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Abstract: We propose a universal inequality that unifies the Bousso bound with the

classical focussing theorem. Given a surface σ that need not lie on a horizon, we define

a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann

entropy of its exterior. Given a null congruence N orthogonal to σ, the rate of change

of Sgen per unit area defines a quantum expansion. We conjecture that the quantum

expansion cannot increase along N . This extends the notion of universal focussing

to cases where quantum matter may violate the null energy condition. Integrating

the conjecture yields a precise version of the Strominger-Thompson Quantum Bousso

Bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality,

the Quantum Null Energy Condition, a lower bound on the stress tensor in terms of the

second derivative of the von Neumann entropy. We sketch a proof of the latter relation

in quantum field theory.



1 Introduction

The study of black holes has revealed a profound connection between quantum infor-

mation and geometry, beginning with Bekenstein’s proposal [1–3] that black holes have

an entropy proportional to their horizon area:

SBH =
A

4G~
. (1.1)

The coefficient 1/4 is fixed by the First Law of thermodynamics, dE = TdS, using

Hawking’s later calculation of the black hole temperature [4, 5].

Moreover, Bekenstein introduced the notion of generalized entropy, defined as the

sum of black hole horizon entropy and the “ordinary” entropy of matter systems in the

exterior of black holes, Sout:

Sgen =
A

4G~
+ Sout . (1.2)

Using this definition, Bekenstein proposed a Generalized Second Law of thermodynam-

ics (GSL), which states that the generalized entropy will not decrease in any physical

process:

dSgen ≥ 0 . (1.3)

The GSL was introduced as a successor to the ordinary Second Law, which fails when

matter entropy disappears into a black hole. The GSL proved to be a successor to the

classical area law for black hole horizons [6], as well: when a black hole evaporates,

its area decreases; but the Hawking radiation produced in the exterior more than

compensates [7], so the GSL is upheld.

The connection between quantum information and geometry was deepened by the

recognition that the GSL appears to impose limitations on the entropy content of

weakly gravitating matter systems [8] and of certain spacetime regions. This led to the

proposal of a holographic principle [9–14], which holds that the information (or entropy)

content of spacetime regions is fundamentally governed by the area of surfaces, and that

this apparently nonlocal constraint will be manifest in a full quantum gravity theory.

The AdS/CFT correspondence [15] partly fulfills this expectation [16] in a certain class

of spacetimes.

The covariant entropy bound (or Bousso bound) relates matter entropy to the area

of arbitrary surfaces, not just black hole horizons [12]. In the generalized form of [17]

the bound states that

∆S ≤ ∆A

4G~
, (1.4)

where ∆S is the matter entropy passing through a nonexpanding null hypersurface

bounded by surfaces whose areas differ by ∆A. More details are given in Sec. 2; for a

full review, see [14].
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The Bousso bound reduces to previous heuristic bounds in well-circumscribed set-

tings [12, 17–19]. But its validity extends to cosmological spacetimes and regions deep

inside a black hole. Since such regions cannot be converted to black holes of the same

area, the bound hints at a much broader relation between quantum information and

geometry that goes beyond black hole thermodynamics.

In a similar vein, we will argue here that a generalized entropy should be ascribed

not only to black hole and other causal horizons [20], but to a much larger class of

surfaces [21–25]. Clearly, Eq. (1.2) allows us to assign a generalized entropy to any

surface σ that divides a Cauchy surface into two portions, where Sout can be taken to

be the matter entropy on either one of these portions. We will find that this viewpoint

leads to a statement more powerful than the Bousso bound: the Quantum Focussing

Conjecture.

The generalized entropy is a promising and versatile notion because it is finite.

Newton’s constant G and the exterior entropy are separately cutoff-dependent. But

over the past decades, evidence has mounted1 that the combined divergences cancel,

leaving a finite piece that is invariant under RG flow, as originally proposed in [26] and

expanded upon in [27, 28]). What we call gravitational entropy and matter entropy

depends on the cutoff; but their sum, Sgen, does not. This suggests that Sgen, unlike

Sout or A/4G~ separately, reflects some information present in the full quantum gravity

theory. Presumably, Sgen is a measure of the entropy of the degrees of freedom accessible

on one side of that surface, where the area term represents the dominant contribution

coming from Planckian degrees of freedom very close to σ, somehow cut off by quantum

gravity [26–31].

However, the generalized entropy is only a semiclassical concept, assigning to each

surface an entropy proportional to its area, without worrying about whether these

degrees of freedom are entangled with each other, or with other systems. Thus it

does not capture nonperturbative physics such as the (presumed) unitarity of Hawking

evaporation. For example, the GSL does not hold (except in a coarse-grained sense)

after the Page time [32], when more than half the entropy has radiated out of the

black hole, so that the hidden purity becomes potentially measurable. At this stage,

both the fine-grained entropy of the exterior and the area of the horizon decrease, and

the correct statement of the second law becomes different. Similarly, the Quantum

Focussing Conjecture is a semiclassical statement that may need to be modified in

the nonperturbative regime, e.g., for sufficiently old black holes that have information

1For example, the leading divergence of the vacuum entanglement entropy near the surface σ scales

like A/ε2 but 1/G is renormalized so as to absorb this divergence. Subleading divergences of the

entanglement are similarly cancelled by appropriate higher-curvature corrections to the gravitational

action. We give a review of these results along with extensive references in Appendix A.
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on the horizon. In this article we will confine our analysis to situations where the

semiclassical analysis is valid.

At a practical level, extending the notion of generalized entropy to arbitrary sur-

faces yields powerful extensions of classical GR results to the semiclassical level (much

as the GSL supersedes the classical area theorem for causal horizons). For example,

Penrose’s singularity theorem for trapped surfaces [33] fails for evaporating black holes

because it cannot accommodate quantum fluctuations with negative energy. But a more

robust theorem guarantees singularities in the presence of quantum trapped surfaces,

which are defined in terms of the generalized entropy [21].

Here we will use Sgen to formulate an extension of the classical focussing theorem for

surface-orthogonal null congruences. The classical theorem states that light-rays never

“anti-focus” as long as matter has positive energy. Mathematically, the expansion

scalar θ cannot increase along a congruence of lightrays, where θ is the logarithmic

derivative of the area spanned by the light-rays:

dθ

dλ
≡ d

dλ

(
dA/dλ
A

)
≤ 0 , (1.5)

where A is an infinitesimal area element spanned by nearby null geodesics, and λ is an

affine parameter. We review this result in Sec. 2.

Because quantum fluctuations can have negative energy, the classical focussing

theorem fails at the semiclassical level (e.g., near black hole horizons), just as the area

theorem and the singularity theorem fail. In Sec. 3, we define a quantum expansion,

Θ, as a functional derivative (per unit area) of the generalized entropy along a null

congruence orthogonal to the surface σ. We conjecture that Θ cannot increase along any

congruence, even in quantum states that would violate the classical focussing theorem:

dΘ

dλ
≤ 0 . (1.6)

This is the Quantum Focussing Conjecture (QFC).

We derive and explore two important implications of the QFC. In Sec. 4, we show

that the QFC implies the Bousso bound, but in an improved form. The Bousso bound

was initially formulated only for the case where the matter entropy is dominated by

isolated systems. In this setting, a finite entropy is easily computed from a density

operator for the system, or by integrating an entropy density. In more general settings,

the matter entropy cannot be cleanly separated from the divergent vacuum entangle-

ment entropy across the surface σ. Two inequivalent quantum extensions of the bound

have been put forward: in the weakly gravitating regime, the entropy can be regulated

by vacuum subtraction [19, 34–37]; in a more general setting, one must include the

vacuum entanglement [38].
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We recover a “quantum Bousso bound” by integrating the QFC. On a (quantum)

light-sheet, the generalized entropy is initially decreasing, so by the integrated QFC it

will continue to decrease. Hence, the initial generalized entropy is greater than the final

one. This statement is manifestly cutoff-independent, i.e., it is automatically equipped

to deal with the divergences of the von Neumann entropy. It is closely related to an

early improvement of the Bousso bound by Strominger and Thompson [38]. Breaking

Sgen into Sout + A/4G~ and rearranging terms, one recovers the Bousso bound in the

familiar form of Eq. (1.4), ∆S ≤ ∆A/4G~; see Fig. 2a.

In Sec. 5 we explore the QFC in settings where the classical expansion vanishes.

We find that the QFC implies a novel Quantum Null Energy Condition,

Tkk ≥ lim
A→0

~
2πA

d2Sout

dλ2
, (1.7)

where Tkk is the null-null component of the stress tensor. We sketch a proof of the

Quantum Null Energy Condition for free fields in Minkowski space. This provides

significant evidence supporting the QFC, beyond the evidence already supporting the

Bousso bound [12, 14, 17, 19, 37–39].

In Sec. 6, we discuss how the QFC relates to other proposals and results, including

the GSL, the quantum Bousso bounds of [38] and of [19, 37], the quantum singularity

theorem of [21], the quantum extremal surface barriers of [25], and a novel GSL for

quantum holographic screens [40–42].

2 Classical Focussing and Bousso Bound

In this section we review the classical notion of the expansion of a null congruence, and

two statements that involve this expansion: the classical focussing theorem, and the

Bousso bound. Both will later be subsumed by the Quantum Focussing Conjecture.

2.1 Classical Expansion

Consider a congruence of light rays emanating orthogonally from a codimension-2 space-

like hypersurface. The expansion scalar θ is defined as the trace of the null extrinsic

curvature [43]

θ ≡ ∇ak
a . (2.1)

Here ka = (d/dλ)a is the (null) tangent vector to the congruence, normalized with

respect to an affine parameter λ. Equivalently, θ is the logarithmic derivative of the

area element A spanned by infinitesimally neighboring geodesics:

θ = lim
A→0

1

A
dA
dλ

. (2.2)
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From its definition, it is clear that θ is a local quantity.

A caustic (conjugate point, focal point) is a point where θ → −∞, which happens

when the cross-sectional area vanishes, i.e., when infinitesimally neighboring geodesics

intersect.

