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Université Paris-Sud 11, Univ. Paris-Saclay, 91405 Orsay Cedex, France and
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I. INTRODUCTION

The particles emission by black holes, discovered by Hawking in 1974 [1], does not have an exact

Planckian distribution. Instead this distribution is modified by a so-called gray-body factor Γi(ω)

such that

N (i)
ω =

Γi(ω)

e
~ω

kBTH − 1
. (1.1)

Here N
(i)
ω is the number of quanta emitted of energy ω and additional quantum numbers labelled

by “i”, and TH is the Hawking temperature which is proportional to the surface gravity of the

black hole (BH) event horizon.

Spacetime curvature around the BH induces in the mode equation an effective potential that

causes backscattering of the modes. Because of this a mode originating from the horizon region is

only partially transmitted to future infinity. Γi(ω) measures the probability for this to happen. The

calculation of the gray-body factor, being a nonlocal effect, requires the exact form of the modes to

be known. Due to the mathematical complexity of the mode equation, this seldom happens. Thus

only in certain cases, such as the low frequency limit [2–8] or when the effective potential vanishes

and propagation is trivial (Γ = 1), have analytic expressions for the gray-body factor previously

been obtained.

We have found a nontrivial example in which analytic solutions to the mode equation can be

found and an analytic expression for the gray-body factor can be obtained in a rather interesting

physical situation that can, in principle, be reproduced in an experimental setting. It involves a

model for a Bose-Einstein condensate, BEC, which is arranged to serve as an analog model for a

black hole. Similar models have been investigated previously using either analytic approximations

or numerical computations [15–21]. The condensate is approximated as being infinite in length

and can be treated as being effectively one-dimensional. It moves at a constant velocity in the lab

frame. The system is set up so that the speed of sound in the condensate varies as a function of

position in the direction of the flow such that there is one region for which the flow is supersonic

and one where it is subsonic. At one point (the acoustic horizon) the speed of sound is equal to

the flow speed. What is different about our model is that we have found a speed of sound profile

for which nontrivial analytic solutions to the mode equation can be obtained.

The primary reason for studying analog systems is that experimental detection of Hawking ra-

diation in an astrophysical context is unlikely. Indeed, for a black hole formed from gravitational

collapse TH ≤ 10−7 K is several orders of magnitudes smaller than the cosmic microwave back-
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ground temperature TCMB ∼ 3 K. Fortunately, Hawking radiation is not specific to gravity. In

1981 Unruh [9] used the mathematical equivalence between the propagation of a scalar field in a

curved spacetime background and that of sound in an inhomogeneous eulerian fluid (the so called

gravitational analogy [10]) to show that fluids undergoing subsonic-supersonic transition (acoustic

black holes) will emit analog Hawking radiation in the form of phonons due to the presence of an

acoustic horizon. This has opened up new possibilities to either directly detect Hawking radiation

experimentally or to detect certain effects associated with Hawking radiation. Experiments have

been done with water tanks [11], quantum optics [12], polaritons [13], and Bose-Einstein conden-

sates (BECs) [14]. A major difficulty is that the signal for Hawking radiation is weak in most

systems compared to background effects. In this regard, BECs offer particularly favorable experi-

mental conditions since it is possible to have a background temperature as low as 100nK which is

only an order of magnitude larger than the Hawking temperature of 10K.

In Section II we review the mathematical details for this type of model, focusing on the form

of the mode equation and its asymptotic solutions. In Section III we use our profile to find a

complete set of exact analytic solutions to the mode equation. From these solutions we obtain

analytic expressions for the scattering coefficients and the gray-body factor. Section IV contains a

brief discussion of our results.

II. BEC ANALOG BLACK HOLE MODEL

To make contact with the gravitational analogy [10], one considers the hydrodynamic approxi-

mation of BEC theory. As usual [22], we write down the bosonic field operator Ψ̂ in the density -

phase representation Ψ̂ =
√
n̂eiθ̂ and expand the density operator n̂ = n+ n̂1 and the phase oper-

ator θ̂ = θ + θ̂1 around a classical background (the condensate) described by the Gross-Pitaevski

equation. The small (quantum) fluctuations satisfy the Bogoliubov-de Gennes equations (see for

instance [25])

~∂tθ̂1 = −~~v~∇θ̂1 −
mc2

n
n̂1 +

mc2

4n
ξ2~∇[n~∇(

n̂1
n

)] = 0 , (2.1)

∂tn̂1 = −~∇(~vn̂1 +
~n
m
~∇θ1) , (2.2)

where ~v = ~~∇θ
m is the condensate velocity, c = gn

m the speed of sound, ξ = ~
mc the healing length (the

fundamental length scale of the system) and m the mass of an individual atom. For backgrounds

varying on length scales larger than ξ the last term in (2.1) can be neglected and we recover the



