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Abstract

We use a recently obtained resummed quark propagator at finite temperature which takes into

account both the chromoelectric scale gT and the chromomagnetic scale g2T through the Gribov

action. The electric scale generates two massive modes whereas the magnetic scale produces a new

massless spacelike mode in the medium. Moreover, the non-perturbative quark propagator is found

to contain no discontinuity in contrary to the standard perturbative hard thermal loop approach.

Using this non-perturbative quark propagator and vertices constructed using the Slavnov-Taylor

identity, we compute the non-perturbative dilepton rate at vanishing three-momentum at one-

loop order. The resulting rate has a rich structure at low energies due to the inclusion of the

non-perturbative magnetic scale. We also calculate the quark number susceptibility, which is

related to the conserved quark number density fluctuation in the deconfined state. Both the

dilepton rate and quark number susceptibility are compared with results from lattice quantum

chromodynamics and the standard hard thermal loop approach. Finally, we discuss how the absence

of a discontinuity in the imaginary part of the non-perturbative quark propagator makes the results

for both dilepton production and quark number susceptibility dramatically different from those in

perturbative approaches and seemingly in conflict with known lattice data.
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I. INTRODUCTION

The ongoing ultra-relativistic heavy-ion collision experiments at RHIC and LHC enable

us to study the quark-gluon plasma (QGP) which is a deconfined state of hadronic matter

generated at very high temperatures and/or densities. Although the quark-gluon plasma

may be strongly coupled at low temperatures, at high temperature there is evidence that

resummed perturbation theory can be used to understand the properties of the QGP. To

perturbatively study the QGP one needs to have an in-depth understanding of the various

collective modes. These collective modes can be roughly classified into three types which are

associated with different thermal scales, namely the energy (or hard) scale T , electric scale

gT , and magnetic scale g2T , where g is the strong coupling and T is the temperature of the

system. The majority of studies in the literature have focused on the hard and electric scales,

since the magnetic scale is related to the difficult non-perturbative physics of confinement.

Based on the Hard-Thermal-Loop (HTL) resummations [1–3], a reorganization of finite-

temperature perturbation theory called HTL perturbation theory (HTLpt) was developed

over a decade ago [4]. HTLpt deals with the intrinsic energy scale T as the hard scale and

the electric scale gT as the soft scale and has been extensively used to calculate various

physical quantities associated with the deconfined state of matter. These quantities include:

the thermodynamic potential and other relevant quantities associated with it [4–23], photon

production rate [24], dilepton production rate [25, 26], single quark and quark anti-quark

potentials [27, 28], photon damping rate [29, 30], fermion damping rate [31, 32], gluon

damping rate [33, 34], plasma instabilities [35–37], jet energy loss [38–43], lepton asymmetry

during leptogenesis [44, 45], and thermal axion production [46].

Although HTLpt seems to work well at a temperature of approximately 2 Tc and above,

where Tc ∼ 160 MeV is the pseudo-critical temperature for the QGP phase transition,

the time-averaged temperature of the QGP generated at RHIC and LHC energies is quite

close to Tc. Near Tc, the running coupling g is large and the QGP could therefore be

completely non-perturbative in this vicinity of the phase diagram. In order to make some

progress at these temperatures, it is necessary to consider the non-perturbative physics

associated with the QCD magnetic scale in order to assess its role. Unfortunately, the

magnetic scale is still a challenge for the theoreticians to treat in a systematic manner

since, although its inclusion eliminates infrared divergences, the physics associated with
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the magnetic scale remains completely non-perturbative [47]. The fact that the O(g2T )

correction to the Debye mass receives non-perturbative contributions indicates that the

background physics is fundamentally non-perturbative [48]. The physics in the magnetic

sector is described by a dimensionally reduced three-dimensional Yang-Mills theory and the

non-perturbative nature of the physics in this sector is related with the confining properties

of the theory.

Lattice QCD (LQCD) provides a first principles based method that can take into account

the non-perturbative effects of QCD. Lattice QCD has been used to probe the behavior of

QCD in the vicinity of Tc, where matter undergoes a phase transition from the hadronic

phase to the deconfined QGP phase. At this point, the QCD thermodynamic functions and

some other relevant quantities associated with the fluctuations of conserved charges at finite

temperature and zero chemical potential have been very reliably computed using LQCD

(see e.g. [49–56]). In addition, quenched LQCD has also been used to study the structure of

vector meson correlation functions. Such studies have provided critically needed information

about the thermal dilepton rate and various transport coefficients at zero momentum [57–60]

and finite momentum [61].

Calculations in LQCD proceed by evaluating the Euclidean time correlation function

only for a discrete and finite set of Euclidean times. To obtain the dilepton rate, one

needs to perform an analytic continuation of the correlator from discrete Euclidean times to

reconstruct the vector spectral function in continuous real time. However, this is an ill-posed

problem. To proceed, the spectral function and hence the dilepton rate in continuous real

time can be obtained from the correlator in discrete Euclidean times through a probabilistic

interpretation based on the maximum entropy method (MEM) [62–64], which requires an

ansatz for the spectral function. Employing a free-field spectral function as an ansatz, the

spectral function in the quenched approximation of QCD was obtained earlier and found to

approach zero in the low-energy limit [60]. In the same work, the authors found that the

lattice dilepton rate approached zero at low invariant masses [60]. In a more recent LQCD

calculation with larger lattice size, the authors used a Breit-Wigner (BW) form for low-

energies plus a free-field form for high-energies as their ansatz for the spectral function [57].

The low-energy BW form of their ansatz gave a finite low-energy spectral function and low-

mass dilepton rate. This indicates that the computation of low-mass dilepton rate in LQCD

is indeed a difficult task and is also not very clear if there are structures in the low-mass
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dilepton rate similar to those found in the HTLpt calculation [25].

