1)
Aα +Ψ(2)

Aα̇Ψ
(2)Aα̇

)
, m(x4) =





−m , x4 > 0
0 , x4 = 0

+m , x4 < 0
. (A.13)

13Here we have raised and lowered the conjugated SU(2) indices with the invariant antisymmetric symbol:

ψ
′
∗
Aα ≡ εαβψ

′
∗β, ψ̄

′
∗Aα̇ ≡ εα̇β̇ψ̄

′
∗A

β̇
.
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The constant m is assumed positive. For one of these fermions, say Ψ ≡ Ψ(1), the
equation of motion possesses the solution:

Ψ = ξ(x0, x1, x2, x3) e−m|x4| ,
3∑

µ=0

iγµ∂µξ = 0 , 1
2 (I + γ5)ξ = 0 . (A.14)

Therefore, the (3+ 1)-dimensional interface at x4 = 0 contains only the massless chiral
fermions given in Eq. (A.6). If the phase with m > 0 is the trivial gapped phase, then
these fermions should be thought of as living on the boundary of the m < 0 “topologi-
cal” gapped phase.14

Now start in the topological phase (m < 0) and turn on interactions. If we can tune
the parameter m through m = 0 into the phase m > 0 without closing the bulk gap,
then the topological phase is in the same phase as the trivial phase. This means the
fermions living on the (3+1)-dimensional boundary of the topological phase must have
decoupled from the low energy theory: the SM fermions must have obtained mass with-
out breaking GPS and hence without breaking the electroweak gauge group.

Y. Z. You and C. Xu explained that a suitable interaction does in fact exist in order to
make this happen [9]. Recall the Higgs field introduced in Eq. (A.8). If 〈φm〉 = v δm4,
then SU(2)L×SU(2)R = Spin(4) is broken to the diagonal subgroup SU(2) = Spin(3),
and all fermions living on the (3 + 1)-dimensional boundary obtain mass at the cost of
breaking the Spin(4) part of GPS, which contains the electroweak gauge group.

The ground state manifold for the condensed Higgs field is

Mφ =
Spin(4)

Spin(3)
= S3 . (A.15)

In the (4 + 1)-dimensional bulk, spatial infinity is topologically S3:

xm∞ = R (sinψ sin θ cosϕ, sinψ sin θ sinϕ, sinψ cos θ, cosψ) ,

4∑

m=1

(xm∞)2 = R2 .

(A.16)
Since

Π3(Mφ) = Z , (A.17)

this theory contains pointlike topological defects, called “hedgehogs” 15.

14Let us remind the reader what the word “trivial” means in this context. An operational definition of the
word trivial is that the system has a fully gapped excitation spectrum and a unique ground state. A more
microscopic definition would be that the ground state of the system is a direct product of the individual state
spaces of the fundamental degrees of freedom. Since we do not propose an explicit high energy completion
(such as a lattice), we have the license to define the trivial phase as the one in which sign(m) = +1. Suppose
we study a spatial interface between this system and the one in which sign(m) = −1 and conclude that there
are massless particles localized to the interface. By definition, these degrees of freedom do not belong to
the sign(m) = +1 system, so we must associate them with the boundary of the system with sign(m) = −1.
The sign(m) = −1 system therefore represents some highly nontrivial entangled state and is said to be the
“non-trivial gapped phase” or the “topological phase” in condensed matter theory.

15These are sometimes also called “monopoles” in the condensed matter literature, but we will not use this
terminology here.
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Let φdefect formally be the field operator which creates and annihilates the hedgehogs
of φm. Since 〈φm〉 6= 0 breaks Spin(4) and gives mass to all of the fermions, we can ask
whether condensing the defect operator,

〈φdefect〉 6= 0 , (A.18)

can restore Spin(4) invariance without closing the single particle gap.

The main point is this: the fully gapped symmetric phase without intrinsic topological
order can be restored by the condensation of a topological defect if and only if the core
of the defect has a fully gapped and nondegenerate energy spectrum.

A.1 Defect core: nf = 8k Majorana operators

In 4+1 dimensions, a single 4-component irreducible Dirac spinor (or two 4-component
Majorana spinors) quantized on a hedgehog background will result in a single 1-component
real fermion zero mode (“Majorana operator”) localized to the core of the defect. This
means eight 4-component Dirac spinors (or 16 4-component Majorana spinors) will re-
sult in eight 1-component real fermion zero modes at the defect core. So to determine
the nature of the hedgehog core, we have to consider eight Majorana operators living
in (0 + 1)-dimensional spacetime.

