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Abstract

We calculate leading-order medium photon yields from a quark-gluon plasma using (3+1)-

dimensional anisotropic hydrodynamics. Non-equilibrium corrections to the photon rate are taken

into account using a self-consistent modification of the particle distribution functions and the corre-

sponding anisotropic hard-loop fermionic self-energies. We present predictions for the high-energy

photon spectrum and photon elliptic flow as a function of transverse momentum, shear viscosity,

and initial momentum-space anisotropy. Our findings indicate that high-energy photon produc-

tion is sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon

plasma. As a result, it may be possible to experimentally constrain the early-time momentum-

space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using

high-energy photon yields.
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I. INTRODUCTION

The goal of the ongoing relativistic heavy-ion collision experiments at Brookhaven Na-

tional Laboratory’s Relativistic Heavy Ion Collider (RHIC) and at CERN’s Large Hadron

Collider (LHC) is to produce and study the properties of the quark-gluon plasma (QGP). It

is now well accepted that a few microseconds after the Big Bang the entire universe consisted

of an extremely hot and dense QGP. In order to reproduce these conditions terrestrially, rel-

ativistic heavy-ion collisions are used. As a result, extremely high temperatures and energy

densities are created within a very small volume (∼ 4000 fm3). At these high temperatures,

quarks and gluons no longer remain confined within nucleons and one instead generates

deconfined nuclear matter called a QGP. Immediately after the initial nuclear impact, the

QGP generated in relativistic heavy-ion collisions cools by expansion and, below a certain

(pseudo-)critical temperature (Tc ∼ 165 MeV), the quarks and gluons recombine to form

hadrons. After the transition to hadrons, the system may undergo further expansion and

cooling before full chemical and kinetic freeze-out takes place. The resulting particle produc-

tion and associated radiation from the event are then analyzed in order to infer information

about the properties of the QGP.

One of the key outstanding questions in the study of the QGP is the question of the time

scale for the thermalization and isotropization of the matter created in relativistic heavy-ion

collisions. Theoretical calculations in both the weak-coupling and strong-coupling limits find

that the QGP created immediately after the initial nuclear impact (τ ∼ 0.2 fm/c) is highly

anisotropic in local rest frame (LRF) momentum, however, there are currently no clear

experimental observables that can be used to confirm this expectation and constrain the

degree of early-time momentum-space anisotropy. For this purpose, radiation of photons

and dileptons are promising signals since they can be used to probe the initial state of

heavy-ion collisions. Unlike hadrons, which are emitted from the freeze-out surface after

undergoing intense re-scatterings, photons emerge from all phases of the expanding fireball:

initial hard scatterings, pre-equilibrium phase, near-equilibrium phase, and hadronic phase.

Since photons are electromagnetic probes, they interact only weakly with the QGP (α� αs)

and their mean free path is much larger than the typical system size (∼ 10 fm). As a result,

once produced, they do not undergo significant interactions with the medium and carry

largely undistorted information about the circumstances of their production to the detector.

2



For the most part, in the past calculations of the QGP photon production rate have

been performed assuming a perfectly thermalized, weakly-coupled QGP when using hydro-

dynamics for the background evolution. Within this framework a complete calculation of

the thermal photon rate at O(e2gs
2) has been available for a decade [1] and the next-to-

leading-order (NLO) correction O(e2gs
3) to thermal rate has been computed recently [2].

At low-temperatures, below the pseudo-critical temperature for the QCD phase transition,

where dense QCD matter can be modeled as a hadron resonance gas, effective Lagrangian

approaches have been used, see e.g. Ref. [3]. The success of viscous hydrodynamics applied

to heavy-ion collisions [4, 5] suggests that it might be reasonable to assume that the medium

is close to being in local thermal equilibrium. However, nonzero values of the QCD transport

coefficients, resulting from nonzero mean free paths of the constituents, lead to deviations

from local thermal equilibrium which increase with the local expansion rate.

For example, in a dissipative QGP, a finite shear viscosity causes the momentum distri-

bution in the LRF to become highly anisotropic at early times, with the distribution falling

off more rapidly in the directions in which the system expands (longitudinal cooling). In

the past, various attempts have been made to determine the effect of viscous corrections

on the photon emission rates in a QGP [6–8]. However, these previous works have a key

shortcoming: They include only the viscous corrections to the local momentum distribution

functions for the incoming and outgoing particles, but ignore viscous medium modification

of the collision matrix element itself. For scattering processes in which the inclusion of

medium effects is essential, one must self-consistently include viscous corrections. For ex-

ample, when dynamical mass generation for the medium constituents serves as a regulator

for IR divergences, viscous corrections to the distribution functions can lead to significant

modifications of the screening mechanism and, therefore, to the collision matrix element it-

self. This problem was first addressed using a spheroidal form for the LRF momentum-space

anisotropy in Ref. [9] with details and followup studies presented in Refs. [10–13].

Recently it has been shown how to extend the methods used in Ref. [9] to include the full

shear-stress tensor modification of the one-particle distribution function [14–17]. The calcu-

lation was based on photon production including Compton scattering and quark-antiquark

annihilation at leading order in αs. Extending the proof presented originally in Refs. [9, 10],

Shen, Paquet, Heinz, and Gale were able to show that the Kubo-Martin-Schwinger relation

holds in the hard-loop (HL) regime for any particle momentum distribution function that is
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reflection symmetric.1 Using this, they were able to compute the hard and soft contributions

to the rate separately, taking into account the modifications to the (anti-)quark self-energy

necessary to make it consistent with a standard Grad-14 δf modification to the one-particle

distribution function.

