
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum gravity constraints from unitarity and analyticity
Brando Bellazzini, Clifford Cheung, and Grant N. Remmen

Phys. Rev. D 93, 064076 — Published 29 March 2016
DOI: 10.1103/PhysRevD.93.064076

http://dx.doi.org/10.1103/PhysRevD.93.064076


CALT-TH-2015-044

Saclay-t15/161

Quantum Gravity Constraints

from Unitarity and Analyticity

Brando Bellazzini,1 Clifford Cheung,2 and Grant N. Remmen2
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Abstract

We derive rigorous bounds on corrections to Einstein gravity using unitarity and analyt-
icity of graviton scattering amplitudes. In D ≥ 4 spacetime dimensions, these consistency
conditions mandate positive coefficients for certain quartic curvature operators. We sys-
tematically enumerate all such positivity bounds in D = 4 and D = 5 before extending to
D ≥ 6. Afterwards, we derive positivity bounds for supersymmetric operators and verify
that all of our constraints are satisfied by weakly-coupled string theories. Among quadratic
curvature operators, we find that the Gauss-Bonnet term in D ≥ 5 is inconsistent unless
new degrees of freedom enter at the natural cutoff scale defined by the effective theory.
Our bounds apply to perturbative ultraviolet completions of gravity.

1 Introduction

Low-energy effective theory describes quanta interacting indirectly through kinematically inac-

cessible states. The dynamics are characterized by an effective action that typically includes all

interactions permitted by symmetry with couplings of order unity. However, in certain cases,

self-consistency at long distances imposes non-trivial constraints on the coefficients of effective
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operators. This is famously true in the theory of pions, where the operator coefficients of certain

higher-derivative operators are required to be strictly positive to ensure causal particle propaga-

tion together with unitarity and analyticity of scattering amplitudes at complex momenta [1–5].

As low-energy criteria, causality, unitarity, and analyticity impose constraints that are inde-

pendent of the detailed ultraviolet dynamics. Consequently, these consistency conditions offer

special utility in the context of quantum gravity, where the ultraviolet completion is not known

with certainty. For instance, such bounds have been derived for the effective theory of gravitons

and photons [6], where consistency necessitates large charge-to-mass ratios precisely of the form

of the weak gravity conjecture [7].

Notably, a proper diagnosis of causality violation in curved spacetime is subtle since particle

propagation can be locally superluminal even in healthy theories. For example, it has long been

known that photons with certain polarizations travel superluminally in the vicinity of a black

hole in the effective theory of photons and gravitons describing our actual universe [8]. Instead,

a more global measure of causality, e.g., the existence of closed timelike curves, is necessary to

establish a true pathology. On the other hand, unitarity and analyticity offer alternative criteria

that are mathematically rigorous and applicable in the flat-space limit.

In this paper, we systematically derive new constraints on curvature corrections in gravity

from unitarity and analyticity. The graviton effective theory is described by the action1

S =

∫

dDx
√−g

∞∑

n=1

Ln, (1)

where Ln are contributions to the action entering at order 2n in the derivative expansion and

L1 =
R

2κ2
and L2 = λ(RµνρσR

µνρσ − 4RµνR
µν +R2) (2)

are the Einstein-Hilbert and Gauss-Bonnet terms. We assume the Gauss-Bonnet form for L2

throughout since this is the unique ghost-free quadratic curvature invariant [9, 10] in D dimen-

sions. Moreover, we restrict our analysis to effective theories in which L4 takes the form

L4 =
7∑

i=1

ciOi, (3)

1We work in mostly + signature and write κ =
√
8πG, Rµν = Rρ

µρν
, and Rµ

νρσ
= ∂ρΓ

µ

νσ
+ · · · .
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expressed in terms of the minimal basis of quartic Riemann operators2 in Ref. [12],

O1 = RµνρσRµνρσR
αβγδRαβγδ O2 = RµνρσR δ

µνρ Rαβγ
σRαβγδ

O3 = RµνρσR αβ
µν R γδ

αβ Rρσγδ O4 = RµνρσR αβ
µν R γδ

ρα Rσβγδ

O5 = RµνρσR αβ
µν R γ δ

ρ α Rσγβδ O6 = RµνρσR α β
µ ρ R γ δ

α β Rνγσδ

O7 = RµνρσR α β
µ ρ R γ δ

α ν Rβγσδ.

(4)

Note that linear dependences arise among operators as the dimension D of spacetime decreases.

At quadratic order, L2 is unphysical in D ≤ 3, a total derivative in D = 4, and dynamical

in D ≥ 5. Meanwhile, at quartic order, the number of algebraically independent operators

Oi in D = 4, 5, 6, 7, 8 is 2, 4, 6, 6, 7, respectively [12], with one linear combination—the eight-

dimensional Euler density—a total derivative in D = 8 and hence dynamical only in D ≥ 9 [13].

Our analysis hinges on the on-shell four-point graviton scattering amplitude, M , whose

forward limit is intimately linked to the total cross-section by well-known analyticity argu-

ments [1, 5]. By marginalizing over the external graviton polarizations, we can then systemat-

ically derive a rigorous and inclusive set positivity bounds on the coefficients of operators in

the graviton effective action. Throughout, we assume a perturbative ultraviolet completion of

gravity, so there exists a well-defined expansion in ~.

We begin with an analysis of quartic curvature corrections, proving that in D = 4 the

coefficients of the (R2)2 and (RR̃)2 operators are positive. Our results precisely match those of

Ref. [14], which derived bounds from the condition of locally subluminal graviton propagation.

We then generalize our arguments to D = 5 and D ≥ 6. Subsequently, we obtain positivity

constraints on supersymmetric operators in general D, which in the literature are sometimes

denoted t8t8R
4 and t8(R

2)2. As a consistency check, we verify that all our constraints are

satisfied in the bosonic, type II, and heterotic string theories.

Moving on to quadratic curvature corrections, we argue that unitarity and analyticity exclude

theories in which λ ≫ 1 with no new degrees of freedom present at or below the mass scale

Λ ∼ |λκ2|−1/2, the natural cutoff associated with the Gauss-Bonnet term and the derivative

expansion. Our results precisely accord with those of Maldacena et al. [15], who demonstrated

that this class of theories is inconsistent with global causality.

The remainder of this paper is organized as follows. In Sec. 2, we review the arguments

of Ref. [1] whereby unitarity and analyticity impose rigorous positivity bounds on operator

coefficients in effective theories. Afterwards, in Sec. 3 we apply these methods to establish the

2Applying leading-order equations of motion to Ln is equivalent to a field definition modulo new terms generated
in Ln+1. Repeating this procedure at each order, we can freely impose R = Rµν = 0 in a pure gravity theory [11].
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positivity of certain coefficients of quartic curvature operators, starting in D = 4 and D = 5 and

then generalizing to D ≥ 6. We then apply our bounds to supersymmetric theories and string

theories. Finally, we study quadratic curvature operators in Sec. 4 and conclude in Sec. 5.