Given the uncertainty associated with lattice computation of dynamical quantities, e.g.

spectral functions, dilepton rate, and transport coefficients, it is desirable to have an alter-

native approach to include non-perturbative effects that can be handled in a similar way as

in resummed perturbation theory. A few such approaches are available in the literature: one

approach is a semi-empirical way to incorporate non-perturbative aspects by introducing a

gluon condensate1 in combination with the Green functions in momentum space, which has

been proposed in e.g. Refs. [65–70]. In this approach, the effective n-point functions are

related by Slavnov-Taylor (ST) identities which contain gluon condensates in the deconfined

phase as hinted from lattice measurements in pure-glue QCD [71]. The dispersion relations

with dimension-four gluon condensates in medium exhibits two massive modes [65] (a nor-

mal quark mode and a plasmino mode) similar to HTL quark dispersion relations. This

feature leads to sharp structures (van Hove singularities, energy gap, etc.) in the dilepton

production rates [67, 72] at zero momentum, qualitatively similar to the HTLpt rate [25].

Using quenched LQCD, Refs. [73, 74] calculated the Landau-gauge quark propagator

and its corresponding spectral function by employing a two pole ansatz corresponding to

a normal quark and a plasmino mode following the HTL dispersion relations [25]. In a

very recent approach [75], a Schwinger-Dyson (SD) equation has been constructed with the

aforementioned Landau-gauge propagator obtained using quenched LQCD [73, 74] and a

vertex function related through ST identity. Using this setup the authors computed the

dilepton rate from the deconfined phase and found that it has the characteristic van-Hove

singularities but does not have an energy gap.

In a very recent approach [76] quark propagation in a deconfined medium including both

electric- and magnetic-mass effects has also been studied by taking into account the non-

perturbative magnetic screening scale by using the Gribov-Zwanziger (GZ) action [77, 78],

which regulates the magnetic IR behavior of QCD. Since the gluon propagator with the GZ

action is IR regulated, this mimics confinement, making the calculations more compatible

with results of LQCD and functional methods [79]. Interestingly, the resulting HTL-GZ

quark collective modes consist of two massive modes (a normal quark mode and a plas-

1 An important aspect of the phase structure of QCD is to understand the effects of different condensates,

which serve as order parameters of the broken symmetry phase. These condensates are non-perturbative

in nature and their connection with bulk properties of QCD matter is provided by LQCD. The gluon

condensate has a potentially substantial impact on the bulk properties, e.g., on the equation of state of

QCD matter, compared to the quark condensate.
5



mino mode) similar to the standard HTL dispersions along with a new massless spacelike

excitation which is directly related to the incorporation of the magnetic scale through the

GZ action. This new quark collective excitation results in a long range correlation in the

system, which may have important consequences for various physical quantities relevant for

the study of deconfined QCD matter. In light of this, we would like to compute the dilepton

production rate and the quark number susceptibility (QNS) associated with the conserved

number fluctuation from the deconfined QGP using the non-perturbative GZ action.

This paper is organized as follows. In sec. II we briefly outline the setup for quark

propagation in a deconfined medium using GZ action. In sec. III we calculate the non-

perturbative dilepton rate and discuss the results. Sec. IV describes the computation and

results of non-perturbative QNS. In sec. 5 we summarize and conclude.

II. SETUP

We know that gluons play an important role in confinement. In the GZ action [77, 78] the

issue of confinement is usually tackled kinematically with the gluon propagator in covariant

gauge taking the form [77, 78]

Dµν(P ) =

[
δµν − (1− ξ)P

µP ν

P 2

]
P 2

P 4 + γ4
G

, (1)

where the four-momenta P = (p0, ~p), ξ is the gauge parameter, and γG is called the Gribov

parameter. Inclusion of the term involving γG in the denominator moves the poles of the

gluon propagator off the energy axis so that there are no asymptotic gluon modes. Naturally,

to maintain the consistency of the theory, these unphysical poles should not be considered

in the exact correlation functions of gauge-invariant quantities. This suggests that the

gluons are not physical excitations. In practice, this means that the inclusion of the Gribov

parameter results in the effective confinement of gluons.

In QCD, the Gribov ambiguity typically results in multiple gauge-equivalent copies and,

as a result, it renders perturbative QCD calculations ambiguous. However, the dimensionful

Gribov parameter appearing above can acquire a well-defined meaning if the topological

structure of the SU(3) gauge group is made to be consistent with the theory. Very recently,

this has been argued and demonstrated by Kharzeev and Levin [80] by taking into account

the periodicity of the θ-vacuum [81] of the theory due to the compactness of the SU(3)
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gauge group. The recent work of Kharzeev and Levin indicates that the Gribov term can be

physically interpreted as the topological susceptibility of pure Yang-Mills theory and that

confinement is built into the gluon propagator in Eq. (1), indicating non-propagation of

color charges at long distances and screening of color charges at long distances in the running

coupling. This also reconciles the original view Zwanziger had regarding γG being a statistical

parameter [78]. In practice, γG can be self-consistently determined using a one-loop gap

equation and at asymptotically high temperatures it takes the following form [76, 82, 83]

γG =
D − 1

D

Nc

4
√

2π
g2T, (2)

where D is the dimension of the theory and Nc is the number of colors.2 The one-loop

running strong coupling, g2 = 4παs, is

g2(T ) =
48π2

(33− 2Nf ) ln
(
Q2

0

Λ2
0

) , (3)

where Nf is the number of quark flavors and Q0 is the renormalization scale, which is

usually chosen to be 2πT unless specified. We fix the scale Λ0 by requiring that αs(1.5 GeV)

= 0.326, as obtained from lattice measurements [85]. For one-loop running, this procedure

gives Λ0 = 176 MeV.