Kitaev and Fidkowski [38, 39] explained that in 0 + 1 spacetime dimensions, when
the number of Majorana fermions is nf = 8k, k ∈ Z, it is possible for interactions
to result in a fully gapped and nondegenerate energy spectrum without breaking the
symmetry that forbids quadratic terms in the fermion Hamiltonian. This is the key
point of their paper, and it is the pioneering behind of the entire field of “interaction-
reduced classification of symmetry protected topological phases.” The symmetry of the
interaction they proposed can be as large as Spin(7).16

We will use Kitaev’s notation for the Majorana operators [40]:

c1, ..., c8 , c†a = ca , {ca, cb} = δab . (A.19)

These will transform as an irreducible Dirac spinor of an internal Spin(7) symmetry:

ca ∼ 8 of Spin(7) . (A.20)

An antiunitary time reversal transformation which squares to +1 can be defined:

T : ca → ca , i→ −i =⇒ icacb → −icacb . (A.21)

This forbids all fermion bilinears in the Hamiltonian, so the free fermion Hamiltonian
is identically zero:

Hfree = 0 . (A.22)

16This Spin(7) group is the one which leaves fixed a component of the 8+ spinor in Spin(8). The interested
reader may wish to review the representation theory of Spin(2n) at this point [2]. From the perspective of
condensed matter theory, the utility of the Spin(7) and Spin(8) symmetry is simply to find a point in the
phase diagram which is most easily amenable to theoretical study. From the perspective of high energy
theory, the system of interest is the one with the maximal possible symmetry. This is why, in this context,
we work with the Spin(7)-covariant notation.
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Since it takes two Majorana operators to make a physical fermionic oscillator,

ak ≡ c2k−1 + ic2k , (A.23)

there are four zero modes which can be occupied or not. This means the ground state
has degeneracy 24 = 16.

To write down the interaction, we will define the eight gamma matrices of Spin(8):

γ̂aγ̂b + γ̂bγ̂a = δab1̂ , a, b = 1, ..., 8 . (A.24)

In contrast to the rest of the paper, in this case we express the gamma matrices as
abstract operators (denoted by hats) which act in a space of spinors denoted by variables
εi = ±1:

|ε1ε2ε3ε4〉 , εi = ±1 . (A.25)

Those states for which
∏4

i=1 εi = +1 belong to the 8+ representation, and those states
for which

∏4
i=1 εi = −1 belong to the 8− representation. Let

|ψ〉 ≡ 1√
2
(|++++〉 − | − −−−〉) (A.26)

denote a particular linear combination of states in the 8+. Then the interaction

Hint = g 〈ψ|γ̂[aγ̂bγ̂cγ̂d]|ψ〉cacbcccd (A.27)

is manifestly invariant under time reversal T and under the Spin(7) subgroup which
leaves the direction |ψ〉 fixed in the 8+. It gives a nonzero energy cost to all states
(i.e. the Hamiltonian is no longer identically zero), and it singles out a unique state of
lowest energy:

|ground state〉 ≡ 1√
2
(1− a†1a

†
2a

†
3a

†
4)|0〉 (A.28)

where |0〉 is the Fock space vacuum. Recall that the Higgs field φm ∼ (1, 2, 2) is invari-
ant under Spin(6). Therefore, the gapped theory we are considering has a symmetry
Spin(6), which is the obvious subgroup of Spin(7) defined by 7 → 6 ⊕ 1. The spinor
representation breaks up as

8 → 4⊕ 4∗ . (A.29)

Therefore, we can think of the complex fermion operators ak as transforming as the
4-representation of Spin(6) = SU(4):

ak = (a1, ..., a4) ∼ 4 of Spin(6) . (A.30)

Since SU(4) has the invariant symbol εijkℓ, the states

|0〉 and
1

4!
εijkℓ a

†ia†ja†ka†ℓ|0〉 (A.31)

are both invariant under SU(4). The linear combination in Eq. (A.28) is therefore
invariant under SU(4), and a nonzero expectation value 〈φdefect〉 6= 0 would not break
Spin(6). Since the defect core is fully gapped, nondegenerate, and invariant under
Spin(6), the Spin(4) symmetry can be restored without breaking Spin(6) and without
closing the bulk gap.