2 Analyticity Argument

In this section we review how operator coefficients in effective field theories are constrained

by the analyticity of scattering amplitudes at complex momenta. Our analysis follows that of

Ref. [1], which derived positivity bounds on operator coefficients by relating the low-energy limit

of forward amplitudes to strictly positive integrals of cross-sections.

Our object of interest is the on-shell amplitudeM describing four-point graviton scattering in

D dimensions. Here, the choice of the external polarizations is built into the functional form of

M , as is the case for helicity amplitudes inD = 4. From this viewpoint, helicity is just a quantum

number labeling the external states, no different from baryon or lepton number. Sometimes it

will be useful to view M as a function of the external particle labels, M = M(1, 2, 3, 4), and

other times as a function of the kinematic invariants, M = M(s, t, u), where

s = −(k1 + k2)
2, t = −(k1 + k3)

2, u = −(k1 + k4)
2, (5)

working in the convention where all momenta are incoming, so k1 + k2 + k3 + k4 = 0.

To derive constraints from analyticity, we will be interested in scattering amplitudes that

are simultaneously forward and invariant under crossing in the t-channel. Formally, t-channel

crossing symmetry implies invariance under swapping particle labels 1 ↔ 3 or 2 ↔ 4 while

leaving the functional form of M—which encodes the polarization choices—fixed, so

M(1, 2, 3, 4) = M(3, 2, 1, 4) = M(1, 4, 3, 2) = M(3, 4, 1, 2). (6)

For external gravitons, crossing symmetry is ensured if the exchanged states are indistinguish-

able. This happens in D = 4 if the states have identical helicity and more generally in D

dimensions if the states have the same polarization relative to their momenta. Mathematically,

M is crossing symmetric provided the momentum and polarization of particle 1 are related by

an improper Lorentz transformation to those of particle 3, and likewise for particles 2 and 4. In

terms of kinematic invariants, a crossing symmetric amplitude then satisfies

M(s, t) = M(−s− t, t), (7)

where the momenta are swapped but the polarizations relative to momenta—which in D = 4

are the helicities—are untouched.
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Meanwhile, the forward limit of the amplitude, M(s, t → 0), corresponds to an identification

of particles 1 ↔ 3 and 2 ↔ 4. This is achieved simultaneously with crossing symmetry if we

restrict to following kinematic regime:

forward and
crossing symmetric

=⇒ (k3, ǫ3) ↔ (−k1, ǫ1) and (k4, ǫ4) ↔ (−k2, ǫ2), (8)

where ǫ1 and ǫ2 are real linear polarizations. We choose a basis of linear polarizations because an

amplitude with fixed external circular polarizations cannot be simultaneously crossing symmetric

and forward.

The forward and crossing symmetric amplitude, M(s, t → 0), can then be expanded in a

power series in s and t. While analytic singularities in s or t arise, their form is severely restricted

by the locality of the underlying theory. As noted earlier, we assume throughout a perturbative

ultraviolet completion of gravity, so we are justified in considering only the leading contribution

in the ~ expansion, i.e., tree-level exchange.

At tree level, analytic singularities in kinematic invariants enter at worst as simple poles.

Moreover, a t-channel singularity in the forward limit can only arise from non-local terms cor-

responding to graviton exchange induced by the leading Einstein-Hilbert interactions, so the

general form for the forward amplitude is

M(s, t → 0) =

∞∑

n=0

fns
n +O(s2/t). (9)

The first term is regular, as it is generated by heavy particle exchange, while the second term

is singular because it comes from t-channel graviton exchange scaling as ∼ s2/t. The form of

Eq. (9) together with the crossing symmetry relation of Eq. (7) implies that

M(s, t → 0) = M(−s, t → 0) +O(s), (10)

where the first term arises because the limit of a regular function is the function evaluated at the

limit of its arguments, while the second term is a residual contribution from applying crossing

symmetry to the singular O(s2/t) contribution.

The parameters fn depend on the coefficients of operators in the effective action of the

low-energy theory. To determine analyticity constraints, we consider the order n residue of

M(s, t → 0) in the complex s plane, yielding

fn =
1

2πi

∮

C

ds

sn+1

[
M(s, t → 0) +O(s2/t)

]
, (11)

where C denotes a small contour encircling the origin.
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As previously noted [1,6], the O(s2/t) singular contribution is formally infinite in the strictly

forward limit and therefore a major obstacle to deriving bounds from analyticity. Nevertheless,

for n 6= 2 this term is eliminated by the residue theorem. While forward singularities of order

sn/t can arise from loop-level graviton exchange diagrams, we are working at leading order in

the ~ expansion so these contributions are formally subdominant. On the other hand, n = 2

is more subtle, but we will show that in certain parameter regimes the O(s2/t) term can be

subdominant to the rest of the amplitude, allowing for a bound to be placed. In any case, we

leave a detailed discussion of these issues for later sections and for now simply drop the O(s2/t)

contribution. Terms subleading in the forward limit of the Einstein-Hilbert amplitude must by

power counting go as O(s) and will thus be eliminated in the contour integral for all n ≥ 2.

By Cauchy’s theorem, we can blow up C into a new contour C′ that runs just above and

below the real s axis, plus a circular boundary contour at infinity, yielding

fn =
1

2πi

(∫ −s0

−∞
+

∫ ∞

s0

)
ds

sn+1
Disc[M(s, t → 0)] + boundary integral, (12)

where s0 is any scale above zero and below the first massive threshold in the ultraviolet comple-

tion. We note that Disc[M(s, t → 0)] = M(s + iǫ, t → 0) −M(s − iǫ, t → 0). By the Schwarz

reflection principle, M(s∗, t → 0) = M(s, t → 0)∗, so

Disc[M(s, t → 0)] = 2iIm[M(s, t → 0)]. (13)

The crossing symmetry relation in Eq. (10) then implies that

Disc[M(−s, t → 0)] = −Disc[M(s, t → 0)], (14)

dropping the O(s) term that arose from the O(s2/t) singularity.

Throughout this paper we assume that |M(s)| is less divergent than |s|n at large s so that

the boundary term in Eq. (12) can be dropped.3 This is a physically reasonable assumption

applicable to any ultraviolet completion in which the large s behavior of the amplitude at fixed

finite physical t ≪ s grows more slowly in s than the Einstein-Hilbert contribution, which scales

as s2/t. A theory that fails this criterion would actually have worse ultraviolet behavior than

Einstein gravity. Operationally, this translates into the assumption that |M(s)| grows more

slowly than |s|2 at large s. For example, this can be verified explicitly in the Regge behavior of

string theory amplitudes, which scale as sα(t)/t where α(t) < 2 for t < 0 [1].

