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Astrophysical phenomena involving massive black holes (BHs) in close binaries are expected to
leave detectable signatures in the electromagnetic and gravitational-wave spectrum. Such imprints
may provide precious information to probe the space-time around rotating BHs, and to reveal
new insights on the nature of gravity in the strong-field regime. To support this observational
window it is crucial to develop suitable tests to verify the predictions of General Relativity (GR).
In this framework, the metric recently proposed by Johannsen and Psaltis parametrises strong field
deviations from a Kerr space-time in a theory-independent way. In the following, we make use
of this approach to describe the tidal field produced by spinning BHs. We compute the gravito-
magnetic and gravito-electric tidal tensors for particles moving on equatorial circular geodesics,
comparing our results with those obtained in the standard GR scenario. Our calculations show
significant differences even for distances far form the last stable orbit, which may affect the evolution
of the binary and leave detectable signatures. We test our framework computing quasi-equilibrium
sequences of BH-WD systems by means of the affine model, for different binary configurations.

PACS numbers: 04.50.Kd, 04.70.-s

I. INTRODUCTION

Since its formulation one hundred years ago, General
Relativity has successfully passed a large set of observa-
tional and experimental tests [1]. Most of them however,
probed only the weak field regime of gravity, and there-
fore a number of strong-field GR predictions still remain
to be verified [2–5]. Black holes are among the most genu-
ine of such predictions, with no analog in the Newtonian
theory, and represent the ideal candidates to test grav-
ity under extreme conditions. In General Relativity BHs
belong to the Kerr family, and according to the no-hair
theorem, their exterior stationary and isolated gravita-
tional field depends only on two parameters: their mass
and angular momentum [6]. Initial deviations from the
Kerr metric are rapidly radiated away by the emission of
gravitational radiation [7]. A proof of the validity of the
no-hair theorem is still lacking. However, future electro-
magnetic [8–11] and gravitational-wave [12, 13] observa-
tions promise to shed new light on this scenario, and are
expected to prove the Kerr hypothesis. In this regard,
several efforts have been devoted to develop independent
tests to determine the features of the strong gravitational
field in the BH surroundings. Such tests follow a bottom-
up approach, in which the BH space-time is parametrised
in a phenomenological way, with the aim to map possible
detected deviations in terms of an alternative theory of
gravity. Requiring that the new metric is free of patho-
logies as naked singularities or closed time-like curves,
make these studies an extremely difficult task. We refer
the reader to [14] and references therein, for a systematic
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study of the main features of some parametric frame-
works which have been proposed in literature.

In this work, we make use of the new approach re-
cently developed by Johannsen and Psaltis (JP) [15].
The authors introduced polynomial corrections into the
Schwarzschild metric as initial seeds, showing that this
ansatz can be turned into a Kerr-like metric through the
Newmam-Janis algorithm [16]. The mathematical prop-
erties and the topology of JP metric, as well as their
astrophysical implications have been extensively studied
in [14, 15, 17–19]. Moreover, tests involving properties of
iron lines, quasi periodic oscillations, continuum spectra
of accretion disks and images of the accretion flows have
been analysed in [20–25]. This metric has been also ex-
tended to a more general parametrisation in [26], where
the authors addressed some un-explored key features of
the original framework.

In this paper we investigate the effects of strong-gravity
corrections captured by the JP approach, on the tidal
field produced by rotating BHs. We derive the expres-
sions for the gravito-magnetic and gravito-electric tidal
tensors, which act as source of the geodesic deviation of
nearby test particles, and determine the frame-dragging
precession of test-gyroscopes. The results of this work
can be useful to devise tests of GR through astrophysical
observations of close binaries involving a massive BHs
and a companion star. Such environments may lead to
tidal disruption events even at large distances, producing
detectable gravitational and X-ray/UV radiation [27].

In order to test our theoretical framework, we simu-
late the orbital evolution of BH-WD binaries, using the
new formulation of the gravito-electric tidal tensor to-
gether with the affine model, which is a semi-analytical
approach to describe star deformations induced by an
external quadrupolar tidal field. Originally developed to
study the evolution of normal stars or WDs within a
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Newtonian scheme [28–30], this model was recently im-
proved to describe neutron star tidal disruption events in
compact binaries, taking into account relativistic effects
on the stellar structure [31, 32], and post-Newtonian cor-
rections both on the orbital dynamics and the tidal field
[33, 34].

With this framework, we follow quasi-equilibrium se-
quences of prototype BH-WD binaries for different mod-
ified Kerr metrics, finding that the stellar deformations
may vary with respect to the GR case up to 5% even for
large distances. For each binary configuration we also
identify the onset of the mass transfer from the star to
the companion object, which can be used as initial data
for fully relativistic numerical simulations, to investigate
the properties of the accreting flow onto the BH.