One potential problem with using the standard Grad-14 form for the viscous correction

to the particle distribution function is that, in the integrals that determine the photon

production rate, one is integrating over all momenta. At high-momentum, the standard

viscous approximation to the particle distribution function is not reliable and, as a result, one

finds regions in the integration domain where the viscosity-corrected distribution function is

negative. In this paper, we use instead a spheroidally-deformed form of the non-equilibrium

distribution function that is positive by construction. We concentrate on photon production

from the deconfined phase of the QGP’s lifetime and extend prior results performed in

Refs. [10, 11, 18] to include a more realistic QGP background evolution. In order to improve

upon previous works [10, 11, 18], in which a simple analytic model with an adjustable

isotropization time was used for the QGP evolution, in this paper we use leading-order

(3+1)-dimensional anisotropic hydrodynamics ((3+1)D aHydro) [19–22] to describe the non-

equilibrium QGP evolution.2 Herein, we use the aHydro equations obtained from the zeroth

and first moments of the Boltzmann equation with the collisional kernel treated in the

relaxation-time approximation. The resulting dynamical equations describe the full (3+1)D

spatiotemporal evolution of the transverse momentum scale Λ and spheroidal momentum-

space anisotropy parameter ξ [24, 25]. The (3+1)D framework allows Λ, ξ, and the associated

flow velocities to depend arbitrarily on the transverse coordinates, spatial rapidity, and

longitudinal proper-time, however, herein we restrict ourselves to smooth Glauber-like initial

conditions.

We also mention that there there have been recent studies that have used various types of

partonic and hadronic kinetic transport codes to address the problem of photon production in

heavy-ion collisions [26–29]. Such codes automatically take into account the non-equilibrium

quark and gluon phase space distributions, but they ignore the effect of non-equilibrium

(anisotropic) screening in the problem. Typically in the kinetic approaches it is assumed

that there is a cutoff on u- and t-channel exchanges which is either fixed or dynamically set

1 One must also require that fq = fq̄, which was implicit in their proof.
2 For a recent review of anisotropic hydrodynamics see Ref. [23].

4



by the local Debye mass determined from the parton density. As shown in Refs. [9, 10], in

order to properly regulate the infrared divergences in the photon production calculation, it

is necessary to revisit the calculation of the of screening and use a quark self-energy which

self-consistent with the non-equilibrium (anisotropic) nature of the QGP. That being said,

it may be that, within the accuracy required for QGP phenomenology, it is sufficient to

simply have an isotropic infrared cutoff that does not take into account the non-equilibrium

nature of the quark distribution function. In such a case, the transport codes would provide

a quite reasonable calculation of photon production.

The study presented in this paper is similar in spirit to other studies of photon pro-

duction using second-order viscous hydrodynamics. Our goal is not to produce the most

complete calculation of photon production from all possible sources and including fluctu-

ating initial conditions etc., but to instead study the effect of self-consistently including

the non-equilibrium modifications of the quark distribution function and to systematically

investigate the dependence of the resulting spectra and elliptic flow on the assumed shear

viscosity and initial momentum-space anisotropy. Our work goes beyond prior viscous hy-

drodynamics studies by linearizing around anisotropic background and, as a result, we are

able to better describe early-time photon production and photon production near the trans-

verse and longitudinal edges of the QGP. In addition, high-momentum photon production

is treated in a more reliable manner since the anisotropic one-particle distribution function

used to compute the photon rates is positive definite at all points in momentum space. Our

results indicate that high-energy photon production is quite sensitive to the assumed level

of initial momentum-space anisotropy of the QGP. As a result, it may be possible to ex-

perimentally constrain the early-time momentum space anisotropy of the QGP generated in

relativistic heavy-ion collisions using the high-energy photon spectrum.

The structure of the paper is as follows. In Sec. II, we discuss the calculation of the

photon rate from an anisotropic QGP. In Sec. III, we discuss how the rate is integrated over

space-time to obtain the final differential photon yields. In Sec. IV, we specify the details

of the hydrodynamical evolution utilized. In Sec. V, we present our numerical results for

different initial conditions and different values of the shear viscosity to entropy density ratio.

In Sec. VI, we present a discussion of our results, conclusions, and an outlook for the future.
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II. PHOTON RATE IN ANISOTROPIC PLASMA

In this section, we review the calculation of the photon production rate in an anisotropic

QGP. This method was introduced originally in Ref. [10], but we review it here for complete-

ness. To proceed, one separates the contributions to the rate into those corresponding to

hard-momentum and soft-momentum exchanges which we detail separately below. In both

cases, we take the quarks to be massless since, in the high-temperature and high-energy lim-

its, the masses result in very small corrections to the relevant cross sections. In this paper

we assume that, when written in terms of LRF momentum, the one-particle distribution

function is of spheroidal (Romatschke-Strickland) form [24, 25],

fi(k, ξ,Λ) = f eq
i (
√
k2 + ξ(k · n̂)2/Λ) , (1)

where i = {q, q̄, g}, Λ is the transverse momentum scale, n̂ is the direction of the anisotropy,

and ξ ≥ −1 is a parameter reflecting the strength and type of the anisotropy. Above ξ and

Λ should be understood to be fields that depend on both space and time. The function

feq is an equilibrium distribution function. In the following, we will suppress the explicit

dependence of the anisotropic distribution function on ξ and Λ.

1. Hard Contribution

For the hard contributions, one can simply compute the Feynman diagrams corresponding

to the Compton and annihilation processes. The rate of photon production due to in-medium

quark annihilation can be expressed as

E
dRann

d3q
= 64π3eq

2αsα

∫
k1

fq(k1)

k1

∫
k2

fq(k2)

k2

∫
k3

1 + fg(k3)

k3

×δ4(K1 +K2 −Q−K3)

[
u

t
+
t

u

]
, (2)

where the Mandelstam variables are defined by t ≡ (K1−Q)2 and u ≡ (K2−Q)2, eq
2 = 2/3,3∫

k
≡
∫
d3k/(2π)3, and fq,g are the in-medium quark and gluon distribution functions. Note

that herein capital letters, e.g. K1, indicate four vectors. Henceforth, we also assume that

3 Herein we include contributions from up, down, and strange quarks since these dominate the bulk of the

QGP.

6



the system is charge-conjugation symmetric such that the distribution functions for quarks

and anti-quarks are the same, i.e. fq = fq̄.