Therefore, the fermions in the Pati-Salam model (and hence in the SM) can have
an interaction-induced mass without breaking the electroweak gauge group. We refer
the reader to the original paper [9] for a discussion of the dynamical plausibility of the
condensation of hedgehogs in this argument.
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A.2 Defect condensation in Spin(10)

We just discussed the method of defect condensation in the context of restoring the
Pati-Salam symmetry Spin(6) × Spin(4). The absence of defects in the Spin(10) the-
ory occurred because we considered only the 10-vector Higgs field. As mentioned in
Eq. (II.2), we could also couple the fermions to a 126 representation.

If this field admits topologically nontrivial configurations, then one might expect that
the method of defect condensation can be employed to restore the full Spin(10) symme-
try. While this field does in fact admit topological defects, unfortunately it seems that
condensing those defects cannot restore the fully gapped Spin(10) symmetric phase.

The reason is as follows. The minimum for the Higgs potential for a 126-Higgs φabcde
with negative mass squared gives a vacuum expectation value of the form

〈φabcde〉 = v εabcde . (A.32)

This results in a Majorana mass for the SM-singlet antineutrino and leaves unbroken
an SU(5) subgroup of Spin(10). Moreover, this leaves unbroken a Z2 transformation
which flips the sign of the spinor representations in Spin(10). This transformation
comes from the double cover structure of Spin(10) with respect to SO(10), and it is
not contained in the continuous SU(5) subgroup.17 Therefore,

〈126〉 : Spin(10) → SU(5)× Z2 . (A.33)

Because of this Z2, there are vortex solutions labeled by the first homotopy group of
the relevant coset space [41, 42]:

Π1

(
Spin(10)

SU(5)× Z2

)
= Z2 . (A.34)

Thus there are two topologically distinct sectors of Higgs vacuum, one trivial and one
nontrivial. Can we condense the operator which creates the nontrivial configurations
in order to restore the fully gapped Spin(10) symmetric phase?

Unfortunately the answer is no. Since 〈126〉 leaves SU(5) unbroken, all of the fermions
except for the gauge singlet antineutrino do not obtain mass. Thus the Higgs phase of
the theory is not fully gapped to begin with, and the condensation of vortex defects
cannot restore a fully gapped phase.

This of course does not contradict any of the arguments presented in this paper. All it
says is that we do not know how to apply the method of defect condensation to provide
an independent argument in support of “fermion mass without mass terms” in the full
Spin(10) invariant theory.

17In contrast, this additional structure is not important for the 10-vector since the coset space is
Spin(10)/Spin(9) = SO(10)/SO(9).

19



B Θ term and the WZW action

As discussed in the main text, for a collection of scalar fields φ with ground state
manifold M in (D + 1)-dimensional spacetime, there are no stable topological defects
if Πk(M) = 0 for k = 0, 1, ...,D. However, if ΠD+1(M) 6= 0, there is another type
of obstruction related to the Wess-Zumino-Witten (WZW) action. In the present case
where D = 3 and M = S9, this obstruction also vanishes:

Π4(S
9) = 0 . (B.1)

It is worth explaining the relevance of ΠD+1 in detail, because the process of showing
that this obstruction vanishes will also show why 8 flavors of Majorana fermions cannot
take advantage of the Kitaev-Wen mechanism, while 16 flavors of Majorana fermions
can.18 We remind the reader that this is exactly the situation we want: for family uni-
fication to work, we require that each “mirror” family transforming as 16− in Spin(10)
decouple from the low energy theory without giving unacceptably large masses to the
corresponding 16+ fermions and to the electroweak gauge bosons.

B.1 Eight Weyl fermions: Parent theory

Split up the 16− fermions into two collections of eight Weyl fermions, each of which
transforms as two flavors of 4-spinor under a Spin(5) flavor symmetry. In order to ob-
tain a covariant notation, it will actually be convenient to begin with a flavor symmetry
Spin(6) = SU(4), which we imagine to be broken down to Spin(5) = USp(4) explicitly
(not spontaneously).

Let ν denote a collection of eight left-handed Weyl fermions that transform as the
4+ ⊕ 4− reducible Dirac spinor of Spin(6):

ν = ν+ + ν− , ν± ∼ 4± of Spin(6) . (B.2)

Let {G A}6A=1 denote the 8 × 8 gamma matrices of Spin(6), and let C = −G 2G 4G 6

denote the corresponding charge conjugation matrix. There are two nonzero fermion
bilinears which mix ν+ and ν−:

νT−iσ2 ⊗ C ν+ ∼ 1 , νT−iσ2 ⊗ C G
[A

G
B]ν+ ∼ 15adj . (B.3)

We can break Spin(6) to Spin(5) by holding fixed the 6th component of the vector
representation:

6 → 5⊕ 1 . (B.4)