4

hydrodynamic approximation. We can then extract n̂1 from (2.1), i.e.

n̂1 = − ~n
mc2

[~v~∇θ̂1 + ∂tθ̂1] . (2.3)

Substituting (2.3) into (2.2) one finds that the phase fluctuation θ̂1 obeys

−(∂t + ~∇~v)
n

mc2
(∂t + ~v~∇)θ̂1 + ~∇ n

m
~∇θ̂1 = 0 , (2.4)

which is formally equivalent to the Klein-Gordon equation

�θ̂1 =
1√
−g

∂µ(
√
−ggµν∂ν θ̂1) = 0 (2.5)

in a fictitious curved space-time described by the acoustic metric

ds2 =
n

mc

[
−(c2 − ~v2)dt2 − 2~vd~xdt+ d~x2

]
. (2.6)

We consider a model in which a BEC moves at a constant velocity ~v = −v0x̂ with v0 > 0, and

the number density n of the atoms is constant. Using Feshbach resonances [22] it is possible to have

a variable speed of sound c. The speed of sound is arranged so that it varies only in the direction

of the flow with c(x) > v0 for x > 0 and c(x) < v0 for x < 0. The latter region represents the

acoustic black hole and x = 0 is its horizon. The condensate is also asymptotically homogeneous

so that c(x)→ cR for x→ +∞ and c(x)→ cL for x→ −∞. Thus this system serves as an analog

to a static asymptotically flat black hole.

We have seen that in the hydrodynamical approximation the phase fluctuation θ1 of the conden-

sate satisfies (2.5) and thus behaves as a massless minimally coupled scalar field φ in the acoustic

metric

ds2 =
n

mc

[
−(c2 − v20)dt2 + 2v0dxdt+ dx2 + dx2⊥

]
, (2.7)

where dx2⊥ = dy2 + dz2. It is useful to introduce a “Schwarzschild time” tS (as opposed to the

laboratory “Painlevé” time t) such that

tS = t−
∫
dx

v0
c2 − v20

. (2.8)

Then the acoustic metric becomes

ds2 =
n

m

[
−c

2 − v20
c

dt2S +
c

c2 − v20
dx2 +

dx2⊥
c

]
. (2.9)

If the phase fluctuations are quantized then the quantum field φ̂ ≡ θ̂1 can be expanded in

terms of a complete set of mode functions ϕ which are solutions to Eq. (2.5). The condensate is
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assumed to be infinite in extent in the flow (x) direction, and that the dynamics is frozen in the

transverse direction. We consider the so called “1D mean field regime” which assumes perfect 1D

condensation, and is valid in an intermediate density regime [22–24]. Restricting our attention to

these modes and using separation of variables we can write ϕ(t, x) = e−iωtSϕω(x). Then Eq. (2.5)

becomes

ω2

c2 − v20
ϕ+

d

dx

[
c2 − v20
c2

dϕ

dx

]
= 0 . (2.10)

Next we introduce a new space variable z by the relation

dx

(1− v20
c2

)
= dz . (2.11)

The mode equation (2.10) becomes

ω2

c2(z)
ϕ+

d2ϕ

dz2
= 0 . (2.12)

Note that this equation for ϕω(z) has the same form as Eq. (2.10) for ϕω(x) with v0 set equal

to zero. Thus we have mapped the original problem in x with v0 > 0 to one in z with v0 = 0.

At the horizon c = v0 so z diverges. Therefore the exterior (x ≥ 0) and interior (x ≤ 0) regions

must be dealt with separately. A Penrose diagram representing the causal structure of the acoustic

space-time under consideration is given in Fig. 1.

H
−

H
−

I
−

R

I
R

+

I
L

+
I
L

+

H

+

x
=
0

−−

L

x<0

x>0

R

FIG. 1. Penrose diagram for our acoustic black hole. IR and IL are, respectively, the exterior and interior

asymptotic regions. H+ and H− are the future and past horizons.

From Fig. 1 it is clear that for the R region (x ≥ 0), the union of the past horizon H− and past

null infinity I− forms a Cauchy surface. For each value of ω there are two linearly independent
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solutions to Eq. (2.12), ϕH and ϕI . The mode e−iωtSϕH vanishes on I− and is normalized on

H−, while the mode e−iωtsχI vanishes on H− and is normalized on I−. Together e−iωtSϕH(x) and

e−iωtSϕI(x) form a complete set of solutions to the mode equation in the R region and thus can

be used for the expansion of the quantum field φ in terms of modes.

The asymptotic behaviors of ϕH are

ϕH =
{ √ v0

4πω

(
e
i ω
v0
z

+RHe
−i ω

v0
z
)
, x→ 0+√

cR
4πω THe

i ω
cR
z
, x→ +∞ .

