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Abstract

We relate the unconstrained ‘double metric’ of the ‘α′-geometry’ formulation of dou-

ble field theory to the constrained generalized metric encoding the spacetime metric

and b-field. This is achieved by integrating out auxiliary field components of the double

metric in an iterative procedure that induces an infinite number of higher-derivative cor-

rections. As an application we prove that, to first order in α′ and to all orders in fields,

the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We

also prove that to first order in α′ the spacetime action encodes precisely the Green-

Schwarz deformation with Chern-Simons forms based on the torsionless gravitational

connection. This seems to be in tension with suggestions in the literature that T-duality

requires a torsionful connection, but we explain that these assertions are ambiguous

since actions that use different connections are related by field redefinitions.
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1 Introduction

In this paper we will elaborate on the double field theory constructed in [1], whose defining

geometric structures are α′-deformed and whose action, including higher-derivative corrections,

is exactly gauge invariant and duality invariant. Concretely, we will report progress relating

this theory to conventional theories written in terms of the standard target space fields of string

theory such as the spacetime metric, the antisymmetric tensor field, and the dilaton.1

The original two-derivative double field theory (DFT) [2–6] can be formulated in terms of

the generalized metric H, which takes values in the T-duality group O(D,D) [5], where D

denotes the total number of dimensions. More precisely, we can view the metric and b-field as

parameterizing the coset space O(D,D)/O(D)×O(D), which encodes D2 degrees of freedom.

The generalized metric is a constrained symmetric matrix that can be parametrized as

H =

(
g−1 −g−1b

bg−1 g − bg−1b

)
. (1.1)

Thus, given a generalized metric, we may read off the spacetime metric g and the b-field.

In contrast, the formulation of [1] is based on a symmetric field M, in the following called

the ‘double metric’, that is unconstrained and so cannot be viewed as a generalized metric.

Therefore the question arises of how to relate M to the standard string fields, the metric g and

the b-field.

In [14] we showed perturbatively, expanding around a constant background, how to relate the

double metric M to the standard perturbative field variables. For a constant background, the

field equations of [1] do in fact imply that M is a constant generalized metric, thus encoding

precisely the background metric and b-field. The fluctuations can then be decomposed into

1This theory describes a particular T-duality invariant dynamics that is an ingredient of heterotic string

theory. References relevant for the DFT description of α′ corrections and/or heterotic strings include [7–19].
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the physical metric and b-field fluctuations plus extra fields. These extra fields are, however,

auxiliary and can be eliminated by their own algebraic field equations in terms of the physical

fluctuations. The resulting action has been determined to cubic order in [14].

It is desirable to have a systematic procedure to relate the double metric M to standard

fields g and b rather than their fluctuations. In this paper we will provide such a procedure.

In the first part we will show that the double metric can be written, perturbatively in α′ but

non-perturbatively in fields, in terms of the generalized metric as

M = H + F , (1.2)

where F starts at order α′ and can be systematically determined in terms of H to any order in

α′, see (2.28). This systematizes and completes tentative results given in [1]. While the original

formulation in terms of M is cubic with a finite number of derivatives (up to six), the procedure

of integrating out the auxiliary F leads to an action with an infinite number of higher-derivative

corrections. As an application, we compute the gauge transformations δ(1)H to first order in

α′, see (2.53), thereby determining the O(α′) gauge transformations of g and b, and show that

they are equivalent to those required by the Green-Schwarz mechanism. In [13] this was shown

perturbatively to cubic order in fields; here it is shown non-perturbatively in fields. We show

that up to and including O(α′ 2) the gauge transformations of H are independent of the dilaton.

We have no reason to suspect that this feature persists to all orders in α′.

From these results and gauge invariance it follows that the three-form curvature Ĥ of the

b-field contains higher-derivative terms due to the Chern-Simons modification. This curvature

enters quadratically as a kinetic term and thus introduces a number of higher derivative terms in

the action. Does the action contain other gauge invariant terms built with Ĥ and other fields?

In the second part of the paper we partially answer this question by proving that the cubic

O(α′) action determined in [14] is precisely given by the Chern-Simons modification of Ĥ based

on the (torsion-free) Levi-Civita connection. This result seems to be in tension with suggestions

that T-duality requires a torsion-full connection with torsion proportional to H = db [16–18].

We use the opportunity to clarify this point by recalling that field redefinitions can be used to

transform an Ĥ based on a torsion-free connection to an Ĥ based on a torsion-full connection,

up to further covariant terms [20]. Therefore, by itself the statement that T-duality prefers one

over the other connection is not meaningful (although it could well be that writing the theory to

all orders in α′ in terms of conventional fields simplifies for a particular connection). Moreover,

our results confirm that the action does not contain the square of the Riemann tensor, as

already argued in [14]. It leaves open, however, the possibility of order α′ terms that would not

contribute to cubic order as well as the structure of the action to order α′ 2 and higher.

A few remarks are in order about how the α′ corrections for the theory discussed in this

paper relate to the known α′ corrections of various string theories. Given that we obtain

the Green-Schwarz deformation, it does not correspond to bosonic string theory but rather it

encodes ingredients of heterotic string theory. It does not coincide with it, however, since it

does not describe the Riemann-square term, which is known to arise for heterotic strings. It

also does not include the gauge connections for SO(32) or E8 × E8.
2 In order to encode all

2From this fact it follows that in this theory the Green-Schwarz deformed field strength Ĥ satisfies the Bianchi

identity dĤ = 1

2
tr(R ∧ R). As a result R ∧ R is exact and hence that there are certain topological constraints

on the spacetimes described by this theory. Such constraints play no role, however, in the map from DFT to

conventional variables to be developed here.
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corrections appearing in bosonic and/or heterotic string theories, more general deformations of

DFT are needed [14], which are not yet known exactly and non-perturbatively (see, however,

[19] for recent progress). Moreover, supersymmetry (which requires both the Green-Schwarz

deformation and the Riemann-square term) is only compatible with a particular combination

of O(D,D) invariants. Other combinations then describe, for instance, bosonic string theory.