The evolution of the expansion θ along the congruence is determined by the Ray-

chaudhuri equation:

dθ

dλ
= − 1

D − 2
θ2 − σabσab −Rabk

akb , (2.3)

where Rab is the Ricci tensor and D is the spacetime dimension. The shear σab is

defined as the trace-free symmetric part of the null extrinsic curvature [43].

2.2 Classical Focussing Theorem

In a spacetime which satisfies the null curvature condition, namely Rabk
akb ≥ 0 for

all null vectors ka, each term on the right-hand side of (2.3) is manifestly nonpositive.

Physically, this means that light rays can focus but not anti-focus, and it implies the

following theorem:2

In a spacetime satisfying the null curvature condition, the expansion is nonincreas-

ing at all regular (non-caustic) points of a surface-orthogonal null congruence:

dθ

dλ
≤ 0 . (2.4)

In Einstein gravity, the null curvature condition is equivalent to the null energy

condition, that the stress tensor obeys 〈Tab〉kakb ≥ 0 for all null vectors ka. This

inequality is broadly obeyed in the classical limit, and by coherent states of a quantum

field.

However, the null energy condition is not universally valid. It is violated by phys-

ically reasonable states in the quantum field theory [44], for example by the Casimir

effect [45], moving mirrors [46, 47], squeezed states of light [48, 49], and Hawking ra-

diation [5, 50]. In any region where it is violated, one can construct a counterexample

to the above focussing theorem, by choosing a congruence with sufficiently small θ and

σab.

2There exists another version of the focussing theorem, which also follows from Eq. (2.3) and the

null curvature condition: if θ(p) is strictly negative at some point p on a null geodesic, then there will

be a caustic on the geodesic, at affine parameter no further than |(D− 2)/θ(p)| from the point p. We

will not consider this theorem here, because its quantum generalization is not yet known.
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2.3 Bousso Bound

A light-sheet is a null hypersurface with everywhere nonpositive expansion θ ≤ 0.

The Bousso bound [12, 13] is the conjecture that the entropy on a light-sheet cannot

exceed the area of its initial cross-section in Planck units, A/4G~. The bound can be

strengthened [17] in the case where the light-sheet is truncated at some nonzero final

area A′:

S ≤ A− A′
4G~

, (2.5)

The Bousso bound is useful in regimes where the quantities it relates are well-

defined. In the semiclassical regime, the areas of surfaces are sharply defined. In many

situations, the entropy is also easy to compute, for example when dealing with well-

isolated matter systems, or with a portion of an extensive system large enough for the

notion of entropy density to be meaningful.

In the semiclassical regime, the areas of surfaces are sharply defined. In many

situations the entropy is also easy to compute, for example when dealing with well-

isolated matter systems, or with a portion of an extensive system large enough for

the notion of entropy density to be meaningful. Within this wide arena, there exist

strong counterexamples to all alternative proposals (so far) of the general form S .
A/4G~ [51]. The Bousso bound evades these counterexamples because of the special

properties of light-sheets. Thus, the notion of light-sheets (rather than spatial volumes,

or light-cones lacking a nonexpansion condition [11]), appears to be crucial.

It would be nice to broaden the regime for which the entropy S is well-defined.

A clarification is particularly necessary in the case where the Bousso bound is applied

to a system consisting of only a few quanta, such as a single photon wavepacket with

Gaussian profile. Globally, the entropy will be of order unity (assuming, for example,

an incoherent superposition of different polarization states). However, it is not obvious

how to define the entropy on a finite light-sheet: some tail of the wavepacket will be

missing, so one cannot use the global density matrix. Restricting the density operator to

the finite light-sheet, the von Neumann entropy receives a divergent contribution from

entanglement across the boundaries at the two surfaces A and A′. This contribution

dominates but it is intuitively unrelated to the photon.

A sharp definition of S was given recently for light-sheets in the weak gravity limit,

G~ → 0, with perturbative matter. In this regime one can restrict both the vacuum

and the state of interest to the same region or light-sheet. In this setting, the entropy

S can be defined as the difference of the two resulting von Neumann entropies of

the light-sheet states [34–36]. Because the divergences of the entanglement entropy are

associated with its boundary, this quantity is finite and reduces to the expected entropy
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for isolated systems and fluids.3 With this definition, the bound can be proven [19, 37]

to hold in the weak gravity limit.

However, this definition cannot be applied when gravity is strong, since it is not

clear what one would mean by the “same” light-sheet for two states with different

geometry. It is therefore necessary to find some other definition of entropy such that a

Bousso bound can be precisely formulated (and perhaps proven).

We will show below that the Quantum Focussing Conjecture furnishes such a defi-

nition. Interestingly, we will find that this definition does not reduce to that of [19, 37]

in the weak-gravity limit, where the latter is well defined. Moreover, we will find that

the nonexpansion condition θ ≤ 0, which was strictly preserved in [19, 37], will be

modified to a “quantum nonexpansion condition”. The resulting conjecture is similar

to that of [38]; we will comment on the differences in Sec. 6.2.

3 Quantum Expansion and Focussing Conjecture

In this section, we define the notion of quantum expansion as a functional derivative of

the generalized entropy, and we formulate the Quantum Focussing Conjecture.

3.1 Generalized Entropy for Cauchy-splitting Surfaces

Generalized entropy was originally defined [1] in asymptotically flat space, as the area A

of all black hole horizons (in Planck units), plus the entropy of matter systems outside

the black holes:

Sgen ≡ Sout +
A

4G~
+ counterterms . (3.1)

A rigorous definition of Sout can be given as the von Neumann entropy of the quantum

state of the exterior of the horizon:

Sout = −tr ρout log ρout . (3.2)

The reduced density matrix ρout is obtained from the global quantum state ρ by tracing

out the field degrees of freedom behind the horizon:

ρout = trin ρ . (3.3)

(If the global state of the matter fields is pure, then Sout = Sin, where Sin is the von

Neumann entropy of the interior region.)

The von Neumann entropy Sout is UV-divergent. However, there is now strong

evidence that this divergence is precisely cancelled by a renormalization of Newton’s

3In the interacting case, it reduces to an upper bound on the naive entropy, which suffices.
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constant in the area term. Subleading divergences are cancelled by other geometric

counterterms. This is discussed in detail in Appendix A; here we assume that the

generalized entropy is indeed finite and cutoff-independent.

The generalized entropy was introduced in order to salvage the second law of ther-

modynamics when matter entropy is lost into a black hole. Bekenstein conjectured

that a Generalized Second Law [1] (GSL) survives: the area increase of the black hole

horizon will compensate or overcompensate for the lost matter entropy, so that the gen-

eralized entropy will not decrease. The GSL does appear to hold for realistic matter

entering a black hole, and it has been proven in certain settings (for recent proofs see

[52–55], and for a review of previous proofs, see [56] and references therein).

The GSL supersedes not only the ordinary second law, but also Hawking’s area

theorem. When a black hole evaporates [5], the null energy condition is violated, and

the area decreases. However, the emitted radiation more than compensates for this

decrease [7].

We now follow Refs. [21, 23, 25] and extend the notion of generalized entropy

beyond the context of causal horizons. Let σ be a spacelike codimension-2 surface σ

that splits a Cauchy surface Σ into two portions. The surface σ need not be connected;

for example, it may be the union of several black hole horizons, or of two concentric

topological spheres. Nor does it need to be compact; for example, it could be a cross-

section of a Rindler horizon.

We pick one of the two sides of σ arbitrarily and refer to it as Σout; see Fig. 1a.

We use Eqs. (3.1-3.3) to define a generalized entropy.

This viewpoint has two important consequences. Suppose we are given any theorem

or conjecture about the area of surfaces (such as Hawking’s area theorem), which is

valid classically, but which can fail when the null curvature condition is violated. By a

judicious application of the substitution

A→ 4G~Sgen , (3.4)

we may obtain a semi-classical statement of much broader validity (such as the GSL).

Indeed, the notion of generalized entropy of non-horizon surface has been profitably

applied to Penrose’s singularity theorem [21], to the Ryu-Takayanagi proposal [24, 25],

and to a novel area law for holographic screens [40–42]. Below, we will apply Eq. (3.4) to

the classical focussing theorem, Eq. (2.4), to obtain a Quantum Focussing Conjecture.

Secondly, the quantity Sgen provides a cutoff-independent measure of entropy in a

bounded region, because the geometric terms cancel the divergences of the von Neu-

mann entropy. Unlike vacuum subtraction, this feature does not rely on a weak-gravity

limit. We will exploit this to formulate a quantum Bousso bound in terms of the gen-
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Figure 1: XXX LET’S HAVE A LEFT FIGURE SHOWING THE SIDEWAYS VIEW,

WITH N AT 45 DEGREES AND ⌃, ⇢out, A, � ALL LABELED. ALSO, CAN WE

LABEL A IN THE RIGHT FIGURE? (a) A spatial surface � of area A splits a Cauchy

surface ⌃ into two parts. The generalized entropy is defined by Sgen = Sout + A/4G~,

where Sout is the von Neumann entropy of the quantum state on one side of �. To

define the quantum expansion ⇥ at �, we erect an orthogonal null hypersurface N ,

and we consider the response of gen to deformations of � along N . (b) More precisely,

N can be divided into pencils of width A around its null generators; the surface � is

deformed an a�ne parameter length ✏ along one of the generators, shown in green.

four null hypersurfaces orthogonal to �, generated by orthogonal light-rays towards

the past or future and towards ⌃L or ⌃R (regardless of which one is chosen as ⌃out).

The chosen hypersurface N will be terminated by caustics, or more generally wherever

null generators orthogonal to � intersect. Thus, N consists of one component of the

boundary of the past, or of the future, of � [1].

Through each point y of � there passes one generator of N . We take � to be an

a�ne parameter along this generator, such that � = 0 on � and � increases away from

�. This defines a coordinate system (�, y) on N .