In order to regulate the IR divergence associated with this graph, we first change variables

in the first integration to P ≡ K1−Q and introduce an IR cutoff p∗ on the integration over

the exchanged three-momentum p [30]. Here we choose spherical coordinates with the

anisotropy vector n̂ defining the z-axis and we exploit the azimuthal symmetry around the

z-axis to choose q to lie in the x-z plane. Using the energy-momentum conserving delta

function and expanding out the phase-space integrals gives

E
dRann

d3q
=
eq

2αsα

2π6

2∑
i=1

∫
p∗

∞
dp p2

∫ 1

−1

d(cos θp)

∫
0

2π

dφp
fq(p + q)

|p + q|

∫
0

∞
dk k

∫ 1

−1

d(cos θk)

×fq(k)[1 + fg(p + k)]χ−1/2Θ(χ)

[
u

t

]
φk=φi

, (3)

with t = ω2− p2, u = (k− q)2− (k− q)2, and ω = |p+ q| − q. The azimuthal angles φi are

defined through

cos(φi − φp) =
ω2 − p2 + 2k(ω − p cos θp cos θk)

2pk sin θp sin θk
, (4)

and χ ≥ 0 is given by

χ ≡ 4p2k2 sin2 θk sin2 θp −
[
ω2 − p2 + 2k(ω − p cos θp cos θk)

]2
. (5)

The rate of photon production from the Compton scattering diagrams can be obtained from

E
dRcom

d3q
= −128π3e2

qαsα

∫
k1

fq(k1)

k1

∫
k2

fg(k2)

k2

∫
k3

1− fq(k3)

k3

×δ4(K1 +K2 −Q−K3)

[
s

t
+
t

s

]
, (6)

where the Mandelstam variables are defined by s ≡ (K1 + K2)2 and t ≡ (K1 − Q)2. After

changing variables to P ≡ K1 − Q and continuing as with the annihilation process one

obtains

E
dRcom

d3q
= −eq

2αsα

2π6

2∑
i=1

∫ ∞
p∗

dpp2

∫ 1

−1

d cos θp

∫ 2π

0

dφp
fq(p + q)

|p + q|

∫
0

∞
dk k

∫ 1

−1

d cos θk

×fg(k)[1− fq(p + k)]χ−1/2 Θ(χ)

[
s

t
+
t

s

]
φk=φi

, (7)
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with t = ω2 − p2 and s = (ω + q + k)2 − (p + k + q)2. The total photon production rate

from hard processes is given by the sum of Eqs. (3) and (7).

E
dRhard

d3q
= E

(
dRann

d3q
+
dRcom

d3q

)
. (8)

We use Vegas Monte-Carlo integration [31] to evaluate the remaining five-dimensional in-

tegrals in Eqs. (3) and (7). The total hard contribution (8) has a logarithmic infrared

(IR) divergence as p∗ → 0. This logarithmic IR divergence is cancelled by a corresponding

ultraviolet (UV) divergence in the soft contribution which we will describe next.

2. Soft Contribution

Next we calculate the contribution involving soft-momentum exchange. We refer the

reader to Ref. [9] for further details of the calculation. We use the Keldysh formulation,

which is appropriate for non-equilibrium systems [32]. The components (12) and (21) of the

polarization tensor are related to the emission and absorption probability of the particle

species under consideration, respectively [33–35]. Due to the very low rate for photon

absorbing back reactions, the rate of photon emission can be expressed as [36]

E
dRsoft

d3q
=

i

2(2π)3
(Π12)µµ(Q) , (9)

from the trace of the (12) element of the photon polarization tensor. We evaluate (Π12)µµ

using the HL resummed fermion propagator derived in Ref. [9] wherein the authors demon-

strated that the needed off-diagonal components of the fermion self-energy can be expressed

in terms of the retarded self-energy

Σ(P ) =
CF
4
g2

∫
k

f(k)

|k|
K · γ
K · P

, (10)

where

f(k) ≡ 2(fq(k) + fq̄(k)) + 4fg(k) . (11)

Taking the HL limit where appropriate, one finds that

i (Π12)µµ(Q) = −e2eq
2Nc

8f(q)

q

∫
p

QνΛ̃
ν(p) , (12)

where

Λ̃ν(p) = [Λνα
α(P )− Λα

να(P ) + Λα
αν(P )]p0=p(p̂·q̂) . (13)
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FIG. 1. Dependence of the isotropic photon rate on the separation scale p∗. The various curves

show the total rate determined numerically, the soft and hard rates determined numerically, the

LO rate analytic result of Braaten and Yuan [30], and the separate Braaten and Yuan results for

the soft and hard rates.

The tensor Λ is defined through

Λαβγ(P ) =
Pα − Σα(P )

(P − Σ(P ))2
Im[Σβ(P )]

Pγ − Σ∗γ(P )

(P − Σ∗(P ))2
, (14)

where a star indicates complex conjugation. To compute the soft photon rate (9), we nu-

merically evaluate Eqs. (10) and (12) with an UV cutoff p∗ placed on the length of the

three-momentum in Eq. (12).

In Fig. 1 we show the soft and hard contributions to the isotropic (ξ = 0) photon rate and

the total rate obtained by summing these contributions. We compare our numerical results

with the analytic estimates of Braaten and Yuan [30] for both the individual contributions

and the total rate. For this figure, we consider the case of a realistic coupling with αs = 0.32

and a photon momentum which is five times the corresponding transverse momentum scale

Λ.4 As can be seen from Fig. 1, there is a logarithmic IR divergence at small p∗/Λ and

logarithmic UV divergence at large p∗/Λ. However, even for large αs, there is a window

over which the result does not depend strongly on the choice of p∗. In practice, we use the

principle of minimal sensitivity (PMS) to set p∗ by requiring the derivative of the rate with

respect to p∗ to vanish (minimum of the black solid curve in Fig. 1). The other things we

4 Since ξ = 0, Λ can be identified with the temperature T in this figure, but we have kept the labels general

for comparison with other figures.
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see from this figure are that the analytic calculations do well in capturing the asymptotic

regimes of each contribution, but that the total result obtained from analytic method is

lower by approximately a factor of 2 due to the fact that the analytic approximations made

to obtain the Braaten-Yuan rate fail to accurately reproduce the numerically integrated

rate.5

In Fig. 2 we plot the photon rate as a function of the scaled photon energy E/Λ for (a)