Returning to the α′-deformed DFT of [1], the results of this paper show that it can be related

to actions written in terms of conventional fields in a systematic (and hence algorithmic) fashion.

It would be increasingly difficult in practice to perform this algorithm as we go to higher orders

in α′, but one may still wonder if there is a closed form of the theory in terms of conventional

fields. In any case, it strikes us as highly significant that using a double metric one can encode

an infinite number of α′ corrections in a cubic theory with only finitely many derivatives. This

seems to provide a radically simpler way of organizing the stringy gravity theories. Even if

the theory admits a tractable formulation in terms of g and b, the computation of physical

observables may be simpler when working in terms of the fields of the α′-deformed DFT.

2 From the double metric to the generalized metric

2.1 Constraints and auxiliary fields

We start from the ‘double metric’ MMN , with O(D,D) indices M,N = 1, . . . , 2D, which

is symmetric but otherwise unconstrained. Our goal is to decompose it into a ‘generalized

metric’ HMN , which is subject to O(D,D) covariant constraints, and auxiliary fields that can

be integrated out algebraically. We use matrix notation for the doubled metric and for the

generalized metric, with index structure M• • and H• •, as well as for the O(D,D) invariant

metric, with index structure η• •. The generalized metric is then subject to the constraints

H ηH = η−1 ⇔ (Hη)2 = (ηH)2 = 1 . (2.1)

As as a consequence we can introduce projectors, that we take here to act on objects with

indices down. Specifically, acting from the left they have index structure P•
•, and are given by

P = 1
2 (1−Hη) , P̄ = 1

2 (1 +Hη) . (2.2)

Similarly, acting from the right they have index structure P •
• and are given by P T = 1

2(1−ηH)

and P̄ T = 1
2(1 + ηH). One can quickly verify that we then have

P̄ HP T = 0 . (2.3)

In order to be compatible with the constraints (2.1), any variation δH of a generalized metric

needs to satisfy

δH = P̄ δHP T + P δH P̄ T , (2.4)

see e.g. the discussion in sec. 3.3 in [11]. This constraint, translated in projector language,

becomes

δP = P̄ δP P + P δP P̄ = −δP̄ . (2.5)
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We now aim to relate the double metric to the generalized metric. To this end we recall that

the M field variation in the α′-extended double field theory takes the form (eq. (7.16) in [1])

δMS = −1
2

∫
eφ tr

(
δM ηE(M)η

)
, (2.6)

where E(M), with both indices down, is given by

E(M) ≡ M ηM− η−1 − 2V(M) = 0 , (2.7)

and setting it equal to zero is the field equation for M. Here V contains terms with two and

with higher derivatives. The tensor V is thus of order α′ and higher relative to the algebraic

terms without derivatives, but we suppress explicit factors of α′. Thus, to zeroth order in α′ the

field equation implies MηM = η−1, from which we conclude with (2.1) that M is a generalized

metric, M = H. We next write an ansatz for the double metric M in terms of a generalized

metric H and a (symmetric) correction F that we take to be of order α′ and higher,

M = H + F . (2.8)

Here H satisfies the constraints above, while we will constrain F to satisfy

P̄ F P T = 0 , P F P̄ T = 0 , (2.9)

where the second equation follows by transposition of the first. We can motivate this constraint

as follows. If F had a contribution with projection P̄FP T + PFP̄ T (both terms are needed

since F is symmetric), by (2.4) this contribution takes the form of a linearized variation of H
and hence it may be absorbed into a redefinition of H, at least to linearized order. Given the

above constraints, we can decompose F into its two independent projections, for which we write

F = F̄ + F , with F̄ = P̄ F̄ P̄ T , F = P F P T . (2.10)

Additionally we see that

F = P̄ F P̄ T + P F P T . (2.11)

We will now show that, perturbatively in α′, the double metric can always be decomposed

as in (2.8). Let us emphasize, however, that there may well be solutions for M that cannot be

related to a generalized metric in this fashion and hence are non-perturbative in α′. We first

note that with (2.3) and (2.9) we have3

P̄ MP T = 0 . (2.12)

More explicitly, this equation takes the form

(1 +Hη)M (1 − ηH) = 0 . (2.13)

In this form, one may view this equation as an algebraic equation that determines the matrix

H in terms of the matrix M. If H is a solution, so is −H, as follows by transposition of the

equation, but this ambiguity is naturally resolved by the physical parameterization ofH in terms

of a metric of definite signature. While one can quickly show that for D = 1 (corresponding

3This equation was proposed by Ashoke Sen. A number of the results that follow were obtained in collaboration

with him.
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to O(1, 1)) an arbitrary symmetric two-by-two matrix M leads to a unique H (up to sign) a

general discussion of the solvability for H seems quite intricate and will not be done here. This

is the issue, alluded to above, that some general M configurations may not be describable via

generalized metrics. It is also clear from equation (2.12) that different values of M may be

consistent with the same H. For example, given a field M that works for some H, replacing

M → M + P̄ Λ̄ P̄ T + P ΛP T , (2.14)

with Λ and Λ̄ symmetric, still leads to a solution for the sameH. Thus (2.12) does not determine

M in terms of H. As we will see in the following section, this is done with the help of field

equations.

It is useful to consider equation (2.12) (or (2.13)) more explicitly. We begin by parametrizing

the general symmetric double metric as

M =

(
m1 c

cT m2

)
, mT

1 = m1, mT
2 = m2, c arbitrary . (2.15)

Using the standard parametrization (1.1) for the generalized metric H(g, b) and building the

projectors P, P̄ from it, a direct computation shows that the condition (2.12) gives rise to four

equations, which are all equivalent to

E m1E + Ec − cT E −m2 = 0 , with E ≡ g + b . (2.16)

The general solvability of (2.12) requires that for arbitrary symmetric matrices m1,m2 and

arbitrary c there is always a matrix E that solves the above equation. We do not address this

general solvability question but establish perturbative solvability.