3Strictly speaking, positivity bounds only require that the boundary term be non-negative, which is sometimes
true given specific assumptions about the ultraviolet [16]. We do not consider this possibility here.
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Combining Eq. (12) with Eqs. (13) and (14) yields

fn =
(−1)n + 1

π

∫ ∞

s0

ds

sn+1
Im[M(s, t → 0)]. (15)

For n odd, this result trivially implies fn = 0 as required by crossing symmetry of M , while

for n even, it imposes a positivity condition. In particular, we use the optical theorem to write

Im[M(s, t → 0)] = sσ(s), where σ(s) is the total cross-section.4 Crucially, in an interacting

theory with new heavy states, σ(s) is strictly positive, so

fn =
2

π

∫ ∞

s0

ds
σ(s)

sn
> 0, (16)

thus establishing positivity of fn for even n.

Here fn corresponds to the s
n contribution to the low-energy amplitude, which is proportional

to the operator coefficients of Ln. By power counting, we know that the low-energy amplitude

can be expanded in powers of Mandelstam variables, so

M =
∞∑

n=1

Mn, (17)

where the leading contribution arises from the Einstein-Hilbert action, which in the forward

limit gives an amplitude

M1(s, t → 0) = −ǫ1µνǫ
µν
1 ǫ2ρσǫ

ρσ
2

κ2s2

t
+O(s), (18)

where the O(s) terms are regular in the forward limit. The remaining contributions Mn are

generated by Ln. In the subsequent sections, we derive precise analyticity bounds for the

quartic and quadratic curvature corrections, L4 and L2.

3 Bounds on Quartic Curvature Corrections

In this section we derive bounds on L4, which encodes quartic curvature corrections to Einstein

gravity. The leading contributions from L4 are quartic graviton vertices, which contribute

to graviton scattering amplitudes via contact interactions. Since these corrections are free

4While the total cross-section diverges in the presence of a t-channel singularity, Im(s, t → 0) and by extension
σ(s) = Im(s, t → 0)/s are really proxies for the finite sum over all residues of heavy states in the complex s plane.
By factorization, each contribution is positive since M(hh → hh) ∼ −M(hh → X)M(X → hh)/(s−m2 + iǫ)
on the s-channel resonance of a massive state X of mass m.
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from kinematic singularities, their forward limit is regular. Thus, to obtain a forward, crossing

symmetric amplitude, we simply set t = 0, ǫ3 = ǫ1, and ǫ4 = ǫ2, as derived in Eq. (8).

After a lengthy calculation, we compute the quartic corrections to the graviton scattering

amplitude in the forward limit to be

M4(s, t → 0) =
κ4s4

2

[
(2c6 + c7)(ǫ1µνǫ

µν
1 ǫ2ρσǫ

ρσ
2 ) + (32c1 + 4c2 + 2c6)(ǫ1µνǫ

µν
2 )2

+ (4c2 + 16c3 + 2c6)(ǫ
µν

1 ǫ2νρǫ
ρσ

1 ǫ2σµ) + (4c2 + 8c4 + 2c7)(ǫ
µν

1 ǫ1νρǫ
ρσ

2 ǫ2σµ)
]
.

(19)

Eq. (16) bounds f4, corresponding to the coefficient of the s4 contribution to the amplitude, to

be positive. To determine the constraint on the coefficients of L4, we should marginalize over

all possible values of the independent polarizations, ǫ1 and ǫ2.

To determine the full set of bounds, it will be convenient to map the question of positivity to

a linear algebra problem. To do so, we work in the center-of-mass frame, where the polarization

tensors, ǫ ν
1µ and ǫ ν

2µ are real, symmetric (D − 2)-by-(D − 2) matrices satisfying the usual

tracelessness and normalization conditions,

Tr(ǫ1) = Tr(ǫ2) = 0 and Tr(ǫ1 · ǫ1) = Tr(ǫ2 · ǫ2) = 1. (20)

Furthermore, we can define Hermitian matrices H+ = {ǫ1, ǫ2}/2 and H− = i[ǫ1, ǫ2]/2 encoding

the polarization information, which enter the amplitude in terms of the invariants

x = Tr(H+)Tr(H+), y = Tr(H+ ·H+), z = Tr(H− ·H−). (21)

We can then express the analyticity bound as

(2c6+c7)+(32c1+4c2+2c6)x+(8c2+16c3+8c4+2c6+2c7)y+(−16c3+8c4−2c6+2c7)z > 0, (22)

for all (x, y, z) spanned by the graviton polarizations ǫ1 and ǫ2. What is the allowed space of

(x, y, z)? An obvious set of necessary conditions are

0 ≤ x, y, z ≤ 1 and y + z ≤ 1, (23)

from familiar linear algebra inequalities. In general D, finding the space spanned by the allowed

(x, y, z) is a highly nontrivial problem in matrix inequalities.

In the next subsections, we will study various physically well-motivated scenarios, including

general theories in D = 4 and supersymmetric theories in arbitrary D.
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3.1 Theories in D = 4

The number of linearly independent curvature invariants monotonically increases with the di-

mension of spacetime. In D = 4, there are only two independent quartic curvature invariants.

Hence, L4 in Eq. (4) collapses to

L4 = c1O1 + c̃1Õ1, (24)

where O1 is defined as in Eq. (4) but Õ1 is unique to D = 4,

O1 = RµνρσRµνρσR
αβγδRαβγδ and Õ1 = RµνρσR̃µνρσR

αβγδR̃αβγδ, (25)

where R̃µνρσ = R αβ
µν ǫαβρσ/2 is the dual Riemann tensor. The operator Õ1 can be written as a

linear combination of any two the operators in Eq. (4) modulo contributions proportional to R

and Rµν , which can be eliminated by the equations of motion. For example,

Õ1 = 4O2 − 4O3 = −4O2 + 8O4 = · · · , (26)

corresponding to a choice of operator coefficients, (c1, 4c̃1,−4c̃1, 0, 0, 0, 0), (c1,−4c̃1, 0, 8c̃1, 0, 0, 0),

etc. The ellipses in Eq. (26) denote equivalent representations in terms of other operators, which

are not unique due to the linear dependence in D = 4 of all but two of the operators in Eq. (4).