A positive definite function V (y) � 0 defines a slice of N , consisting of the point

on each generator y for which � = V . Any such slice of N splits a Cauchy surface into

two parts. Hence V (y) is the argument of a generalized entropy functional

Sgen[V (y)] =
A[V (y)]

4G~
+ Sout[V (y)] . (3.3)

The quantum expansion, like the classical expansion, is defined by deforming a

slice in the neighborhood of one generator y1. To be precise, consider a second slice of

N which di↵ers from � only in a neighborhood of generators near y1, with infinitesimal

area A:

V✏(y) ⌘ V (y) + ✏ #(y1) . (3.4)
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(b)

Figure 1: (a) A spatial surface σ of area A splits a Cauchy surface Σ into two parts.

The generalized entropy is defined by Sgen = Sout + A/4G~, where Sout is the von

Neumann entropy of the quantum state on one side of σ. To define the quantum

expansion Θ at σ, we erect an orthogonal null hypersurface N , and we consider the

response of Sgen to deformations of σ along N . (b) More precisely, N can be divided

into pencils of width A around its null generators; the surface σ is deformed an affine

parameter length ε along one of the generators, shown in green.

eralized entropy. In fact, we find that an appropriate bound arises simply as a special

case of our Quantum Focussing Conjecture, which we will now formulate.

3.2 Quantum Expansion

As a first step, let us use the substitution (3.4) to define a quantum expansion. We

now need an additional structure: the null geodesics orthogonal to σ that define the

classical expansion. In addition to the twofold choice of Σout, this faces us with an

additional, fourfold choice: there are four null hypersurfaces orthogonal to σ. They are

generated by orthogonal light-rays towards the past or future and towards ΣL or ΣR

(regardless of which one is chosen as Σout). Again, we may pick any direction, e.g., the

one shown in Fig. 1a. (All of the statements below will hold under any of the eight

possible choices; in particular, the QFC will be conjectured to hold at this broad level.)

The chosen hypersurface N will be terminated by caustics, or more generally wher-

ever null generators orthogonal to σ intersect. Thus, N consists of one component of

the boundary of the past, or of the future, of σ [43].

Through each point y of σ there passes one generator of N ; see Fig. 1b. We take

λ to be an affine parameter along this generator, such that λ = 0 on σ and λ increases

away from σ. This defines a coordinate system (λ, y) on N .

A positive definite function V (y) ≥ 0 defines a slice of N , consisting of the point

on each generator y for which λ = V . Any such slice of N splits a Cauchy surface into

– 10 –



two parts. Hence V (y) is the argument of a generalized entropy functional

Sgen[V (y)] =
A[V (y)]

4G~
+ Sout[V (y)] . (3.5)

The quantum expansion, like the classical expansion, is defined by deforming a

slice in the neighborhood of one generator y1. To be precise, consider a second slice of

N which differs from σ only in a neighborhood of generators near y1, with infinitesimal

area A:

Vε(y) ≡ V (y) + ε ϑy1(y) . (3.6)

Here we define ϑy1 = 1 in a neighborhood of area A around a point y1, and ϑy1 = 0

everywhere else; see Fig. 1b. One can differentiate the generalized entropy with respect

to this localized deformation:

dSgen

dε

∣∣∣∣
y1

≡ lim
ε→0

Sgen[Vε(y)]− Sgen[V (y)]

ε
. (3.7)

The quantum expansion is the finite quantity obtained by dividing this derivative by

the infinitesimal unit area A, just as in the classical case (2.2):

Θ[V (y); y1] ≡ lim
A→0

4G~
A

dSgen

dε

∣∣∣∣
y1

. (3.8)

The above construction is equivalent to defining Θ as the functional derivative of

Sgen with respect to V (y):

Θ[V (y); y1] ≡ 4G~√
Vg(y1)

δSgen

δV (y1)
, (3.9)

where
√

Vg is the (finite) area element of the metric restricted to σ, inserted to en-

sure that the functional derivative is taken per unit geometrical area, not coordinate

area. The notation Θ[V (y); y1] emphasizes that the quantum expansion requires the

specification of a slice V (y) and is a function of the coordinate y1 on that slice.

The classical expansion θ depends only on the infinitesimal neighborhood of a null

generator. By contrast, the quantum expansion Θ depends nonlocally on the quantum

state of matter on the half-Cauchy-surface Σout, because the von Neumann entropy of

the matter can behave differently at y1 if one changes the state of matter elsewhere

on Σout. Moreover, the quantum expansion at y1, Θ[V (y), y1], depends on the choice

of V (y) away from y1. However, Θ does not depend on the choice of the half-Cauchy-

surface attached to the spatial slice V (y) of N , since all Cauchy surfaces are unitarily

equivalent. This freedom makes it possible to find a suitable Σout for any deformation
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V (y); note that portions of Σout may coincide with N without violating the achronality

condition on Cauchy surfaces.

In the classical limit G~ → 0 with the classical geometry held fixed, the matter

entropy Sout does not contribute, and Θ reduces to the local geometric expansion θ at

each generator y1.

3.3 Quantum Focussing Conjecture

The definition of a quantum expansion allows us to formulate a generalization of the

classical focussing theorem, Eq. (2.4), to the semiclassical regime. The quantum fo-

cussing conjecture (QFC) is the statement that

δ

δV (y2)
Θ[V (y); y1] ≤ 0 . (3.10)

In words, the quantum expansion cannot increase at y1, if the slice of N defined by V (y)

is infinitesimally deformed along the generator y2 of N , in the same direction. Here y2

can be taken to be either the same or different from y1.

The QFC is nonlocal: as noted above, the generalized entropy depends on all of σ,

and so do its first and second functional derivatives. Even the sign of Θ[V (y)] at some

point may depend on the choice of V away from this point.

We defined the QFC so that it applies regardless of which side of N we choose to

compute the generalized entropy and its derivatives. In principle one could distinguish

the two sides, since N moves away from one side and towards the other. Thus, one

could attempt to formulate a weaker conjecture that applies only to one side. However

a sensible conjecture should be time-reversal invariant [12]. Under time-reversal, the

putative weaker conjecture would require N to move towards the opposite spatial side.

But the left hand side of Eq. (3.10) is the same as if we had chosen that spatial side

as the exterior with the original time direction, since Θ involves an even number of

derivatives. This suggests that if there are any counterexamples to the QFC, then

there will be counterexamples to a weaker conjecture that restricts attention to one

side of N .

In the next two sections, we will provide evidence for the validity of the QFC. We

will show that the QFC implies a Quantum Bousso Bound, for which there is already

considerable evidence [12, 14, 17, 19, 37–39]. We will also show that the QFC implies

a previously unknown property of nongravitational theories, the Quantum Null Energy

Condition, and we sketch a proof of this property.
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4 Quantum Bousso Bound

In this section, we will show that the QFC implies a quantum Bousso bound. For this

purpose we will consider finite variations away from an initial surface σ along the null

hypersurface N to some final surface σ′. We will take the surface σ to correspond to

V (y) ≡ 0; σ′ is defined by a choice of V (y) ≥ 0 described below.

4.1 The QFC Implies a Quantum Bousso Bound

Suppose that the quantum expansion at the generator y1 is nonpositive (negative) on

σ. Then by integrating the QFC, we find that Θ will be nonpositive (negative) at y1

at all later times: for any slice defined by a function V (y), we have

Θ[0, y1] ≤ 0 , V (y) ≥ 0 =⇒ Θ[V (y), y1] ≤ 0 , (4.1)

where if the first inequality is strict, so is the second.

Let us further specialize to the case where a later slice σ′ defined by V (y) differs

from σ only on generators along which the generalized entropy is initially decreasing:

V (y) ≥ 0 if Θ[0, y] ≤ 0

V (y) = 0 if Θ[0, y] > 0 . (4.2)

Eq. (4.1) implies that the generalized entropy decreases on these same generators on

every intermediate slice αV (y), 0 ≤ α ≤ 1.4 Since the slice is deformed only along

these generators, it follows that the generalized entropy must be less on σ′ than on σ:

Sgen[V (y)] ≤ Sgen[0]. (4.3)

To see that this implication is related to the Bousso bound, let us write out the

result using Eq. (3.1):

Sout[σ
′] +

A[σ′]

4G~
≤ Sout[σ] +

A[σ]

4G~
, (4.4)

where we have left other counterterms implicit. Rearranging terms, we find

Sout[σ
′]− Sout[σ] ≤ A[σ]− A[σ′]

4G~
. (4.5)

4The argument does not depend on how we interpolate between the initial and final slice, as long

as the sequence of deformations is monotonic in the affine parameter. For example, we could begin by

deforming σ along one generator all the way, then along some other generator, etc., until the surface

has been moved a distance V (y) along each generator y.
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Thus we recover the Bousso bound, Eq. (2.5), if we identify

A[σ] ≡ A , (4.6)

A[σ′] ≡ A′ , (4.7)

Sout[σ
′]− Sout[σ] ≡ S . (4.8)

However, it is important to note that the terms on the left and right hand side of

Eq. (4.5) are separately cut-off dependent. Thus it is significant that the QFC yields the

Bousso bound in the form of Eqs. (4.3) and (4.4), which are well-defined independently

of a cutoff.

The result is goes beyond the original Bousso bound, Eq. (2.5), not only in that

it clarifies how the matter entropy should be regulated for systems that are not well

isolated, but more broadly in how ∆S should be defined.5 Eq. (4.8) implies that the

entropy cannot be determined from data on the null surface N between σ and σ′ alone.

Instead, Eq. (4.8) instructs us to consider the von Neumann entropy on half-Cauchy-

surfaces bounded by σ and σ′, and compute their difference. Thus, data far from N

can affect the entropy.

As first noted by Strominger and Thompson [38], the contributions of distant en-

tanglement entropy are helpful in extending the validity of the Bousso bound into a

regime where quantum effects on the metric are important, such as the evaporation of

a black hole. For example, the Bousso bound in its original form would be violated on

the horizon of a quantum black hole whose evaporation is sufficiently nearly balanced

by an influx of entropic radiation [57].