We have seen that to zeroth order in α′ the doubled metric is equal to some generalized

metric H̄. We have to show that for an M = H̄ + δM that deviates from H̄ by a small

deformation δM, eq. (2.16) can be solved for E . We will show this perturbatively by writing

E = Ē + δE , m1 = m̄1 + δm1 , m2 = m̄2 + δm2 , c = c̄+ δc , (2.17)

assuming that the background values of M correspond to a generalized metric H̄ parameterized

by Ē = ḡ + b̄:

m̄1 = ḡ−1 , m̄2 = ḡ − b̄ḡ−1b̄ , c̄ = −ḡ−1b̄ . (2.18)

By construction, these background values solve the equation (2.16), as one may verify by a

quick computation. To first order, the perturbations should then solve

δE m̄1Ē + Ē δm1Ē + Ē m̄1δE + δE c̄+ Ēδc − δcT Ē − c̄T δE − δm2 = 0 , (2.19)

or, after regrouping the terms,

δE (m̄1Ē + c̄) + (Ē m̄1 − c̄T )δE = δm2 − Ē δm1Ē + δcT Ē − Ēδc . (2.20)

With (2.18) we see that the matrices multiplying δE are the identity, and therefore

δE = 1
2

(
δm2 − Ē δm1Ē + δcT Ē − Ēδc

)
, (2.21)

showing the perturbative solvability of (2.16). As we explained before this confirms that,

perturbatively, we can write M = H+ F with F satisfying (2.9).
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2.2 Eliminating the auxiliary fields

After having shown that the double metric M, at least perturbatively in α′, can always be

written in terms of a generalized metric H and an additional (constrained) field F , we now

show that F is an auxiliary field that can be eliminated algebraically by solving its own field

equations. Thus, we can systematically eliminate F from the action to get an action for H.

Let us consider the variation of the action S with respect to F . Since S(M) = S(H + F ),

this variation gives the same result as what we would get by varying the original action with

respect to M,

δFS = −1
2

∫
eφ tr

(
δF ηE(M)η

)
, (2.22)

where we used (2.6). In order to read off the equations of motion we have to recall that F is a

constrained field. The variation δF needs to respect the constraint (2.11), which implies that

varying F keeping H fixed requires

δF = P δF P T + P̄ δF P̄ T . (2.23)

Using this variation in (2.22) we find two equations corresponding to the two projections in

(2.23). These are the field equations for F̄ and F , respectively, which are given by

P̄ T ηE(M)ηP̄ = 0,

P T ηE(M)ηP = 0 .

(2.24)

By moving the η matrices across the projectors and multiplying by η from the left and from

the right, these equations are equivalent to a form without explicit η’s:

P̄ E(M) P̄ T = 0 ,

P E(M)P T = 0 .

(2.25)

We now use these equations to solve for F and F̄ in terms of H. The solutions, that take a

recursive form, could be inserted back in the action to find a theory written solely in terms

of H and the dilaton.

For this purpose, we first return to the full equations of motion E(M) given in (2.7).

Substitution of M = H+ F into this equation yields

E(M) = HηF + FηH− 2V(M) + FηF = 0 , (2.26)

where we used HηH = η−1. Substituting this into (2.25) and using P̄Hη = P̄ , PHη = −P ,

which follow immediately from (2.2), we get

2 P̄ F P̄ T = P̄ (2V(M) − FηF )P̄ T ,

2PFP T = − P (2V(M) − FηF )P T .

(2.27)

Using the constraint (2.10) we finally obtain

F̄ = P̄
(
V(H + F )− 1

2 FηF
)
P̄ T ,

F = − P
(
V(H + F )− 1

2 FηF
)
P T .

(2.28)
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We can now solve these equations iteratively, recalling that F is of order α′ relative to H. Thus,

on the right-hand side to the lowest order we keep only the two derivative terms in V, denoted
by V(2), and use H for the argument of V, dropping the term FηF . This determines the leading

term in F in terms of H:

F̄ (1) = +P̄V(2)(H)P̄ ,

F (1) = −PV(2)(H)P .
(2.29)

We can then substitute this leading order solution for F into the right hand side and get the

next order solution for F . After we have determined F to the desired order we can substitute

it into the action to determine the action in terms of H to the desired order.

Let us note that the above result (2.29) determines M in terms of H to first order in α′ in

precise agreement with eq. (7.30) in [1]. The improvement of the present analysis is to make

manifest that the determination of M in terms of H corresponds to integrating out auxiliary

fields to arbitrary orders in α′.

Since the full equation of motion in terms of M is given by E(M) = 0 in (2.26), and the

F̄ and F equations set two types of projections of E(M) equal to zero in (2.25), the remaining

dynamical equation of the theory must be equivalent to

PE(M)P̄ T = 0 . (2.30)

Using the above expression for E(M) and the constraints of H and F this gives

P V(M) P̄ T = 0 , (2.31)

and its transpose P̄V(M)P T = 0. We will now show that variation w.r.t. H indeed yields

equations that perturbatively in α′ are equivalent to (2.30). To see this we first note that, by

the constraint (2.11) on F , a variation of H induces a variation of F ,

δF = P̄ δF P̄ T + P δF P T

+ δP̄ F P̄ T + P̄ F δP̄ T + δP F P T + P F δP T .
(2.32)

Using that the variation of the projectors in the second line is subject to (2.5), one may quickly

verify that this can be written as

δF = P̄ δF P̄ T + P δF P T

+ PXP̄ T + P̄XTP T , where X = F δP T − δP F̄ .
(2.33)

Note that the first and second line in here have complementary projections, which implies that

it is self-consistent to set δF = PXP̄ T + P̄XTP T . Using this and the constrained variation

(2.4) of H in the general variation (2.6) of the action, it is straightforward to verify that the

equation of motion for H is

PEP̄ T + 1
2(PEP̄ T ) ηF̄ − 1

2 Fη (PEP̄ T ) = 0 . (2.34)

This admits the solution PEP̄ T = 0, which is the unique solution in perturbation theory in α′.