Under this decomposition, the two chiral spinors of Spin(6) become the same pseudoreal
representation of Spin(5):

4+ → 4 , 4− → 4 . (B.5)

The adjoint of Spin(6) breaks up into an adjoint and vector of Spin(5):

15adj → 10adj ⊕ 5 . (B.6)

18To a large extent the following will parallel a series of arguments by Y. Z. You and C. Xu [43] but in
a more covariant notation, and these arguments are in turn very closely related to the σ-model analysis of
Kitaev [10].
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Let {Ga}5a=1 denote the 4×4 gamma matrices for Spin(5) and let19 C = −G2G4 denote
the corresponding charge conjugation matrix. We will choose the following basis20 for
the Spin(6) gamma matrices (a = 1, ..., 5):

G
a = Ga ⊗ τ1 ≡

(
0 Ga

Ga 0

)
, G

6 = I ⊗ τ2 ≡

(
0 −iI4×4

+iI4×4 0

)
. (B.7)

The Spin(6) charge conjugation matrix is then C = C ⊗ τ2, and we have C G aG 6 =
−CGa ⊗ τ1. If we choose a convention in which G5 = G1G2G3G4, then the Spin(6)
chirality matrix GF ≡ iG 1G 2G 3G 4G 5G 6 is

GF = I4×4 ⊗ (−τ3) =

(
−I4×4 0

0 +I4×4

)
. (B.8)

Let us define

ν ≡

(
ν1

ν2

)
(B.9)

so that the chiral spinors are ν+ ≡ 1
2(I8×8 + GF ) =

(
0
ν2

)
and ν− ≡ 1

2 (I8×8 − GF ) =
(
ν1

0

)
. In this notation, each ν i transforms as an irreducible 4-spinor of Spin(5), and

the label i = 1, 2 should be thought of as a flavor index. Let us introduce a collection
of 5 real scalar fields which transform as a vector under Spin(5) transformations:

φa = (φ1, ..., φ5) ∼ 5 of Spin(5) . (B.10)

Then we will find21:

φa ν
T
+iσ2 ⊗ C G

a
G

6ν− =

− 1
2

4∑

a=1

φa ν
T iiσ2 ⊗ CGa

(
0 1
1 0

)

ij

ν j + 1
2φ5 ν

T iiσ2 ⊗ CG5

(
0 1
−1 0

)

ij

ν j .

(B.11)

19We expect that the reader will be able to discern between the symbol C used here, which denotes a 4× 4
matrix, and the C matrix for Spin(10), which is a 32× 32 matrix.

20The “ ≡ ” defines our convention for the direct product notation.
21To verify this, note that CΓ1,...,4 are all symmetric matrices, while CΓ5 is antisymmetric. For the

interested reader, we will show this explicitly in the following non-standard basis (which we will call the
“symplectic basis”):

G1,2,3 = τ2 ⊗ τ1,2,3 , G4 = τ1 ⊗ I , G5 = G1G2G3G4 = τ3 ⊗ I .

The charge conjugation matrix is C = −G2G4 = τ3 ⊗ iτ2, so the first four matrices are:

CG1,2,3 = τ1 ⊗ τ2τ1,2,3 , CG4 = iτ2 ⊗ iτ2 .

These matrices are symmetric. However, the fifth matrix is antisymmetric:

CG5 = I ⊗ iτ2 =

(
0 I
−I 0

)
≡ J

where we have identified the invariant symbol J of USp(4).
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The Lagrangian for 8 fermions without a mass term but with a Yukawa interaction of
the form in Eq. (B.11) will be the physical theory of interest.

It will also be very useful to introduce a mass term for this theory. This will come
from the Spin(6) singlet fermion bilinear, which in this notation becomes:

νT+iσ2 ⊗ C ν− = 1
2ν

T iiσ2 ⊗ C(τ2)ij ν
j . (B.12)

The overall sign of the mass parameter will be captured by a sixth scalar field,

ϕ ∼ 1 of Spin(5) , (B.13)

which couples to the fermion bilinear in Eq. (B.12). In the physical theory of interest,
we should think of the φa in Eq. (B.10) as dynamical quantum fields, but we should
think of the ϕ defined in Eq. (B.13) as a fixed constant background field.