This paper is organised as follows. In Section II we in-
troduce the JP metric and we derive the basic features of
geodesic motion. In Section III we describe the procedure
to characterise the tidal field in the JP space-time, and
we explicitly compute the gravito-magnetic and gravito-
electric tidal tensors. Moreover, we discuss the relevance
of the corrections induced by the strong-gravity modifica-
tions of the Kerr metric, comparing our analytical results
with those obtained for the pure GR scenario. In Section
IV we numerically investigate tidal disruption events in
BH-WD binaries, for different configurations. Finally, in
Section V we draw the conclusions.

We use Greek letters (α, β, . . .) to denote space-time
indices, and Latin characters (i, j, . . .) for spatial indices.

II. THE JP METRIC

The Johannsen-Psaltis metric is described in Boyer-
Lindquist coordinates xµ = (t, r, θ, φ) by the following
line element

ds2 =− (1 + h)

(
1− 2Mr

Σ

)
dt2 +

Σ(1 + h)

∆ + a2 sin2 θh
dr2

+ Σdθ2 − 4aMr sin2 θ

Σ
(1 + h)dtdφ

+

[
r2 + a2 +

2a2Mr sin2 θ

Σ
+ h

a2(Σ + 2Mr)

Σ
sin2 θ

]
× sin2 θdφ2 , (1)

where Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr. The
function h(r, θ) parametrizes the deviations from the pure
Kerr space-time, and is given by

h(r, θ) =

∞∑
k=0

(
ε2k + ε2k+1

Mr

Σ

)(
M2

Σ

)k
. (2)

The JP metric has an infinite number of deformations
parameters. However, some of them are constrained by
theoretical and experimental bounds. As noted in [26],
the requirement ε0 = 0 represents a sufficient condition
to guarantee that Eq. (1) satisfies asymptotic flatness at

spatial infinity. Moreover, limits on the coefficients ε1,2
can be obtained from weak-field tests of gravity within
the parametrized post-Newtonian framework, performed
in the Solar System [35]. Such bounds translate into
|ε1| . 10−5 and |ε2| . 4.6× 10−4 [15].

In this work we assume ε3 as the only non vanishing
parameter of h(r, θ). Such coefficient is currently uncon-
strained by observations and reflect changes of the Kerr
metric at the order ∼ (M/r)3. We also focus on the or-
bital motion of massive test-particles on equatorial circu-
lar geodesics, for which θ = π/2. This condition further
reduces Eq. (2) to

h = ε3
M3r

Σ2
= ε3

M3

r3
. (3)

Finally, we consider the strong-field effects identified
by h, as small perturbations of the Kerr geometry,
i.e. ε3M

3/r3 � 1. We develop our framework at the
linear approximation, neglecting O(h2) corrections. The
typical values ε3 considered in literature so far to analyse
possible signatures of the JP metric are of the order
∼ O(10) [14, 15, 20–22, 26]. As shown in Fig. 1, for such
values, the condition h � 1 is satisfied whenever the
test-particle orbits around the black hole at distances
greater than r ∼ 6M . This requirement is consistent
with the study of astrophysical systems composed of a
supermassive black hole and a solar-type star or a white
dwarf, which are the primary target of our analysis [36].
It is worth remarking that the parameter ε3 is expected
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Figure 1. We show the behaviour of h(r) of Eq. (3) as function
of the orbital distance normalised to the BH mass, for three
values of the parameter ε3 = (1, 5, 10).

to modify the BH quadrupole moment. This could
affect the properties of geodesics around the central
objects, varying the nodal precession frequency [37–39],
or leading to vertical instabilities in the orbits [40, 41].

The JP metric Eq. (1) is characterised by two killing
vectors kµ and mµ associated to the space-time invari-
ance with respect to time-shifts and rotations along the
polar angle φ. The orbital motion of a test-particle with
4-velocity uµ = dxµ/dτ = (ut, 0, 0, uφ), being τ the
proper time, is then featured by two conserved quant-
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ities related to kµ and mµ:

uµkµ = utgtt + uφgtφ = −E , (4)

uµmµ = uφgφφ + utgtφ = L . (5)

which can be identified with the energy at infinity and
the angular momentum for mass unit of the test-particle,
respectively. An analytic expressions for E and L may
be derived solving the system of equations Veff = 0 and
V ′eff = 0,where

Veff(r) =
1

grr

[
gφφE2 + 2gtφEL+ gttL

2

g2
tφ − gttgφφ

− 1

]
, (6)

is an effective potential governing the geodesic motion
of a stationary and axisymmetric space-time [42]. From
Eqns. (6) and its derivative, we obtain at the linear order
in h:

E =
1

N

(
1− 2M

r
+ aωk

)
− h

N3

[
3

4

a2

r2
+

1

4

−ar2ω3
k −

ω2
k

2
(r2 + 6a2) +

3

2

a3

r2
ωk

]
, (7)

and

L =
r2ωk

N

(
1 +

a2

r2
− 2aωk

)
− h

N3

[
r2(a2 + 3r2)ω3

K

+

(
3a4

2r2
− a2 − 3r2

)
ωk +

3

4ωk

(
1 +

a2

r2

)
−
(

3a3 +
9ar2

2

)
ω2

K +
9a

4r2
(r2 + a2)