In D = 4, the invariants (x, y, z) are constructed from real, symmetric, traceless 2-by-2

matrices, which we can parameterize by

ǫ1 = ~ǫ1 · ~σ/
√
2

ǫ2 = ~ǫ2 · ~σ/
√
2,

(27)

where ~ǫ1 and ~ǫ2 are real unit polarization vectors and ~σ are the Pauli matrices. Since ǫ1 and ǫ2

are real and symmetric, they only have components in σ1 and σ3, since σ2 is imaginary and anti-

symmetric. From standard matrix identities, we see that {ǫ1, ǫ2} = ~ǫ1·~ǫ2 and [ǫ1, ǫ2] = i(~ǫ1×~ǫ2)·~σ.
Defining θ to be the angle between ~ǫ1 and ~ǫ2, we obtain

(x, y, z) = cos2 θ (1, 1
2
, 0) + sin2 θ (0, 0, 1

2
), (28)

which defines an interval whose endpoints are (1, 1
2
, 0) and (0, 0, 1

2
). Inserting these (x, y, z)

values, along with the coefficient choice given by Eqs. (24) and (26), the bound (22) takes the

suggestive form

c1 cos
2 θ + c̃1 sin

2 θ > 0, (29)

which obviously implies positivity of both coefficients separately,

c1 > 0 and c̃1 > 0, (30)

which correspond to parallel or perpendicular polarization vectors, respectively. Our results

exactly coincide with those derived from requiring subluminal graviton propagation [14].
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3.2 Theories in D = 5

In D = 5, there are four linearly independent quartic curvature invariants. For the sake of

generality we use the basis of Eq. (4) with the linear dependences among operators assumed.

For this analysis, we ascertain the physically allowed region for the invariants (x, y, z), which

in D = 5 are constructed from real, symmetric, traceless 3-by-3 matrices. This requirement

constrains (x, y, z) to lie in the plane 1 + 2x− 6y − 2z = 0. Specifically, (x, y, z) are restricted

to a planar triangular region,

(x, y, z) =

3∑

i=1

τivi, (31)

defined by three vectors

v1 = (0, 0, 1
2
), v2 = (1, 1

2
, 0), and v3 = (0, 1

6
, 0) (32)

for the real parameters τ1, τ2, τ3 ≥ 0 such that τ1+ τ2+ τ3 = 1. The vertices (32) of this triangle

can be reached by choices of physical polarizations. In particular,

v1 : ǫ1 =
1√
2





1 0 0
0 −1 0
0 0 0



 , ǫ2 =
1√
2





0 1 0
1 0 0
0 0 0



 ,

v2 : ǫ1 =
1√
2





1 0 0
0 −1 0
0 0 0



 , ǫ2 =
1√
2





1 0 0
0 −1 0
0 0 0



 ,

v3 : ǫ1 =
1√
2





1 0 0
0 −1 0
0 0 0



 , ǫ2 =
1√
6





1 0 0
0 1 0
0 0 −2



 .

(33)

Plugging in Eqs. (31) and (32) back into Eq. (22), we obtain





τ1(−8c3 + 4c4 + c6 + 2c7)

+ τ2(32c1 + 8c2 + 8c3 + 4c4 + 5c6 + 2c7)

+ 1
3
τ3(4c2 + 8c3 + 4c4 + 7c6 + 4c7)




 > 0, (34)

where we have repackaged the terms independent of (x, y, z) in Eq. (22) into the coefficients

τ1, τ2, τ3 by re-expressing 1 as τ1 + τ2 + τ3. Thus, the necessary and sufficient set of bounds on

quartic curvature corrections in D = 5 are

−8c3 + 4c4 + c6 + 2c7 > 0

32c1 + 8c2 + 8c3 + 4c4 + 5c6 + 2c7 > 0

4c2 + 8c3 + 4c4 + 7c6 + 4c7 > 0,

(35)

coming from analyticity of the four-point graviton scattering amplitude.
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3.3 Theories in D ≥ 6

Consider finally the general case of D ≥ 6. It is a non-trivial linear algebra problem to determine

the parameter space of (x, y, z) corresponding to physical polarization configurations. Each

physically allowed point (x, y, z) yields a positivity bound via Eq. (22). The set of all positive

linear combinations of such bounds is given by plugging into Eq. (22) the set of all points in

the convex hull S spanning physically allowed values of (x, y, z). Fully characterizing all such

(x, y, z) is beyond the scope of the present work. However, we can derive a general collection

of necessary conditions from a subset of extremal vertices on the boundary of S. The details of

the calculation are given in App. A, but the vertices are

v1 =
(
0, 0, 1

2

)

v2 =
(
1, 1− 3

D−2
+ 1

D−3
, 0
)

v3 =
(

0, D−4
2(D−2)

, 0
)

v4 =
(

1, 1
D−2

[

1 + 4(D mod 2)
(D−1)(D−3)

]

, 0
)

v5 = (0, 0, 0) .

(36)

These vectors can be realized by physical polarization choices. The bounds associated with

the (x, y, z) values in Eq. (36) are necessary for analyticity of four-point scattering amplitudes

and moreover are a subset of the minimal basis of sufficient bounds. Numerical evaluation, via

the explicit computation of x, y, and z for pseudorandom, traceless, unit-norm matrix pairs of

various dimensions, shows that the convex hull defined by the vertices in Eq. (36) is in fact equal

to the full hull S for even D but is slightly smaller than S in odd D. Note that the vectors (36)

are a generalization of those we saw in earlier sections, so v1, v2, and v3 coincide with the

vectors from D = 5. Moreover, each corner corresponds to a certain extreme configuration of

polarizations. For example, v1 corresponds anticommuting polarizations as in Eq. (32), while

v2, v3, v4, and v5 correspond to commuting polarizations. For the latter, the polarizations are

mutually diagonalizable and can without loss of generality be represented as traceless diagonal

matrices. See App. A for details.

Plugging the vectors in Eq. (36) into the bound in Eq. (4), we obtain the positivity bounds

−8c3 + 4c4 + c6 + 2c7 > 0

2
(
1− 3

D−2
+ 1

D−3

)
(4c2 + 8c3 + 4c4 + c6 + c7) + 32c1 + 4c2 + 4c6 + c7 > 0

(
D−4
D−2

)
(4c2 + 8c3 + 4c4 + c6 + c7) + 2c6 + c7 > 0

(
2

D−2

) [

1 + 4(D mod 2)
(D−1)(D−3)

]

(4c2 + 8c3 + 4c4 + c6 + c7) + 32c1 + 4c2 + 4c6 + c7 > 0

2c6 + c7 > 0,

(37)
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which are a stringent set of requirements on quartic curvature corrections to general relativity

in D ≥ 6, necessary to guarantee analyticity of scattering amplitudes.