ξ ∈ {0, 10} for y = 0 and (b) ξ = 10 for y ∈ {0, 0.88, 20}. In both panels of Fig. 2, the

lines are the result of evaluating the rate at the PMS value of p∗ and the shaded regions

indicate the variation of the result obtained when varying p∗ → 2p∗. In the high-energy

and weak-coupling limit, the dependence on p∗ formally vanishes, however, for realistic

couplings, direct numerical evaluation of the integrals defining the rate allows us to gauge

this uncertainty. From the results we find that there is a <∼ 30% variation of the photon

rate at E/Λ = 1 and a <∼ 20% variation at E/Λ = 10. From Fig. 2(b) we conclude that

there is a significant rapidity dependence of the photon rate when the system is momentum-

space anisotropic, with production peaked at mid-rapidities. This is simply due to the

dominance of forward scattering coupled to production from a momentum-space anisotropic

source with 〈p2
T 〉 > 〈p2

L〉. Note, however, that, if the system were exactly boost-invariant

then, when integrated over all spatial rapidity, the final photon spectrum would not depend

on the photon rapidity. If, on the other hand, the system is not boost-invariant, then we

expect to see a suppression of photon production at forward/backward rapidities if the LRF

distribution is oblate.

III. PHOTON SPECTRUM

As mentioned previously, in this paper we want to study the impact of space-time de-

pendent anisotropies on the photon differential spectrum at high transverse momentum. In

this way we can probe the early stages of the QGP, when the anisotropies are expected to

be the largest. In order to accomplish this, we need to convolute Eqs. (8) and (9) with the

space-time dependence of Λ and ξ to integrate the rate over the QGP space-time volume

and obtain the final spectrum of photons emitted from the deconfined QGP over its lifetime.

5 If one takes very small αs, e.g. αs = 0.01, then the numerical and analytic results agree nearly perfectly

for large q/Λ, giving us confidence in our numerical methods.
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FIG. 2. Rate as a function of the scaled photon energy for (a) ξ ∈ {0, 10} for y = 0 and (b) ξ = 10

for y ∈ {0, 0.88, 20}. The shaded bands show the change in the result obtained by varying the

separation scale p∗ → 2p∗.

We now discuss how this is implemented.

The photon four-momentum is parametrized in the standard manner

qµ = q⊥(cosh y, cosφq, sinφq, sinh y) , (15)

where y ≡ ln[(E + q‖)/(E − q‖)]/2 is the momentum-space rapidity. Above q⊥, q‖, and φq

are the transverse momentum, longitudinal momentum, and momentum azimuthal angle, re-

spectively. For space-time, we use the usual Milne hyperbolic parametrization for describing

heavy-ion collisions within the relativistic hydrodynamics framework

xµ = (τ cosh ς,x⊥, τ sinh ς) . (16)

In Eq. (16), τ ≡
√
t2 − z2 is the longitudinal proper time, x⊥ is a two-vector contain-

ing the transverse coordinates, and ς ≡ tanh−1(z/t) is the space-time rapidity. With

these parametrizations, the differential measures for four-momentum and space-time are

d4q = E dy q⊥dq⊥ dφq and d4x = τ dτ dς d2x⊥, respectively. This allows us to calculate the

differential spectrum using

dN

q⊥dq⊥dy
=

∫ 2π

0

dφq

∫
d4x

(
E
dR

d3q

)
LRF

. (17)

The integration over the space-time volume is performed solely in the deconfined QGP stage.

We only include contributions from regions that have an effective temperature higher than
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a critical temperature, i.e. Teff ≡ R1/4(ξ)Λ > Tc with R(ξ) defined in Eq. (47). In all results

shown herein, we assume Tc = 175 MeV. We will gauge the sensitivity of our results to this

assumption in Sec. V. We will assume that when the system reaches Tc, all QGP medium

emission stops. We do not consider the emission from the mixed/hadronic phase herein.

Finally, we mention that we evaluate the left-hand-side of Eq. (17) in the center of mass

of the colliding nuclei (LAB frame), while the photon rate is calculated in the LRF of the

emitting region. Therefore, before evaluating Eq. (17), we have to boost the LAB frame

momentum qµ to the LRF of the fluid cell using a Lorentz boost qµLRF = Λµ
νq

ν , where the

Lorentz boost tensor

Λµ
ν (uλ) ≡


γ −γvx −γvy −γvz

−γvx 1 + (γ − 1)v
2
x

v2
(γ − 1)vxvy

v2
(γ − 1)vxvz

v2

−γvy (γ − 1)vxvy
v2

1 + (γ − 1)
v2y
v2

(γ − 1)vyvz
v2

−γvz (γ − 1)vxvz
v2

(γ − 1)vyvz
v2

1 + (γ − 1)v
2
z

v2

 , (18)

depends on the four-velocity of the fluid element uµ(xλ) ≡ γ(1, vx, vy, vz), with γ ≡

1/
√

1− v2 and v ≡
√
v2
z + v2

y + v2
z . Making use of Eqs. (8) and (9) in Eq. (17), we obtain

the photon spectrum including the effect of a space-time-dependent momentum anisotropy

and taking into account the effect of the dynamically-generated collective flow of the QGP.

IV. (3+1)D ANISOTROPIC HYDRODYNAMICS

As mentioned above, in order to obtain the predictions for the differential photon spec-

trum expected to be produced from the QGP phase, we must integrate over the full

space-time history of the QGP. For this purpose we use a (3+1)D leading-order spheroidal

anisotropic hydrodynamics (aHydro) code [19, 20, 37–41]. The aHydro framework reduces

to second-order viscous hydrodynamics in the limit of small anisotropy [21], but reproduces

the dynamics of the QGP more reliably when there are large momentum-space anisotropies.

We assume that the QGP created during the collision of the heavy ions evolves through a

non-equilibrium state and that the quark and anti-quark one-particle distribution functions

are well-approximated by a time-evolving distribution of the form specified in Eq. (1) both

at early times and late times. At the same time, we also assume that, although the system

is highly anisotropic, it may still be, to good approximation, described using hydrodynamic-
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like degrees of freedom, such as energy density and pressures.6 As a result, the detailed

microscopic description of the system can be replaced by an effective description written in

terms of simple physical laws, such as conservation of energy and momentum.