(2.13)

Multiplying by e−iωtS one sees that this solution corresponds to a unit norm outgoing wave originat-

ing on H− which is partially reflected back to the future horizon H+ and partially transmitted to

future null infinity I+. Here RH and TH are the reflection and transmission coefficient respectively

for this mode. The gray-body factor is Γ(ω) = |TH |2. The asymptotic behaviors of ϕI are

ϕI =
{ √

v0
4πω TIe

−i ω
v0
z
, x→ 0+√

cR
4πω

(
e
−i ω

cR
z

+RIe
i ω
cR
z
)
. x→ +∞

(2.14)

Multiplying by e−iωtS one sees that this corresponds to a unit norm incoming wave originating

on I−R which is partially reflected back to infinity (I+R ) with a reflection coefficient RI , and which

is partially transmitted towards the horizon with a transmission coefficient TI . The factors
√
v0

and
√
cR appearing in ϕH and ϕI come from the proper normalization of the modes along the

corresponding Cauchy surfaces and are consequences of the 1
c factor present in the metric (2.9) in

the transverse part.

III. EXACT SOLUTIONS TO THE MODE EQUATION

Eq. (2.12) can be solved exactly for the profile

c = (A+B tanh kz)−1/2 , (3.1)

with A and B positive constants. In order for this profile to describe the exterior of an acoustic

black hole we define the asymptotic values at, respectively, z → −∞ and z → +∞ as

(A−B)−1/2 = v0, (A+B)−1/2 = cR . (3.2)

As can be verified by substitution into Eq. (2.11)

x =
1

2k
(1− v20

c2R
) ln(e2z + 1) , (3.3)
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with the result that

c(x) =
cR√

1 + (
c2R
v20
− 1)e

−
2c2

R
kx

c2
R
−v20

. (3.4)

Thus with the choices (3.2) the profile gives c = cR at x = +∞ and c = v0 at the horizon x = 0.

The horizon’s surface gravity is

κ =
dc

dx hor
= kv0 . (3.5)

To solve Eq. (2.12) with the profile given by Eq. (3.1), we introduce the notation

y± ≡
1

2
(1∓ tanh kz) , (3.6)

and write down the two linear independent solutions as

ϕ± = y
− iω

√
A±B
2k

± (1− y±)
iω
√
A∓B
2k F±(a±, b±, c±; y±) , (3.7)

where F is the hypergeometric function with

a± = 1− iω

2k
(
√
A±B −

√
A∓B) ,

b± = − iω
2k

(
√
A±B −

√
A∓B) ,

c± = 1− iω

k

√
A±B . (3.8)

From ϕ+ we can construct the normalized solution ϕH . First note that Eq. (3.6) implies that

y+ = 0 at infinity (z = +∞) and y+ = 1 at the horizon (z = −∞). To uncover the behavior of ϕ+

on the horizon we make use of the following identity

F+(a+, b+, c+; y+) =
Γ(c+)Γ(c+ − a+ − b+)

Γ(c+ − a+)Γ(c+ − b+)
F+(a+, b+, a+ + b+ − c+ + 1; 1− y+) (3.9)

+(1− y+)c+−a+−b+
Γ(c+)Γ(a+ + b+ − c+)

Γ(a+)Γ(b+)
F+(c+ − a+, c+ − b+, c+ − a+ − b+ + 1; 1− y+) .

Inserting this for F+(a+, b+, c+; y+) in Eq. (3.7), making use of the fact that F (a+, b+, c+; 0) = 1,

and noting that 1 − y+ ≈ e2kz, it can be seen that near the horizon ϕ+ consists of two terms;

the first (multiplied as usual by e−iωtS ) describes an outgoing plane wave e
i ω
v0
z

while the second

describes an ingoing plane wave e
−i ω

v0
z
. Comparison with (2.13) gives

ϕH =

√
v0

4πω

Γ(c+ − a+)Γ(c+ − b+)

Γ(c+)Γ(c+ − a+ − b+)
ϕ+ , (3.10)
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and

RH =
Γ(a+ + b+ − c+)Γ(c+ − a+)Γ(c+ − b+)

Γ(a+)Γ(b+)Γ(c+ − a+ − b+)

=
Γ( iωkv0 )

Γ(− iω
kv0

)

Γ(− iω
2k ( 1

v0
+ 1

cR
))Γ(1− iω

2k ( 1
v0

+ 1
cR

))

Γ(− iω
2k ( 1

cR
− 1

v0
))Γ(1− iω

2k ( 1
cR
− 1

v0
))
. (3.11)

