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Abstract

We study the behavior of two dimensional supersymmetric connections of n copies of O(N)

models with an N = (0, 1) heterotic deformation generated by a right moving fermion. We develop

the model in analogy with the connected N = (0, 2) CP (N − 1) models for the case of a single

connecting fermionic superfield. We calculate the effective potential in the large N limit and

determine the vacuum field configurations. Similarily to other SUSY connected models we find that

SUSY is unbroken under certain conditions despite the vanishing of the Witten index. Specifically,

this preservation of SUSY occurs when we have an even number n of O(N) families. As in previous

cases we show that this result follows from a Zn symmetry under a particular exchange of the O(N)

families. This leads to a definition of a modified Witten index, which gaurantees the preservation

of SUSY in this case.
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I. INTRODUCTION

Two-dimensional chiral sigma models have been known for a long time (see e.g. [1]).

Some recent works devoted to such models are [2–19]. A revival of interest is due to the

fact that chiral N = (0, 2) sigma models emerged as low-energy world sheet theories on

non-Abelian strings supported in some N=1 four-dimensional Yang-Mills theories [20] (for

a review see [21]).

In this paper we will consider two questions. First, we will consider a non-minimal

N = (0, 1) O(N) model and construct “connected copies,” following the example of Ref.

[15] that addressed N = (0, 2) CP (N − 1) models. As in [15], we prove that (a) the

spontaneous breaking of supersymmetry disappears in the 1/N solution. Moreover, we

introduce a generalized Witten index suitable for our model and show that it does not

vanish (the conventional Witten index vanishes). Second, we construct the large-N solution

of the minimal N = (0, 1) O(N) model. Note that the minimal chiral O(N) models are free

from anomalies and thus selfconsistent for any N [16, 22]. Nonminimal models are free from

anomalies by construction.

Connecting n copies of O(N) sigma models will be performed in the manner described

below, following the pattern of [15]. This will result in the additional Zn symmetry under

exchanges of the O(N) sectors, which, in turn, is responsible for supersymmtry restoration

and for the existence of a modified Witten index IP 6= 0. The latter guarantees that the

restoration of supersymmetry observed to the leading order in 1/N is in fact exact.

The O(N) models with real target spaces S(N−1) and N = (0, 1) supersymmetry have

their peculiarities [23]. In particular, to our knowledge, unlike the CP (N − 1) case, the

O(N) models do not follow from bulk four-dimensional Yang-Mills solitons. They are found

more frequently in effective field theories in condensed matter systems (see, for example,

[24]). Additionally, many convenient simplifications following from the chiral behavior of

Kähler manifolds [25] will be absent in the O(N) case. Regardless, we will find that under

certain constraints, many results from the connected CP (N − 1) models will carry over to

the O(N) case. In particular, we show that these models have vanishing Witten index and

a vanishing vacuum energy at one loop and thus unbroken supersymmetry (see results in

[26]). Additionally, just as in the CP (N − 1) case, this result follows from the Zn symmetry

of exchanges between the n O(N) sectors. Using the exchange symmetry between O(N)
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families a modified Witten index may be defined for the O(N) case as well.

Large-N solution of the O(N) sigma model with N = (1, 1) supersymmetry was con-

structed in [26], while its generaization to nonminimal N = (0, 1) models was presented in

[27].

The paper is organized as follows. We will begin with a discussion of generalities for

N = (0, 1) models in two dimensions. In the following section we will develope the minimal

O(N) and non-minimal connected O(N)n model with the N = (0, 1) deformation generated

by the connecting fermion superfield. For both cases will calculate the effective potential

and determine the vacua. We will then explore the conditions for SUSY preservation. For

the non-minimal models this will be accomplished by determining the mass spectrum and

calculating a modified Witten index, which we will develop using the Zn symmetry of our

model. We will conclude with a comparison of the O(N) and CP (N − 1) cases.

II. CONVENTIONS AND GENERALITIES

Throughout the analysis below it will be convenient to work in a Majorana-Weyl basis

with γ0 ≡ σ2, γ1 ≡ −iσ1, and γ5 = γ0γ1, where σ1,2 are the Pauli matrices.