The equations of motion for the anisotropic system are obtained by starting from kinetic

theory, assuming that the form of the distribution function of the system is known at the

leading order and given by the form (1). This can be performed by taking moments of

the Boltzmann kinetic equation. As usual, the collisional kernel must be specified in the

Boltzmann kinetic equation. Here we will assume that the collisional kernel can be treated

in the relaxation-time approximation (RTA) such that

pµ∂µf = −p
µuµ
τeq

(f − feq) , (19)

where τeq is the microscopic relaxation time which can depend on position and time. Taking

the first moment of the Boltzmann equation results in the energy-momentum conservation

equation

∂µT
µν = 0 . (20)

Taking the zeroth moment of the Boltzmann equation results in the particle production

equation

∂µj
µ = −uµ

jµ − jµeq

τeq

. (21)

At leading order, the aHydro energy-momentum tensor has the form typical for a spheroidally

anisotropic system

T µν = (ε+ P⊥)uµuν − P⊥ gµν − (P⊥ − P‖)zµzν , (22)

and the particle flux is defined in the standard manner7

jµ = nuµ . (23)

In Eqs. (22) and (23) ε, n, P‖, and P⊥ stand for energy density, particle density, longitudinal

pressure, and transverse pressure, respectively. The four-vector zµ is orthogonal to uµ and in

the LRF points in the longitudinal direction (identified with the direction of the dynamically-

evolving anisotropy in the system, n̂) [40].

6 This assumption has been tested elsewhere by comparing the predictions of anisotropic hydrodynamics

to exact solutions of the Boltzmann equation in a variety of special cases [42–49].
7 We assume vanishing chemical potential gradients.
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Equations (20) and (21) provide a set of five independent partial differential equations

Duε = − (ε+ P⊥) θu +
(
P⊥ − P‖

)
uνDzz

ν , (24)

DzP‖ =
(
P⊥ − P‖

)
θz + (ε+ P⊥) zνDuu

ν , (25)

Duu⊥ = − u⊥
ε+ P⊥

[
u⊥ ·∇⊥P⊥

u2
⊥

+DuP⊥ + (P⊥ − P‖)uνDzz
ν

]
, (26)

Du

(
ux
uy

)
=

1

u2
y(ε+ P⊥)

(ux∂y − uy∂x)P⊥ , (27)

and

Duξ

2(1 + ξ)
− 3DuΛ

Λ
= θu +

1

τeq

[
1−R3/4(ξ)

√
1 + ξ

]
, (28)

respectively, for five parameters: the three independent components of the four-velocity uµ,

the transverse momentum scale Λ, and the anisotropy parameter ξ. In the above equations,

we use boldfaced letters with a ⊥ subscript to indicate two-dimensional vectors in the trans-

verse plane, e.g. u⊥ ≡ (ux, uy) and ∇⊥ ≡ (∂x, ∂y). We have also introduced a compact

notation for the convective derivative Du ≡ uµ∂µ, the longitudinal derivative Dz ≡ zµ∂µ,

and the expansion scalars θu ≡ ∂µu
µ and θz ≡ ∂µz

µ.

We use the following parametrizations of the LAB frame four-velocity of the fluid uµ and

the space-like four-vector zµ

uµ = (u0 coshϑ,u⊥, u0 sinhϑ) , (29)

zµ = (sinhϑ,0, coshϑ) , (30)

where we introduced the longitudinal rapidity of the fluid cell ϑ. Using the four-velocity

normalization condition, uµuµ = 1, one has

u0 =
√

1 + u2
⊥ ,

u⊥ ≡
√
u2
x + u2

y . (31)

With the parametrizations (29) and (30), one may calculate the following quantities appear-
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ing in Eqs. (24)-(28),

Du = u⊥ · ∇⊥ + u0L̂1 , (32)

θu = ∇⊥ · u⊥ + L̂1u0 + u0L̂2ϑ , (33)

Dz = L̂2 , (34)

θz = L̂1ϑ , (35)

uνDzz
ν = u0L̂2ϑ , (36)

zνDuu
ν = −u0

(
u⊥ · ∇⊥ + u0L̂1

)
ϑ , (37)

where the two linear differential operators, L̂1 and L̂2, are given by

L̂1 = cosh(ς − ϑ)∂τ − sinh(ς − ϑ)
∂ς
τ
, (38)

−L̂2 = sinh(ς − ϑ)∂τ − cosh(ς − ϑ)
∂ς
τ
. (39)

We also use the relation between the relaxation time τeq and the shear viscosity to entropy

density ratio η̄ ≡ η/s [19],

τeq =
5η̄

2T
. (40)

A. Anisotropic equation of state

In this paper we consider a system that consists of massless particles described by the

anisotropic distribution function (1). Using standard kinetic theory definitions

Nµ ≡
∫
dK kµf , (41)

T µν ≡
∫
dK kµkνf , (42)

where dK ≡ d3k/ [(2π)3k0], and the tensor decompositions specified in Eqs. (22) and (23),

one can calculate the thermodynamic properties of the system [50]

n(Λ, ξ) =
niso(Λ)√

1 + ξ
, (43)

ε(Λ, ξ) = R(ξ) εiso(Λ) , (44)

P⊥(Λ, ξ) = R⊥(ξ)Piso(Λ) , (45)

P‖(Λ, ξ) = R‖(ξ)Piso(Λ) , (46)
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where niso, εiso, and Piso are the isotropic particle density, energy density, and pressure,

respectively, and

R(ξ) ≡ 1

2

[
1

1 + ξ
+

tan−1
√
ξ√

ξ

]
, (47)

R⊥(ξ) ≡ 3

2ξ

[
1 + (ξ2 − 1)R(ξ)

ξ + 1

]
, (48)

R‖(ξ) ≡
3

ξ

[
(ξ + 1)R(ξ)− 1

ξ + 1

]
. (49)

Herein, we assume the simple case of a conformal ideal fluid, i.e. εiso = 3Piso. As a result,

Eqs. (43)–(46) describe the equation of state of an anisotropic system of classical massless

particles with vanishing chemical potential.