]
, (8)

where ωk = (M/r3)1/2 is the Keplerian orbital frequency,
and we have definedN = (1+2aωk−3r2ω2

k)1/2. Replacing
the former expressions into Eqns. (4)-(5) leads to the 4-
velocity components ut and uφ:

ut =
1 + aωk

N
− h

N34r2

[
3a2 + 5r2 + 6a(a2 + r2)ωk

−4r2(4a2 + 3r2)ω2
K + 12ar4ω3

k

]
, (9)

uφ =
ωk

N
− h

4r2ωkN3

[
6a2ω2

k + aωk(9− 16r2ω2
k)

+3(1− 2r2ω2
k)2
]
. (10)

III. THE TIDAL FIELD

In GR the effects of the stationary gravitational field
is described by tidal forces acting on test masses. Single
geodesics can not detect gravity and at least a pair of
them is needed. In presence of a mass M the space-time
is equipped with a metric gµν and a test-body with 4-
velocity uµ will follow time-like geodesics of this metric.
If we assume a second test particle, which position with
respect to the first one is defined by the displacement vec-
tor δxµ, we can study the relative motion between them

using a quasi-inertial Fermi coordinate system [43]. For
this purpose, let’s consider an orthonormal tetrad1 λµ(α)

attached to m (which stays forever at the origin of this
coordinate frame), parallel transported along its geodesic
parametrised by the proper time τ . In Fermi coordinates,
the metric at the second order in the displacement vector
y(i) = λ(i)

µδx
µ will be given by:

g00 =− 1−R(0)(i)(0)(j)y
(i)y(j) + . . . , (11)

g0i =− 2

3
R(0)(j)(i)(k)y

(j)y(k) + . . . , (12)

gij =δij −
1

3
R(i)(k)(j)(l)y

(k)y(l) + . . . , (13)

where R(µ)(ν)(ρ)(σ) is the projection of the Riemann
curvature tensor onto the orthonormal tetrad frame

R(µ)(ν)(ρ)(σ) = Rαβγδλ
α

(µ)λ
β

(ν)λ
γ

(ρ)λ
δ
(σ) . (14)

From this equation we can define the gravito-electric and
gravito-magnetic tidal tensors:

E(i)(j) =R(0)(i)(0)(j) , (15)

H(i)(j) =− 1

2
εiklR

(k)(l)
(0)(j) , (16)

being εijk the Levi-Civita symbol. The electric compon-
ent E(i)(j) describes tidal deviations of nearby geodesics,
while the magnetic term H(i)(j) is directly related to
frame dragging effects of test-gyroscopes. Both tensors
are symmetric and trace-free. This set up is physically
equivalent, in case of negligible Fermi velocity, to solve
the geodesic deviation equation, which can be written in
the tetrad frame λµ(α) as [44]:

d2y(i)

dτ2
+ E(i)(j)y(j) = 0 . (17)

In this section, we shall derive the expressions for
Eqns. (15)-(16) in the JP metric, following the approach
adopted [43]. To determine the parallel transported vec-
tors λµ(α) we first consider the tetrad eµ(α) associated to
a static observer in the space-time (1), such that the line
element takes the form

ds2 = ηαβdξ
(α)dξ(β) , (18)

where ηαβ = diag(−1, 1, 1, 1) is the flat-space metric

tensor, and dξ(α) = e(α)
µdx

µ. We immediately note from

Eq. (1) that for e(1)
µ and e(2)

µ the basis vectors reduce
to:

e(1)
µ =

(
0,

r

∆1/2

[
1 +

r2fh

2∆

]
, 0, 0

)
, (19)

e(2)
µ =(0, 0, r, 0) . (20)

1 Hereafter indices within round brackets will refer to tetrad com-
ponents.
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The other two components can be derived from the or-
thogonality condition ηαβe

(α)
µe

(α)
µ = gµν , from which

we find:

e(0)
µ =

(
f [1 + h/2], 0, 0,

2aM

rf
[1 + h/2]

)
, (21)

e(3)
µ =

(
0, 0, 0,

√
∆

f
+

a2h

2f∆1/2

)
, (22)

where f =
√

1− 2M/r.
The parallel transported tetrad can be now obtained

applying to λµ(α) a Lorentz boost along the 3-direction,
such that the time component of the new reference frame
coincides with the test particle 4-velocity uµ. The new
basis vectors on the worldline read

λµ(0) =γ
[
eµ(0) + βeµ(3)

]
, λµ(1) = eµ(1) , (23)

λµ(2) =eµ(2) , λµ(3) = γ
[
eµ(0) + βeµ(3)

]
, (24)

where β and γ are the boost velocity and the correspond-
ing Lorentz factor. They can be easily obtained from the
condition λµ(0) = uµ, from which we find:

γ =
1

Nf
[1 + ωk(a− 2r2ωk)]− h

4r2N3f

[
6a3ωk

+ a2(3− 8r2ω2
k) + 2ar2ωk(3− 5r2ω2

k)