The N = (1, 1) theories in two dimensions have two real supercharges which can be

defined in the Majorana-Weyl bases as QL and QR with the defining anti-commutator

{Qα, Qβ} = 2Pµ(γµ)αβ = 2

 E − P 0

0 E + P


αβ

. (1)

In the following we will be considering N = (0, 1) theories with only the single QL super-

charge as discussed in [23]. In differential form

QL = − ∂

∂θR
− 2iθR∂L,

QR =
∂

∂θL
+ 2iθL∂R, (2)

where we use the definitions xL,R = x0 ± x1 and 2∂L,R = ∂0 ± ∂1. It will thus be convenient

to decompose the N = (1, 1) superfields in terms of N = (0, 1) fields. The N = (1, 1)

superfields my be written as

Φ(x, θL, θR) = φ+ θ̄ψ +
1

2
θ̄θF = A(x, θR)− iθLB(x, θR), (3)
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where A(x, θR) is a scalar N = (0, 1) superfield and B(x, θR) is a right-moving fermionic

N = (0, 1) superfield. Note the use of θ̄ ≡ θγ0. More explicitly:

A(x, θR) = φ(x) + iθRψL(x)

B(x, θR) = ψR(x) + θRF (x). (4)

We may now use the SUSY transformations of a superfield to determine how the N =

(0, 1) fields transform. It is easy to show that for θR → θR + εR

δφ = iεRψL ,

δψL = −2εR∂Lφ ,

δψR = εRF ,

δF = −2iεR∂LψR . (5)

This follows the standard superfield transformation δΦ = iε̄QΦ = −εRQLΦ. It is clear that

both superfields A(x, θR) and B(x, θR) are irreducible under QL.

Appropriate Lagrangians for N = (0, 1) models may be constructed by integration over

the single Grassmann coordinate θR provided they are Lorentz invariant. The kinetic terms

for A(x, θ) and B(x, θ) may be written as

Lkin,A = −
∫
dθ (∂RA) (DLA) ,

Lkin,B =
i

2

∫
dθ BDLB . (6)

Here the supercovariant derivative is written as

DL = −i
∂

∂θR
− 2θR∂L . (7)

Non-kinetic terms for A(x, θ) and B(x, θ) may also be defined provided that the integrand

for θ integration is a right-moving fermion superfield. We will make use of these requirements

below.

In the sections below we will consider connected models of the type O(N)n where n

individual O(N) sectors are connected by a right moving fermion fields transforming trivially

under O(N) rotations. In general, connected-sector models are constructed for arbitrary n

as illustrated in Figure 1.
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FIG. 1: The connected diagram above illustrates the mechanism by which different O(N)

sectors (represented by G above) are connected by fermion superfields ζ which do not

transform under O(N).

III. MODELS

We will discuss two versions of the deformed O(N) model in this section. The first case

we consider will be the minimal N = (0, 1) O(N) model with only left moving fermions ψiL

appearing in the Lagrangian.

A. The minimal model

For completeness we begin with a short discussion of the minimal N = (0, 1) O(N) model

where the deformation is achieved simply by throwing out the right-moving fermions in the

superpotential. In many cases this procedure leads to anomalies due to the target space

manifold structure [22]. However, the O(N) model is free from these anomalies.

We define the superfields

N i = ni + iθRψ
i
L ,

ΛR = λR + θRD . (8)

Here Λ is an auxillary superfield introduced to constrain the O(N) field N i. The Lagrangian
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for the minimal O(N) model may be written as

L =
1

2

∫
dθ

[
−2
(
∂RN

i
) (
DLN

i
)
− ΛR

(
N iN i − 1

g2

)]
. (9)

In components the Lagrangian reads

L =
1

2
∂µn

i∂µni + iψiL∂Rψ
i
L + iλRψ

i
Ln

i − 1

2
D

(
nini − 1

g2

)
. (10)

For the purpose of determining vacuum field configurations it is most convenient to inte-

grate over the fields ni setting λR = 0 as required by Lorentz symmetry. Performing this

calculation (see [29]) we find the prefactor

1

Det (∂2 +D)N/2
. (11)

We may then write the effective action ignoring D-independent terms from integration over

ψiL,

Γ =
iN

2
Tr log (∂2 +D) +

1

2g2

∫
d2xD. (12)

Assuming a constant value of D in the vacuum we may write the effective potential as

follows:

Veff =
N

8π

{
D

(
log

M2
uv

D
+ 1

)
− 4πD

Ng2

}
=
N

8π
D

(
log

Λ2

D
+ 1

)
, (13)

where we have defined a scale parameter

Λ2 = M2
uve
− 4π
Ng2 . (14)

Minimizing the effective potential (13) we find

〈D〉 = Λ2. (15)

Clearly the non-zero vacuum expectation value of 〈D〉 breaks the N = (0, 1) supersymme-

try.1 We will verify this result below by considering the mass spectra.