To study the properties of a hot QGP using (semi-)perturbative methods, the effective

quark propagator is an essential ingredient. After resummation, the quark propagator can

be expressed as

iS−1(P ) = /P − Σ(P ), (4)

where Σ(P ) is the quark self energy. One can calculate Σ using the modified gluon propagator

(1) in the high-temperature limit to obtain [76]

Σ(P ) = (ig)2CF
∑∫
{K}

γµSf (K)γνD
µν(P −K) ≈ −(ig)2CF

∑
±

∞∫
0

dk

2π2
k2

∫
dΩ

4π

× ñ±(k, γG)

4E0
±

 iγ0 + k̂ · γ
iP0 + k − E0

± + p·k
E0

±

+
iγ0 − k̂ · γ

iP0 − k + E0
± − p·k

E0
±

 , (5)

2 Equation (2) is a one-loop result. In the vacuum, the two-loop result has been determined [84] and the

Gribov propagator form (1) is unmodified. Only γG itself is modified to take into account the two-loop

correction. To the best of our knowledge, this would hold also at finite temperature.
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where Σ{K}
∫

is a fermionic sum-integral, Sf (K) is the bare quark propagator, and

ñ±(k, γG) ≡ nB

(√
k2 ± iγ2

G

)
+ nF (k),

E0
± =

√
k2 ± iγ2

G , (6)

where nB and nF are Bose-Einstein and Fermi-Dirac distribution functions, respectively.

The modified thermal quark mass in presence of the Gribov term can also be obtained as

m2
q(γG) =

g2CF
4π2

∑
±

∞∫
0

dk
k2

E0
±
ñ±(k, γG). (7)

Using the modified quark self energy given in Eq. (5), it is now easy to write down the

modified effective quark propagator in presence of the Gribov term as

iS−1(P ) = A0γ0 − Asγ · p̂, (8)

where, keeping the structure typically used within the HTL approximation, A0 and As are

defined as [76]

A0(ω, p) = ω − 2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

[
Q0(ω̃±1 , p) +Q0(ω̃±2 , p)

]
,

As(ω, p) = p+
2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

[
Q1(ω̃±1 , p) +Q1(ω̃±2 , p)

]
. (9)

Here the modified frequencies are defined as ω̃±1 ≡ E0
±(ω+ k−E0

±)/k and ω̃±2 ≡ E0
±(ω− k+

E0
±)/k. The Legendre functions of the second kind, Q0 and Q1, are

Q0(ω, p) ≡ 1

2p
ln
ω + p

ω − p (10)

Q1(ω, p) ≡ 1

p
(1− ωQ0(ω, p)). (11)

Using the helicity representation, the modified effective fermion propagator can also be

written as

iS(P ) =
1

2

(γ0 − γ · p̂)

D+

+
1

2

(γ0 + γ · p̂)

D−
, (12)

where D± are obtained as

D+(ω, p, γG) = A0(ω, p)− As(ω, p) = ω − p− 2g2CF
(2π)2

∑
±

∫
dkkñ±(k, γG)

×
[
Q0(ω̃±1 , p) +Q1(ω̃±1 , p) +Q0(ω̃±2 , p) +Q1(ω̃±2 , p)

]
,

D−(ω, p, γG) = A0(ω, p) + As(ω, p) = ω + p− 2g2CF
(2π)2

∑
±

∫
dkkñ±(k, γG)

×
[
Q0(ω̃±1 , p)−Q1(ω̃±1 , p) +Q0(ω̃±2 , p)−Q1(ω̃±2 , p)

]
. (13)
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FIG. 1. Plot of the dispersion relations for different values of γG. In the parenthesis, the first one

represents a collective excitation mode whereas the second one is the corresponding energy of that

mode.

Solving for the zeros of D−1
± (P, γG) gives the dispersion relations for the collective excita-

tions in the medium. In Fig. 1 we show the resulting dispersion relations for three different

values of the Gribov parameter γG. In absence of the Gribov term (i.e, γG = 0), there

are two massive modes corresponding to a normal quark mode q+ with energy ω+ and a

long wavelength plasmino mode q− with energy ω− that quickly approaches free massless

propagation in the high-momentum limit. These two modes are similar to those found in

the HTL approximation [25]. With the inclusion of the Gribov term, there is a massless

mode qG with energy ωG, in addition to the two massive modes, q+ and q− [76]. The extra

mode qG is due to the presence of the magnetic screening scale. This new massless mode is

lightlike at large momenta.3 In this context, we note that in Ref. [70], such an extra massive

mode with significant spectral width was observed near Tc in presence of dimension-four

gluon condensates [70] in addition to the usual propagating quark and plasmino modes.

The existence of this extra mode could affect lattice extractions of the dilepton rate since

even the most recent LQCD results [73, 74] assumed that there were only two poles (a quark

mode and a plasmino mode) inspired by the HTL approximation.