B. Initial conditions

In order to solve the set of partial differential equations (24)–(28), one has to specify

the initial conditions at the initial longitudinal proper-time for the hydrodynamic evolu-

tion, τ = τ0, i.e. one has to define five three-dimensional profiles: Λ(τ0,x⊥, ς), ξ(τ0,x⊥, ς),

ux(τ0,x⊥, ς), uy(τ0,x⊥, ς), and ϑ(τ0,x⊥, ς). During the initial moments of a heavy-ion colli-

sion, due to inelastic interactions, the participating nucleons deposit energy into the space-

time volume of the fireball. In this work, we assume that the distribution of deposited energy

is well described by the optical Glauber model. As a result, the transverse momentum scale

is given by

Λ(τ0,x⊥, ς) = ε−1
iso

(
ε0
ρ(b,x⊥, ς)

ρ(0,0, 0)

)
, (50)

where the proportionality constant ε0 is chosen in such a way as to reproduce the total

number of charged particles measured in the experiment, and ε−1
iso denotes the inverse function

of εiso(Λ). For a central collision, in what follows, we identify Λ0 as the initial transverse

momentum scale at the center of the simulated region.

The density of sources is constructed using a standard mixed model

ρ(b,x⊥, ς) ≡
[
(1− κ)(ρ+

WN(b,x⊥) + ρ−WN(b,x⊥)) + 2κ ρBC(b,x⊥)
]
h(ς − ςS(b,x⊥)) , (51)

where ρ±WN is the density of wounded nucleons from the left/right-moving nuclei and ρBC

is the density of binary collisions, both of which are obtained using the optical limit of the
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Glauber model

ρ±WN(b,x⊥) ≡ T

(
x⊥∓

b⊥
2

)[
1−e−σNNT

(
x⊥±

b⊥
2

)]
, (52)

ρBC(b,x⊥) ≡ σNNT

(
x⊥+

b⊥
2

)
T

(
x⊥−

b⊥
2

)
. (53)

The longitudinal profile is taken to be [51]

h(ς) ≡ exp

[
−(ς −∆ς)2

2σ2
ς

Θ(|ς| −∆ς)

]
. (54)

For the LHC case studied here, we use κ = 0.145 for the mixing factor and an inelastic

cross-section σNN = 62 mb. The parameters of the longitudinal profile (54) were fitted

to reproduce the pseudorapidity distribution of charged particles with the results being

∆ς = 2.5 and σς = 1.4. The shift in rapidity is calculated according to the formula [52]

ςS ≡
1

2
ln
ρ+

WN + ρ−WN + vP (ρ+
WN − ρ

−
WN)

ρ+
WN + ρ−WN − vP (ρ+

WN − ρ
−
WN)

, (55)

where all functions are understood to be evaluated at a particular value of b and x⊥. The

participant velocity is defined as vP ≡
√

(
√
s/2)2 − (mN/2)2/(

√
s/2) and mN is the nucleon

mass. In Eqs. (52)–(53) we have made use of the thickness function

T (x⊥) ≡
∫
dz ρWS(x⊥, z) , (56)

where the nuclear density is given by the Woods-Saxon profile

ρWS(x⊥, z) ≡ ρ0

[
1 + exp

(√
x⊥2 + z2 −R

a

)]−1

. (57)

For Pb-Pb collisions, we use ρ0 = 0.17 fm−3 for the nuclear saturation density, R = 6.48 fm

for the nuclear radius, and a = 0.535 fm for the surface diffuseness of the nucleus.

V. RESULTS

We now present our results for the photon spectrum and elliptic flow of QGP-generated

photons. We focus here on Pb-Pb collisions with nucleon-nucleon center of mass ener-

gies of
√
sNN = 2.76 TeV. Since the hard and soft contribution of differential photon rate

described by Eqs. (8) and (9) are independent of the model assumed for the space-time

evolution of the system, we first numerically compute the dimensionless differential pho-

ton rate E/Λ2dR/d3q on a uniformly-spaced three-dimensional grid in 0.1 ≤ q⊥/Λ ≤ 30,
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aaaaaaaaa
4πη/s

ξ0 0 10 100

1 0.552 0.765 1.009

2 0.546 0.752 0.992

3 0.544 0.748 0.990

TABLE I. Values of the initial transverse momentum scale Λ0 in GeV used in all figures in the

results section.

0 ≤ |y| ≤ 10, and −1 ≤ log10(ξ + 1) ≤ 2.5. The grid spacings used for these three variables

were chosen in such a way that the full three-dimensional function is well approximated at

continuous values using a spline-based interpolating function. For the final integration, we

use the Vegas Monte-Carlo method to numerically integrate Eq. (17) over space-time and

transverse momentum angle.8

In all plots we assume a min-bias collision with b = 9.5 fm and we begin the aHydro

evolution at τ0 = 0.3 fm/c. At τ0, we assume that the produced matter has no transverse

flow, i.e. ux(τ0,x⊥, ς) = ux(τ0,x⊥, ς) = 0, while the initial longitudinal flow is of Bjorken

form ϑ(τ0,x⊥, ς) = ς. We also assume that the initial anisotropy field is homogeneous,

ξ(τ0,x⊥, ς) = ξ0. Finally, the initial central transverse momentum scale Λ0 used for all results

is specified in Table I. These values were tuned by requiring the final particle multiplicity

to be a constant as η/s and ξ0 were varied. In all plots included herein we show results for

central rapidity (y = 0) and have used a fixed αs = 0.32.

We begin with Fig. 3, which shows the spectrum of medium photons obtained by integrat-

ing over the full (3+1)D evolution of the QGP. The three different panels (a), (b), and (c)

show the results obtained assuming initial anisotropies of ξ0 = 0, 10, and 100, respectively.