+3r2(1− 2r2ω2
k)2
]
, (25)

β =
ωk∆1/2

1 + ωk(a− 2r2ωk)
− hf2

4ωk

∆−1/2

(r + arωk − 2M)2

×
[
a2(3− 8r2ω2

k) + 2ar2ωk(3− 5r2ω2
k)

+6a3ωk + 3r2f4
]
. (26)

The time component of the tetrad λµ(0) is automatically
parallel transported along the particle wordline, as the
vector λµ(2). However the two spatial vectors λµ(1) and
λµ(3), which in spherical polar coordinates are along the
radial and tangential direction with respect to the orbit,
must to be rotated to be parallel propagated. Therefore,
we introduce two new vectors λ̃µ(1), λ̃

µ
(3) defined as:

λ̃µ(1) = λµ(1) cos ξ − λµ(3) sin ξ , (27)

λ̃µ(3) = λµ(1) sin ξ + λµ(3) cos ξ . (28)

Requiring that λ̃µ(1) and λ̃µ(3) and satisfy the parallel
transport equation along the wordline with tangent vec-
tor λµ(0)

λν (0)(∇ν λ̃µ(1)) = λν (0)(∇ν λ̃µ(3)) = 0 , (29)

yields for the ξ:

ξ = ωkτ

(
1− 3r − 4M

4M
h

)
, (30)

having fixed the integration constant such that ξ(τ =
0) = 0. The full expression for the basis vectors
(λµ(0), λ̃

µ
(1), λ

µ
(2), λ̃

µ
(3)) at the linear order in h is given

in Appendix A.

Having computed the parallel transported tetrad we
can now project the Rαβγδ to derive the gravito-electric
and gravito-magnetic tensors (15)-(16). For sake of clar-
ity we split the each component as sum of two pieces:
one related to the pure Kerr geometry, and one corres-
ponding to the corrections induced by the parameter h
in the JP metric:

E(i)(j) = Ē(i)(j) + h δE(i)(j) , (31)

where

Ē(1)(1) =ω2
k

(
1− 3

r2

∆

N2
cos2 ξ

)
, (32)

Ē(2)(2) =
ω2

k

N2

(
1 + 3

a2

r2
− 4aωk

)
, (33)

Ē(3)(3) =ω2
k

(
1− 3

r2

∆

N2
sin2 ξ

)
, (34)

Ē(1)(3) =− 3

2

∆

N2r2
ω2

k sin 2ξ , (35)

being Ē22 = −(Ē11 + Ē33) and ξ given by Eq. (30). The
changes to the electric tidal tensor induced by the strong
field deviations read:
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δE(1)(1) =
4ω2

kr
2 − 3

2r2
sin2 ξ +

1

2r4N4

[
3(5a2 + 4r2) + (51a3 + 39ar2)ωk + (42a4 − 48a2r2 − 80r4)ω2

k

−2(66a3r2 + 85ar4)ω3
k + (40a2r4 + 183r6)ω4

k + 192ar6ω5
K − 144r8ω6

k

]
cos2 ξ , (36)

δE(2)(2) =
1

N4r2

[
− 3

2

(
3 +

5a2

r2

)
− 3

2
a

(
9 +

17a2

r2

)
ωk +

(
30a2 − 21a4

r2
+ 29r2

)
ω2

K + (66a3 + 59ar2)ω3
k

− (28a2r2 + 66r4)ω4
k − 72ar4ω5

k + 54ω6
kr

6

]
, (37)

δE(3)(3) =
4ω2

kr
2 − 3

2r2
cos2 ξ +

1

2r4N4

[
3(5a2 + 4r2) + (51a3 + 39ar2)ωk + (42a4 − 48a2r2 − 80r4)ω2

k

−2(66a3r2 + 85ar4)ω3
k + (40a2r4 + 183r6)ω4

k + 192ar6ω5
K − 144r8ω6

k

]
sin2 ξ , (38)

δE(1)(3) =
1

N4r4

[
15

4
(a2 + r2) +

51

4
a(r2 + a2)ωk +

3

2
(7a4 − 6a2r2 − 17r4)ω2

k −
3

2
(22a3r2 + 37ar4)ω3

k

+

(
6a2r4 +

117

2
r6

)
ω4

k + 60ar6ω5
k − 45r8ω6

k

]
sin 2ξ . (39)

Similarly, the non vanishing components of the mag- netic term (16) are :

H̄(1)(2) =− 3
ω2

k

r2
(ωkr

2 − a)
∆1/2

N2
cos ξ , (40)

H̄(2)(3) =− 3
ω2

k

r2
(ωkr

2 − a)
∆1/2

N2
sin ξ , (41)

and finally,

δH(1)(2) =− ∆−1/2

r2N4

[(
33a2 +

18a4

r2
+ 11r2

)
ωk

4
+

(
27

2
a3 +

9a5

r2
+ 2ar2

)
ω2

k −
ω3

k

4

(
72a4 + 163a2r2 + 55r4

)
−
(

18a3r2 − ar4

2

)
ω4

k + (47a2r4 + 21r6)ω5
k − 9ar6ω6

k − 9r8ω7
k

]
cos ξ , (42)