Our Eq. (4.3), like the Strominger-Thompson proposal, evades this violation. Note

that the condition of initial quantum nonexpansion, Eq. (4.2), is satisfied on the event

horizon only if we consider past-directed light-sheets. Then Eq. (4.4) is satisfied because

the GSL is valid: the Hawking radiation increases the exterior von Neumann entropy

by more than it decreases the Bekenstein-Hawking entropy of the black hole [7]. The

close relation of our result to the Strominger-Thompson proposal is discussed further

in Sec. 6.2.

4.2 Recovering the Bousso Bound on Isolated Systems

The original Bousso bound is well-defined in the hydrodynamic regime, where entropy

can be approximated as the integral of an entropy density. More generally, it is well-

defined in the broad arena where an isolated matter system (e.g., a box of radiation)

5However, in the weak gravity limit there exists an alternative, inequivalent regulator and definition

of ∆S. The corresponding quantum version of the Bousso bound was formulated and proven in [19, 37];

see Sec. 6.3.
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Figure 2: (a) For an unentangled isolated matter system localized to N , the quantum

Bousso bound reduces to the original bound. (b) With the opposite choice of “exterior,”

one can also recover the original entropy bound, by adding a distant auxiliary system

that purifies the state.

crosses the light-sheet N between σ and σ′. We assume that the matter system is well-

separated from and unentangled with other matter systems, and also that the system

is well-localized away from σ and σ′.

Recall that we must choose one side of N to define the exterior of the Cauchy

surface (Σout), whose renormalized von Neumann entropy is used for computing Sgen.

The Quantum Focussing Conjecture is valid regardless of which choice is made. For

the purpose of recovering the Bousso bound, we choose, at σ, the spatial side opposite

to N (or equivalently, at σ′, the same side as N). This is illustrated in Fig. 2a. We

make this choice independently of whether σ lies in the future of σ′ or vice-versa.

With this choice, the exterior of σ′ contains the same degrees of freedom as the

union of N with the exterior of σ. Moreover, with the above assumptions on the matter

system(s) crossing N , the density operators factorize:

ρout(σ
′) = ρout(σ)⊗ ρN , (4.9)

where ρN is the state of the isolated matter system. Hence the von Neumann entropies

are additive:

Sout[σ
′] = Sout[σ]− tr ρN log ρN . (4.10)

Thus the vacuum entanglement entropy can be separated from the “active” matter

entropy; the former can be regarded as already included in the geometric counterterms.

Then Eq. (4.5) becomes the original Bousso bound

S ≡ −tr ρN log ρN ≤ ∆A/4G~ , (4.11)

with the entropy defined intrinsically as that of the isolated matter system(s) crossing

the light-sheet N .
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There is more than one way to recover the Bousso bound for isolated systems.

Suppose that in the above setting of an isolated system on the light-sheet N , we make

the opposite choice of exterior; see Fig. 2b. This has the effect of exchanging σ and σ′

in Eqs. (4.9) and (4.10). Instead of Eq. (4.11) we obtain the bound −S < ∆A/(4G~),

where S = −tr ρN log ρN is the entropy of the isolated system. This bound is valid but

not very interesting: it is trivially satisfied for ordinary matter systems, since S > 0

and ∆A > 0 in the classical limit.

However, let us now add an auxiliary system to the exterior (far from N) that

purifies the mixed state ρN of the matter crossing N . The initial entropy S[σ] receives

no contribution from the matter and auxiliary systems because they are both present

and in a pure state. But the final entropy S[σ′] is just that of the purification, and hence

equal to that of the matter system, S = −tr ρN log ρN . Thus, we recover Eq. (4.11):

with the inclusion of a distant purification, the bound on the isolated matter system is

again nontrivial and equivalent to the previous example.

4.3 The Role of Quantum Nonexpansion

As originally formulated, the Bousso bound applies only to light-sheets, i.e., to null

hypersurfaces whose classical expansion θ is nonpositive everywhere in the direction

from σ to σ′, and which contain no caustics. (It follows that A−A′ ≥ 0.) However, the

classical nonexpansion assumption played no role in our formulation of the quantum

Bousso bound.

In fact, classical nonexpansion can be violated in settings where our bound applies.

Consider a slice σ of the event horizon of an evaporating black hole. The generalized

entropy is decreasing towards the past, so the conjecture applies if σ′ is chosen as an

earlier horizon slice. But then A[σ′] > A[σ], so the classical expansion is positive.

Instead, our quantum Bousso bound substitutes quantum expansion for classical

expansion: we restricted to deformations along the generators for which the initial

quantum expansion at σ is nonpositive. In this sense, Eq. (4.2) can be taken as the

definition of a quantum light-sheet.

The QFC then plays an interesting dual role. First, it guarantees that the quantum

expansion is nonpositive not only initially, but everywhere on N between the two slices

σ and σ′. And second, the resulting non-positivity of its integral (the difference between

the final and initial generalized entropies) becomes the statement of the entropy bound.

The classical Bousso bound can formulated in an alternate way [12], more closely

analogous to the quantum version we have constructed. Instead of demanding that

θ ≤ 0 everywhere on a light-sheet, one could have demanded classical nonexpansion

only initially, but assumed the null energy condition, and added a requirement that

light-sheets must be terminated at caustics. The role of the null energy condition
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would then be to ensure that θ ≤ 0 everywhere on the null surface, by the classical

focussing theorem. However, the bound itself would still be a separate statement; it

does not also follow from the null energy condition.

5 Quantum Null Energy Condition

In the previous section, we considered the integrated QFC and showed that it implies a

quantum Bousso bound. The considerable evidence for the Bousso bound thus supports

the QFC.

We now return to the QFC as a constraint on a second functional derivative,

δ

δV (y2)

4G~√
Vg(y1)

δSgen

δV (y1)
≤ 0 , (5.1)

and we examine whether there exist other limits in which one can find explicit evidence

or formulate a proof of the conjecture. We begin in Sec. 5.1 with a proof of the QFC in

the off-diagonal case, y1 6= y2. In Sec. 5.2 we consider the diagonal part, y1 = y2. We

show that it gives rise to an interesting limit when the classical null extrinsic curvature

vanishes: the Quantum Null Energy Condition, a nongravitational implication of the

QFC. In Sec. 5.3 we outline a proof of this field theoretic statement.

5.1 General Proof of the Off-diagonal QFC

For y1 6= y2, the QFC follows from strong subadditivity. Since A[V (y)] is the integral

of a local functional of V (y), and the factor
√

Vg appearing the QFC is evaluated at

y1, it follows that the off-diagonal second derivative only receives a contribution from

Sout:
δ

δV (y2)

4G~√
Vg(y1)

δSgen

δV (y1)
=

4G~√
Vg(y1)

δ2Sout

δV (y1)δV (y2)
for y1 6= y2. (5.2)

The functional derivative can be realized as the following limit:

δ2Sout

δV (y1)δV (y2)
=

lim
A1,A2→0

√
Vg(y1)Vg(y2)

A1A2

lim
ε1,ε2→0

Sout[Vε1,ε2(y)]− Sout[Vε1(y)]− Sout[Vε2(y)] + Sout[V (y)]

ε1ε2
.

(5.3)

Here Ai is an area element located at yi, and εi is a deformation parameter for the

surface along the generator at yi. To be precise, we define

Vε1,ε2(y) ≡ V (y) + ε1ϑy1(y) + ε2ϑy2(y), (5.4)
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Figure 3: (a) A portion of the null surface N , which we have chosen to coincide with

Σout in the vicinity of the diagram. The horizontal line at the bottom is the surface

V (y), and the red and green lines represent deformations at the transverse locations

y1 and y2. The region above both deformations is the region outside of Vε1,ε2(y) and

is shaded blue and labeled B. The region between V (y) and Vε1(y) is labeled A and

shaded red. The region between V (y) and Vε2(y)is labeled C and shaded green. Strong

subadditivity applied to these three regions proves the off-diagonal QFC. (b) A similar

construction for the diagonal part of the QFC. In this case, the sign of the second

derivative with respect to the affine parameter is not related to strong subadditivity.

where ϑyi = 1 in a neighborhood of area Ai around yi. For brevity of notation, when

εi = 0 we omit it from the subscript of Vε1,ε2(y). The relevant surfaces are depicted in

Fig. 3a. It is clear from the figure that the numerator in Eq. 5.3 is negative by strong

subadditivity. Specifically, we split the region outside of V (y) into three subregions.6

The subregion outside of Vε1,ε2(y) will be called region B, so that Sout[Vε1,ε2(y)] =

S(B). The subregion outside of Vε1(y) but inside of Vε1,ε2(y) will be called C, so that

Sout[Vε1(y)] = S(BC). Subregion A is defined in a similar way so that Sout[Vε2(y)] =

S(AB). Finally, we have Sout[V (y)] = S(ABC). In this notation, the numerator of

Eq. 5.3 is the standard combination of entropies appearing in the strong subadditivity

inequality:

S(B)− S(BC)− S(AB) + S(ABC) ≤ 0 . (5.5)

This is enough to prove the off-diagonal QFC in general.

We also would like to emphasize that the combination of entropies appearing here is

finite and cutoff-independent. This has to be the case because the generalized entropy

6The entropies Sout[V (y)] are defined in terms of half-Cauchy surfaces Σout, and for the purposes of

this discussion we are using the freedom to unitarily deform Σout so that it lies along the null surface

N . Thus the subregions A, B, and C which we define are subregions of N .
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we started with was cutoff-independent, but it is instructive to see this directly at the

level of the matter entropy. Sometimes in quantum field theory, entropy inequalities

are true because of cutoff-dependent terms, and in the continuum limit reduce to the

trivial statement −∞ < 0. Here that is not the case. The cutoff-dependent terms in

the entanglement entropy for a given region are proportional to integrals of geometric

quantities along the boundaries of that region. One can check that, for the regions A,

B, and C that we have defined, such terms cancel in the combination S(B)−S(BC)−
S(AB) + S(ABC).

Our construction here is similar to the “entanglement density” of [58, 59], although

the QFC is stronger in that it also places a constraint on the diagonal terms with

y1 = y2. Strong subadditivity is not helpful in this case: if we attempted to use

the same strategy, then (with appropriately modified definitions of the subregions, see

Fig. 3b), we would find a combination of entropies S(B)− 2S(BC) + S(ABC), which

does not have any direct relation with strong subadditivity. Furthermore, for this

combination of entropies the cutoff-dependent terms do not cancel. This is no surprise

since the diagonal part of the QFC receives contributions from the area term, and the

area term is essential for making Sgen cutoff-independent in general.