In each panel of Fig. 3, the lines correspond to three different values of the shear viscosity

to entropy density ratio 4πη/s = 1, 2, and 3. As can be seen from panel (a), for ξ0 = 0

the resulting spectrum is nearly the same for all three values of η/s, with only a very slight

enhancement seen at large q⊥. The effect of varying η/s is larger in panels (b) and (c) in

which the QGP was assumed to have an initially oblate momentum-space anisotropy. For

ξ0 = 100, there is approximately a factor 2.5 variation in the medium photon spectrum at

8 During integration we set the rate to zero outside of the interpolated region. The excluded regions give a

negligible contribution to the integrated rate.
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FIG. 3. Medium photon spectrum for three different values of the initial anisotropy: (a) ξ0 = 0,

(b) ξ0 = 10, and (c) ξ0 = 100. In each panel, the lines correspond to three different values for the

shear viscosity to entropy density ratio 4πη/s = 1, 2, and 3.

q⊥ = 6 GeV when varying η/s between one and three times the lower bound. For q⊥ <∼ 2

GeV, we see very little effect from varying η/s for all values of ξ0 considered.

In Fig. 4 we present the same results in a slightly different manner. In this case, in

panels (a), (b), and (c) we fix the shear viscosity to entropy density ratio to be 4πη/s = 1,

4πη/s = 2, and 4πη/s = 3, respectively. In each of the panels of Fig. 4 the lines correspond

to three different values for the initial anisotropy in the system ξ0 = 0, 10, and 100. As can

be seen from Fig. 4, there is significant variation in the high-energy photon spectrum as one

changes the initial anisotropy of the QGP. For all values of η/s considered, at q⊥ = 6 GeV,

one finds that the QGP photon spectrum varies by approximately an order of magnitude

when varying the initial anisotropy in the range shown. We note additionally that for q⊥ <∼
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FIG. 4. Medium photon spectrum for three different values of viscosity (a) 4πη/s = 1 , (b)

4πη/s = 2 and (c) 4πη/s = 3. In each panel, the lines correspond to three different values for the

initial anisotropy in the system ξ0 = 0, 10, and 100.

2 GeV, we see very little effect from varying the initial anisotropy. Taken together, we see

that the low-energy photon spectrum is not sensitive to either ξ0 or η/s, if one keeps the

final particle multiplicities fixed.

In Fig. 5 we present the medium photon spectrum for six different values of the photon

rapidity. As this figure demonstrates for central rapidities, there is little dependence of pho-

ton production on the photon rapidity; however, for y >∼ 3 there is a significant dependence

on the rapidity. The fact that the central region is independent of the rapidity is consistent

with the approximate boost-invariance of the quark-gluon plasma generated in heavy-ion

collisions. The dependence on rapidity at forward/backward rapidity is due to both the

breaking of boost-invariance in the realistic 3+1d anisotropic hydrodynamics code and also
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FIG. 5. Medium photon spectrum for six different values of the photon rapidity. For this figure

we assumed η/s = 2/4π and ξ0 = 0.

the rapidity-dependence of the rate itself when the system is anisotropic (see Fig. 2). Note

that, if the system was completely boost-invariant, then even with the rapidity dependence

of the rate shown in Fig. 2, one would find that photon production does not depend on

rapidity. We have verified this explicitly.

We now turn to the photon elliptic flow which results from the breaking of rotational

symmetry around the beam-axis due to the development of hydrodynamic flow. To quantify

the dependence of photon production on the momentum azimuthal angle, one makes a

Fourier decomposition of the differential spectrum with respect to the momentum azimuthal

angle
dN

q⊥dq⊥dy dφq
=

dN

2πq⊥dq⊥dy

[
1 + 2v1 cosφq + 2v2 cos(2φq) + . . .

]
, (58)

where it is understood that the coefficients vn are functions of q⊥ and y.9

From the above relation we can compute v2 in the usual manner by extracting the second

Fourier coefficient from the series via

v2(q⊥, y) =

∫ 2π

0
dφq

dN
q⊥dq⊥dy dφq

cos(2φq)

dN
q⊥dq⊥dy

. (59)

This coefficient is referred to as the ‘elliptic flow coefficient’, however, we emphasize that

for photons a non-vanishing v2 coefficient is not evidence of flow of the photons themselves,

but instead the “imprint” of the transverse flow profile of the QGP itself.

9 The coefficients are also implicit functions of the impact parameter, collision energy, colliding species, etc.
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FIG. 6. Elliptic flow coefficient v2(q⊥, y = 0) for three different values of initial anisotropy parame-

ter: (a) ξ0 = 0, (b) ξ0 = 10, and (c) ξ0 = 100. In each panel, the lines correspond to three different

values for the shear viscosity to entropy density ratio 4πη/s = 1, 2, and 3.

In Fig. 6, we show our results for the photon v2 coefficient in three panels (a), (b), and

(c) which show the results obtained assuming initial anisotropies of ξ0 = 0, 10, and 100,

respectively. In each panel, we once again show the result obtained for three different values

of the shear viscosity to entropy density ratio of 4πη/s = 1, 4πη/s = 2, and 4πη/s = 3.

As Fig. 6 demonstrates, we find that, regardless of the assumed initial momentum-space

anisotropy, increasing the shear viscosity of the QGP results in an increase in photon v2.

For the values of η/s considered, we see at most a 300% increase in the photon v2 with the

maximum effect occurring at high transverse momenta. By comparing the three panels of

Fig. 6 we also see that, for fixed η/s, increasing the initial momentum-space anisotropy also

results in an increase in the peak photon v2, however, as ξ0 increases there is a reduction
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FIG. 7. Variation of the photon v2 with Tc. For this figure we took 4πη/s = 1 and ξ0 = 0.

in the photon v2 at large transverse momentum. In Fig. 7, we show the dependence of the

photon v2 on the assumed value for the transition temperature Tc. In the figure we show the

results obtained assuming 4πη/s = 1, ξ0 = 0, and Tc ∈ {175, 155} MeV. As we see from this

figure, decreasing the critical temperature used when we integrate QGP emissions over the

QGP four-volume results in an approximately 30% increase in the peak value of the photon

v2. In addition, we see that the peak in v2 moves to lower transverse momentum as Tc is

decreased.