1 This large-N result has no direct parallel in minimal (0,2) CP (N − 1) models since such a model exists

only for N = 2, see [16, 22]. However, it is similar to the result obtained in a nonminimal (0,2) CP (N−1)

models in [14].
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B. Non-minimal (0,1) connected O(N) models

For non-minimal models a similar procedure may be carried out.2 We define the following

superfields (F is the “flavor” index of n sectors, F = 1, 2, ..., n)

N i
F = N i

F − iθLΨi
F = niF + θ̄ψiF +

1

2
θ̄θF i

F ,

SF = SF − iθLΛF = σF + θ̄λF +
1

2
θ̄θDF ,

B = −iθLB = θ̄ζR +
1

2
θ̄θG , ζR =

 0

ζR

 , (16)

where the first equality is the N = (0, 1) decomposition of the superfields. The N i
F field

represents the superfield living on O(N)n manifolds. The auxillary fields SF will provide the

constraints for the O(N)n fields. The N = (0, 1) field ζR will connect the different flavours

F of the O(N)n fields.

The Lagrangian for our model can be written in terms of the N = (0, 1) fields:

L =
1

2

n∑
F=1

∫
dθ

[
−2∂RN

i
FDLN

i
F + iZΨi

FDLΨi
F −
√
ZSFN

i
FΨi

F

−ΛF

(
N i
FN

i
F −

1

g2

)
− 2
√
Z κ

g2
SFB

]
+

i

2

∫
dθZBDLB. (17)

The factors Z and Z are the field strength renomalization factors of the superfields Ψi
F and

B respectively. Here we choose κ to scale at large N just as in the CP (N − 1) cases which

follows from the effective two-dimensional dynamics:

κ ∼ 1√
N
. (18)

2 The heterotic deformation of the O(N) model was first considered in [27] (see also [14]), with a single

SUO(N) superfield N i and one N = (0, 1) fermion superfield deformation.
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In components this Lagrangian reads

L =
n∑

F=1

{
1

2
∂µn

i
F∂

µniF + iψiFL∂Rψ
i
FL + iZψiFR∂Lψ

i
FR

+ iλFRψ
i
FLn

i − i
√
ZλFLψ

i
FRn

i + i
κ

g2

√
ZζRλFL

− 1

2

(
DF + σ2

F

)
niFn

i
F + i

√
ZσFψ

i
FRψ

i
FL +

1

2g2
DF

}

+ iZζR∂LζR −
κ2

2g4

(
n∑

F=1

σF

)2

. (19)

To find the effective potential we integrate over the niF and ψiF fields assuming a Lorentz

invariant vacuum where λF = 0 while DF and σF are space-time constants. Proceding along

these lines we find the prefactor

n∏
F=1

Det (∂2 + σ2
F )

N/2

Det (∂2 + σ2
F +DF )

N/2
. (20)

This leads to the one-loop correction (i.e. the leading 1/N term) to the potential

V1-loop =
N

8π

n∑
F=1

[
(DF + σ2

F )

(
log

M2
uv

DF + σ2
F

+ 1

)
− σ2

F

(
log

M2
uv

σ2
F

+ 1

)]
. (21)

Adding the one-loop correction to the potential we arrive at the expression for the effective

potential

Veff =
N

8π

{
n∑

F=1

[
(DF + σ2

F )

(
log

Λ2

DF + σ2
F

+ 1

)
+ σ2

F log
σ2
F

DF + σ2
F

]

+ u

(
n∑

F=1

σF

)2
 , (22)

where

Λ2 = M2
uv e

− 4π
Ng2 (23)

is a scaling parameter, and we have defined

u =
4πκ2

Ng4
. (24)

With the N counting behavior of g and κ we see that u does not scale with N at large N .
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To find the ground state we first minimize (22) with respect to DF to find the expression

for the potential as a function of σF

Veff(σF ) =
N

8π


n∑

F=1

[
Λ2 + σ2

F

(
log

σ2
F

Λ2
− 1

)]
+ u

(
n∑

F=1

σF

)2
 , (25)

where the minimization condition is satisfied at

DF = Λ2 − σ2
F . (26)

We first consider the example of a single sector n = 1 which was analyzed in [27]. In this

case

〈σ〉 = ±Λe−u/2 , 〈D〉 = Λ2 − σ2 , (27)

and the vacuum energy density is

Evac =
N

8π
Λ2(1− e−u). (28)

Clearly for u 6= 0 supersymmetry is completely broken in the vacuum. These and additional

details can be found in [27].