In HTL approximation (γG = 0) the propagator contains a discontinuity in complex plane

3 The slope of the dispersion relation for this extra massless spacelike mode qG exceeds unity in some

domain of momentum. Thus, the group velocity, dωG/dp, is superluminal for the spacelike mode qG and

approaches the light cone (dω/dp = 1) from above at high momentum. Since the mode is spacelike, there

is no causality problem. Instead, this represents anomalous dispersion in the presence of GZ action which

converts Landau damping into amplification of the spacelike dispersive mode.
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stemming from the logarithmic terms in (13) due to spacelike momentum ω2 < p2. Apart

from two collective excitations originating from the in-medium dispersion as discussed above,

there is also a Landau cut contribution in the spectral representation of the propagator due

to the discontinuity in spacelike momentum. On the other hand, for γG 6= 0 the individual

terms in (13) possess discontinuities at spacelike momentum but canceled out when all terms

are summed owing the fact that the poles come in complex-conjugate pairs. As a result,

there is no discontinuity in the complex plane.4 This results in disappearance of the Landau

cut contribution in the spectral representation of the propagator in spacelike domain. It

appears as if the Landau cut contribution in spacelike domain for γG = 0 is replaced by

massless spacelike dispersive mode in presence of magnetic scale (γG 6= 0). So the spectral

function corresponding to the propagator D−1
± for γG 6= 0 has only pole contributions. As a

result, one has

ρG±(ω, p) =
ω2 − p2

2m2
q(γG)

[δ(ω ∓ ω+) + δ(ω ± ω−) + δ(ω ± ωG)] , (14)

where D+ has poles at ω+, −ω−, and −ωG and D− has poles at ω−, −ω+, and ωG with a

prefactor, (ω2 − p2)/2m2
q(γG), as the residue.

At this point we would like to mention that the non-perturbative quark spectral func-

tion obtained using the quark propagator analyzed in the quenched LQCD calculations of

Refs. [73–75] and utilizing gluon condensates in Refs. [65–67, 70, 72] also forbids a Landau cut

contribution since the effective quark propagators in these calculations do not contain any

discontinuities. This stems from the fact that the quark self-energies in Refs. [65–67, 70, 72]

do not have any imaginary parts whereas in Refs. [73–75] an ansatz of two quasiparticles was

employed for spectral function based on the LQCD quark propagator analyzed in quenched

approximation. The spectral function obtained with the Gribov action (14) also possesses

only pole contributions but no Landau cut. As a result, this approach completely removes

the quasigluons responsible for the Landau cut that should be present in a high-temperature

quark-gluon plasma. This is similar to findings in other nonperturbative approaches [65–

67, 72–75]. We will return to the consequences of the absence of Landau cut in the results

and conclusions sections.

4 Starting from the Euclidean expression (5), we have numerically checked for discontinuities and found

none. We found some cusp-like structures at complex momenta, but Σ was found to be C0-continuous

everywhere in the complex plane.

10



Returning to the problem at hand, the spectral density in (14) at vanishing three mo-

mentum (p ≡ |~p| = 0) contains three delta function singularities corresponding to the two

massive modes and one new massless Gribov mode. To proceed, one needs the vertex func-

tions in presence of the Gribov term. These can be determined by explicitly computing

the hard-loop limit of the vertex function using the Gribov propagator. One can verify,

after the fact, that the resulting effective quark-gluon vertex function satisfies the necessary

Slavnov-Taylor (ST) identity

(P1 − P2)µΓµ(P1, P2) = S−1(P1)− S−1(P2) . (15)

The temporal and spatial parts of the modified effective quark-gluon vertex can be written

as

Γ0 = aG γ0 + bG γ · p̂,

Γi = cG γi + bG p̂iγ0 + dG p̂i (γ · p̂) , (16)

where the coefficients are given by

aG = 1− 2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

1

ω1 − ω2

[
δQ±01 + δQ±02

]
,

bG = −2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

1

ω1 − ω2

[
δQ±11 + δQ±12

]
,

cG = 1 +
2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

1

3(ω1 − ω2)

[
δQ±01 + δQ±02 − δQ±21 − δQ±22

]
,

dG =
2g2CF
(2π)2

∑
±

∫
dk k ñ±(k, γG)

1

ω1 − ω2

[
δQ±21 + δQ±22

]
,

with

δQ±n1 = Qn(ω̃±11, p)−Qn(ω̃±21, p) for n = 0, 1, 2 ,

ω±m1 = E0
±(ωm + k − E0

±)/k for m = 1, 2 ,

ω±m2 = E0
±(ωm − k + E0

±)/k for m = 1, 2 .

Similarly, the four-point function can be obtained by computing the necessary diagrams in

the hard-loop limit and it satisfies the following generalized ST identity

PµΓµν(−P1, P1;−P2, P2) = Γν(P1 − P2,−P1;P2)− Γν(−P1 − P2, P1;P2) . (17)
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P−Q

Q

P

FIG. 2. The self-energy (left) and tadpole (right) diagrams in one loop order.

III. ONE-LOOP DILEPTON PRODUCTION WITH THE GRIBOV ACTION

The dilepton production rate for a dilepton with energy ω and three-momentum ~q is

related to the discontinuity of the photon self energy Πµν(Q) as [86]

dR

dωd3q
=

α

12π3Q2

1

eβω − 1

1

2πi
Disc Πµ

µ(Q). (18)

At one-loop order, the dilepton production rate is related to the two diagrams shown in

Fig. 2, which can be written as

Πµ
µ(Q) =

5

3
e2
∑
p0

∫
d3p

(2π)3

{
Tr

[
S(P ) Γµ(K,Q,−P ) S(K) Γµ(−K,−Q,P )

]
+ Tr

[
S(P ) Γµµ(−P, P ;−Q,Q)

]}
, (19)

where K = P −Q. The second term in (19) is due to the tadpole diagram shown in Fig. 2

which, in the end, does not contribute since Γµµ = 0. However, the tadpole diagram is

essential to satisfy the transversality condition, QµΠµν(Q) = 0 and thus gauge invariance

and charge conservation in the system.