Finally, as a cross check of the results shown thus far, in Fig. 8 we show (a) the photon

spectrum and (b) the photon elliptic flow as a function of the transverse momentum compar-

ing the result obtained if we use the standard PMS criteria to set the soft/hard separation

scale p∗ (red dashed line) or instead take the separation scale to be two times the PMS

value (black line). As Fig. 8(a) demonstrates, using 2p∗ results in a higher photon yield

by approximately 30-50%. However, as Fig. 8(b) demonstrates, the additional production

obtained when using 2p∗ cancels in the ratio that determines v2 and, as a result, the pho-

ton v2 is independent of the choice of the separation scale within numerical uncertainties.10

Finally, we mention that, although we only show the case ξ0 = 0 and 4πη/s = 3 in Fig. 8,

for all ξ0 and η/s considered here, we find that v2 does not depend on the separation scale.

10 The small differences between the two curves in Fig. 8 can be attributed to statistical errors inherent in

the Monte-Carlo integration method used to evaluate the final spectrum.

23



0 1 2 3 4 5 6
q⊥  [GeV]

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

dN
/q

⊥
dq

⊥
dy

 [
G

eV
-2

] 2p
*

p
*

ξ0 = 0
η/s = 3/4π

(a)

Min Bias

0 1 2 3 4 5 6
q⊥  [GeV]

0

0.01

0.02

0.03

0.04

v 2

2p
*

p
*

Min Bias

ξ0 = 0 
η/s = 3/4π

(b)

FIG. 8. Dependence of (a) the medium photon spectrum and (b) the elliptic flow coefficient on

transverse momentum for two different values of separation scale: p∗ and 2p∗. In both panels, we

assumed that the ξ0 = 0 and 4πη/s = 3.

VI. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this paper we computed the photon spectrum and elliptic flow coefficient associated

with photons emerging from the QGP as a function of transverse momentum. For the

rate, we included the two leading-order processes necessary: Compton scattering and quark-

antiquark annihilation. In order to properly deal with the IR divergences encountered in the

rate calculation, we computed the soft and hard contributions separately. In the soft sector,

the UV divergence was regulated by introducing a UV cutoff p∗ and, in the hard sector,

the IR divergence was regulated by introducing an IR cutoff p∗. As shown analytically by

Braaten and Yuan [30], in the weak-coupling limit, the sum of the hard and soft contributions

is finite due to a cancellation between the UV and IR divergences and the result does not

depend on the separation scale p∗. However, for realistic couplings, one must evaluate the

necessary integrals numerically. In this case, there is a residual dependence on the choice

of the separation scale. To fix it, we used a PMS criteria to set p∗ to be the scale at which

the derivative of the rate vanishes, thereby minimizing the dependence of the rate on the

separation scale.

After determining the rates, we then integrated them over the space-time volume of the

QGP using (3+1)D anisotropic hydrodynamics to provide the space and time dependence
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of the anisotropy ξ(x), the transverse momentum scale Λ(x), and the flow velocity uµ(x).

In the aHydro framework, the one-particle distribution function is guaranteed to be greater

than or equal to zero unlike in the standard viscous hydrodynamic framework where there

can be regions in phase space where the one-particle distribution function is negative. Our

final results indicate that, if one holds the final particle multiplicity fixed, there is only a

weak dependence of the photon spectrum on the assumed value of η/s. However, we found

that, for fixed η/s, varying the initial momentum-space anisotropy ξ0 resulted in significant

variations of the high-transverse-momentum photon yields. We found that, at q⊥ = 6

GeV, there was approximately an order of magnitude variation in the photon yield when

varying 0 ≤ ξ0 ≤ 100. This offers some hope to constrain the degree of QGP momentum-

space anisotropy by fitting thermal plus prompt photon production at high energies to

experimental data. We note that this is similar to the conclusion reached recently for

dilepton production, where an enhancement of the high-energy dilepton production was

observed when the initial condition was initially oblate in momentum space [53].

In addition to presenting results for the spectrum, in this paper we also calculated the

elliptic flow coefficient v2 associated with the azimuthal variation of the photon yields. Our

results indicate that, for 4πη/s = 1, the maximal photon v2 coming from the QGP phase

at LHC energies is approximately 2-3%. We find that increasing η/s or ξ0 results in an

increase in peak photon v2. Our finding that v2 increases as η/s is increased seems to be

in conflict with some earlier papers, e.g. [8, 14–16], which found that incorporating viscous

corrections resulted in a decrease in photon v2. One possible explanation for the different

trends in the photon v2 seen using aHydro versus second-order viscous hydrodynamics is

that herein we employed the leading-order spheroidal form for the LRF distribution function,

allowing for only one dissipative correction, quantified by ξ, which maps to the longitudinal-

transverse pressure anisotropy. In second-order viscous hydrodynamics, the description of

the shear tensor is more complete, i.e. transverse pressure anisotropies and off-diagonal terms

are present, resulting in a total of five independent degrees of freedom. For quantitative

assessment of photon v2, the additional viscous corrections could be important. Finally,

we also note that our study is quite limited since we did not include fluctuating initial

conditions or hadronic sources of photons. These are both major shortcomings of this

work. Our intention herein was to study the systematics in a simply context in which the

anisotropic screening and one-particle distribution functions were both taken into account
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self-consistently. We plan to include multiple anisotropy parameters, fluctuating initial

conditions, and hadronic emissions in forthcoming papers. Importantly, however, we point

out that the dependence of the photon spectrum on the initial anisotropy ξ0 found here is

primarily sensitive to early-time longitudinal-transverse pressure anisotropies with the other

viscous corrections being subleading. Therefore, we are confident that this effect is generic

and reasonably well-described using leading-order aHydro.

We mention in closing that, during the analysis, we showed that there is an approximately

30% increase in the QGP photon spectrum when varying the hard/soft separation scale by

a factor of two, however, we found that the photon v2 did not depend on the choice of the

separation scale. In the future, in addition to improving upon the aHydro assumptions, we

will combine the results obtained here with estimates for prompt photon production in order

to extract constraints on early-time momentum-space anisotropies in the QGP.
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