5.2 Diagonal Part of the QFC

The case y1 = y2 corresponds to a deformation of the surface σ along a single null

generator orthogonal to it. Specializing to this case, it is convenient to work with

ordinary derivatives with respect to the affine parameter along generator y1, denoted

by primes. By Eq. (3.1) we have

Θ = θ +
4G~
A S ′out , (5.6)

where θ is the classical expansion.7 The QFC becomes

0 ≥ Θ′ = θ′ +
4G~
A (S ′′out − S ′outθ) (5.7)

= −1

2
θ2 − ς2 − 8πG〈Tkk〉+

4G~
A (S ′′out − S ′outθ) (5.8)

The derivatives of Sout scale linearly with A, matching the scaling of the other terms.

Any terms that go like higher powers of A will drop out as A → 0.

The above form shows that the QFC has several interesting limits. The most

obvious is the classical limit, ~→ 0. In this case, one recovers the null energy condition,

7Here and in the remainder of this section we will not explicitly write limA→0 in our expressions,

but it should always be understood.
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〈Tkk〉 ≥ 0, which must hold since at any point p one can consider a congruence with

tangent vector ka, such that the shear ς and the expansion θ both vanish at p.8 For

arbitrary congruences it follows that θ′ ≤ 0.

The same special choice of congruence, with θ = ς = 0, becomes more interesting

if we do not take ~→ 0. In this case, the QFC implies the relation

〈Tkk〉 ≥
~

2πAS
′′
out , (5.9)

which we shall call the Quantum Null Energy Condition (QNEC).

Intriguingly, the QNEC does not depend on G. Thus the QNEC is entirely a

statement about quantum field theory. It is the effective quantum replacement for the

null energy condition, and unlike the null energy condition it is something that might

follow from first principles in quantum field theory.

Furthermore, the QNEC is not affected by higher curvature corrections to the

gravitational action, at least when the stationary null congruence is also a Killing

horizon and the matter is minimally coupled. As discussed in Appendix A, such higher-

order terms arise due to quantum loop corrections, which add additional terms to the

gravitational entropy Sgrav besides the area. These higher-curvature corrections result

in modifications to Eq. 5.6. However, it has been shown [54, 55] that the gravitational

equations of motion also change in exactly the right way so that, for linearized metric

perturbations to the Killing horizon, S ′′grav = 2πA〈Tkk〉/~. Therefore, the form of

Eq. 5.9 remains the same.

We can further argue that the QNEC as presented in Eq. (5.9) is correct without

modification for a scalar field nonminimally coupled to the Ricci scalar R. In this case,

the theory is equivalent to general relativity after a field definition [60]. Therefore the

focussing result still holds.

As a first nontrivial check of the QNEC, we observe that it is satisfied by an

infinite class of states in any 1+1 CFT, namely those which are conformally related

to the vacuum state (or to coherent states in a Gaussian theory). This follows from

the anomalous transformation properties of Tkk and Sout under a general conformal

transformation, if we note that S ′′out = 0 and Tkk ≥ 0 for vacuum/coherent states on a

causal horizon [61].9 Indeed, it was suggested in [61] that what we here call the QNEC

might hold for more general states and in higher dimensions.

8When ~ → 0, quantum corrections to 〈Tkk〉 proportional to ~ vanish. The null energy condition

is recovered for the ~0 term in the semiclassical expansion of 〈Tkk〉.
9In a theory with 1+1 conformal symmetry the QNEC in fact implies a slightly stronger statement,

namely 2π
~ Tkk−S′′

out− 6
c (S′

out)
2 ≥ 0, where c is the central charge (and A = 1 since in two dimensions

σ is a point). That is because this quantity transforms as a primary under conformal transformations,

and one can always find a conformal frame where S′
out = 0 [61].
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A proof of the QNEC in the case of free field theory and causal horizons is presented

in a companion work [62]. We will now outline the strategy of this proof.

5.3 Sketch of Proof in the Weak Gravity Limit

The essential features of the Quantum Null Energy Condition are illuminated if we

consider perturbations around flat Minkowski space, where σ is a codimension-2 plane

and the null surface N is a Rindler horizon (a codimension-1 null hyperplane).

A helpful insight comes from null quantization, which is valid for free theories,10

and so we restrict ourselves to free theories in the following. The entropy Sout refers

to the entropy on a spacelike Cauchy surface, but by unitary time evolution we can

alternatively think of it as the entropy of the state restricted to the part of N in the

future of σ, together with a portion of null infinity. We are considering deformations of σ

along a single generator at location y, and the amount of the deformation is determined

by an affine parameter λ > 0. We will “thicken” the generator by deforming the surface

in a transverse area A around the generator, and the thickened generator is called the

pencil. At the end we take A → 0, and in that limit we should recover (5.9).

We will use the remarkable fact that the vacuum state restricted to a causal horizon

is actually a product state over the generators of the horizon, and each factor looks

like the vacuum state of a 1+1-dimensional chiral CFT [52]. Our global state is not

the vacuum, of course, but in the limit A → 0 the density matrix on the pencil should

approach that of the vacuum, for the usual reason that all finite energy states look

like the vacuum in the limit of a very small region. Restricting the global state to the

region in the future of σ means taking a partial trace over the region to the past of

σ. Increasing the affine parameter λ along the pencil corresponds to taking additional

partial traces along the pencil subsystem, while leaving the other generators alone. We

will lump all of the other generators (together with a portion of null infinity) into a

single unit called the auxiliary system. All of these facts can be summarized in the

equation the for density matrix of the system,

ρ(λ) = ρ(0)
pen(λ)⊗ ρ(0)

aux + δρ(λ). (5.10)

Here ρ
(0)
pen(λ) is the vacuum state reduced density matrix on the part of the pencil with

affine parameter greater than λ, and ρ
(0)
aux is an arbitrary state in the auxiliary system.

The perturbation δρ(λ) contains entanglement between the auxiliary system and the

pencil, and is small: we will argue below that it is proportional to A1/2. Therefore we

will treat δρ(λ) as an expansion parameter in our computation. We will assume that

ρ(0)(λ) ≡ ρ
(0)
pen(λ)⊗ ρ(0)

aux is a properly normalized density matrix, so tr(δρ) = 0.

10or superrenormalizable theories
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Sout(λ) is the von Neumann entropy of ρ(λ), and we will now compute it as a

perturbation series in δρ:

Sout(λ) = −tr
[
ρ(0)(λ) log ρ(0)(λ)

]
− tr

[
δρ(λ) log ρ(0)(λ)

]
+O(δρ2). (5.11)

The δρ-independent term appearing here, which we will call S
(0)
out, actually does not

depend on λ. To see this, we use the fact that ρ(0) is a product state, so its logarithm

is a sum of two terms. Then we have

S
(0)
out ≡ −tr

[
ρ(0)(λ) log ρ(0)(λ)

]
= −tr

[
ρ(0)

pen(λ) log ρ(0)
pen(λ)

]
− tr

[
ρ(0)

aux log ρ(0)
aux

]
. (5.12)

The second term on the right-hand side is manifestly independent of λ, and the first is

independent of λ because the vacuum state on the pencil is invariant under translations

in the affine parameter.11

We may perform a similar decomposition on the term in (5.11) linear in δρ, which

we label ∆K:

∆K(λ) ≡ −tr
[
δρ(λ) log ρ(0)(λ)

]
= −tr

[
δρ(λ) log ρ(0)

pen(λ)
]
− tr

[
δρ(λ) log ρ(0)

aux

]
. (5.13)

By evaluating the trace over the pencil subsystem in the second term, we can see that

it is actually λ-independent. To identify the first term, we use the fact that ρ
(0)
pen(λ)

is just the Rindler density operator for the 1+1-dimensional CFT on the pencil, so in

particular it is thermal with respect to the Rindler boost generator. Then we have the

identity

− tr
[
δρ(λ) log ρ(0)

pen(λ)
]

=
2πA
~

∫ ∞
λ

dx (x− λ)〈Tkk(x)〉, (5.14)

where the integral is along the generator at y. In particular, taking two derivatives of

this expression with respect to λ exactly produces the energy-momentum term appear-

ing in (5.9).

To summarize, we have shown the λ-dependence of the terms in (5.11) implies the

equation

(∆K − Sout + S
(0)
out)

′′ =
2πA
~
〈Tkk〉 − S ′′out. (5.15)

Therefore, the QNEC (5.9) reduces to the statement that the O(δρ2) terms appearing

in the expansion of Sout have a negative second derivative in the limit A → 0. Notice

that we only need to worry about terms in the expansion of Sout which scale linearly

with A; terms which vanish more quickly will drop out in the limit. Earlier we claimed

11More precisely, the reduced density matrices ρ
(0)
pen(λ) for different values of λ are related to each

other by unitary transformations, namely translations in λ.
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that δρ was proportional to A1/2, which means that it is only the δρ2 term in the

expansion of Sout which contributes. We will now argue for this scaling.

Consider the state on the full pencil, λ → −∞, so that nothing on the pencil has

been traced out. Then the vacuum state is the zero-particle Fock state, |0〉〈0|. Suppose

we expand δρ on the full pencil in the Fock basis. If |m〉 is an m-particle state, then

the coefficient of |m〉〈m| in the expansion of δρ is expected to scale like Am, simply

because that is the scaling of the probability to measure m particles in a small volume

(remember that we first choose the state and then take A to be small). Then positive

definiteness of the total density matrix implies that the largest terms in δρ are of the

form |0〉〈1| and |1〉〈0|, and have coefficients which scale like A1/2. This means that

δρ2 has terms of order A, but higher powers of δρ contain higher powers of A. This

structure is preserved as we take traces.