Using the n-point functions computed in sec. II and performing traces, one obtains

Πµ
µ(~q = 0) =

10

3
e2T

∑
p0

∫
d3p

(2π)3

×
[{

(aG + bG)2

D+(ω1, p, γG)D−(ω2, p, γG)
+

(aG − bG)2

D−(ω1, p, γG)D+(ω2, p, γG)

}
−
{

(cG + bG + dG)2

D+(ω1, p, γG)D−(ω2, p, γG)
+

(cG − bG + dG)2

D−(ω1, p, γG)D+(ω2, p, γG)

}
−2c2

G

{
1

D+(ω1, p, γG)D+(ω2, p, γG)
+

1

D−(ω1, p, γG)D−(ω2, p, γG)

}]
. (20)

12



The discontinuity can be obtained by Braaten-Pisarski-Yuan (BPY) prescription [25]

Disc T
∑
p0

f1(p0)f2(q0 − p0) = 2πi(1− eβω)

∫
dω1

∫
dω2 nF (ω1)nF (ω2)

× δ(ω − ω1 − ω2) ρ1(ω1)ρ2(ω2), (21)

which, after some work, allows one to determine the dilepton rate at zero three momentum

dR

dωd3q
(~q = 0) =

10α2

9π4

1

ω2

∞∫
0

p2dp

∞∫
−∞

dω1

∞∫
−∞

dω2nF (ω1)nF (ω2)δ(ω − ω1 − ω2)

[
4

(
1− ω2

1 − ω2
2

2p ω

)2

ρG+(ω1, p)ρ
G
−(ω2, p)

+

(
1 +

ω2
1 + ω2

2 − 2p2 − 2m2
q(γG)

2p ω

)2

ρG+(ω1, p)ρ
G
+(ω2, p)

+

(
1− ω2

1 + ω2
2 − 2p2 − 2m2

q(γG)

2p ω

)2

ρG−(ω1, p)ρ
G
−(ω2, p)

]
. (22)

Using (14) and considering all physically allowed processes by the in-medium dispersion,

the total contribution can be expressed as

dR

dωd3q

∣∣∣pp(~q = 0) =
10α2

9π4

1

ω2

∞∫
0

p2 dp×
[
δ(ω − 2ω+) n2

F (ω+)

(
ω2

+ − p2

2m2
q(γG)

)2{
1 +

ω2
+ − p2 −m2

q(γG)

p ω

}2

+ δ(ω − 2ω−) n2
F (ω−)

(
ω2
− − p2

2m2
q(γG)

)2{
1− ω2

− − p2 −m2
q(γG)

p ω

}2

+ δ(ω − 2ωG) n2
F (ωG)

(
ω2
G − p2

2m2
q(γG)

)2{
1− ω2

G − p2 −m2
q(γG)

p ω

}2

+4 δ(ω − ω+ − ω−) nF (ω+) nF (ω−)

(
ω2

+ − p2

2m2
q(γG)

)(
ω2
− − p2

2m2
q(γG)

)
×
{

1− ω2
+ − ω2

−

2p ω

}2

+δ(ω − ω+ + ω−) nF (ω+)nF (−ω−)

(
ω2

+ − p2

2m2
q(γG)

)(
ω2
− − p2

2m2
q(γG)

)
×
{

1 +
ω2

+ + ω2
− − 2p2 − 2m2

q(γG)

2p ω

}2
]
. (23)

Inspecting the arguments of the various energy conserving δ-functions in (23) one can un-

derstand the physical processes originating from the poles of the propagator. The first three
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FIG. 3. Various dilepton processes which originate from the in-medium dispersion with the Gribov

term.

terms in (23) correspond to the annihilation processes of q+q̄+ → γ∗, q−q̄− → γ∗, and

qGq̄G → γ∗, respectively. The fourth term corresponds to the annihilation of q+q̄− → γ∗. On

the other hand, the fifth term corresponds to a process, q+ → q−γ∗, where a q+ mode makes

a transition to a q− mode along with a virtual photon. These processes involve soft quark

modes (q+, q−, and qG and their antiparticles) which originate by cutting the self-energy

diagram in Fig. 2 through the internal lines without a “blob”. The virtual photon, γ∗, in all

these five processes decays to lepton pair and can be visualized from the dispersion plot as

displayed in the Fig. 3. The momentum integration in Eq. (23) can be performed using the

standard delta function identity

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(x) |x=xi

, (24)

where xi are the solutions of f(xi) = 0.

The contribution of various individual processes to the dilepton production rate in pres-

ence of the Gribov term are displayed in the Fig. 4. Note that in this figure and in subsequent

figures showing the dilepton rate, the vertical axis shows the dimensional late dilepton rate

dR/d4p = dN/d4xd4p and the horizontal axis is scaled by the thermal quark mass as to

make it dimensionless. In Fig. 4 we see that the transition process, q+ → q−γ∗, begins at

14
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FIG. 5. Comparison of dilepton production rates involving various quasiparticle modes with and

without inclusion of γG.

the energy ω = 0 and ends up with a van-Hove peak 5 where all of the transitions from

q+ branch are directed towards the minimum of the q− branch. The annihilation process

5 A van-Hove peak [87, 88] appears where the density of states diverges as f ′(x)|x=x0
= 0 since the density

of states is inversely proportional to f ′(x).
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FIG. 6. Comparison of various dilepton production rates from the deconfined matter.

involving the massless spacelike Gribov modes, qGq̄G → γ∗, also starts at ω = 0 and falls-off

very quickly. The annihilation of the two plasmino modes, q−q̄− → γ∗, opens up with again

a van-Hove peak at ω = 2× the minimum energy of the plasmino mode. The contribution of

this process decreases exponentially. At ω = 2mq(γG), the annihilation processes involving

usual quark modes, q+q̄+ → γ∗, and that of a quark and a plasmino mode, q+q̄− → γ∗,

begin. However, the former one (q+q̄+ → γ∗) grows with the energy and would converge to

the usual Born rate (leading order perturbative rate) [89] at high mass whereas the later

one (q+q̄− → γ∗) initially grows at a very fast rate, but then decreases slowly and finally

drops very quickly. The behavior of the latter process can easily be understood from the

dispersion properties of quark and plasmino mode. Summing up, the total contribution of

all theses five processes is displayed in Fig. 5. This is compared with the similar dispersive

contribution when γG = 0 [25], comprising processes q+ → q−γ∗, q+q̄+ → γ∗, q−q̄− → γ∗

and q+q̄− → γ∗. We note that when γG = 0, the dilepton rate contains both van-Hove peaks

and an energy gap [25]. In presence of the Gribov term (γG 6= 0), the van-Hove peaks re-

main, but the energy gap disappears due to the annihilation of new massless Gribov modes,

qGq̄G → γ∗.