3.4 Supersymmetric Theories

We now consider supersymmetric quartic curvature corrections. Conveniently, Ref. [17] derived

a basis for independent off-shell supersymmetric quartic curvature invariants,

L4 = AOA +BOB + COC , (38)

where OA, OB, and OC are proportional to more familiar looking forms denoted in the literature

[17, 18] by t8t8R
4, t8(R

2)2, and ǫ10ǫ10R
4, respectively. In terms of the basis defined in Eq. (4),

these supersymmetric operators are

OA = O1 − 16O2 + 2O3 − 32O5 + 16O6 + 32O7

OB = −O1 + 8O2 − 2O3 + 4O4

OC = O1 − 16O2 + 2O3 + 16O4 − 32O5 + 16O6 − 32O7,

(39)

corresponding to the following choice of operator coefficients:

c1 = A− B + C c2 = −16A+ 8B − 16C c3 = 2A− 2B + 2C

c4 = 4B + 16C c5 = −32A− 32C c6 = 16A+ 16C

c7 = 32A− 32C.

(40)

Plugging this choice into Eq. (22), we obtain

A+B(y + z) > 0. (41)

Note that C drops out of the calculation completely, since at quartic order in graviton pertur-

bations it is a total derivative in all dimensions [13]. Recall from App. A that while simple

matrix identities imply that y + z ≤ 1, no point in the hull S actually saturates this bound.

For example, in D = 4, Eq. (28) implies that y + z = 1
2
, so A + 1

2
B > 0. In D = 5, Eq. (32)

implies that 1
6
≤ y + z ≤ 1

2
, so A + 1

6
B > 0 and A + 1

2
B > 0. Finally, in D ≥ 6, inputting

the vertices in Eq. (36) into Eq. (41) yields the complete set of positivity bounds for quartic

curvature operators in supergravity theories. In summary, we find

A+ 1
6
B > 0 (D = 5)

A > 0 (D ≥ 6)

A+
(
1− 3

D−2
+ 1

D−3

)
B > 0, (any D)

(42)

noting that in D = 4 and D = 5, the final bound reduces to A+ 1
2
B > 0.
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3.5 String Theories

As a consistency check, we now apply our bounds to string theory, which is arguably the leading

candidate for the ultraviolet completion of gravity. Conveniently, quartic curvature corrections

have been been dutifully computed at tree-level in the existing literature for the bosonic [19,20],

type II [21–23], and heterotic string [22,23]. The type I string is dual to the heterotic string and

has the same low-energy effective action [18, 24], so we need not consider it as a separate case.

The resulting effective theory is described by

L4 = AOA +BOB + COC +∆O∆, (43)

where OA, OB, and OC are the supersymmetric operators from the previous section and O∆ is

a non-supersymmetric operator defined as

O∆ = −O1 + 10O2 +O4. (44)

In various string theories, the operator coefficients are

A B C ∆
bosonic ζ(3) 0 −ζ(3) 16
type II ζ(3) 0 −ζ(3) 0
heterotic ζ(3) 1 −ζ(3) 0

(45)

where each entry is normalized by a factor of α′3/1024κ2.

As expected, since the type II and heterotic string theories are supersymmetric, their co-

efficients in Eq. (45) satisfy the bound for supersymmetric theories in Eq. (42). Since the

bosonic string is non-supersymmetric, the bound is more complicated. In particular, plugging

the corresponding operator coefficients into Eq. (22), we obtain

ζ(3) + 2(x+ 11y + z) > 0, (46)

which is indeed positive, as x, y, z ≥ 0. Thus, we have verified that quartic curvature corrections

in bosonic, type II, and heterotic string theory are consistent with unitarity and analyticity.

4 Bounds on Quadratic Curvature Corrections

Next, we consider analyticity constraints on L2, which characterizes quadratic curvature correc-

tions in the graviton effective theory. As shown in Ref. [9], the Gauss-Bonnet term

L2 = λ(RµνρσR
µνρσ − 4RµνR

µν +R2) (47)

13



does not introduce ghost modes in any dimension D, so in this basis the graviton propagator is

unmodified. To avoid ghost pathologies, we only consider curvature invariants of this form. For

D = 4, the Gauss-Bonnet term is furthermore a total derivative and thus does not affect local

dynamics. As recently shown [25], however, the Gauss-Bonnet term is critical for computing

and interpreting the leading ultraviolet divergences of pure gravity.

Expanding to leading order in the Gauss-Bonnet coefficient λ, we compute the quadratic

curvature correction to the graviton scattering amplitude in the forward limit,

M2(s, t → 0) = 4λκ4s2
[

ǫµν1 ǫ3µνǫ
ρσ
2 ǫ4ρσ + ǫµν1 ǫ3νρǫ

ρσ
2 ǫ4σµ + ǫµν1 ǫ3νρǫ

ρσ
4 ǫ2σµ

+
2

t

(

kµ
2k

ν
4ǫ

ρ
2ν ǫ4ρµǫ1αβǫ

αβ
3 + kµ

1k
ν
3ǫ

ρ
1ν ǫ3ρµǫ2αβǫ

αβ
4

)]

,
(48)

where we have expanded formally in t-dependence arising from propagator denominators, but

we have yet to evaluate the numerators in the forward limit.

The first line of Eq. (48) is manifestly regular in the forward limit t = 0, so for these terms

we can simply set ǫ3 = ǫ1 and ǫ4 = ǫ2. On the other hand, the second line of Eq. (48) is naively

singular since 1/t diverges as t → 0. However, this singularity is canceled by the numerator

factor, which vanishes in the forward limit as ǫ3 → ǫ1 and ǫ4 → ǫ2. It will be convenient to

rewrite this expression in terms of the momentum transfer,

q = k1 + k3 = −(k2 + k4), (49)

where t = −q2. For real kinematics, q is spacelike and vanishes in the forward limit. Note that

qµqν/q2 is simply a projection operator in the direction of the spacelike exchanged momentum.

We note that k3 is simply a real spatial rotation of −k1, and likewise for k4 and k2. By

symmetry, this then implies that ǫµν1 k3ν = ǫµν3 k1µ = ǫµν1 qµ and ǫµν2 k4µ = ǫµν4 k2µ = −ǫµν2 qµ at

leading order in q. Rewriting Eq. (48) in terms of q, we then have

M2(s, t → 0) = 4λκ4s2
[

ǫ1µνǫ
µν

1 ǫ2ρσǫ
ρσ

2 + 2ǫµν1 ǫ1νρǫ
ρσ
2 ǫ2σµ

− 2qµqν

q2

(

ǫ ρ
2µ ǫ2ρνǫ1αβǫ

αβ
1 + ǫ ρ

1µ ǫ1ρνǫ2αβǫ
αβ

2

)]

,
(50)

which is regular because the projection operator qµqν/q2 is finite in the forward limit. To obtain

a bound on λ, we consider all possible choices for the external momenta and polarizations and

impose positivity bounds on the forward amplitude in Eq. (50).