We may extend this analysis for general values of n. Both terms in (25) are semi-positive-

definite. Thus we see that for Veff to vanish both terms in (25) must vanish separately. For

odd n the second term in (25) is positive and thus supersymmetry is necessarily broken. On

the other hand for even values of n the potential is vanishing at

〈σF 〉 = ±Λ, and 〈DF 〉 = 0 , (29)

where the positive sign is chosen for half of the σF fields and the negative sign for the

remaining half. Thus supersymmetry appears to be unbroken if n is even. The above

consideration proves supersymmetry restoration in the leading order in 1/N . Below we will

see that this is an exact statement, fully equivalent to that of [15].

IV. EFFECTIVE LAGRANGIAN AND MASS SPECTRUM

We begin by discussing the mass spectrum of the minimal model considered above. From

the vacuum expectation value of D (15) determined at one loop we see that the ni and ψiL

fields have the masses

mn = Λ, mψ = 0. (30)
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We may additionally expand the effective Lagrangian for the auxillary λR and D following

from the loop diagrams in Figure 2 giving:

Leff =
1

e2
λ

λR∂LλR + (D kinetic term), (31)

where

1

e2
λ

=
N

4πΛ2
. (32)

Here the D kinetic term can be calculated from the one-loop D propagator. The D propa-

gator (denoted D(D)(p)) may be written as:

D(D)(p) = − 2

Γ(p)
, (33)

where

Γ(p) = (−i)2

∫
d2q

(2π)2

i

q2 −m2
n

i

(p+ q)2 −m2
n

. (34)

It is straightforward to show that D(D)(p) has no poles, but only a branch cut at p2 = 4m2
n.

Thus, the D field creates resonance-like states and no real particle states. We can thus

ignore the D contribution for the particle spectrum of the minimal model [30].

Returning to the effective Lagragian (31) we see that λR creates asymptotic particle states

of zero mass:

mλ = 0. (35)

Thus λR is the Goldstino indicating SUSY breaking for this model.

More parallels with the CP (N −1)n case can be observed when one considers excitations

(particles) in the O(N)n models. The lowest excitations can be determined from the mass

eigenstates of the effective Lagrangian. For this purpose the kinetic terms for σF , and λF

as well as their interactions must be calculated to one-loop order. This method is exact in

the large-N limit.

It is useful to first consider the mass spectrum of the n = 1 model as discussed in [27].

Considering the loop diagrams shown in Figures 3 and 4, the effective Lagragnian after

integration over ni and ψi at large N is calculated to be

L = ζRi∂LζR +
1

2e2
σ

∂µσ∂µσ +
i

2e2
λ

λ̄γµ∂µλ− Veff(σ2) +
1

2
Γσλ̄λ+ i

κ

g2
ζRλL . (36)
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FIG. 2: The two diagrams above show the one-loop contribution to the D (upper) and λ

(lower) propagators leading to dynamically generated kinetic terms for the auxillary fields.

The coefficients of the kinetic terms can be calculated for low momentum from Figure 3

giving

1

e2
σ

=
N

24π

eu

Λ2
(1 + e−2u) ,

1

e2
λ

=
N

4π

1

Λ2

1− e−u(1 + u)

(1− e−u)2
. (37)

The coefficient of the λ̄λσ interaction can also be calculated to one loop (Figure 4) at large

N :

Γ =
N

4πΛ2

u

1− e−u
. (38)

It is then possible to determine the mass eigenvalues of the excitations. For the boson

mass we have

mσ = Λ
√

6
eu/2√

1 + 1
2
e2u

. (39)

One may diagonalize the fermion mass matrix leading to one massless fermion and one

11



 

in

in

in

i

 

FIG. 3: The two diagrams above show the one-loop contribution to the σ (upper) and λ

(lower) propagators from the N fields ni and ψi leading to dynamically generated kinetic

terms for the auxillary fields.

massive Majorana fermion

mf = 2Λ

√
u(e−u − 1)

eu − 1− u
sinh

u

2
. (40)

For non-zero u the fermion and boson fields do not have equal masses and it is clear that

supersymmetry is indeed spontaneously broken. However, it is easily seen that for u → 0

the kinetic coefficients and masses become equal, as expected for N = (1, 1) restoration in

this limit. The above-mentioned massless fermion is the Goldstino.