We have shown that the QNEC reduces to the statement that the term in the

expansion of Sout which is second order in δρ has a negative second derivative. We

have effectively removed the geometry from the problem: it is enough to consider a

1+1-dimensional free chiral CFT entangled with an arbitrary auxiliary system. Using

the replica trick, for instance, one may prove the statement by calculating the von

Neumann entropy explicitly. A proof along these lines is the subject of a forthcoming

paper.

It is also intriguing to consider a generalization of the QNEC beyond field theory.

The quantity ∆K − Sout + S
(0)
out is usually called the relative entropy:

S(ρ||ρ(0)) ≡ tr
[
ρ log ρ− ρ log ρ(0)

]
. (5.16)

The relative entropy between any two states of an arbitrary quantum system is a mea-

sure of their distinguishability, and is a quantity of particular significance in quantum

information theory (see [63] for a general review, and [36] for the use of relative en-

tropy in the gravitational context). So we can attempt to generalize the QNEC to other

quantum systems as the statement that S(ρ||ρ(0)) has a non-negative second derivative

with respect to λ, where λ parametrizes a chosen coarse-graining operation on the pair

of states (or that such a statement holds at least for the term quadratic in δρ). The

first derivative with respect to λ is known to be non-positive for all pairs of states in

any quantum system and for any choice coarse-graining operation: this is the famous

monotonicity property of relative entropy. We do not know of a general result regard-

ing the second derivative, and it would be interesting to identify the class of quantum

systems, states, and coarse-graining operations for which it is non-negative.12

12In the context of a system governed by Boltzmann’s equations, [64] showed that the first n deriva-

tives of the entropy all alternate in sign, for at least n ≤ 6 (but not for all n). But in our case, it
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6 Relationship to Other Conjectures and Results

In this section, we discuss how our conjecture and its implications are related to older

conjectures and results.

6.1 Generalized Second Law for Causal Horizons

The generalized second law (GSL) states that the generalized entropy of a causal horizon

is non-decreasing. The QFC can be applied more broadly to any surface that splits a

Cauchy surface. But in particular, the QFC can be applied to cross-sections of a causal

horizon, and it is natural to ask how it relates to the GSL in this setting.

A key difference is that the GSL constrains the sign of the first derivative of the

generalized entropy, while the QFC constrains the sign of the second derivative. Thus

it is clear that the conjectures are not equivalent on causal horizons.

However, the conjectures are related. Assuming that the GSL holds at one time,

integrating the QFC implies that the GSL holds at all earlier times on the same causal

horizon. Moreover, for causal horizons at late times, the classical expansion θ vanishes,

and one expects the matter entropy Sout to stop evolving. Thus, one expects that

Θ → 0 in the asymptotic future for a (future) causal horizon. With this assumption,

the QFC implies the GSL on the entire causal horizon.

6.2 Strominger-Thompson Quantum Bousso Bound

Strominger and Thompson [38] proposed adding the “entanglement entropy across the

surface” to the area of any cross-section of a light-sheet, to obtain a quantum Bousso

bound. In particular, it was noted that the leading divergences in the entanglement

entropy are cancelled by a renormalization of Newton’s constant. The quantum bound

we derive in Sec. 4 automatically inherits these important features from the QFC. Thus

we largely reproduce the Strominger-Thompson proposal as a special case of the QFC.

Our formulation of the quantum entropy bound differs in that we consider the

generalized entropy as a fundamental object. Hence we do not distinguish between

“entanglement entropy” across σ, and the entropy of other matter outside the surface

σ. The latter is treated as a separate contribution in [38], in a hydrodynamic approxi-

mation [17, 39]. In general, the distinction between gravitational entropy, entanglement

entropy, and “matter entropy” is ambiguous.

By referring only to the generalized entropy, we were able to sidestep this ambiguity.

Moreover, the generalized entropy regulates not only the leading (area) divergence of

is clear that there is no constraint on the sign of the third or higher derivatives of Sgen, since in the

classical regime the derivatives of Tkk can take any sign.
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the entanglement entropy, but also subleading divergences such as the logarithmic

divergence in 3 + 1 spacetime dimensions.

The use of a hydrodynamic approximation also entered into the nonexpansion con-

dition that defines valid light-sheets in the presence of matter [38]. Here this condition

is universally given by Eq. (4.2): a light-sheet is generated by orthogonal light-rays

with initially nonpositive quantum expansion Θ.

It is interesting that in the hydrodynamic limit, the Quantum Null Energy Con-

dition, Eq. (5.9), reduces to one of the assumptions that underly the proof of the

quantum Bousso bound, (∂+s+ ≤ 2T++ in the notation of [38], a weakened version of

an assumption introduced in [39]).

6.3 BCFM Quantum Bousso Bound

In the weak gravity limit, G~→ 0 and G(〈Tµν〉 − T vac
µν )→ 0, one can restrict both the

vacuum and the state of interest to the same region or light-sheet. Then a vacuum-

subtracted entropy ∆S can be defined as the difference between the von Neumann

entropies of the state and the vacuum [34–36]. Because the divergences of the entan-

glement entropy are associated with its boundary, this quantity is finite and reduces to

the expected entropy for isolated systems and fluids.13 With this definition, a quantum

Bousso bound can be proven to hold on any portion of a light-sheet [19, 37].

When gravitational backreaction of the state is not negligible, the spacetime ge-

ometry is very different from that of a vacuum state. Then it is unclear what one

would mean by restricting both a general state and the vacuum to the “same” region

or light-sheet. In this case, one cannot define a finite entropy by vacuum subtraction.

Here, we use a different method to regulate the divergence of the von Neumann

entropy of quantum fields in a bounded region: we combined the matter entropy with

the gravitational entropy to obtain a cutoff-independent, generalized entropy. This

definition requires a semi-classical regime, but not that the gravitational backreaction

is small. Therefore, the QFC does not require gravity to be weak; and the associated

quantum formulation of the Bousso bound, too, can be stated in settings where gravity

is strong.

If gravitational backreaction is small, both statements can be applied. This is

interesting, because they appear to be inequivalent. In [19, 37], the entropy is defined

intrinsically on the light-sheet portion of interest, with no reference to distant spatial

regions. The generalized entropy, by contrast, generically depends on regions far from

the light-sheet.

13In the interacting case and on a light-sheet, it reduces to an upper bound on the näıve entropy,

which suffices.

– 25 –



In fact, the light-sheets themselves are defined differently. The BCFM bound

requires that a light-sheet have nonpositive classical expansion everywhere on L. Our

bound requires that the quantum expansion be nonpositive initially on L; the QFC

then becomes the statement of the entropy bound.

6.4 Quantum Singularity Theorem

Penrose’s singularity theorem [33] is a seminal result in general relativity. It states

that, in a globally hyperbolic spacetime which satisfies the null energy condition, that

the presence of certain compact surfaces T on a connected, noncompact Cauchy slice Σ

indicates that the spacetime is null geodesically incomplete. The surfaces which signal

the impending breakdown of the spacetime are trapped surfaces : surfaces for which the

congruence of outgoing null lightrays have everywhere negative expansion. The proof

uses the Raychaudhuri equation to argue that these null geodesics must reach a caustic

in finite affine parameter. If the spacetime were null geodesically complete, then each

null generator includes its endpoints.

Because of the assumption of the null energy condition, Penrose’s theorem is not

applicable to quantum matter. Interestingly, there exists a generalization of Penrose’s

theorem, where the role of the area is replaced with the generalized entropy [21]. A

quantum trapped surface is defined in a globally hyperbolic spacetime as follows. Sup-

pose that on some Cauchy surface Σ, a compact codimension-2 surface T exists, and its

exterior is non-compact. If N is the null surface generated by outward future-directed

light rays, and if the generalized entropy is decreasing with time with respect to future

null deformations, then T is called a quantum trapped surface. In the classical limit,

the generalized entropy is simply the area, so this criteria reduces to the classical notion

of a trapped surface.

The quantum proof [21] is similar to the classical one. One starts with the assump-

tion of a non-compact Cauchy surface containing a quantum trapped surface. Unlike

the classical case which required the null energy condition, one now assumes that the

generalized second law holds (i.e., the generalized entropy cannot decrease on causal

horizons). The GSL implies (by contradiction) that the null generators reach caustics

in finite affine parameter time. From here, the proof is proceeds as in the classical case:

the non-compact surface Σ cannot evolve into a compact surface, which implies that

the endpoints of the null geodesics do not belong to the spacetime.

The QFC was not necessary to complete the proof of the quantum singularity the-

orem, but it does have interesting consequences for quantum trapped surfaces which

makes them more analogous to their classical counterparts. For example, the outgoing

null rays from a classical trapped surface define in an obvious way a sequence of addi-
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tional trapped surfaces on Cauchy slices to the future. This result only becomes valid

in the quantum case under the assumption of the weak quantum focussing theorem.

6.5 Barriers to Quantum Extremal Surfaces

The prescription for holographic entanglement entropy is now fairly well-understood

at leading order in 1/N in the Anti-de Sitter/Conformal Field Theory correspondence

[15]. An ample body of evidence supports the proposal [65] of Hubeny, Rangamani,

and Takayanagi, which extends an earlier proposal [66] by Ryu and Takayanagi. The

new proposal is that, to calculate the entanglement entropy of a region R of a CFT,

we need to find a codimension-2 surface X such that ∂X = ∂R, and X homologous

to R, which extremizes the area functional. If there are many such surfaces, we are

instructed to pick a surface with the minimum area. The entanglement entropy of R

is then the area of X, in (bulk) Planck units: SR = AX/4G~. Since G~ ∼ 1/N2, this

conjecture gives the leading order entropy in a 1/N expansion, but as in the black hole

case, there will generally be subleading corrections.

Recently, the next-to-leading order corrections in 1/N to the entanglement entropy

were calculated. The proposal [24] of Faulkner, Lewkowycz and Maldacena (FLM) is to

take the leading order prescription, that is to calculate the area of an extremal surface

in the bulk, and to add in the von Neumann entropy of the bulk state restricted to

one side of the extremal surface. That is, the proposal is that boundary entanglement

entropy is dual to the generalized entropy of the extremal-area surface: SR = Sgen(X).