As expected, quadratic curvature corrections to graviton scattering scale asM2 ∼ λκ4s2, so to

extract an analyticity bound we should apply Eq. (16) for a second-order residue, corresponding
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to n = 2. Unfortunately, this choice also extracts the t-channel singular contribution from

leading-order graviton exchange, M1 ∼ −κ2s2/t. In the forward limit, this contribution is

formally infinite. Of course, in any physical experiment there is an infrared scale µ that regulates

these contributions from long distance physics. This would arise, e.g., from a finite detector

resolution or beam width [26]. As is common practice for infrared divergences in scattering

amplitudes, we introduce a mass regulator, sending t → t − µ2 in the denominator. This

approach was also used in Ref. [1] to make sense of a theory of interacting massless scalars with

trilinear couplings. Note that as in gauge theory, the mass µ2 is a formal regulator that leaves

the number degrees of freedom untouched—so the vDVZ discontinuity [27, 28], which arises for

a physical graviton mass included via a Fierz-Pauli Lagrangian term, does not apply here.

While µ2 tames the formal infrared divergences, for λ . 1 the forward amplitude will be

dominated by finite but large contributions from Einstein-Hilbert interactions because |M1| ≫
|M2| in this regime.5 However, by explicit calculation, we can see from Eq. (18) that M1 ∼
+κ2s2/µ2, which is positive. So while positivity is satisfied, we learn nothing beyond what is

already borne out from scattering via the leading Einstein-Hilbert term.

To place a bound on the coefficient λ, we must then restrict to a parameter regime where

|M1| . |M2|, so the contributions from graviton exchange are subdominant to those from the

Gauss-Bonnet term. This implies that 1/µ2 . |λκ2|. Together with the requirement that

|s| ≫ µ2, necessary to treat µ as a regulator, this forces us to consider the regime

√

|s| ≫ µ & Λ, (51)

where Λ ∼ |λκ2|−1/2 is the scale of the would-be natural cutoff associated with the derivative

expansion. We assume throughout that Λ ≪ κ
2

2−D so that it is below the Planck scale in D

dimensions.

Of course, Eq. (51) points to a naively pathological region of the effective field theory, given

the reasonable expectation of new degrees of freedom of mass m where m ∼ Λ. Moreover,

Eq. (51) indicates that the infrared regulator µ must be larger than some other energy scale

Λ. Nevertheless, one can a priori envision an ultraviolet completion in which m ≫ Λ, so new

degrees of freedom enter at a parametrically higher scale. In that case, Λ is not the scale of

any physical states in the theory and is merely the combination of parameters that appears in

the higher-dimension operator. Indeed, at the level of the scattering amplitude, there are no

discontinuities that appear around Λ to signal new degrees of freedom.

5Note that taking t strictly to zero is not required to derive a positivity bound [29] and positivity holds for any
non-negative t below µ2 [30]. However, we will not need this more general result for our purposes.

15



Thus, µ remains smaller than any physical mass scale in the theory and indeed can be treated

consistently as an infrared regulator. In the absence of new states at Λ, the Gauss-Bonnet term

acts effectively as a primordial contact operator over a wide range of scales. Precisely such a

scenario was considered in Ref. [15], where it was found that such a low-energy effective theory

is acausal without new states at or below m . Λ. Other authors [31] have likewise argued that

a pure Gauss-Bonnet theory is inconsistent with black hole thermodynamics. We will likewise

find a pathology in this theory coming from unitarity and analyticity.

To apply constraints from unitarity and analyticity, we must first ensure that the low-energy

theory is sensible enough that we can even speak of a long-distance scattering amplitude. Indeed,

Eq. (51) is plainly strange since |s| ≫ Λ2 violates the derivative expansion. This was required in

order for the Gauss-Bonnet interactions to dominate over the Einstein-Hilbert action, as was also

assumed in Ref. [15]. Naively, one would expect a gross departure from perturbative unitarity,

e.g., probability amplitudes greater than one as well as a breakdown of the loop expansion.

Nevertheless, there is a wide range of scales where neither sickness actually arises. This hinges

on the fact that the theory depends on Λ as well as κ, the gravitational coupling constant.

In particular, note that amplitudes can still be perturbatively small in the regime specified

by Eq. (51). For example, M2 ∼ κ2s2/Λ2 is still sensible provided κ is sufficiently small, corre-

sponding to the weak gravity limit. We can make this more precise by considering the leading

effect of the Gauss-Bonnet term, which is a cubic vertex of the schematic form λκ3∂4h3. Insert-

ing this vertex into low-energy amplitudes, we find that the theory remains under perturbative

control provided λκ3 (∼ κ/Λ2) times the appropriate powers of energy is sufficiently small. In

D dimensions this implies that

|s| ≪
(
Λ2

κ

) 4

2+D

(52)

to safely reside within the regime of perturbativity.6 Moreover, Eq. (52) also ensures a pertur-

bative loop expansion, since radiative corrections always introduce additional insertions of the

Gauss-Bonnet interactions.

For our purposes, we assume a weak gravity limit defined by Eq. (52), so the low-energy

theory is perturbatively unitary. When then apply the method of Sec. 2, where the contour

around the origin in the complex s plane is widened so as to satisfy Eq. (51), ensuring that s

is large compared to the scale of the infrared cutoff and that the Gauss-Bonnet term dominates

the amplitude. Note also that the initial contour encircles a region below the heavy particle

6A similar statement applies to pions, which have quartic vertices of the form ∂4π4/Λ2v2 where v is the breaking
scale and Λ controls the derivative expansion. The theory maintains perturbative control provided s ≪ Λv.
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threshold, m ≫ Λ.

To see how a pathology arises, it will be convenient to define coordinates transverse to the

incoming momenta, (x1, x2, . . . xD−2). Without loss of generality, we take the forward limit such

that the infinitesimal momentum transfer lies in the x1 direction, which we henceforth refer to

as the “direction of approach.” In turn, qµqν/q2 is a projection operator onto this direction.

Next, we define a particular subset of polarizations in the transverse plane, defined by rank-two

diagonal matrices of the form

d(i,j) =
1√
2
diag(0, . . . , 0,

xi
︷︸︸︷

1 , 0, . . . , 0,

xj
︷︸︸︷

−1 , 0, . . .), (53)

with zero entries except in the xi and xj directions. As the only preferred direction is x1, labeling

the direction from which we approach the forward limit, the relevant physical polarizations are

d(1,2), d(2,3), and d(3,1). The forward limit of the quadratic correction to the graviton scattering

amplitude in Eq. (50) for various polarization combinations is

M(s, t → 0) = 2λκ4s2 ×







0, ǫ1 = ǫ2 = d(1,2)

4, ǫ1 = ǫ2 = d(2,3)

−1, ǫ1 = d(1,2) and ǫ2 = d(1,3).