In Fig. 6 we compare the rates obtained using various approximations: leading-order

perturbative (Born) rate [89], quenched LQCD rate [57, 60], and with and without the
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Gribov term. The non-perturbative rate with the Gribov term shows important structures

compared to the Born rate at low energies. But when compared to the total HTLpt rate 6 it is

suppressed in the low mass region due to the absence of Landau cut contribution for γG 6= 0.

It seems as if the higher order Landau cut contribution due to spacelike momenta for γG = 0

is replaced by the soft process involving spacelike Gribov modes in the collective excitations

for γG 6= 0. We also note that the dilepton rate [75] using the spectral function constructed

with two pole ansatz by analyzing LQCD propagator in quenched approximation [73, 74]

shows similar structure as found here for γG 6= 0. On the other hand, such structure at low

mass is also expected in the direct computation of dilepton rate from LQCD in quenched

approximation [57, 60]. However, a smooth variation of the rate was found at low mass. The

computation of dilepton rate in LQCD involves various intricacies and uncertainties. This

is because, as noted in sec. I, the spectral function in continuous time is obtained from the

correlator in finite set of discrete Euclidean time using a probabilistic MEM method [62–

64] with a somewhat ad hoc continuous ansatz for the spectral function at low energy and

also fundamental difficulties in performing the necessary analytic continuation in LQCD.

Until LQCD overcomes the uncertainties and difficulties in the computation of the vector

spectral function, one needs to depend, at this juncture, on the prediction of the effective

approaches for dilepton rate at low mass in particular. We further note that at high-energies

the rate for both γG = 0 and γG 6= 0 is higher than the lattice data and Born rate. This

is a consequence of using the HTL self-energy also at high-energies/momentum where the

soft-scale approximation breaks down. Nevertheless, the low mass rate obtained here by

employing the non-perturbative magnetic scale (γG 6= 0) in addition to the electric scale

allows for a model-based inclusion of the effect of confinement and the result has a somewhat

rich structure at low energy compared to that obtained using only the electric scale (γG = 0)

as well in LQCD.

We make some general comments concerning the dilepton rate below. If one looks at

the dispersion plots in Fig. 1 for γG = 0, then one finds that ω− falls off exponentially and

approaches light cone, whereas ω+ does not follow fall off exponentially to light cone, but

instead behaves as [p+m2
q(T )/p] for large p. On the other hand, in the presence of γG 6= 0

both ω− and ωG approach the light cone very quickly, but again ω+ has a similar asymptotic

6 Since HTL spectral function (i.e, γG = 0) has both pole and Landau cut contribution, so the HTLpt

rate [25] contains an additional higher order contribution due to the Landau cut stemming from spacelike

momenta.
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behavior as before. This feature of ω+ makes the dilepton rate at large ω in Fig. 6 saturate

for both γG = 0 and γG 6= 0, because the dominant contribution comes from the annihilation

of two ω+ as discussed in Fig. 4. In general, the total dilepton rate in Fig. 6, behaves as

∼ exp(−ω/T ) for γG(T ) = 0 due to the Landau damping contribution coming from the

quasigluons in a hot and dense medium. As the Landau cut contribution is missing in the

γG(T ) 6= 0 case, one finds a leveling off at low ω. In other words, since the Landau damping

contribution is absent for γG(T ) 6= 0, the rate approaches that of the pole-pole contribution

for γG = 0 as shown in Fig. 5, except in the mass gap region. We further note that the

LQCD rate [57] matches with Born rate at large ω simply because a free spectral function

has been assumed for large ω. On the other hand the LQCD spectral function [57] at low ω is

sensitive to the prior assumptions and, in such a case, the spectral function extracted using

a MEM [62–64] analyses should be interpreted carefully with a proper error analysis [62].

Since the MEM analyses is sensitive to the prior assumption, but is not very sensitive to

the structure of the spectral function at small ω, the error is expected to be significant at

small ω. The existence of fine structure such as van Hove singularities at small ω cannot be

excluded based on the LQCD rate [57] at this moment in time.

IV. ONE-LOOP QUARK NUMBER SUSCEPTIBILITY WITH THE GRIBOV

ACTION

We now turn to the computation of the quark number susceptibility (QNS) including the

Gribov term. The QNS can be interpreted as the response of the conserved quark number

density, n with infinitesimal variation in the quark chemical potentials µ + δµ. In QCD

thermodynamics it is defined as the second order derivative of pressure P with respect to

quark chemical potential, µ. But again, using the fluctuation-dissipation (FD) theorem,

the QNS for a given quark flavor can also be defined from the time-time component of

the current-current correlator in the vector channel [6, 8, 90, 91]. The QNS is in general

expressed as

χq(T ) =
∂n

∂µ

∣∣∣∣
µ→0

=
∂2P
∂2µ

∣∣∣∣
µ→0

=

∫
d4x〈J0(0, ~x)J0(0,~0)〉

= β

∞∫
−∞

dω

2π

−2

1− e−βω Im Π00(ω,~0), (25)
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where J0 is the temporal component of the vector current and Π00 is the time-time component

of the vector correlator or self-energy with external four-momenta Q ≡ (ω, ~q). The above

relation in (25) is known as the thermodynamic sum rule [90, 91] where the thermodynamic

derivative with respect to the external source, µ is related to the time-time component of

static correlation function in the vector channel.