Thus we proved that (2.30) is the correct field equation for H.
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2.3 Deformed gauge transformations for generalized metric

Let us now determine the gauge transformations of H. They result from those of M and the

relation M = H + F upon eliminating F by the above procedure. We first recall that

F = P̄F P̄ T + PFP T = 1
4(1 +Hη)F (1 + ηH) + 1

4(1−Hη)F (1 − ηH) , (2.35)

which simplifies to

F = 1
2

(
F +HηFηH) . (2.36)

In order not to clutter the following computation, we will use a notation in which the explicit

η’s are suppressed, which is justified because the η’s just make index contractions consistent.

For instance, we then write H2 = 1 and similarly

F = 1
2

(
F +HFH)

= 1
2

(
H(HF ) + (HF )H

)

= 1
2

(
HF + FH

)
, with F ≡ HF .

(2.37)

We can thus write for the double metric

M = H + 1
2

(
HF + FH

)
. (2.38)

Next, we write an expansion in orders of α′ for the gauge transformations of the double

metric M. As the gauge transformations of M are exact with terms up to five derivatives (of

order α′ 2), we write the exact gauge variation as

δM = δ(0)M+ δ(1)M+ δ(2)M = δ(0)M+ J (1)(M) + J (2)(M) . (2.39)

Here J (1)(M) and J (2)(M) are linear functions of their arguments, where superscripts in paren-

thesis denote powers of α′. These functions can be read from eq. (6.39) of [1], and they have no

dilaton dependence. For general transformations we also write

δ = δ(0) + δ̂ , δ̂ = δ(1) + δ(2) + . . . (2.40)

For the following computation it is convenient to define a projector [. . .] from general two index

objects to mixed index projections:

[A] ≡ PAP̄ + P̄AP ≡ 1
2

(
A−HAH) . (2.41)

This projection satisfies

[HB +BH] = 0 , for all B . (2.42)

Note also that variation of the constrained H then satisfies [δH] = δH by eq. (2.4) above.

Let us now derive relations for the gauge transformation of H by varying (2.38),

δ(0)M+ J (1)(M) + J (2)(M) = δ(0)H + δ̂H + δ(0) 12
(
HF + FH

)
+ δ̂ 1

2

(
HF + FH

)
. (2.43)

The zeroth order part δ(0) is given by the generalized Lie derivative of double field theory,

in the following denoted by L̂ξ. Moreover, we use the notation ∆ξ ≡ δξ − L̂ξ to denote the

8



non-covariant part of the variation of any structure. Note that by definition ∆ξ leaves any

generalized tensor invariant, so that e.g. for the generalized metric ∆ξH = 0. Using this, we

can write

L̂ξM+ J (1)(M) + J (2)(M) = L̂ξH + δ̂H+ L̂ξ
1
2

(
HF + FH

)
+ 1

2

(
H∆ξF +∆ξFH

)

+ 1
2

(
δ̂HF + F δ̂H

)
+ 1

2

(
Hδ̂F + δ̂FH

)
.

(2.44)

The terms with generalized Lie derivatives on the left-hand and right-hand side cancel. Thus,

we obtain

J (1)(M) + J (2)(M) = δ̂H + 1
2

(
δ̂HF + F δ̂H

)

+ 1
2

(
H∆ξF +∆ξFH

)
+ 1

2

(
Hδ̂F + δ̂FH

)
.

(2.45)

Applying the [. . . ] projector, the terms on the second line drop out by the property (2.42), and

we get

[J (1)(M) + J (2)(M)] = δ̂H +
[
1
2

(
δ̂HF +F δ̂H

)]
. (2.46)

Recalling F = HF , this is more conveniently written as

δ̂H = [J (1)(H)] + [J (2)(H) + J (1)(F ) + J (2)(F )] −
[
1
2

(
δ̂HHF +HF δ̂H

)]
. (2.47)

Using that by H2 = 1 we have for any variation δHH = −H δH, we can rewrite this as

δ̂H = [J (1)(H)] + [J (2)(H) + J (1)(F ) + J (2)(F )] +
[
1
2H
(
δ̂HF − F δ̂H

)]
. (2.48)

This is a recursion relation that can be solved iteratively for δH. In order to make this explicit

let us expand the auxiliary field F in powers of α′,

F = F (1) + F (2) + . . . . (2.49)

Inserting this expansion into (2.48), we read off

δ(1)H = [J (1)(H)] ,

δ(2)H = [J (2)(H) + J (1)(F (1))] + 1
2

[
H
(
δ(1)HF (1) − F (1)δ(1)H

)]
,

δ(3)H = [J (1)(F (2)) + J (2)(F (1))] +
[
1
2H
(
δ(2)HF (1) − F (1)δ(2)H

)]

+
[
1
2H
(
δ(1)HF (2) − F (2)δ(1)H

)]
.

(2.50)

Here we have given the deformed gauge transformations of the generalized metric up to α′ 3,

but it is straightforward in principle to continue this recursion to arbitrary order in α′. In the

following subsection we investigate the first two non-trivial corrections.

2.4 Relation to Green-Schwarz-deformed gauge transformations

Our analysis of the gauge transformations in [13] was perturbative and restricted to the cubic

part of the theory called DFT−. We were led to the conclusion that, in conventional variables,

the full gauge transformations are the Green-Schwarz-deformed diffeomorphisms written in form

notation as [13]

δξb = Lξb+
1
2tr(d(∂ξ) ∧ Γ) . (2.51)
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Our present result for the corrected gauge transformations of H in terms of H, as opposed to

fluctuations thereof, allows us to do a full analysis to order α′ and thus establish directly the

validity of (2.51).

Let us now explicitly work out the first-order correction to the gauge transformations of the

generalized metric and thereby of the metric g and the b-field. We use eqn. (6.39) from [1] to

read off the function J (1) introduced in (2.39):

J
(1)
MN (M) = −1

2∂MMPQ ∂PKQN − ∂PMQM ∂NKQP + (M ↔ N) , (2.52)

where KMN = 2∂[MξN ], with ξM the gauge parameter, and doubled derivatives ∂M = (∂̃i, ∂i).