For large z, y+ ≈ e−2kz. Comparison of (3.10) and (3.7) for large z with the lower expression

of (2.13) gives

TH =

√
v0
cR

Γ(c+ − a+)Γ(c+ − b+)

Γ(c+)Γ(c+ − a+ − b+)

=

√
v0
cR

Γ(− iω
2k ( 1

v0
+ 1

cR
))Γ(1− iω

2k ( 1
v0

+ 1
cR

))

Γ(1− iω
kcR

)Γ(− iω
kv0

)
. (3.12)

The scattering coefficients satisfy the unitarity relation

|TH |2 + |RH |2 = 1 . (3.13)

In the ω → 0 limit

TH ∼
2
√
v0cR

cR + v0
, RH ∼

cR − v0
cR + v0

(3.14)

as predicted in Refs. [7, 8] while for large ω, TH is a phase and RH vanishes. Thus as expected, in

the high frequency limit, we have complete transmission. The gray-body factor is

Γ = |TH |2 =
sinh πω

kv0
sinh πω

kcR

sinh2
[
πω
2k ( 1

v0
+ 1

cR
)
] . (3.15)

As already stressed in Refs. [7, 8], the fact that the gray-body factor goes to a nonzero constant

in the low frequency limit implies that the analog Hawking radiation of 1D BEC acoustic black

holes is dominated by an infinite number ( 1
ω ) of soft phonons. From an experimental point of view

a direct detection of the emitted phonons is difficult and one infers their features from density

correlation measurements (see for instance [26]). In the gravitational case, a similar feature is

present in the Hawking radiation from Schwarzschild-de Sitter black holes. The behavior is very

different for Schwarzschild black holes where Γ ∼ ω2 as ω2 → 0, so that the low frequency emission

is absent.

The construction of χI proceeds in a similar fashion starting from ϕ−. In this case y− =

1 at infinity and y− = 0 at the horizon. Using the identity (3.9) (with F+, a+, b+, c+, y+ →

F−, a−, b−, c−, y−) one finds

χI =

√
cR

4πω

Γ(c− − a−)Γ(c− − b−)

Γ(c−)Γ(c− − a− − b−)
ϕ− . (3.16)
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Comparison of (3.16) and (3.7) with (2.14) gives

RI =
Γ(a− + b− − c−)Γ(c− − a−)Γ(c− − b−)

Γ(a−)Γ(b−)Γ(c− − a− − b−)

=
Γ( iω

kcR
)

Γ(− iω
kcR

)

Γ(− iω
2k ( 1

v0
+ 1

cR
))Γ(1− iω

2k ( 1
v0

+ 1
cR

))

Γ(− iω
2k ( 1

v0
− 1

cR
))Γ(1− iω

2k ( 1
v0
− 1

cR
))
, (3.17)

and

TI =

√
cR
v0

Γ(c− − a−)Γ(c− − b−)

Γ(c−)Γ(c− − a− − b−)

=

√
cR
v0

Γ(− iω
2k ( 1

v0
+ 1

cR
))Γ(1− iω

2k ( 1
v0

+ 1
cR

))

Γ(1− iω
kv0

)Γ(− iω
kcR

)
= TH . (3.18)

These coefficients satisfy the unitarity relation |TI |2 + |RI |2 = 1. In the limit ω → 0 we have

TI = TH ∼
2
√
v0cR

cR+v0
, RI ∼ v0−cR

cR+v0
. In the large ω limit, |TI | → 1 and RI → 0 as expected.

Finally, the coefficients in (3.11), (3.12), (3.17), (3.18) satisfy R∗HTI + T ∗HRI = 0.

IV. SUMMARY AND CONCLUSIONS

We have found a complete set of exact solutions to the mode equation in the region outside of

the acoustic horizon for a 1D BEC analog black hole with constant speed v0 and density n and

with the speed of sound profile (3.4). From these we have obtained analytic expressions for the

scattering coefficients and gray-body factor. The speed of sound profile is a well behaved one which

asymptotically approaches a constant at infinity and is equal to the flow speed at the horizon. In

principle such a profile could be set up in the laboratory.1

The fact that we have analytic expressions for the scattering coefficients and the gray-body

factor has allowed us to verify the predictions made for these quantities in the low frequency limit

in [7, 8]. Two important subtleties in the derivations of those predictions involved the order in

which the limits ω → 0 and x → 0 were taken and the order in which the limits ω → 0 and

x→∞ were taken. No such subtlety occurs here as the scattering coefficients have been computed

analytically for all values of ω.

1 Note that our results apply also to more general models, in which v, n, c are nontrivial. In this case, we still get

an equation like (2.12) with the substitution 1
c2

→ n2

c2
, and the coordinate z is defined via dz = dx

n(1− v2

c2
)

instead

of (2.11).
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