In order to compute the QNS we need to calculate the imaginary part of the temporal

component of the two one-loop diagrams given in Fig. 2. The contribution of the self energy

diagram is

Πs
00(Q) = NfNcT

∑
p0

∫
d3p

(2π)3
Tr
[
S(P ) Γ0(K,Q,−P ) S(K) Γ0(−K,−Q,P )

]
, (26)

where K = P −Q. After performing the traces of the self energy diagram, one obtains

Πs
00(~q = 0) = 2NfNcT

∑
p0

∫
d3p

(2π)3

[
(aG + bG)2

D+(ω1, p, γG)D−(ω2, p, γG)

+
(aG − bG)2

D−(ω1, p, γG)D+(ω2, p, γG)

]
, (27)

where

aG + bG = 1− 2g2CF
(2π)2

∑
±

∫
dkkñ±(k, γG)

1

ω

×
[
Q0(ω̃±11, p) +Q1(ω̃±11, p) +Q0(ω̃±21, p)−Q1(ω̃±21, p)

+Q0(ω̃±12, p) +Q1(ω̃±12, p) +Q0(ω̃±22, p)−Q1(ω̃±22, p)
]

= 1 +
1

ω
[D+(ω1, p, γG) +D−(ω2, p, γG)− ω1 − ω2]

= 1− ω1 + ω2

ω
+
D+(ω1, p, γG) +D−(ω2, p, γG)

ω
, (28)

and

aG − bG = 1− 2g2CF
(2π)2

∑
±

∫
dkkñ±(k, γG)

1

ω

×
[
Q0(ω̃±11, p)−Q1(ω̃±11, p) +Q0(ω̃±21, p) +Q1(ω̃±21, p)

+Q0(ω̃±12, p)−Q1(ω̃±12, p) +Q0(ω̃±22, p) +Q1(ω̃±22, p)
]

= 1 +
1

ω
[D−(ω1, p, γG) +D+(ω2, p, γG)− ω1 − ω2]

= 1− ω1 + ω2

ω
+
D−(ω1, p, γG) +D+(ω2, p, γG)

ω
, (29)
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where D∓(ω, p, γG) were defined in Eq. (13). We write only those terms of Eq. (27) which

contain discontinuities

(aG + bG)2

D+(ω1, p, γG)D−(ω2, p, γG)
=

(1− ω1+ω2

ω
)2

D+(ω1, p, γG)D−(ω2, p, γG)

+
1

ω2

{
D+(ω1, p, γG)

D−(ω2, p, γG)
+
D−(ω2, p, γG)

D+(ω1, p, γG)

}
,

(aG − bG)2

D−(ω1, p, γG)D+(ω2, p, γG)
=

(1− ω1+ω2

ω
)2

D−(ω1, p, γG)D+(ω2, p, γG)

+
1

ω2

{
D−(ω1, p, γG)

D+(ω2, p, γG)
+
D+(ω2, p, γG)

D−(ω1, p, γG)

}
. (30)

Calculating the discontinuity using the BPY prescription given in Eq. (21), one can write

the imaginary part of Eq. (27) as

Im Πs
00 = 4NcNfπ(1− eβω)

∫
d3p

(2π)3

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)nF (ω1)nF (ω2)

×
[(

1− ω1 + ω2

ω

)2

ρG+(ω1, p)ρ
G
−(ω2, p) +

C1ρ
G
+(ω2, p) + C2ρ

G
−(ω2, p)

ω2

]
, (31)

with

C1 = Im D−(ω1, p) = 0,

C2 = Im D+(ω1, p) = 0. (32)

The tadpole part of Fig. 2 can now be written as

Πt
00(Q) = NfNcT

∑
p0

∫
d3p

(2π)3
Tr

[
S(P ) Γ00(−P, P ;−Q,Q)

]
. (33)

The four-point function Γ00 at zero three-momentum can be obtained using Eq. (17) giving

Γ00 = −(eGγ
0 + fG p̂ · ~γ), (34)

eG =
2g2cF
(2π)2

∑
±

∫
dkkñ±(k, γG)

1

(ω1 − ω2)

[
δQ±01 + δQ±02 + δQ±′01 + δQ±′02

]
,

fG =
2g2cF
(2π)2

∑
±

∫
dkkñ±(k, γG)

1

(ω1 − ω2)

[
δQ±11 + δQ±12 + δQ±′11 + δQ±′12

]
,

where

δQ±′n1 = Qn(ω̃±11, p)−Qn(ω̃±′21 , p) for n = 0, 1, 2 ,

ω̃±′21 = E0
±(ω′2 + k − E0

±)/k ,

ω̃±′22 = E0
±(ω′2 − k + E0

±)/k ,

ω′2 = ω1 + ω.
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Proceeding in a similar way as the self-energy diagram, the contribution from the tadpole

diagram is

Im Πt
00 = −4NcNfπ(1− eβω)

∫
d3p

(2π)3

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)

nF (ω1)nF (ω2)

ω2

×
[
C1ρ

G
+(ω2, p) + C2ρ

G
−(ω2, p)

]
= 0. (35)

The total imaginary contribution of the temporal part shown in Fig. 2 can now be written

as

Im Π00 = Im Πs
00 + Im Πt

00

= 4NcNfπ(1− eβω)

∫
d3p

(2π)3

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)nF (ω1)nF (ω2)

×
[(

1− ω1 + ω2

ω

)2

ρG+(ω1, p)ρ
G
−(ω2, p)

]
. (36)

It is clear from (31) and (35) that the tadpole contribution in (35) exactly cancels with the

second term of (31) even if C1 and C2 are finite, e.g., for the HTL case (γG = 0) [6, 8]. At

finite γG, the form of the sum of self-energy and tadpole diagrams remains the same, even

though the individual contribution are modified.