From the first equation in (2.50) and (2.41) we then infer that

δ
(1)
ξ HMN = − 1

4∂MHPQ ∂PKQN + 1
4HM

KHN
L∂KHPQ ∂PKQL

− 1
2∂PHQM ∂NKQP + 1

2HM
KHN

L∂PHQK ∂LK
QP + (M ↔ N) .

(2.53)

We compute the gauge transformation of gij by focusing on δ
(1)
ξ Hij, using (1.1) for the

generalized metric, and setting ∂̃i = 0:

δ
(1)
ξ gij = δ

(1)
ξ Hij = 1

4g
ikgjl∂kg

pq∂p(∂q ξ̃l − ∂lξ̃q) +
1
4g

ikgjl∂k(g
prbrq)∂p∂lξ

q

− 1
4g

ikgjrbrl∂kg
pq∂p∂qξ

l − 1
2g

ikgjl∂p(g
qrbrk)∂l∂qξ

p

− 1
2g

irbrkg
jl∂pg

qk∂l∂qξ
p + (i ↔ j) .

(2.54)

We see that the gauge transformation of gij and its inverse gij has higher-derivative terms

none of which are present in the standard Lie derivative. Thus, gij cannot be identified with

the conventional metric tensor. We will now show that gij is related by a non-covariant field

redefinition to a metric g′ij transforming conventionally under diffeomorphisms. To this end, we

record the ‘non-covariant’ variation of the partial derivatives of g and b, denoted by ∆ξ ≡ δξ−Lξ,

under the zeroth order gauge transformations,

∆ξ(∂pbql) = ∂p(∂q ξ̃l − ∂lξ̃q) + ∂p∂qξ
rbrl + ∂p∂lξ

rbqr ,

∆ξ(∂kg
pq) = −∂k∂rξ

pgrq − ∂k∂rξ
qgpr ,

∆ξ(∂pgqi) = ∂p∂qξ
kgki + ∂p∂iξ

kgkq .

(2.55)

Here we also included the non-invariance of ∂b under the b-field gauge transformation with

parameter ξ̃i. Consider now the field redefinition

g′ij = gij − 1
4

(
gikgjl∂kg

pq∂pbql + (i ↔ j)
)
+ · · · , (2.56)

where the missing terms indicated by dots will be determined momentarily. The higher-

derivative terms, being written with partial derivatives, are non-covariant and therefore lead to

extra terms in the δ(1) variation of the metric. These are determined by acting with ∆ξ on the

O(α′) terms in (2.56). Using (2.55), a straightforward computation then shows that many of

the O(α′) terms in (2.54) are cancelled, while the remaining terms organize into

δ
(1)
ξ g′ij = 1

4g
ikgjlgpr∂p∂lξ

qHkrq + (i ↔ j) , (2.57)
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with the field strength Hijk = 3 ∂[ibjk]. Using that the latter is gauge invariant and that for

the Christoffel symbols ∆ξΓ
k
ij = ∂i∂jξ

k, we can remove this structure by taking the full field

redefinition to be

g′ij = gij − 1
4

(
gikgjl∂kg

pq∂pbql + gikgjlgprΓq
plHkrq + (i ↔ j)

)
. (2.58)

This then leads to a metric transforming conventionally under infinitesimal diffeomorphisms,

δξg
′
ij = Lξg

′
ij , with the standard Lie derivative Lξ.

The gauge transformations of the b-field can be determined from δ
(1)
ξ Hi

j, see (1.1),

δ
(1)
ξ Hi

j = −
(
δ
(1)
ξ gik

)
bkj − gik δ

(1)
ξ bkj , (2.59)

and using δ(1)g from (2.54). In order to streamline the presentation let us first consider the

special case of the b-independent terms in δb, for which the first term in here can be omitted.

From (2.53) we then read off, inserting the components (1.1) and setting ∂̃i = 0,

−gikδ(1)bkj

∣∣∣
b=0

= −1
4∂jg

pq ∂p∂qξ
i − 1

2∂pg
qi ∂j∂qξ

p + 1
4g

ikglj∂kg
pq ∂p∂qξ

l + 1
2gjkg

il∂pg
qk ∂l∂qξ

p .

(2.60)

Multiplying with the inverse metric and relabeling indices this yields

δ(1)bij

∣∣∣
b=0

= 1
4∂p∂qξ

k gik∂jg
pq − 1

2∂i∂pξ
q gjk∂qg

pk − (i ↔ j) . (2.61)

We now consider the field redefinition

b′ij = bij − 1
4 (∂pgqi ∂jg

pq − (i ↔ j)) . (2.62)

As above this leads to additional δ(1) variations of b, which can be determined by computing

the ∆ξ variation of the higher-derivative terms in the redefinition. Using (2.55) one finds

δ
(1)
ξ b′ij = 1

2∂i∂pξ
q
[

1
2g

pk
(
∂jgqk + ∂qgjk − ∂kgqj

)]
− (i ↔ j)

= ∂p∂[iξ
q Γp

j]q ,
(2.63)

with the Christoffel symbols Γk
ij associated to the Levi-Civita connection.

We finally have to complete the analysis by returning to (2.59) and including all b-dependent

terms in the gauge variation. A somewhat lengthy but straightforward computation using (2.53)

and (2.54), whose details we do not display, then shows that all these terms in fact cancel.

Thus (2.63) is the complete result and the total diffeomorphism gauge transformations are

the Green-Schwarz-deformed diffeomorphisms in (2.51). This extends the perturbative, cubic

analysis in [13] to the full non-linear level in fields.

To summarize the above result, let us state it in an equivalent but perhaps instructive

form. For this we drop the primes from the fields that transform covariantly and add hats to

the original fields that transform non-covariantly. The α′-deformed double field theory can be

written in terms of a generalized metric parameterized canonically by a symmetric tensor ĝ and

an antisymmetric tensor b̂,

HMN =

(
ĝ ij −ĝ ik b̂kj

b̂ik ĝ
kj ĝij − b̂ik ĝ

kl b̂lj

)
, (2.64)
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where our earlier relations imply that

ĝij = gij − 1
4

(
∂ig

pq∂pbqj + gpqΓr
piHjqr + (i ↔ j)

)
,

b̂ij = bij +
1
4 (∂pgqi ∂jg

pq − (i ↔ j)) .
(2.65)

Here gij and bij transform conventionally under diffeomorphisms, up to the Green-Schwarz

deformation on the b-field.