δH(2)(3) =− ∆−1/2

r2N4

[(
45a2 +

18a4

r2
+ 27r2

)
ωk

4
+

(
51a3

2
+

9a5

r2
+ 15ar2

)
ω2

k −
(
24a4 + 195a2r2 + 171r4

) ω3
k

4

−
(

54a3r2 +
117ar4

2

)
ω4

k + (54a2r4 + 90r6)ω5
k + 57ar6ω6

k − 63r8ω7
k

]
sin ξ . (43)

A. Relevance of strong-gravity corrections

Given the explicit form of the gravito-magnetic and
electric tidal tensors Eqns. (32)-(43), we need to estim-
ate the relevance of the non-Kerr components as function
of the BH angular momentum and the deformation para-
meter ε3. To this aim we define the two quantities

∆Eij = h
δE(i)(j)
Ē(i)(j)

and ∆Hij = h
δH(i)(j)

H̄(i)(j)

, (44)

which represent the fractional change with respect to
E and H computed in the standard GR scenario. In

the following, starting from an initial configuration with
ξ(τ0) = 0, we consider snapshots at different orbital dis-
tances with the same phase ξ(τ) = ξ(τ0). Even though
a more accurate analysis well be developed in the next
section through a numerical approach, this assumption
will provide, as first hint, an order of magnitude estim-
ate of the effects we are going to study. We note that
in this case E(1)(3) = H(2)(3) = 0. Our results can be
summarised in Figures 2-4.

In the three panels of Fig. 2 we show the absolute
value of ∆Eij as function of the orbital distance, for
ε3 = (1, 5, 10) and BH spin parameter a/M = 0.5. As ex-
pected, the contribution of strong gravity terms grow as
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r decreases and can be of the order ∼ 10% for r > 10M .
For r < 6M and ε3 > 5 the relative difference is always
larger than 50%: terms of second order O(h2) and pro-
portional to higher coefficients as ε4 start to be relevant,
and cannot be neglected. For ε3 > 0 (< 0 respectively)
all the components of ∆Eij are smaller (higher) than zero,
and therefore the strong-gravity corrections reduce (in-
crease) the neat effect of tidal deviations induced by the
gravito-electric tensor2.

In Fig. 3 we draw ∆E11 for ε3 = 10 and different val-
ues of a/M = (0.1, 0.5, 0.8). The plot shows that unless
the binary systems gets very close at orbital distances
r � 10M , the effects of non-Kerr deviations seem to be
insensitive to the BH spin. This feature does not change
for the other components of E(i)(j).

Finally, we note that the picture described above also
apply to the gravito-magnetic tidal tensor. We show the
behaviour of ∆H12 in Fig. 4-5 for the same set of para-
meters previously considered.
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Figure 2. In this figure we plot the absolute percentage values
of ∆Eij given by Eq. (44) as function of the orbital distance,
for three values of the strong gravity parameter ε3 = (1, 5, 10),
and BH spin a = 0.5M .

IV. BLACK HOLE - WHITE DWARF BINARY
EVOLUTION

Hereafter we will analyse the effects of strong-field cor-
rections derived in the previous section, using our res-
ults together with the affine model, which represents a
semi-analytic approach to describe stellar deformations

2 This feature could be qualitatively expected since for ε3 > 0
(ε3 < 0) the modified BH is more prolate (oblate) than the Kerr
one [20].

a = 0.1 M
a = 0.5 M
a = 0.8 M
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11

%

ϵ3=10

Figure 3. Same as Fig. 2 but only for ∆E11, with ε3 =
10 and different values of the BH spin parameter a/M =
(0.1, 0.5, 0.8).
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Figure 4. Same as Fig. 2 but for the magnetic component
∆H12.

induced by an external tidal field. We shall first provide
a brief summary of the main ingredients of the model,
referring the reader to [34] (reference therein) for a more
comprehensive description of this framework. Then, we
will present the numerical results obtained for different
configurations of prototype BH-white dwarf (WD) bin-
aries.

A. The model

The main assumption of the affine approach is that
the spherical star is deformed by the tidal field into an
ellipsoid, preserving this shape during the orbital motion.
More specifically, it is warped in an S-type Riemann el-
lipsoid, for which the spin and vorticity are parallel, and
their ratio constant [45]. The equations for the stellar
deformations are written in the principal frame, which
is comoving with the star, and such that the axes are
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a = 0.1 M
a = 0.5 M
a = 0.8 M
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Figure 5. Same as Fig. 3 but for the magnetic component
∆H12.

adapted to the principal axes of the ellipsoid 3 ai=1,2,3.
Under this assumption, the infinite number of degrees
of freedom of the internal fluid, is reduced to a set of
five variables (a1, a2, a3, ψ, λ), where ψ and λ are the two
angles:

dψ

dτ
= Ω ,

dλ

dτ
= Λ . (45)

In the previous expressions, Ω is the WD angular velo-
city measured in the tetrad coordinate system (which is
parallel transported), and Λ describes the internal fluid
motion in the principal frame.