Putting this in the expression for the QNS in Eq. (25), we obtain

χq(T ) = 4NcNfβ

∫
d3p

(2π)3

∞∫
−∞

dω

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)nF (ω1)nF (ω2)

×
[(

1− ω1 + ω2

ω

)2

ρG+(ω1, p)ρ
G
−(ω2, p)

]
= 4NcNfβ

∫
d3p

(2π)3

[( ω2
+ − p2

2m2
q(γG)

)2

nF (ω+)nF (−ω+)

+

(
ω2
− − p2

2m2
q(γG)

)2

nF (ω−)nF (−ω−) +

(
ω2
G − p2

2m2
q(γG)

)2

nF (ωG)nF (−ωG)
]

= χpp
q (T ). (37)

where we represent the total χq(T ) as χpp
q (T ) since there is only the pole-pole contribution

for γG 6= 0. However for γG = 0 there will be pole-cut (χpc
q (T )) and cut-cut (χcc

q (T ))

contribution in addition to pole-pole contribution because the spectral function contains

pole part + Landau cut contribution of the quark propagator.

In Fig. 7 we have presented the different contribution of QNS scaled with the corre-

sponding free values with and without the Gribov term. We, at first, note that the running
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FIG. 7. QNS scaled with free values are compared with and without the inclusion of γG. In each

case a band appears due to the choice of the two renormalization scales as 2πT and 4πT . The

various symbols correspond to LQCD data from various groups labeled as WB [49], BNL-BI(B)

and BNL-BI(u) [51, 52], and TIFR [56].

coupling in (3) is a smooth function of T around and below Tc. We have extended to low

temperatures as an extrapolation of our high-temperature result even though our treatment

is strictly not valid below Tc. Now from the first panel of Fig. 7, the pole-pole con-

tribution to the QNS with the Gribov action is increased at low T , compared to that in

absence of the Gribov term. This improvement at low T is solely due to the presence of

the non-perturbative Gribov mode in the collective excitations. However, at high T both

contributions become almost same as the Gribov mode disappears. There are no pole-cut

(pc) or cut-cut (cc) contribution for γG(T ) 6= 0, compared to that for γG = 0. The pc and

cc contributions in absence of magnetic scale are displayed in second and third panels. As a

result, we find that the QNS in presence of magnetic scale contains only the pp-contribution

due to collective excitations originating from the in-medium dispersion whereas, in absence
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of magnetic scale, the QNS is enhanced due to additional higher order Landau cut (i.e.,

pole-cut + cut-cut) contribution as shown in the fourth panel. When compared with LQCD

data from various groups [49, 51, 52, 56], the QNS in presence of magnetic scale lies around

(10− 15)% below the LQCD results whereas that in absence of magnetic scale is very close

to LQCD data. This is expected due to the additional higher-order Landau cut contribution

in absence of magnetic scale as discussed earlier. This also suggests that it is necessary to

include higher loop orders in QNS in presence of the magnetic scale, which is beyond scope

of this paper. However, we hope to carry out this non-trivial task in near future.

V. CONCLUSIONS AND OUTLOOK

In this paper we considered the effect of inclusion of magnetic screening in the context of

the Gribov-Zwanziger picture of confinement. In covariant gauge, this was accomplished by

adding a masslike parameter, the Gribov parameter, to the bare gluon propagator resulting

in the non-propagation of gluonic modes. Following Ref. [76] we obtained the resummed

quark propagator taking into account the Gribov parameter. A new key feature of the re-

sulting resummed quark propagator is that it contains no discontinuities. In the standard

perturbative hard-thermal loop approach there are discontinuities at spacelike momentum

associated with Landau damping which seem to be absent in the GZ-HTL approach. Using

the resulting quark propagator, we evaluated the spectral function, finding that it only con-

tains poles for γG 6= 0. We then used these results to compute (1) the dilepton production

rate at vanishing three-momentum and (2) the quark number susceptibility. For the dilepton

production rate, we found that, due to the absence of Landau damping for γG 6= 0, the rate

contains sharp structures, e.g. Van Hove singularities, which don’t seem to be present in

the lattice data. That being said, since the lattice calculations used a perturbative ansatz

for the spectral function when performing their MEM analysis[62] of the spectral function,

it is unclear how changing the underlying prior assumptions about the spectral function

would affect the final lattice results. Moreover, the error analsis for spectral function with

MEM prescription [63] has to be done carefully than it was done in LQCD calculation [57].

Since the result is sensitive to the prior assumptions, the error seems to become large and

as a result no conclusion can be drawn for fine structures at low mass dileptons from the

LQCD result. For the quark number susceptibilities, we found that, again due to the ab-
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sence of Landau damping for γG 6= 0, the results do not agree well with available lattice

data. This can be contrasted with a standard HTLpt calculation, which seems to describe

the lattice data quite well with no free parameters. It is possible that higher-order loop cal-

culations could improve the agreement between the Gribov-scenario results and the lattice

data; however, the success of HTLpt compared to lattice data as well as nonperturbative

model calculations suggests that at T >∼ 200 MeV the electric sector alone provides an ac-

curate description of QGP thermodynamics. Nevertheless, the present HTLpt results poses

a serious challenge to the Gribov scenario for only inclusion of magnetic mass effects in the

QGP. The absence of quasigluons responsible for the Landau cut makes the results for both

dilepton production and quark number susceptibility dramatically different from those in

perturbative approaches. We conclude that the results with present GZ action is in conflict

with those in perturbative approaches due to the absence of the Landau cut contribution in

the non-perturbative quark propagator.
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