In order to determine whether the interacting theory of 8 fermions coupled to the φa as
in Eq. (B.11) is massive or massless when ϕ = 0, we will need a smooth interpolation
between a free theory with ϕ = +1 and a free theory with ϕ = −1. This interpolating
path will be obtained by defining a collection of six dynamical scalar fields,

ΦA = (Φ0,Φ1, ...,Φ5) . (B.14)

Define the following 8× 8 matrices:

M0
ij ≡ C (τ2)ij , M1,...,4

ij ≡ CG1,...,4 (τ1)ij , M5
ij ≡ CG5 (−iτ2)ij . (B.15)

We will consider the following Lagrangian:

L =
2∑

i=1

ν† iσ̄µ i∂µν
i −m

[
νT iiσ2 ⊗

(
M0

ij Φ0 +
5∑

a=1

Ma
ij Φa

)
ν j + h.c.

]
. (B.16)

This will serve as a sort of “parent” theory for the arguments that follow.

B.2 Eight Weyl fermions: Trivial vs. Topological

The Lagrangian in Eq. (B.16) serves as a parent theory in the following sense. The
models we are actually interested in are obtained by imposing the constraint

Φ 2
0 +

5∑

a=1

Φ 2
a = 1 (B.17)

and considering various points on this S5 in field space. First consider the North pole:

Φ0 = +1 , Φa = 0 . (B.18)

This corresponds to a theory of eight free fermions with Majorana mass terms:

Ltrivial =

2∑

i=1

ν† iσ̄µ i∂µν
i −mεij

(
νT iσ2 ⊗ C ν j + h.c.

)
. (B.19)
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Next consider the South pole:

Φ0 = −1 , Φa = 0 . (B.20)

Naively this also corresponds to a theory of eight free fermions with Majorana mass
terms:

Ltopological =

2∑

i=1

ν† iσ̄µ i∂µν
i +mεij

(
νT iσ2 ⊗C ν j + h.c.

)
. (B.21)

However, as recent developments in condensed matter theory tell us, a crucial obser-
vation is that the sign of the fermion mass term is important and cannot simply be
compensated by a field redefinition. If Eq. (B.19) describes an ordinary free fermion
theory, then on a spacetime with spatial boundaries the theory described by Eq. (B.21)
will have massless particles living on the (2 + 1)-dimensional boundary (see Sec. B.3).

In condensed matter language, the Lagrangian of Eq. (B.19) is said to describe a “triv-
ial” superconductor, while the Lagrangian of Eq. (B.21) is said to describe a “topolog-
ical” superconductor. Both models have the same fully gapped bulk spectra, but one
model has a gapless boundary and hence describes a highly nontrivial entangled state.

To a particle physicist, the statement that the sign of the fermion mass term can-
not simply be compensated by a field redefinition may feel rather foreign. The reader
should remember that the same low energy effective field theory can arise from distinct
high energy completions, and a naive treatment of the effective field theory may not
completely capture all important aspects of the underlying high energy completion.

In the context of topological superconductors, the pertinent high energy completion
is a lattice regularization: the simplest example of this is the (1 + 1)-dimensional Ki-
taev chain [40]. In the present context, the reader may consider the appropriate high
energy regularization to be the parent theory in Eq. (B.16) whose σ-model has a target
space S5. The important effects can be captured by a quantum field theory without
committing to a lattice regularization, but that quantum field theory will have some
perhaps unfamiliar properties (such as an extra spatial dimension or a scalar field with
a domain wall profile) which may not be immediately obvious from the perspective of
local observables in low energy physics.

Finally, the third configuration to consider is22 the “equator” S4:

Φ0 = 0 , Φa = φa . (B.22)

This corresponds to a theory of eight fermions without mass terms interacting with a
5-component dynamical scalar field:

LYuk =
2∑

i=1

ν† iσ̄µ i∂µν
i −m

5∑

a=1

φa
(
νT iiσ2 ⊗Ma

ij ν
j + h.c.

)
. (B.23)

22The notation in Eq. (B.22) may appear redundant, so let us explain it. We use this notation to emphasize
that the physical theory of interest is the one in which the φa in Eq. (B.10) couple to the fermions as in
Eq. (B.11) with a mass parameter ϕ. The ΦA in Eq. (B.16) are auxiliary dynamical fields which are to be
fixed in some way to reduce the parent Lagrangian to the physical theory of interest. The φa are defined
only on the “equator” S4 while the ΦA are defined on the entire S5.
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Eq. (B.23) describes fermions coupled to a σ-model with target space S4. In contrast,
the five fields Φa satisfy

∑5
a=1 Φ

2
a = 1−Φ2

0, and Eq. (B.16) describes fermions coupled
to a σ-model with target space S5.