Having reviewed the n = 1 case we may now consider the connected models. For even

values of n the effective Lagrangian can be calculated to one-loop order:

Leff = ζRi∂LζR+
N

8π

n∑
F=1

{
1

Λ2

[
1

2
(∂µσF )2 + λFLi∂RλFL + λFRi∂LλFR

+ 2iσFλFRλFL

]
−
(

Λ2 − σ2
F + σ2

F log
σ2
F

Λ2

)
+2

√
4πu

N
iζRλFL

}
− Nu

8π

(
n∑

F=1

σF

)2

. (41)
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FIG. 4: The diagram above shows the dynamically generated interaction vertices for the σ

and λ fields. The diagram may be used to calculate the coefficient Γ in (38).

This effective Lagrangian can be used to calculate mass eigenvalues for the boson and fermion

excitations on the vacuum. Were it not for the last line in (41) this would be a very

simple matter as all mass terms are already diagonalized. The last term in (41) presents a

modification to one particular combination, the field

σu =
1√
n

n∑
F=1

σF , (42)

where 1/
√
n is the normalization factor. It is a simple algebraic matter to diagonalize the

fields σF to determine the mass eigenvalues. We find

mσu = 2Λ

√
1 +

nu

2
, (43)

with the n− 1 remaining boson fields with mass m = 2Λ.

The diagonalization of the fermions is slightly trickier as we must separate the original

states with mass terms 〈σF 〉 = Λ from those with 〈σF 〉 = −Λ. For the fermion mass terms

we therefore should write

Lmf = 2iΛ

n/2∑
f=1

[
λ̃+fRλ̃+fL − λ̃−fRλ̃−fL +

√
2uζR(λ̃+fL + λ̃−fL)

]
. (44)
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Here we have labeled the fermion field λ± by a subscript indicating the sign of the mass

term in the Lagrangian. We have also indicated the canonically normalized fields

λ̃f =

√
N

8π
λf . (45)

At this point diagonalization is again a matter of algebra, and we find the following mass

eigenstates:

m

(
λ̃−uR +

√
nu

2
ζR; λ̃+uL

)
= 2Λ

√
1 +

nu

2
, (46)

where

λ̃−uR =
1√
n

n/2∑
f=1

λ̃−fR, and λ̃+uL =
1√
n

n/2∑
f=1

λ̃+fL. (47)

The orthogonal field combination √
nu

2
λ̃−uR − ζR (48)

is a massless right mover which does not interact with the remaining fields in the large-N

limit. All other remaining orthogonal combinations of fermion fields do not get a mass

modification, and therefore remain at m = 2Λ.

Counting the number of boson and fermion states for each value of the mass, we can see

that the degrees of freedom match, with an extra sterile massless right-moving fermion field.

Thus, this is another confirmation of our statement that in the large N limit N = (1, 1)

supersymmetry is unbroken (provided n is even).

V. THE WITTEN INDEX

The Witten index IW for the two-dimensional (2,2) CP (N − 1) and (1,1) O(N) models

have been known since the invention of the index method in [31], where it was shown that

the index is the Euler characteristic of the target manifold:

IW,CP (N−1) = N, and IW,O(N) = 1 + (−1)N . (49)

For the O(N) model the supersymmetry is unbroken regardless of the value of N . Despite

the vanishing of the index for N odd, a modified index can be defined by using the isotopic

parity whereby one field ni → −ni. Defining the operator K as the isotopic parity operator,

it can be shown

IK ≡ Tr(−1)FK = 1− (−1)N . (50)
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Thus either IW or IK are non-vanishing for the N = (1, 1) O(N) model, and supersymmetry

is always unbroken [31].

The indices for theO(N) model were originally calculated by introducing a height function

in the form of a magnetic field on the target space manifold [31]. The effect of this added

potential function is to break the infinite vacuum degeneracy to two distinct vacua. One

may then calculate the fermion mass eigenvalues on each of the vacua to determine the

relative fermion number parity between the vacuum states.

For the minimal N = (0, 1) heterotic O(N) model (10), the previous analysis fails since

the fermion mass matrix is constrained by the non-existence of right moving ψiR in the

Lagrangian. To calculate the index IW we consider the case at finite but large N . In this

case one may select the vacuum field configuration as

〈nN〉 = ±1

g
, (51)

with all other 〈ni 6=N〉 = 0. The non-zero value of nN presents a non-trivial mass term in the

effective Lagrangian

∆L = ±
√

4π

N

Λ

g
λ̃Rψ

N
L , (52)

for canonically normalized λ̃R. The two vacua present fermi mass terms of opposite sign.