(54)

In the first case, ǫ1 = ǫ2 = d(1,2), corresponding to polarizations that have support in the

direction of approach. In the case of D = 4, this is required because the transverse space only

has two dimensions. As expected, the amplitude vanishes in this regime because the Gauss-

Bonnet term is a total derivative in D = 4. Meanwhile, the second case, ǫ1 = ǫ2 = d(2,3) occurs

when both polarizations are orthogonal to the direction of approach. Of course, this requires

dimensions D ≥ 5. Finally, in the last case, ǫ1 = d(1,2) and ǫ2 = d(1,3), the polarizations occupy

different planes but share support in the direction of approach, which is only possible in D ≥ 5.

The upshot of Eq. (54) is that in D ≥ 5, different polarization configurations can yield

opposite signs for the corrections to the forward scattering amplitude. As a result, this excludes

both signs of λ and thus forbids it entirely. Of course, we made the assumption of Ref. [15] that

the Gauss-Bonnet term is an effectively primordial contact operator insofar as new degrees of

freedom enter only at a scale far above the naive cutoff. Hence, the positivity violation in Eq. (54)

simply implies that this assumption is false. We conclude that a primordial Gauss-Bonnet term

is forbidden and new degrees of freedom are required at or below the cutoff Λ.
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5 Conclusions

In this paper, we have derived rigorous bounds on the coefficients of quartic and quadratic

curvature corrections in the low-energy effective theory of gravitons. Our results hinge on

very general principles: quantum mechanical unitarity and analyticity of scattering amplitudes.

Consequently, these constraints apply to any consistent perturbative ultraviolet completion of

gravity. For the quartic curvature operators defined in Eqs. (3), (4), (24), and (25), we derived

the positivity bounds in Eq. (30) in D = 4, Eq. (35) in D = 5, and Eq. (37) in arbitrary

D ≥ 6. We also presented constraints on supergravity theories and checked that all of our results

are consistent with known calculations in weakly-coupled string theories. For the quadratic

curvature correction in Eq. (47), we showed that both signs of its coefficient λ are inconsistent

unless new degrees of freedom enter at the natural cutoff Λ ∼ |λκ2|−1/2 specified by the effective

theory. In short, a primordial Gauss-Bonnet term is forbidden.

Many possibilities remain for future work. While four-point graviton scattering cannot probe

curvature operators beyond quartic order, little is known of higher-point amplitudes. Such ampli-

tudes are functions of many more kinematic invariants and should thus enforce commensurately

more positivity constraints. Another issue meriting further study is that of cubic curvature

operators. Here, positivity bounds encounter technical challenges due to the vanishing of the

associated amplitude in the forward limit [30, 32]. As noted in Ref. [32], this problem is closely

related to the a-theorem in D = 6.

Distinguishing low-energy effective theories that are consistent with ultraviolet completion

from those that are not presents a significant challenge. Systematizing this procedure is im-

portant for delineating the space of possible physical laws, but has also become important for

model-building in more phenomenological contexts [33] and in inflation [34–38]. In this paper,

the low-energy tools of analyticity and unitarity enabled us to find solutions to this problem

in gravitational theories, allowing us to constrain higher-curvature corrections to gravity in our

own universe—applying our quartic curvature results to D = 4—and further discover bounds

applicable in any consistent theory.
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A Bounding Invariants in General Dimension

We have shown that the graviton scattering amplitude can be expressed in terms of invariant

products of graviton polarizations ǫ1 and ǫ2, which are real, symmetric, traceless (D − 2)-by-

(D − 2) matrices with unit normalization. To recapitulate from Sec. 3, given the Hermitian

matrices

H+ = {ǫ1, ǫ2}/2 and H− = i[ǫ1, ǫ2]/2, (A.1)

we can define the invariants

x = Tr(H+)Tr(H+), y = Tr(H+ ·H+), z = Tr(H− ·H−). (A.2)

The space of physical polarizations ǫ1 and ǫ2 then maps onto a physical region in (x, y, z), which

through Eq. (22) implies positivity constraints on operator coefficients in the effective theory.

What are the bounds on (x, y, z)? We first note that since H+ and H− are Hermitian, their

squares are positive semidefinite, so x, y, z ≥ 0. Moreover, a straightforward application of the

Cauchy-Schwarz inequality implies x = Tr(ǫ1 · ǫ2)Tr(ǫ1 · ǫ2) ≤ Tr(ǫ1 · ǫ1)Tr(ǫ2 · ǫ2) = 1, with

equality if and only if ǫ1 = ±ǫ2, and similarly y+ z = Tr(ǫ1 · ǫ1 · ǫ2 · ǫ2) ≤ Tr(ǫ1 · ǫ1)Tr(ǫ2 · ǫ2) = 1.

There are, however, many additional constraints on (x, y, z), which we now discuss.

Crucially, a weighted average of any number of positivity bounds yields another valid posi-

tivity bound. This implies that a space of necessary conditions can be derived by constructing a

convex hull S in (x, y, z) that contains the physically allowed region. Without loss of generality,

S is

S = (x, y, z) =

{
n∑

i=1

τivi

∣
∣
∣
∣
∣
τi ≥ 0 and

n∑

i=1

τi = 1

}

, (A.3)

where vi denote extremal points. In this Appendix, we will construct the subset of the vi that

are on the edges of the unit cube in (x, y, z); let the convex hull described by these vertices be S̃.

In even dimension, numerical evaluation suggests that S = S̃, while in odd D > 6, it is possible

for points to lie slightly outside S̃.
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Let us first consider the case where ǫ1 and ǫ2 are anticommuting, so x = y = 0 and we wish

to maximize z. Going to a basis in which ǫ1 is diagonal, we find that antisymmetry of ǫ1 · ǫ2
implies that for each i, j,

(ǫ1ii + ǫ1jj)ǫ2ij = 0 (A.4)

and

z = −Tr(ǫ1 · ǫ2 · ǫ1 · ǫ2) =
∑

i,j

ǫ21iiǫ
2
2ij . (A.5)

Since Eq. (A.4) implies ǫ1iiǫ2ii = 0 for each i, the normalization condition
∑

i,j ǫ
2
2ij = 1 implies

by Eq. (A.5) that nonzero diagonal terms in ǫ2 can only decrease z. We therefore take ǫ2 to have

vanishing diagonal. Similarly, since
∑

i ǫ
2
1ii is fixed to unity, we should require that, for each i for

which ǫ1ii 6= 0, there exists j such that ǫ2ij 6= 0; letting ǫ1i0i0 be nonvanishing for some i0 even if

ǫ2i0j = 0 for all j would decrease z by Eq. (A.5). Writing
∑

j ǫ
2
2ij = ρi, where

∑

i ρi = 1 by the

normalization constraint, we can then consider z to be a weighted average over the ǫ21ii. Thus,

z is maximized when we weight the average most in favor of the i for which ǫ21ii is maximal.