2.5 Dilaton dependence in the H gauge transformations

One may wonder if the gauge transformation of the generalized metric involves the dilaton.

While the double-metric gauge transformation does not, the double-metric field equation does

and, therefore, the auxiliary field F is expected to depend on the dilaton. Such dependence

would then be expected to appear in the gauge transformations of H due to the relations in

(2.50). We have already seen explicitly in (2.53) that there is no dilaton dependence in δ(1)H.

In this subsection we show that there is no dilaton dependence in F (1) and therefore no dilaton

dependence in δ(2)H, but we do expect dilaton dependence in δ(3)H.

We will not compute the full gauge variation δ(2)H, but rather confine ourselves to prove

that the gauge variation δ(2)H is independent of the dilaton. While the dilaton dependence

drops out in δ(2)H, the proof below does not extend to higher order and so these terms may

depend on the dilaton.

Inspection of the second line in (2.50) shows that the dilaton dependence in δ(2)H could

only arise through F (1). Using (2.29) we write

F (1) = F (1) + F̄ (1) = −PV(2)(H)P + P̄V(2)(H)P̄ . (2.66)

It was shown in [1] that the dilaton-dependent terms Ṽ(2) in V(2) appear through an O(D,D)

vector function GM (M, φ). Specifically, one infers from eq. (6.69) of [1] that

Ṽ(2)
MN = −1

4 L̂GHMN , (2.67)

where L̂ξ is the generalized Lie derivative4 and we can let GM → HMN∂Nφ because all other

terms in G are dilaton independent or have higher derivatives. Inserting this into (2.66) we

infer that the φ-dependent terms in F (1) are contained in

F (1)
∣∣
φ

≡ 1
4P L̂GHP − 1

4 P̄ L̂GHP̄ ≡ 0 , (2.68)

which is zero. This follows because any variation δH of a generalized metric, including L̂GH,

satisfies PδHP = P̄ δHP̄ = 0, c.f. (2.4). Since F (1) has no dilaton dependence, the gauge

transformations of the generalized metric to order α′ 2 are independent of the dilaton.

Since F (1) is dilaton-independent, (2.28) implies that the dilaton dependent terms of F (2)

are given by

F (2)
∣∣
φ

= −P
(
Ṽ(2)(F (1)) + Ṽ(4)(H)

)
P ,

F̄ (2)
∣∣
φ

= P̄
(
Ṽ(2)(F (1)) + Ṽ(4)(H)

)
P̄ .

(2.69)

4Here we only need the zeroth order part of the Lie derivative, carrying one derivative, but this relation is

actually valid more generally for M, with the α
′-corrected Lie derivative determined from δξMMN = LξMMN .
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Here Ṽ(4) denote those terms in V with four derivatives and containing dilatons. The above

dilaton dependent terms in F (2) would have to be inserted into (2.50) in order to determine the

dilaton dependence of the O(α′ 3) gauge transformations of the generalized metric. We do not

see any reason why this dilaton dependence would vanish.

3 Cubic action at order α
′ in standard fields

3.1 Rewriting of cubic action

In this section we aim to determine the double field theory action to order α′ in terms of

conventional physical fields. We will aim for the covariant action that yields the cubic action

given in [14]. Thus, the order α′ covariant action is uniquely determined only up to terms like

H4, that have the right number of derivatives but do not contribute to the cubic theory. This

still allows us to address and clarify various issues related to T-duality and α′ corrections.

The cubic action given in [14] was written in terms of the fluctuations mMN̄ of the double

metricMMN after integrating out the auxiliary fields. For the comparison with standard actions

it is convenient to write it instead in terms of eij ≡ hij + bij, which is the sum of the symmetric

metric fluctuation and the antisymmetric b-field fluctuation (modulo field redefinitions that

we are about to determine). In sec. 5.3 of [14] it is spelled out explicitly how to convert the

fluctuations ofMMN into eij . Without discussing the details of this straightforward translation,

in the following we simply give the cubic theory in terms of eij.

The cubic DFT action is most easily written in terms of the (linearized) connections

ωijk ≡ Djeki −Dkeji ,

ω̄ijk ≡ D̄jeik − D̄keij ,

ωi ≡ D̄jeij − 2Diφ ,

ω̄i ≡ Djeji − 2 D̄iφ ,

(3.1)

where the derivatives D and D̄ are defined in terms of the doubled derivatives and the constant

background Eij = Gij +Bij encoding the background metric and B-field,

Di = ∂i − Eij ∂̃
j , D̄i = ∂i + Eji∂̃

j . (3.2)

For completeness we give the inhomogeneous terms in the gauge transformation of eij and the

associated transformations of the connections:

δλeij = Diλ̄j + D̄jλi ,

δλωijk = D̄iKjk , δλω̄ijk = DiK̄jk ,

δλω̄i = D̄jK̄ji , δλωi = DjKji ,

(3.3)

where

Kij ≡ 2D[i λj] , K̄ij ≡ 2 D̄[i λ̄j] . (3.4)

In the two-derivative DFT the variation w.r.t. eij yields the generalized Ricci tensor, i.e.,

δeS
(2) = 1

2

∫
δeij Rij , (3.5)
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which can be written in terms of connections as

Rij ≡ D̄kω̄ikj −Diω̄j ≡ Dkωjki − D̄jωi . (3.6)

These two forms are equivalent as can be verified by use of (3.1).

Let us now give the cubic, four-derivative DFT− Lagrangian, which we denote as L(3,4)
− .