At weak coupling (m ≪ 1), the Lagrangian in Eq. (B.23) describes massless fermions
interacting with a Higgs field, as usual. The question is whether the fermions remain
massless even when the Yukawa coupling m is of intermediate strength (not too weak
for perturbation theory to apply, and not too strong for perturbation theory in 1/m to
apply).

As we said before, for a fixed value of
∑5

a=1 φ
2
a , we have φa ∈ S4. This means

Πk(S
4) = 0 for k = 0, 1, 2, 3, and therefore there are no topological defects. But

we now have:
Π4(S

4) = Z . (B.24)

The physical meaning of this is that, after performing the path integral over the
fermions, the effective action for φa may contain a theta term (we will use Euclidean
signature):

SΘ[φ] = iΘ

∫

S4

1

Ω4
εabcdeφa dφb ∧ dφc ∧ dφd ∧ dφe . (B.25)

The question now is: what is the correct value of Θ?

B.3 Sigma model with Θ = 2π

To figure this out, let us work in compactified Euclidean spacetime (topologically S4)
and return to the parent Lagrangian in Eq. (B.16). We will follow closely the calcula-
tions of Abanov and Wiegmann [44].

Let V ≡
∑5

A=0M
AΦA. Then we can integrate out the fermions and obtain an ef-

fective action Seff[V ] = 1
2 i
∫
d4x〈x|tr ln(i6∂ −mV )|x〉. The imaginary part of δSeff[V ] ≡

Seff[V + δV ]− Seff[V ] is:

Im(δSeff[V ]) ∝ εABCDEF εµνρσΦA∂µΦB∂νΦC∂ρΦD∂σΦEδΦF . (B.26)

To restore Im(Seff) from its variation [45], introduce a parameter u ∈ [0, 1] and define
an extension Φ̃A(x, u) of the scalar fields into the unit ball B5 = S4 × [0, 1]:

Φ̃A(x, 0) = δA0 , Φ̃A(x, 1) = ΦA(x) ; A = 0, 1, ..., 5 . (B.27)

The imaginary part of the effective action is then the WZW action at level k = 1:

Im(Seff[Φ]) =
2π

5! Ω5

∫

B5

εABCDEF Φ̃AdΦ̃B ∧ dΦ̃C ∧ dΦ̃D ∧ dΦ̃E ∧ dΦ̃F . (B.28)

As we mentioned before, this model can be reduced to a theory of massive fermions
interacting with the five fields φa(x) by constraining the six fields Φ̃A(x, u) to a target
space S5. Impose the constraint

Φ̃ 2
0 +

5∑

a=1

Φ̃ 2
a = 1 (B.29)
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and consider the following field configuration:

Φ̃0(u) = cos(α(u)) , Φ̃a(x, u) = φa(x) sin(α(u)) , α(0) = 0 , α(1) = β . (B.30)

Here α(u) is only a function of u ∈ [0, 1], β is a constant, and the φa(x) are constrained
to the surface of a unit S4 as before. If we plug Eq. (B.30) into Eq. (B.28), we will find
[44]:

Im(Seff) = Θ(β)

∫

S4

1

Ω4
εa1...a5φa1dφa2 ∧ ...∧ dφa5 , Θ(β) = 2π

∫ β
0 dα sin4 α∫ π
0 dα sin4 α

. (B.31)

This is the Θ term for the σ-model with target space S4. It computes the degree of the
map φ : S4 → S4.

Recall the original Yukawa interaction in Eq. (B.16). The expression in Eq. (B.31) tells
us that if we interpolate continuously from a free fermion theory with mass parameter
meff = +m (i.e. β = 0) to a free fermion theory with mass parameter meff = −m (i.e.
β = π), we necessarily pick up a theta term with parameter Θ = 2π. A simple field
redefinition to compensate for the change in sign of the fermion mass would miss this
important contribution to the path integral.

The critical point (namely the equator, Φ0 = 0) exhibits an enhanced symmetry

Z2 : νT iiσ2ν
j → −νT iiσ2ν

j , φa → −φa . (B.32)

This unitary Z2 transformation commutes with the Spin(5) flavor symmetry. As long
as Spin(5)×Z2 remains unbroken, no fermion mass term can appear in the Lagrangian
at any order in perturbation theory.