The equations of motion for the star can be derived
from the Lagrangian

L = LB + LT , (46)

where the subscripts T and B refer to tidal and body. The
first term reads:

LT = −1

2
cijIij , (47)

where Iij s the inertial tensor, which is written in the
affine model as :

Iij = M̂ · diag

(
ai

RWD

)2

=
4π

3

∫ RWD

0

ρ̂(r)r4dr , (48)

being M̂ the scalar quadrupole moment computed over
the density profile of the star4, and RWD its radius at
spherical equilibrium. cij are the components of the

3 In the following ”1” denotes the direction along the axis parallel
to the orbital separation, ”2” identifies the axis orthogonal to
the orbital plane, and ”3” defines the other axis in the orbital
plane.

4 The superscript hat denotes quantities computed for the spher-
ical star.

gravito-electric tidal tensor in the principal frame, ob-
tained by rotating Eij of the angle ψ (defined in Eq. (45))
c = TETT , where the matrix T is given by:

T =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 . (49)

Practically speaking, this rotation changes the angle ξ
into l = ψ − ξ. The latter describes the misalignment
between the a1 axis and the line between the two objects:
when l is negligible, the binary is said to be synchronised.
For a star with zero viscosity this angle is in general very
small. However, as the orbit shrinks the tidal bulge lags
behind the tidal potential, and then is subject to a torque
which tries to spin it to follow the orbital motion, and
the system de-synchronises [46, 47].

The body Lagrangian LB describes the star internal
dynamics, and contains three contributions coming from
the kinetic, the internal energy of the fluid, and the self
gravity (see [34] for a complete expression of these quant-
ities in terms of the affine model variables). By applying
the Euler-Lagrange formalism to Eq. (46) we obtain the
equations of motion for the star:

ä1 =a1(Λ2 + Ω2)− 2a2ΛΩ +
1

2

V̂

M̂
R3

WDa1A1

−R
2
WD

M
V̂

3a1
− c11a1 , (50)

ä3 =a3(Λ2 + Ω2)− 2a1ΛΩ +
1

2

V̂

M̂
R3

WDa3A3

−R
2
WD

M̂
V̂

3a3
− c33a3 , (51)

ä2 =
1

2

V̂

M̂
R3

WDa2A2 −
R2

WD

M̂
V̂

3a2
− c22a2 , (52)

J̇ =
M̂
R2

WD

c13(a2
3 − a2

1) , (53)

Ċ =0 , (54)

where dot refers to differentiation with respect to the
proper time τ , and V̂ is the star self-gravity at spherical
equilibrium, given by

V̂ = −G
2

∫
spher

r∂rΦNewtdm , (55)

with ΦNewt Newtonian gravitational potential and dm
WD mass element. We have also introduced the quant-
ities

Ai =

∫ ∞
0

du

(a2
i + u)

√
(a2

1 + u)(a2
2 + u)(a2

3 + u)
, (56)

J =
M̂
R2

WD

[(a2
1 + a2

3)Ω− 2a1a3Λ] , (57)

C =
M̂
R2

WD

[(a2
1 + a2

3)Λ− 2a1a3Ω] , (58)
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being J the star angular momentum, and C the circula-
tion of the fluid [30]. In absence of viscosity, as for the
models we are going to study here, C is a constant of
motion. We also consider irrotational configurations, for
which C = 0.

In this work we investigate quasi-equilibrium sequences
of BH-WD binaries: this assumption reduces Eqns (50)-
(54) to a system of coupled algebraic equations:

äi = 0 , ψ = ξ , ψ̇ = Ω = ξ̇ , (59)

which is solved through a Newton-Raphson method.

B. Numerical results

We employ the affine model for a representative set
of binary configurations. The WD equilibrium struc-
ture is build within a Newtonian framework using a
polytropic equation of state P = Kργ with γ = 4/3,
where P and ρ are the pressure and mass-density pro-
files. We choose the central density and the constant K
such that the star has mass and radius MWD = 1M�
and RWD = 7088 km. Moreover, we consider rotating
BHs with mass M = 104M�, spins a = (0.5, 0.8)M , and
five values for the deformation parameter of the JP met-
ric ε3 = (0,±5,±10). For each configuration, we solve
the system of Eqns. (59) placing the spherical star at
the orbital separation r � RWD from the BH. Then, we
gradually reduce the distance until it reaches the critical
point rtide at which the WD fills its Roche Lobe. The lat-
ter defines the region around the star in which a particle
with mass m � MWD is gravitationally bounded to the
central object. At the Newtonian level, the Roche lobe
can be identified finding the maximum of the three-body
potential (in the equatorial plane x-y):

U(x, y) = − Gm1

|~x− ~y1|
− Gm1

|~x− ~y2|
− G

2

(m1 +m2)

|~y1 − ~y2|3
x2 , (60)

where ~y1/2 are the displacement vectors, and in our case
m1 = M , m2 = MWD. At each step of the simulation we
numerically compute Eq. (60) and its maximum, defining
rtide as the orbital distance for which the WD axis a1,
elongated by the tidal forces, touches the Roche lobe.