The FLM proposal passes some non-trivial consistency checks, but is only supposed to

provide the next-to-leading order correction in a 1/N expansion.

A natural extension of this conjecture is presented in [25]: instead of extremizing

the area and solving for the generalized entropy, we find the surface χ which extremizes

the generalized entropy subject to ∂χ = ∂R and χ homologous to R. The proposal in

[25] is to identify the generalized entropy of χ with the entanglement entropy of the

boundary field theory in the region R: SR = Sgen(χ). These extremal entropy surfaces

are called quantum extremal surfaces. While this construction agrees at leading order

with the FLM proposal, they differ at higher orders in N .

A classical argument in [67] shows that assuming the null energy condition, a null

surface shot out from a codimension-2 extremal surface acts as a “barrier” to other

extremal surfaces, in the sense that no continuous 1 parameter family of extremal

surfaces can be extended across the barrier. This result was extended to quantum

extremal surfaces in [25], but the proof required use of the QFC, in order to show

that the null surface shot out from the quantum extremal surface becomes quantum

trapped. So once again, the focussing conjectures bring the quantum generalizations

closer in line with the classical result.
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6.6 Generalized Second Law for Quantum Holographic Screens

A new classical area law in General Relativity was recently formulated and proven [40,

41], assuming the null energy condition. A marginally trapped surface is a compact

codimension-2 surface whose classical expansion vanishes in one orthogonal null direc-

tion ka and is strictly negative in the other direction, la. A future holographic screen

is a hypersurface of indefinite signature, foliated by marginally trapped surfaces called

“leaves.” Subject to certain generic conditions, it was shown that the foliation of a

future holographic screen evolves monotonically in the −la direction. (E.g., for a black

hole formed by collapse, this is the outside or past direction.) This implies further

that the area of a future holographic screen increases monotonically along the foliation.

A similar area law holds for past holographic screens, defined in terms of marginally

anti-trapped surfaces, and abundant in cosmological solutions such as our own universe.

Past or future holographic screens are easily constructed by picking a null foliation

of the spacetime. On each codimension-1 null slice one finds the unique codimension-2

surface of maximal area. This surface may lie on the conformal boundary, but if gravity

is strong it will lie inside the spacetime. One null expansion vanishes by construction,

so the sequence of such surfaces form a holographic screen [13]. The screen will be

future or past if the sign of the other expansion is definite.

The proof of the theorem is elaborate in general but simple in the case of spherical

symmetry. It is easy to see that screens that violate the theorem are intersected twice

by the same null congruence N with tangent vector ka on two distinct leaves. The

generic condition implies θ 6= 0 between the two leaves. But θ = 0 on both leaves, in

conflict with the classical focussing theorem, Eq. (1.5).

Like Hawking’s area theorem for event horizons, the new area law fails when the

null energy condition is violated. And like Hawking’s theorem, the area theorem for

holographic screens can be reformulated as a Generalized Second Law [42], by replacing

area with generalized entropy via Eq. (3.4). This is the first covariant statement of a

Generalized Second Law that applies to general quasilocal horizons, and the first that

applies to expanding cosmologies regardless of the sign of the cosmological constant.

The novel GSL applies to quantum future (or past) holographic screens. These

are defined as hypersurfaces foliated by quantum marginally trapped (or antitrapped)

surfaces. The latter, in turn, are defined by requiring that the quantum expansion

vanishes, Θ = 0, in one null direction and is strictly negative, Θ < 0, in the other. Like

classical holographic screens, these objects are easily constructed in general spacetimes.

The proof of this novel GSL proceeds exactly as in the classical area theorem, with

the assumption of the null energy condition replaced by the QFC. Again, a generic

condition implies that Θ 6= 0 on N between two leaves. The definition of the quantum
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holographic screen requires Θ = 0 on both leaves, in contradiction with the QFC [42].
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A Renormalization of the Entropy

It is well known that the entanglement entropy Sout on one side of a sharp boundary σ

is subject to UV divergences. Thus in order to define the generalized entropy Sgen, we

must invoke a renormalization procedure. We start by regulating Sout using a UV cutoff

associated with some distance scale ε, so that the outside entropy S
(ε)
out now depends

on the regulator. This could be done using e.g. a heat kernel regulator [68, 69], Pauli-

Villars [70, 71], a brick wall cutoff [72], the mutual information [73], or a variety of

other methods.

The leading-order divergence is proportional to the area [29, 74, 75], but in dimen-

sions D ≥ 4 there are additional subleading divergences, each proportional to some local

geometrical integral on the boundary. In dimension D there are subleading divergent

corrections with weight up to D. Since perturbative quantum gravity is a nonrenormal-

izable theory, one can also even higher curvature corrections by considering 2-loop or

higher diagrams involving gravitons. Higher curvature corrections can also arise from

stringy effects.

When calculating the generalized entropy, each of these divergences is absorbed

into a counterterm, i.e., a parameter in the gravitational action I which controls the

size of a correction to the gravitational entropy Sgrav. We shall see that the total

quantity Sgen = Sgrav + Sout is invariant under the RG flow. Thus these counterterms

are important part of the definition of the QFC, although they drop out of the QNEC

for the reasons described in section 5.2.

A.1 The Replica Trick

The replica trick (reviewed in [76]) is a convenient way to calculate the von Neumann

entropy −tr(ρ log ρ), without the nuisance of taking the logarithm of a matrix. This
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trick is based on instead evaluating the Renyi entropy

Sn =
1

1− n ln tr(ρn) (A.1)

and analytically continuing to n = 1 to obtain S. In cases where the state ρ comes

from a Euclidean path integral, there is a beautiful geometrical interpretation of the

Renyi entropy in terms of an n-sheeted cover M (n) of the manifold, having a conical

singularity with total angle 2πn on the entangling surface σ. Assuming that one can

analytically continue the effective action Ieff = − lnZ from the positive integers to

n = 1, one then writes

Sreplica = −(1− n∂n)Ieff

∣∣∣
n=1

. (A.2)

This defines the geometrical or replica entropy for the state of the quantum fields

outside of σ [26, 30, 31, 77–82].

Inserting the 1-loop effective action Ieff of a quantum field, we obtain a nonlocal

answer for Sreplica, as expected. However, the UV divergences in Ieff are local, allowing

us to compute the corresponding divergences in Sreplica.

Note that the identification of Sreplica with the von Neumann entropy Sout is some-

what formal, due to the fact that the replicated manifold has a delta function of cur-

vature at the conical singularity.14 Matter fields can couple to the curvature at the tip,

producing “contact terms” whose interpretation will be discussed in section A.4.

Now nothing stops us from inserting a classical gravitational action I[gab] into

(A.2) (treating the n-sheeted cover manifold as a fixed background metric). In this

case everything cancels except for a contribution coming from the conical singularity.

So in this case we obtain an entropy which is local on σ, which we call the gravitational

entropy Sgrav.

If I is the Einstein-Hilbert action, Gibbons and Hawking obtained by this method

the Bekenstein-Hawking entropy A/4G~ [84], thus explaining why this term is included

in the generalized entropy. If on the other hand I is a higher-curvature action, one

obtains additional correction terms in Sgrav. For the stationary case, in which σ lies on

a Killing horizon, the analytic continuation is easy due to the presence of the rotational

symmetry about the bifurcation surface, and hence Sgrav is given by the Wald entropy

[85–88], obtained by differentiating the Lagrangian with respect to the Riemann tensor

and multiplying by the binormal εµν twice:

SWald = −2π

~

∫
σ

d2x
√

2g
∂I

∂Rµνξo

εµνεξo. (A.3)

14This curvature is sometimes smoothed out slightly in order to evaluate the entropy [83], although

this smoothing does not by itself eliminate the UV divergences associated with coupling to the curva-

ture.
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However, Wald’s Noether charge method for deriving the entropy is subject to ambi-

guities for non-stationary horizons [86, 87], and is therefore unable to determine the

coefficients of those terms which vanish on stationary horizons, e.g. terms involving

products of extrinsic curvatures.

Thus, for the nonstationary case, there are additional corrections to the Wald

entropy which were only recently calculated for higher-curvature gravity actions, which

will be discussed in the next section.

A.2 Nonstationary Entropy

For several years it was unclear how to calculate Sgrav for a nonstationary surface σ in a

higher-curvature gravity theory, although some information was available using various

methods such as field redefinitions and the GSL [60, 86, 89], holography [90, 91], and

the Randall-Sundrum model [23].

A major breakthrough came when Lewkowycz and Maldacena [92] found a clever

way to analytically continue the smoothed out n-sheeted replica trick in the context

of calculating the holographic entanglement entropy (cf. section 6.5) in AdS/CFT.

Their calculation involves performing the replica trick on the conformal boundary of

the manifold, while requiring the interior to be a smooth solution to the equations

of motion, exploiting the dynamical nature of gravity. One can then orbifold by the

replica group Zn to find a manifold for which the n→ 1 limit can be smoothly taken.

This can be used to derive the Ryu-Takayanagi formula [66]15 in the regime where the

bulk theory is governed by the Einstein-Hilbert action.

Their calculation was quickly extended to determine the gravitational entropy func-

tional Sgrav for higher-curvature theories. For quadratic gravity, see [93–95]; for Love-

lock see [96–98]. In the more general case of f(Riemann) actions, Sgrav is given by

the Dong entropy [94] But some ambiguities remain, related to the “splitting prob-

lem” [99, 100] (these references also make some inroads into the case where the action

contains derivatives of the Riemann tensor).

Also, Faulkner, Lewkowycz and Maldacena showed how to include the 1-loop mat-

ter in the bulk using [24]; this corresponds to adding a bulk entanglement entropy term,

thus replacing A with Sgen of the extremal surface, as done many times in this article.

Although these formulae were derived for holographic entanglement surfaces, they

are consistent with the hypothesis that an entropy can be ascribed to more general

surfaces. For example, the holographic entropy functional also seems to be the correct

15And presumably also the HRT formula [65], if one analytically continues using a complexified

manifold.
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one to use when defining the GSL for linearized metric perturbations to Killing horizons,

in any higher curvature gravity theory [55] (cf. [53, 54] for some special cases).