B.4 Interface between Θ = 2π and Θ = 0

Let us go back to Eq. (B.28). We would like to consider a (2+ 1)-dimensional interface
between two (3 + 1)-dimensional phases, one with meff = +m and the other with
meff = −m. For this purpose, instead of the parametrization in Eq. (B.30), we will
consider the following profile [46]:

Φ̃0(x) = cos(α(z)) , Φ̃a(x, u) = fa(x, u) sin(α(z)) , α(z) = πθ(z) =





0 , z < 0
π
2 , z = 0
π , z > 0

(B.33)
with

∑5
a=1 f

2
a = 1. From the previous section, we see that this gives us a (3 + 1)-

dimensional σ-model with Θ = 0 in the region z < 0 and a (3+1)-dimensional σ-model
with Θ = 2π in the region z > 0. The goal is to study the (2+ 1)-dimensional interface
located at z = 0. Since the phase with Θ = 0 is a trivial gapped phase, the possibly
nontrivial degrees of freedom at z = 0 should be thought of as the boundary of the
phase with Θ = 2π.

If we plug Eq. (B.33) into Eq. (B.28), we will obtain a level 1 WZW term at z = 0:

SWZW[n] = i
2π

4! Ω4

∫

B4

εa1...a5 Na1dNa2 ∧ ... ∧ dNa5 , (B.34)
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where

Na(t, x, y, u) ≡ fa(t, x, y, 0, u) , Na(t, x, y, 0) = δa,5 , Na(t, x, y, 1) = na(t, x, y) .
(B.35)

Therefore, the interface between the σ-model with Θ = 0 and the σ-model with Θ = 2π
is described by a σ-model with a target space S4 and a WZW term at level k = 1:

Sinterface[n] =

∫

S3

d2+1x
1

2g
(∂µna)

2 + SWZW[n] ,
5∑

a=1

n2a = 1 . (B.36)

For a σ-model with target space S2 in 0+1 dimensions, the addition of a level 1 WZW
term results in a twofold degenerate ground state. For a σ-model with target space S3

in 1 + 1 dimensions, the addition of a level 1 WZW term results in a conformal field
theory (this is the statement of nonabelian bosonization for the SU(2) model). In 2+1
dimensions the analysis is more difficult, but the addition of the level 1 WZW term to
the model in Eq. (B.36) is also expected to result in a conformal field theory [47, 48].

Since this interface is the boundary of the (3 + 1)-dimensional σ-model with target
space S4 and theta parameter Θ = 2π, we conclude that, despite the seemingly innocu-
ous free fermion Lagrangian in Eq. (B.21), this theory is in fact gapless on a space with
boundaries. In condensed matter language, it is a “topological” superconductor rather
than a “trivial” superconductor.

There is a quantum phase transition between the trivial and topological phases, and
hence the Yukawa theory in Eq. (B.23) is massless. It is not possible for fermions to
have mass without mass terms for nf = 8 flavors in 3 + 1 dimensions. This is what is
meant by the “WZW obstruction” to realizing the symmetric gapped phase.

B.5 16 Weyl fermions

We argued that 8 Weyl fermions coupled to 5 scalar fields cannot obtain masses without
mass terms. But Spin(10) unification gives us 16 Weyl fermions coupled to 10 scalar
fields. So in fact we have two copies of the system studied in the previous section.

Let us work with the effective bosonic theory and denote the two collections of scalar
fields as follows:

φ (I)
a = (φ

(I)
1 , ... , φ

(I)
5 ) , I = 1, 2 . (B.37)

We can turn on interaction between these two bosons which is invariant under Spin(5)×
Z2 transformations:

Lint = A

5∑

a=1

φ (1)
a φ (2)

a . (B.38)

When A is large, the two scalar fields prefer to be aligned in Spin(5). Therefore we
should do perturbation theory about the configuration

φ (1)
a = φ (2)

a ≡ φ (0)
a . (B.39)

The leading order theory is therefore a sigma model for φ
(0)
a with effective Θ parameter

Θ
(0)
eff = Θ (1) +Θ (2) = 4π . (B.40)
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So when the coupling A is large, we can approximate the theory of 16 interacting Weyl
fermions as two collections of 8 Weyl fermions coupled to a single σ-model with target

space S4 described by the field φ
(0)
a .

The σ-model with Θ = 4π is smoothly connected to the trivial gapped phase with
Θ = 0 [49]. We can then repeat the argument of Sec. B.4, but this time with Θ = 4π
in the region x3 > 0 (i.e. we can use α(x3) = 2πθ(x3) in the notation of that section).
There will be no WZW term at the interface and therefore no massless degrees of free-
dom at the boundary of the phase on the right.

This tells us that it is possible to continuously deform between the phase with m
(1)
eff =

m
(2)
eff = +m and the phase with m

(1)
eff = m

(2)
eff = −m without passing through a point in

the phase diagram which is either gapless or spontaneously breaks the symmetry which
protects the fermion mass term. Therefore, it is possible for 16 Weyl fermions in 3+1
dimensions to have mass without explicit mass terms in the Lagrangian.