The result (from (6.27) in [14]) reads

L(3,4)
− = 1

32

(
ω̄pijωi

klDpωjkl − ωpijω̄i
klD̄pω̄jkl + ω̄i

kl ω̄
jklDiωj − ωi

kl ω
jklD̄iω̄j

)
. (3.7)

In order to relate this action to a conventional one we have to set Di = D̄i = ∂i and find

the required field redefinition to standard fields. The gauge transformations that leave the

quadratic action plus the above correction invariant have first order corrections in α′. These

gauge transformations are given in eqn. (5.25) of [14] and, upon setting Di = D̄i = ∂i, result in

δ
(1)
λ eij = −1

8 ∂iK
kl ωjkl +

1
8 ∂jK̄

kl ω̄ikl . (3.8)

We now claim that the field redefinition to standard fields ěij is given by

ěij = eij +∆eij , (3.9)

where

∆eij = 1
16

[
ωi

klωjkl − ω̄i
klω̄jkl − 2 ∂[ie

kl
(
ωj]kl − ω̄j]kl

) ]
. (3.10)

We first confirm that this redefinition leads to fields with the expected gauge transformations.

The O(α′) transformation of ě is then corrected by the lowest-order gauge variation of ∆eij ,

δ(1) ěij ≡ δ(1)eij + δ(0)(∆eij) . (3.11)

A straightforward computation shows that many terms cancel, leaving

δ(1)ěij = − 1
16 ∂[i(K

kl + K̄kl)
(
ωj]kl + ω̄j]kl

)
− 2 ∂[ie

kl ∂j](Kkl − K̄kl) . (3.12)

Note that this result is manifestly antisymmetric in i, j, showing that, as expected, δ(1) is

trivialized on the metric fluctuation. The final term can be removed by a parameter redefinition

and can hence be ignored. The remaining term can be further rewritten by using the relations

(eqn. (5.51), [14]) between the DFT gauge parameters λ and the diffeomorphism parameter ǫi:

Kkl + K̄kl = 2 ∂[k
(
λl] + λ̄l]

)
= 4 ∂[kǫl] . (3.13)

Similarly, the sum of the DFT connections reads in conventional fields

ωjkl + ω̄jkl = 4 ∂[k hl]j ≡ −4ω
(1)
jkl , (3.14)

with ω
(1)
jkl ≡ − ∂[k hl]j the linearized spin connection. We finally obtain

δ(1)ěij = ∂[i∂
kǫl ω

(1)
j]kl , (3.15)

the expected Green-Schwarz deformed gauge transformation, recorded in eqn. (2.11) of [13].

We now perform the redefinition (3.10) in the quadratic two-derivative action, using (3.5),

S(2)[ e ] = S(2)[ ě−∆e ] = S(2)[ ě ]− 1
2

∫
∆eij Rij ≡ S(2)[ ě ] +

∫
∆L(2) , (3.16)
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giving

∆L(2) = − 1
32

(
ωi

klωjkl − ω̄i
klω̄jkl

)
Rij + 1

16 ∂[ie
kl
(
ωj]kl − ω̄j]kl

)
Rij

= − 1
32

[
(ωi

klωjkl − ω̄i
klω̄jkl)R(ij) − 2 ∂[ie

kl
(
ωj]kl − ω̄j]kl

)
R[ij]

]
.

(3.17)

The final cubic, four-derivative Lagrangian in terms of the physical fields eij (we now drop

the check) is then given by ∆L(2) + L(3,4). Inserting the Ricci tensor into (3.17) and writing

the action in terms of hij , bij and φ one finds that the terms involving the dilaton cancel in

∆L(2) + L(3,4). Moreover, it is relatively easy to see by inspection, using the connections (3.1)

and the structure of the cubic action, that only terms with precisely one or three b-fields survive.

The terms cubic in b turn out to combine into a total derivative. Up to total derivatives the

terms linear in b can be brought into the manifestly gauge invariant form

∆L(2) + L(3,4) = −1
2H

ijkω
(1)
i

pq∂jω
(1)
kqp . (3.18)

In order to verify this systematically it is convenient to perform integrations by part so that

the terms multiplying ∂b do not contain � = ∂i∂i or divergences. In this basis the terms then

organize into the above form, as may be verified by a somewhat lengthy but straightforward

calculation. This form of the action linear in b is also fixed by gauge invariance.

We now want to identify the conventional covariant action that yields thisO(α′) contribution

upon expansion around flat space to cubic order. We will show that this action takes the form

S =

∫
dDx

√
−g e−2φ

(
R+ 4(∂φ)2 − 1

12ĤijkĤ
ijk
)
, (3.19)

with the O(α′) corrections arising from the kinetic term for the Chern-Simons modified 3-form

curvature:

Ĥijk = Hijk + 3Ωijk(Γ) . (3.20)

Here

Hijk = 3 ∂[ibjk] , Ωijk(Γ) = Γ q

[i|p|∂jΓ
p

k]q +
2
3Γ

q

[i|p|Γ
p

[j|r|Γ
r
[k]q| . (3.21)

Inserting this into the three-form kinetic term and expanding in the number of derivatives one

obtains

− 1
12ĤijkĤ

ijk = − 1
12HijkH

ijk − 1
2H

ijkΩijk(Γ) − 3
4Ω

ijk(Γ)Ωijk(Γ) . (3.22)

In a perturbative expansion around the vacuum the last term contains terms of quartic and

higher power in fields, all with six derivatives, and will hence be ignored. Focusing on terms

cubic in fields and with four derivatives, only the middle term contributes, via the quadratic

part of the Chern-Simons term,

L(3,4) = −1
2H

ijk Γ q
ip ∂jΓ

p
kq . (3.23)

This term agrees precisely with (3.18), as can be quickly verified using the relation

Γipq = ∂[phq]i +
1
2∂ihpq = −ω

(1)
ipq +

1
2∂ihpq , (3.24)

between the linearized spin and Christoffel connections. Thus, the DFT− action is entirely

consistent with the covariant action (3.19). In particular, it is naturally written in terms of the

torsion-free Levi-Civita connection.
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3.2 From torsionful to torsionless connections

We have shown that the covariant action that is equivalent to DFT− at order α′ contains the

Green-Schwarz deformation based on the torsion-free connection. At first sight this seems to be

in conflict with suggestions in the literature that T-duality requires a connection with torsion

proportional to H, but we will discuss now that this question is in fact ambiguous since the

theories written using different connections are related by field redefinitions, up to covariant

terms.