A.3 Example: 3+1 Dimensions

For example, in D = 4 semiclassical gravity coupled to free fields, the one loop correc-

tions to the inverse of Newton’s constant 1/G are quadratically divergent in ε:

∆1-loop
1

G
= fG ε

−2, (A.4)

where the constant of proportionality fG depends on the number and type of matter

species. But there are also logarithmic divergences in the three parameters α, β, γ

associated with the quadratic gravity effective action [93]:

Ieff =

∫
d4x
√
g

[
R

16πG
+ αR2 + β(Rµν)

2 + γ(Rµνoξ)
2

]
+ Inonlocal. (A.5)

where, at one loop,

∆α1-loop = fα log(ε) + gα; (A.6)

∆β1-loop = fβ log(ε) + gβ; (A.7)

∆γ1-loop = fγ log(ε) + gγ. (A.8)

In general, coefficients of power law divergences such as fG depend on the details

of the renormalization scheme. But the coefficients of the log divergences fα, fβ, fγ
are universal, depending only on the field theory [73].16 These log divergences appear

because the dimension is even. (The finite piece of the 1-loop effective action is universal

in odd dimensions, but in even dimensions this is true only up to local counterterms

such as gα, gβ, gγ, since ε0 still counts as a power law!) The value of the f coefficients

for various spins in 4 dimensions are listed in [68, 101, 102], although there are certain

issues with higher spin fields (3/2 and 2) which we will discuss in A.5.

Dimensional analysis reveals five possible covariant terms in the gravitational en-

tropy density of σ due to α, β, γ:

R R i
i R ij

ij K i
i aK

j
j a K a

ij K
ij
a, (A.9)

16In the special case of a CFT these parameters are determined by the central charges c and a,

which determine the log divergences of the two conformally invariant contributions: Weyl squared

(Cµναξ)
2 and the Euler density RµναξRπρστ ε

µνπρεαξστ respectively. Although these two terms would

be conformal if they were finite, their logarithmic dependence on ε is a conformal anomaly; thus the

partition function on curved spacetimes is not scale invariant.
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where Rµνξo is the 4D Riemann tensor, Rµν the 4D Ricci tensor, R is the 4D Ricci

scalar, K a
ij is the extrinsic curvature; also the indices i, j represent directions parallel

to σ, which are raised and lowered by qij (the metric restricted to σ), and a represents

an index normal to σ. The extrinsic curvature requires an a index because σ is a

codimension-2 surface, so that there are two remaining dimensions to bend into.

However, because there are only 3 possible terms in the action, only 3 linear combi-

nations of these 5 terms can appear. The methods of A.2 show that the correct entropy

functional is [23, 90, 93–95]

Sgrav =
A

4G~
+

1

2π~

∫
σ

d2x
√

2g

[
αR +

β

2

(
R i
i −K ia

i K j
j a

)
+ γ

(
R ij
ij −K a

ij K
ij
a

)]
(A.10)

Aside from the extrinsic curvature terms (which are ambiguous in the Noether charge

formalism), this expression is the same as the Wald entropy (A.3). We may then define

the generalized entropy as [103]

Sgen = 〈Sgrav〉+ Sout (A.11)

which in this case expands out to:

Sgen = lim
ε→0

[
S

(ε)
out +

A

4G(ε)~
+

1

4π~

∫
σ

d2x
√

2g ×(
α(ε)R +

β(ε)

2

(
R i
i −K ia

i K j
j a

)
+ γ(ε)

(
R ij
ij −K a

ij K
ij
a

))]
, (A.12)

In the limit where ε becomes small, the various dependences on ε should cancel out,

so that Sgen is independent of the choice of cutoff scale. Since the divergences in

Sout are local and proportional to the other terms in (A.12), it is manifest that there

exists a choice of RG flow for the parameters G,α, β, γ for which Sgen becomes cutoff

independent.

Thus the generalized entropy Sgen is well-defined even though Sout is cutoff depen-

dent. As one shifts the cutoff, the entropy simply moves between the different terms.

A.4 Interpretation of Contact Terms

A crucial consistency condition is that the RG flow of the parameters in Sgen (given by

(A.12) at one loop in 3+1 dimensions) are in fact the same as for the corresponding

parameter in the gravitational action (A.5).17

Although the renormalization of the replica trick entropy automatically matches

the renormalization of the gravitational action [104, 105], it is not so clear that the

17For non-universal coefficients, the same regulator must of course be used on both sides.
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replica entropy can always be written as the sum of a horizon piece plus a statistical

piece which is literally a von Neumann entropy −tr(ρ log ρ), as in (A.11). Thus if one

e.g. imposes a regulator such as a brick wall (or a lattice) in which it is manifest that

Sgen has literally a statistical interpretation, and then compares to the replica trick

with e.g. a smoothed out conical singularity, it is not a priori obvious that the RG

flow of the two definitions of entropy will agree. The question is whether all terms in

the replica entropy can be given a statistical interpretation.

For minimally coupled scalars and spinor fields, several calculations have shown

an exact agreement between the geometric and statistical viewpoints [69, 71, 106–110]

(modulo the K2 terms, whose coefficients were unknown in the 1990s but can now be

determined and shown to agree by the methods described above).18

There is an apparent mismatch [103, 112] between the replica entropy of non-

minimally coupled scalars [69] and gauge fields [109], and their statistical entanglement

entropy. Although the renormalization of the replica entropy automatically matches

the renormalization of the gravitational action [104, 105], it is not so clear that this

geometrical entropy can always be written as the sum of a horizon piece plus a statistical

piece, as in (A.11). But these concerns can be resolved.

In the case of non-minimally coupled scalar fields whose Lagrangian includes the

term ξφ2R, an extra “contact term” appears due to coupling to the conical singularity

when performing the replica trick. This extra term is proportional to ξ
∫
σ
〈φ2〉. It

contributes to the Sgrav (which in this case is equal to the Wald entropy (A.3)), and

hence appears as an extra term in (A.12). It also contributes nontrivially to the RG

flow of 1/G, due to the multiplication of φ at coincident points, restoring consistency

[103].

In the case of Maxwell fields, there is also a contact term, which however cannot be

explained by the addition of any term of the appropriate dimension to Sgrav.19 Instead,

the extra term arises from “edge modes” in the entanglement entropy due to the fact

that boundary gauge symmetries are not gauged, and can be calculated by a path

integral over the electric flux through the surface σ [114] (cf. [115]).20

18But see [111] for an apparent discrepancy for scalars in odd dimensions, using a Pauli-Villars

regulator.
19By analogy to non-minimal scalar, one could try to add a term like AiAjg

ij
⊥ , where Ai is the

gauge potential and gij⊥ the inverse normal metric [103], but this is not a gauge-invariant combination.

Nor does it appear in the holographic gravitational entropy [113] when derived by the Lewkowycz-

Maldacena method [92].
20An alternative explanation [116] is that the contact term arises from the total derivative terms

in the action. It has also been suggested [117, 118] that this would resolve a discrepancy between

the field theoretical and holographic entropy calculations in 6 dimensions found by [91]. However,

this interpretation departs from the usual principle that total derivatives may be dropped without
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A similar contact term involving gravitons can presumably be resolved in the same

way, but here there are additional conceptual problems which we briefly explore next.

A.5 The Challenge of Higher Spin Fields

Defining the entanglement entropy for spin 3/2 and 2 fields is considerably trickier than

for spins ≤ 1.

First of all, as a result of their relationship to (super)gravity, they are only consis-

tently defined when expanding around a gravitational background where the traceless

part of the Ricci tensor vanishes (Einstein manifolds) [101].21 If the trace is nonzero,

i.e., if there is a cosmological constant, the fields acquire an effective mass which must

be included as in [124].22 This suggests that only some of the coefficients defined above

are physically meaningful, namely those of the Weyl squared term and terms involv-

ing the Ricci scalar. As a result, the usual bulk replica trick method for defining the

entanglement is suspect, since this is invalid off-shell [105].

A possibly related problem: In the case of gravitons, it is also necessary to decide

on a covariant definition of the location of the surface σ. Choosing σ based on its

coordinate location would make the results dependent on the choice of gauge.

In spite of these troublesome issues, some have ploughed ahead and calculated the

fG coefficient for linearized gravitons using a spin-2 gauge-fixed wave operator. Fursaev

and Miele [125] found that the partition function of the replica manifold does not reduce

in the limit β → 2π to the partition function of the smoothed out cone, which usually

must agree [83]. Solodukhin [112, 126] also calculated fG for the graviton, but his

results appear to conflict with [125].

More ambitiously still, He et al. [127] calculated the entanglement entropy for the

entire tower of higher-spin fields which appear in string theory, using an alternative

definition of the replica trick on orbifold spacetimes where 1/n is an integer. (For spin

3/2 and 2 their calculation agrees with that of [125].)

Notwithstanding the conceptual problems above, it should at least be possible to

calculate the graviton entanglement entropy using the Lewkowycz-Maldacena method

[92], in which the replica trick is performed on the boundary, and the equations of

consequence, and was argued against in [119].
21In addition to these constraints, spin 3/2 fields require the cosmological constant to be negative

or zero. A further issue (unique to fermionic gauge fields) is that when gauge-fixing the spin 3/2 field,

one must take into account not only the Faddeev-Popov ghosts but also the Nielsen-Kallosh ghost

[120, 121], in order to obtain the proper number of degrees of freedom [122]; see [123] for a correction

of the spin 3/2 calculation in Ref. [112].
22For this reason, among other errors, the R2 coefficient for gravitons or gravitinos found in [68,

101, 102] should not be used.
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motion hold everywhere in the bulk. But this would only allow one to calculate the

graviton entropy when σ is an extremal surface! It would not be sufficient for applica-

tions such as the QFC in which σ may be an arbitrary surface. Also, in order to derive

the result of Faulkner et al. [24] for gravitons, one would need an independent bulk

definition of the graviton entanglement entropy.

Thus, further exploration into the nature of entanglement entropy for gravitons

and gravitinos seems warranted.
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