Suppose there are N such i, which we can without loss of generality take to be 1 through N ,

for which ǫ21ii takes its maximal value, i.e., ǫ21i∗i∗ = maxi ǫ
2
1ii ≡ ε2 for all i∗ ∈ {1, ..., N}. Then

z is maximized when we have ρi = 1/N for i ∈ {1, ..., N} and ρi = 0 otherwise, for which we

obtain z = ε2. Finally, it remains to determine the maximal possible value of ε2. Since ǫ1 is

of unit norm, its maximal value is attained when we load as much of the normalization into as

few of the ǫ21ii as possible. By tracelessness of ǫ1, at least two of the ǫ1ii must be nonzero. Thus,

ε2 takes its maximum value of 1/2 when ǫ1 ∝ σ3 in some 2-by-2 block, up to permutation of

coordinate labels. That is, a choice of polarizations that maximizes z for x = y = 0 is

ǫ1 =
1√
2
σ3 ⊕ 0D−4 and ǫ2 =

1√
2
σ1 ⊕ 0D−4, (A.6)

which yields the point

v1 =
(
0, 0, 1

2

)
. (A.7)

Let us henceforth consider the case where z = 0 and explore in x, y. This means that the

(real, symmetric) matrices ǫ1,2 commute and so are simultaneously diagonalizable. Taking x = 1,

we can ask how large y can be, which will give a vertex of S. Since ǫ1 = ±ǫ2 for x = 1, we

have y = Tr(ǫ1 · ǫ1 · ǫ1 · ǫ1). That is, y has positive first and second derivatives in each of the

|ǫ1ii| values; y is therefore maximized when one of the |ǫ1ii| is as large as possible and the others

are equal and small. (If the smaller numbers in the list were unequal, we could always make y

larger by shifting some weight back to the element in the list with the largest absolute value.)
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That is, a choice of polarizations maximizing y for x = 1 and z = 0 is

ǫ1 = ǫ2 =
1√

(D−2)(D−3)
diag(1, 1, . . . ,−(D − 3)), (A.8)

which corresponds to the vertex

v2 =
(
1, 1− 3

D−2
+ 1

D−3
, 0
)
. (A.9)

Next, still taking z = 0, we consider a different extreme, setting x = 0 and maximizing

y. Again simultaneously diagonalizing ǫ1 and ǫ2, we have y =
∑

i ǫ
2
1iiǫ

2
2ii. Analogously with

the case of v1, we can write ρi = ǫ21ii and consider y to be a weighted average over the ǫ22ii.

Let maxi ǫ
2
2ii ≡ ε2 and, without loss of generality, suppose that ǫ22ii = ε2 for i ∈ {1, ..., N} for

some N . Then y is maximized if we take ρi = 1/N for i ∈ {1, ..., N} and ρi = 0 otherwise, in

which case y = ε2. Now, by the unit normalization of ǫ2, ε
2 is maximized when as much of the

normalization as possible is loaded into as few terms as possible, i.e., N is minimized. Since ǫ1

is traceless, at least two of the ρi are nonzero, so N ≥ 2. The maximum value of ε2 thus occurs

when N = 2, which fixes ǫ1 ∝ σ3 ⊕ 0D−4. We now must maximize the common absolute value

of the first two entries in ǫ2ii, subject to the constraints that
∑

i ǫ2ii = 0,
∑

i ǫ
2
2ii = 1, and, since

x = 0,
∑

i ǫ1iiǫ2ii = 0. This last constraint implies that the first two entries in ǫ2ii have the same

sign. Thus, y is maximized for x = z = 0 for the choice of polarizations

ǫ1 =
1√
2
σ3 ⊕ 0D−4 and ǫ2 =

√
2

(D−2)(D−4)
diag

(
D−4
2

, D−4
2

,−1, . . . ,−1
)
, (A.10)

for which we find the vertex

v3 =
(

0, D−4
2(D−2)

, 0
)

. (A.11)

Note that the polarization configuration in Eq. (A.10), and hence the vertex in Eq. (A.11),

requires D ≥ 5.

On the other hand, we can minimize y/x for z = 0. Using symmetry and reality to diagonalize

H+ = diag~h+, we have x = |~h+ · ~n|2, where ~n = (1, 1, . . . , 1), so the Cauchy-Schwarz inequality

implies

x ≤ |~h+|2|~n|2 = (D − 2)y. (A.12)

Eq. (A.12) is saturated when H+ ∝ 1D−2. If D is even, this choice is possible with

ǫ1 = ǫ2 =
1√
D−2

diag (1,−1, 1,−1, . . .) , (A.13)

which yields

(x, y, z) =
(
1, 1

D−2
, 0
)
. (A.14)
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Let us now consider the odd-dimensional case where z = 0 and x = 1. Simultaneously diag-

onalizing ǫ1 and ǫ2, we have y =
∑

i ǫ
4
1ii. Again, y has positive first and second derivatives in

|ǫ1ii|, so it is minimized when the |ǫ1ii| are all equal. In odd dimension, this is not possible

while retaining tracelessness, so the best one can do, making the |ǫ1ii| as equal as possible, is

the choice

ǫ1 = ǫ2 =
√

D−3
(D−1)(D−2)

diag
(

1, . . . , 1
︸ ︷︷ ︸

D−1
2

,−D−1
D−3

, ...,−D−1
D−3

)

, (A.15)

which results in the vertex

(x, y, z) =
(
1, 2

D−1
+ 2

D−3
− 3

D−2
, 0
)
. (A.16)

We can combine Eqs. (A.14) and (A.16) to write the vertex of S as

v4 =
(

1, 1
D−2

[

1 + 4(D mod 2)
(D−1)(D−3)

]

, 0
)

. (A.17)

We note that for both D = 4 and D = 5, v2 and v4 are the same point. Moreover, v3

generalizes the third vertex applicable in D = 5, while the polarization choice for v3 does not

apply in D = 4. In D ≥ 6, there is one remaining linearly independent vertex, which can be

obtained by choosing ǫ1 · ǫ2 = 0D−2, e.g.,

ǫ1 =
1√
2
σ3 ⊕ 0D−4 and ǫ2 =

1√
2
0D−4 ⊕ σ3, (A.18)

which results in the point

v5 = (0, 0, 0). (A.19)

Together, Eqs. (A.7), (A.9), (A.11), (A.17), and (A.19) are the vertices of S̃ given in Eq. (36).

They correspond via Eq. (22) to a set of linearly independent bounds (37) that must be satisfied

in any gravity theory in D ≥ 6.
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