The continuous part of the global symmetry group in the path that we have discussed
is Spin(5), which can be gauged via minimal coupling. As discussed previously, if the
gauge coupling is weak, the Spin(5) gauge bosons will remain massless as usual. The
question is whether it is possible to enlarge Spin(5) × Z2 into the Spin(10) symmetry
of grand unification, in which the ten bosons would transform as a 10-vector, and the
16 Weyl fermions would transform as a chiral 16−. (Remember we are trying to gap
out the mirror fermions without breaking the Spin(10) gauge symmetry.)

Since the path we have discussed does not spontaneously break any symmetry, we
expect that enlarging the symmetry to Spin(10) without substantially changing the
strength of the interactions should not result in a vacuum expectation value for the
scalar field. Moreover, if the Spin(10) invariant interaction explicitly breaks all pos-
sible anomalous global symmetries in the mirror sector, then no new massless states
should appear when enlarging the symmetry from Spin(5)× Z2.

Therefore, there should be an interacting path which gaps out all mirror fermions
without breaking the Spin(10) gauge symmetry, and we arrive at the same conclusion
obtained via the Kitaev-Wen argument.

C General formulas for Θ terms and the WZW action

In this appendix we collect some useful formulas for WZW terms in any number of space-
time dimensions. See Abanov and Wiegmann [44] for a more comprehensive treatment
of topological terms in σ-models coupled to fermions.

Let the number of spacetime dimensions be d, and let us work with compactified Eu-
clidean spacetime Sd. Introduce an additional parameter u ∈ [0, 1] and define the unit
ball Bd+1 = Sd × [0, 1].
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Define a collection of d+ 2 scalar fields which depend on xµ ∈ Sd and u:

ΦA = (Φ0,Φ1, ...,Φd+1) . (C.1)

The WZW action at level k is defined as:

SWZW[Φ] = i
2πk

(d+ 1)! Ωd+1

∫

Bd+1

εA0A1...Ad+1ΦA0
dΦA1

∧ ... ∧ dΦAd+1
(C.2)

where

Ωn ≡
2π(n+1)/2

Γ(n+1
2 )

. (C.3)

Let a = 1, ..., d + 1 label the scalar fields Φ1, ...,Φd+1, and impose the constraint

Φ 2
0 +

d+1∑

a=1

Φ 2
a = 1 . (C.4)

Then ΦA ∈ Sd+1. It will be useful to consider two different profiles for ΦA(x, u) subject
to this constraint.

C.1 Profile 1: Reduce WZW to Θ term

If

Φ0(x, u) = cos(α(u)) , Φa(x, u) = φa(x) sin(α(u)) , α(0) = 0 , α(1) = β (C.5)

then

SWZW[Φ] = i

(
2πk

∫ β
0 dα sind α∫ π
0 dα sind α

)∫

Sd

1

Ωd
εa1...anφa1dφa2 ∧ ... ∧ dφad+1

. (C.6)

To verify this, note that:

Ωn

Ωn−1
=
π1/2Γ(n2 )

Γ(n+1
2 )

=

∫ π

0
dα sinn−1 α . (C.7)

The North pole of the target space Sd+1 is Θ = 0, the South pole is Θ = 2πk, and the
equator Sd is Θ = πk.

C.2 Profile 2: Domain wall between Θ = 0 and Θ = 2π

If

Φ0(x, u) = cos(α(xd−1)) , Φa(x, u) = fa(x, u) sin(α(x
d−1)) , α(xd−1) = πθ(xd−1)

(C.8)
then

SWZW[Φ] = i
2πk

d! Ωd

∫

Bd

εa1...ad+1Na1dNa2 ∧ ... ∧ dNad+1
, (C.9)

where
Na(x

0, ..., xd−2, u) ≡ fa(x
0, ..., xd−2, 0, u) . (C.10)
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Therefore:

Sinterface[n] =

∫

Sd−1

1

2g
dna∧∗dna+ i

2π k

d! Ωd

∫

Bd

εa1...ad+1Na1dNa2 ∧ ...∧dNad+1
, (C.11)

where
Na(x, 0) = δa,d+1 , Na(x, 1) = na(x) . (C.12)

This tells us that the (d − 1)-dimensional interface between a d-dimensional σ-model
with Θ = 0 and a d-dimensional σ-model with Θ = 2πk contains a σ-model with WZW
term at level k.
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