We start by writing the Green-Schwarz modified curvature with torsionful connection and

the associated local Lorentz gauge transformation of the b-field, both in form notation:

Ĥ = db+ 1
2Ω(ω − 1

2βĤ) ,

δΛb = 1
2 tr
(
dΛ ∧ (ω − 1

2βĤ)
)
,

(3.25)

where β is a constant and, as usual, δΛω = dΛ+ [ω,Λ]. The underline on Ĥ denotes that it has

been made into a matrix-valued one-form by converting curved into flat indices,

Ĥ
a

b = Ĥi
a
b dx

i , Ĥi
a
b ≡ Ĥijk e

ajeb
k . (3.26)

Note that the above Ĥ is iteratively defined; it is non-polynomial in b and contains terms with

an arbitrary number of derivatives. One can verify that Ĥ is gauge invariant: δΛĤ = 0. Let us

now consider the following field redefinition:

b′ = b+ 1
4β tr(ω ∧ Ĥ) . (3.27)

Note that b′ is nonpolynomial in b. We can quickly compute the new gauge transformation

δΛb
′ = 1

2tr
(
dΛ ∧ (ω − 1

2βĤ)
)

+ 1
4β tr(dΛ ∧ Ĥ) = 1

2 tr
(
dΛ ∧ ω

)
, (3.28)

where we used δΛĤ = 0 and noted that since Lorentz indices are fully contracted, we can ignore

the transformation of the vielbeins in Ĥ and use only the inhomogenous part dΛ of δΛω. Thus,

we obtained a simple b′-independent b′ transformation.

Next we determine the redefined field strength. To this end we need the behavior of the

Chern-Simons three-form Ω(ω) under a shift η of the one-form connection. One has:

Ω(ω + η) = Ω(ω) + d tr(η ∧ ω) + 2 tr(η ∧R(ω)) + tr
(
η ∧Dωη + 2

3 η ∧ η ∧ η
)
, (3.29)

where R(ω) is the two-form curvature of ω, and

Dωη = dη + ω ∧ η + η ∧ ω , (3.30)

is the covariant derivative with connection ω. Writing η = −1
2β Ĥ we get

Ω(ω − 1
2βĤ) = Ω(ω) + 1

2β d tr(ω ∧ Ĥ) − β tr(Ĥ ∧R(ω))

+ 1
4β

2tr
(
Ĥ ∧DωĤ − 1

3β Ĥ ∧ Ĥ ∧ Ĥ
)
.

(3.31)

Inserting this and the b-field redefinition (3.27) into the curvature in (3.25), one obtains

Ĥ = db′ + 1
2Ω(ω) − 1

2β tr(Ĥ ∧R(ω)) + 1
8β

2tr
(
Ĥ ∧DωĤ − 1

3β Ĥ ∧ Ĥ ∧ Ĥ
)
. (3.32)
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We identify Ĥ ′ ≡ db′+ 1
2Ω(ω) as the improved field strength that uses a torsion-free connection.

This Ĥ ′ is gauge invariant under local Lorentz rotations due to (3.28). Therefore we write

Ĥ = Ĥ ′ − 1
2β tr(Ĥ ∧R(ω)) + 1

8β
2tr
(
Ĥ ∧DωĤ − 1

3β Ĥ ∧ Ĥ ∧ Ĥ
)
. (3.33)

This equation determines Ĥ recursively in terms of Ĥ ′ and covariant objects based on ω. Thus,

the field strength Ĥ differs from the ‘torsion-free’ field strength Ĥ ′ by covariant terms. An action

written with a Chern-Simons modified curvature with torsionful connection can therefore be

re-written in terms of a curvature based on a torsion-free connection, up to further covariant

terms, and viceversa. In particular, the Lagrangian (3.22) above that is most simply written in

terms of the torsion-free connection could be re-written in terms of torsionful connections and

additional covariant terms. We conclude that asking which connection is preferred by T-duality

is an ambiguous question. It may be, however, that writing the full theory to all orders in α′

in terms of conventional fields is easier with some particular choice of connection.

4 Discussion

In this paper we have shown how to relate systematically the α′-deformed DFT constructed

in [1] to conventional gravity actions as arising in string theory. The recursive procedure that

expresses the double metric M in terms of the generalized metric H can, in principle, be applied

to an arbitrary order in α′.

By restricting ourselves to first order in α′ we have shown that the gauge transformations

are precisely those in the Green-Schwarz mechanism, with Chern-Simons type deformations of

the gauge transformations. We have also shown that the action at order O(α′) is given by the

terms following from Ĥ2, where Ĥ is the Chern-Simons improved curvature of the b-field. In

particular, in the simplest form of the action the Chern-Simons form is based on the (minimal)

torsion-less Levi-Civita connection. DFT thus makes the prediction that switching on just

the Green-Schwarz deformation (without the other corrections present in, say, heterotic string

theory) is compatible with T-duality at O(α′), something that to our knowledge was not known.

It is tempting to believe that there should be some way to describe the full α′-deformed

DFT, to all orders in α′, using conventional fields. As an important first step one could try to

find out what the theory is at O(α′ 2). The Green-Schwarz deformation based on the torsion-

free connection leads to pure metric terms with six derivatives and nothing else. Could this

be equivalent to the full DFT? In a separate paper we analyze the T-duality properties of the

Green-Schwarz modification by conventional means, using dimensional reduction on a torus,

elaborating on and generalizing the techniques developed by Meissner [8]. We find that the

minimal Green-Schwarz modification is not compatible with T-duality at O(α′ 2) [21]. It then

follows that starting at O(α′ 2) DFT describes more than just the Green-Schwarz deforma-

tion. We leave for future work the precise determination of these duality invariants which, for

instance, could include Riemann-cubed terms.
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