Thus they differ in fermi parity (−1)F , and the Witten index vanishes. Indeed this is

expected from the earlier analysis of the effective potential at N →∞. After integration of

the ψiL fields only the massless λR field appears in the Lagrangian. Two distinct vacua appear

with opposite fermion parity due to the massless creation operator λR. This illustrates

the Hoohn-Stolz conjecture that any target space with Riemann metric of positive Ricci

curvature has equal numbers of boson and fermion states when right-moving fermions are

absent [32] (see also [4]).

Now let us pass to the non-minimal connected models. For the moment consider vanishing

u. In this case the ζR field is a free Majorana right-moving fermion field with vanishing mass.

Being Majorana, the operator ζR both creates and destroys particles with the same quantum

numbers. Thus, no fermion charge F (not to be confused with the index F of the O(N)

factors) can be defined. However, the fermion parity (−1)F is well defined (at least in the

topologically trivial sector):

(−1)F ζR |0〉 = −ζR |0〉 . (53)
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We can see that in the limit of vanishing u, any bosonic vacuum |0〉 of the model is

degenerate with the fermionic vacuum ζR |0〉, and thus the Witten index vanishes:

IW ≡ Tr(−1)F = 0. (54)

A similar result occurs in the CP (N − 1)n models considered in [15], and just as in

that case a modified index can be defined that is non-vanishing for even n and large (and

also even) N . There are several arguments to show this result and we will pick the most

informative and refer the reader to [15] for additional arguments that follow analogously in

our case.

We can see that the Lagrangian (19) is invariant at the classical level to the chiral parity

transformation

ψFL → ψFL , ψFR → −ψFR , ζR → −ζR. (55)

From the equations of motion we have a chiral condensate for each individual family member

F
1

g2
〈ψFLψFR〉 = 〈σF 〉 = ±Λ. (56)

This one-loop result is exact in the limit N → ∞. Thus the chiral parity (55) is broken at

the one loop level due to the chiral condensate.

There is however a symmetry transformation P preserved at the quantum level that

is a combination of the chiral parity (55) and an exchange of flavours F which we define

as follows. As discussed above the vanishing of the effective potential (22) occurs when

〈σF 〉 = +Λ for half of the families and −Λ for the remaining half. Let us number the sectors

with 〈σF 〉 = +Λ as F = 1, 3, ..., while the sectors with 〈σF 〉 = −Λ as F = 2, 4, .... Performing

such the chiral parity transformation (55) and, simultaneously the shift F → F + 1 we see

that (56) is invariant. Following the lessons from [31] we may thus define a modified index

IP :

IP ≡ Tr(−1)FP, (57)

where P is the combination of a shift in F by one unit and chiral parity transformation. If

the index IP is non-vanishing then supersymmetry is unbroken.

Defining the creation/annihilation operator of massless ζR states with vanishing energy

as ζR,0 we can write the fermi vacuum states as:

|0F 〉 ≡ ζR,0 |0B〉 , and PζR,0 = −ζR,0P. (58)
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Thus, it is trivial to show

IP = 〈0B| (−1)FP |0B〉+ 〈0F | (−1)FP |0F 〉 = 2. (59)

The non-vanishing value of the modified index IP for even n provides a robust protection of

supersymmetry in the large N limit of the connected O(N)n models in just the same way

as in the CP (N − 1)n case.

Additional arguments demonstrating this result can be performed by showing the van-

ishing of the order parameter 〈G〉 at the quantum level. These arguments can be found in

[15].

VI. CONCLUSIONS

We set out to discuss in analogy with the connected CP (N − 1)n model considered in

[15] the corresponding connected O(N)n model with the N = (0, 1) preserving deformation

generated by a right moving fermion field ζR. The real manifold structure of the O(N)

models present some computational differences with the complex CP (N − 1) case, however

the results on the supersymmetric behavior of the two models are the same. We have shown

that under certain constraints the connected O(N)n models connected by a right moving

fermion preserve the N = (0, 1) supersymmetry. This was demonstrated for the large N

limit by considering the particle spectra and showing the equality between fermion and

boson masses.

We also considered the Witten index IW of the O(N)n models, which was shown to vanish.

Despite this result the supersymmetry is unbroken due to the existence of a modified Witten

index IP , which can be defined under the exchange symmetry for the case of even n. This

is precisely the case observed in the CP (N − 1)n model considered in [15].

For completeness we have also considered the minimal N = (0, 1) heterotic O(N) model

which is not excluded by anomalies of the target space manifold. Our analysis shows that

supersymmetry is broken in this model.
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