Our results can be summarised as follows:

• In Fig. 6 we show the relative difference between
the axes a1, a2 computed for ε3 = (±5,±10) and
ε3 = 0, namely:

∆a1 =
a1

∣∣
ε3=±5

a1

∣∣
ε3=0

− 1 , ∆a1 =
a1

∣∣
ε3=±10

a1

∣∣
ε3=0

− 1 , (61)

as function of the orbital distance normalised to the
BH mass, for a/M = 0.5. This quantity is evalu-
ated up to the radius5 rtide

∣∣
ε3=0

or rtide

∣∣
ε3=−5,−10

,

5 As noted in Sec. III A, values of the parameter ε3 greater than

for positive and negative values of ε3, respectively.
As the relative separation shrinks, the difference
between the GR and the alternative scenario in-
creases up to ∼ 3% and ∼ 5% for ε3 = ±5 and
ε3 = ±10, respectively. The effect on the axis a2

is less pronounced with discrepancies smaller than
1%; the same results apply to the axis a3.

ϵ3 = 5
ϵ3 = 10
ϵ3 = -5
ϵ3 = -10

0
1
2
3
4
5

Δa
1(
%
)

a=0.5 M

21.0 21.5 22.0 22.5 23.0
0.0

0.2

0.4

0.6

0.8

r/M

Δa
2(
%
)

Figure 6. We show the difference Eq. (61), between the axes
computed for ε3 = (±5,±10) and ε3 = 0, for a/M = 0.5, as
function of the orbital distance divided by the total mass of
the system.

• In Table I we show, for each binary configuration
considered, the critical distances at which the WD
fills its Roche lobe, and the related values of the
axes normalised to the star radius at spherical equi-
librium, āi = ai/RWD. We note that all the sim-
ulations end around rtide ∼ 20Mtot. This can be
explained looking at the behaviour of the gravito-
electric tidal tensor in Fig. 1, which shows that the
effect of the deformation parameter ε3 plays a cru-
cial role only for distances r ∼ 10Mtot. Finally,
as pointed out in the previous section, values of ε3
smaller than zero increase the strength of the tidal
field, and make the star filling its Roche Lobe at
larger distances.

It is worth remarking that the orbital radius rtide

does not identify the WD tidal disruption, but the
distance at which the star begins to loose mass to-
wards the companion object. We expect therefore,
that the orbital evolution after this critical point,
and the dynamics of the accreting flow, will be sig-
nificantly affected by the Kerr metric modifications.
However, such effects can be tracked only by means
of numerical codes. This will be the subject of fur-
ther investigations, in which we will implement the

zero reduce the effect of the tidal field, and then make the star
filling its Roche lobe at smaller orbital distances than the pure
GR case for which ε3 = 0. Viceversa, for ε3 < 0 the star touches
the Roche Lobe surface earlier.
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theoretical results developed in the previous section
into fully relativistic numerical simulations.

a ε3 rtide/M ā1 ā2 ā3
0.5 0 20.773 1.306 0.919 0.947
0.5 5 20.621 1.296 0.919 0.948
0.5 10 20.464 1.287 0.920 0.949
0.5 -5 20.922 1.315 0.919 0.946
0.5 -10 21.066 1.323 0.919 0.945
0.8 0 20.738 1.303 0.919 0.947
0.8 5 20.584 1.294 0.919 0.949
0.8 10 20.426 1.285 0.919 0.950
0.8 -5 20.888 1.312 0.919 0.946
0.8 -10 21.033 1.321 0.918 0.945

Table I. For each binary configuration considered, identified
by the BH spin a/M and the deformation parameter ε3, we
show the critical orbital distance at which the simulation ends,
and the maximum deformation of the WD axes normalised to
its radius at spherical equilibrium āi = ai/RWD.

• We have followed the same procedure described
above for a/M = 0.8, finding again differences at
the most of ∆a1 ∼ 5% for ε3 = ±10. As already
noted therefore, the effect of the BH spin does not
change the evolutionary picture. This can be easily
understood looking at Eqns. (32)-(35): even in the
standard Kerr case, the spin starts to provide a sig-
nificant contribution only for distances r < 10M .

V. CONCLUSIONS

Current and future observations in the electromagnetic
and gravitational spectrum will allow to map the space-
time around supermassive BHs, and to study the prop-
erties of the strong gravitational field in their surround-
ings. In particular, these experiments will shed new light
on the validity of the no-hair theorem, for which astro-
physical BHs in General Relativity belong to the Kerr
family, and are described only by their mass and spin.
In this scenario, the quest for model independent tests
of gravity which make use of the incoming flood of data,
is more needed than ever. Several efforts have been de-
voted to pursue this goal. Among the model proposed in
literature, we have considered the JP metric, which para-
metrises the deviations from the Kerr geometry through a

set of free parameters, to be constrained by experiments.
In this work we focused our attention on the descrip-

tion of tidal effects produced by rotating BHs. We com-
puted the analytic expression for the gravito-magnetic
and gravito-electric tidal tensors, which completely de-
scribe the quadrupolar nature of the tidal field. We
consider the case of equatorial geodesics, expanding all
quantities at the linear order in the parameter ε3 (or equi-
valently h), which identifies the deviations from the Kerr
metric. Comparing our results with those obtained in
the pure GR case, we have found discrepancies both for
E andH which can be as high as ∼ 10% even for large dis-
tances, r > 10M . These differences seems also to weakly
depend on the BH angular momentum.

We have implemented our results into a semi-analytic
approach, called the affine model, to simulate the en-
counter of BH-WD systems, following the orbital evolu-
tion until the star fill its Roche lobe. Analysing a rep-
resentative set of binary configurations, we have found
that the tidal deformations of the WD can be up to 5%
different between the pure GR and the alternative scen-
ario, for ε3 = ±10, even at orbital separation r ∼ 20M .
Therefore, we expect that the matter flow onto the BH,
and the possible formation of an accreting disk, would
be significantly affected by the strong field correction in-
duced by the JP metric.

Assessing the features and the detectability of such
processes will be matter of future investigations, in which
we will implement our theoretical results into fully re-
lativistic numerical simulations.
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Appendix A: The parallel transported tetrad in the
JP space-time

In this section we show the form of the basis vectors
λµ(α) parallel propagated along a circular geodesic in the
JP space-time, at the linear order in the parameter h =
ε3M

3/r3.

λ0
(0) =

1 + aωk

N
− h

N34r2

[
3a2 + 5r2 + 6a(a2 + r2)ωk − 4r2(4a2 + 3r2)ω2

K + 12ar4ω3
k

]
, (A1a)

λ1
(0) = 0 , (A1b)

λ2
(0) = 0 , (A1c)

λ3
(0) =

ωk

N
− h

4r2ωkN3

[
6a2ω2

k + aωk(9− 16r2ω2
k) + 3(1− 2r2ω2

k)2
]
, (A1d)
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λ̃0
(1) =−

√
∆ωk

N
sin ξ +

h∆−3/2

4r2N3ωk

[
(a2 + r2)2(3 + 9aωk) + 2(a2 + r2)ω2

k(3a4 − 8r4)− 4ar2ω3
k(a4 + 11a2r2

+9r4) + 2r4(13r4 − 3a2r2 − 18a4)ω4
k + 8ar6(5a2 + 6r2)ω5

k + 4r8(5a2 − 3r2)ω6
k − 24ar10ω7

k

]
sin ξ , (A2a)

λ̃1
(1) =

∆1/2

r
cos ξ − h

2∆1/2
(r − 2M) cos ξ , (A2b)

λ̃2
(1) = 0 , (A2c)

λ̃3
(1) =− 1 + ωk(a− 2r2ωk)

N∆1/2
sin ξ +

h

4r2N3∆3/2

[
6a5ωk + a4(3− 4r2ω2

k) + 18a3rωk(r − 2M) + 3r(r − 2M)3

+4a2r2(2− 9r2ω2
k + 10r4ω4

k) + a(6r4ωk − 22r6ω3
k + 20r8ω5

k)
]

sin ξ , (A2d)

λ0
(2) =0 , (A3a)

λ1
(2) =0 , (A3b)

λ3
(2) =0 , (A3c)

λ2
(2) =

1

r
, (A3d)

λ̃0
(3) =

√
∆ωk

N
cos ξ − h∆−3/2

4r2N3ωk

[
(a2 + r2)2(3 + 9aωk) + 2(a2 + r2)ω2

k(3a4 − 8r4)− 4ar2ω3
k(a4 + 11a2r2

+9r4) + 2r4(13r4 − 3a2r2 − 18a4)ω4
k + 8ar6(5a2 + 6r2)ω5

k + 4r8(5a2 − 3r2)ω6
k − 24ar10ω7

k

]
cos ξ , (A4a)

λ̃1
(3) = −∆1/2

r
sin ξ − h

2∆1/2
(r − 2M) sin ξ , (A4b)

λ̃2
(3) = 0 , (A4c)

λ̃3
(3) =

1 + ωk(a− 2r2ωk)

N∆1/2
cos ξ − h

4r2N3∆3/2

[
6a5ωk + a4(3− 4r2ω2

k) + 18a3rωk(r − 2M) + 3r(r − 2M)3

+4a2r2(2− 9r2ω2
k + 10r4ω4

k) + a(6r4ωk − 22r6ω3
k + 20r8ω5

k)
]

cos ξ . (A4d)
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