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We develop a description of tidal effects in astrophysical systems using effective field theory
techniques. While our approach is equally capable of describing objects in the Newtonian regime
(e.g. moons, rocky planets, main sequence stars, etc.) as well as relativistic objects (e.g. neutron
stars and black holes), in this paper we focus special attention on the Newtonian regime. In this
limit, we recover the dynamical equations for the “weak friction model” with additional corrections
due to tidal and rotational deformations.

The study of the tidal effects is nearly as old as New-
ton’s theory of gravitation itself. Beginning with the
seminal work of G. Darwin [1], tidal phenomena have
been traditionally regarded as a complicated viscoelas-
tic/fluid dynamics problem, and have since been tackled
with an ever increasing level of sophistication and inge-
nuity. Perhaps the most familiar manifestation of tides is
the periodic deformation experienced by the Earth as a
result of the gravitational interaction with the Moon and
the Sun (the rest of the objects in our solar system have a
comparatively negligible effect). Using phenomenological
models whose parameters have been fit against detailed
geophysical data scientists can describe such deforma-
tions and, as a result, compile accurate tide tables for
locations all over the world.

Over much longer time scales, tides have also a crucial
impact on the orbital dynamics, leading to well known—
and easily observed—dissipative phenomena such as tidal
locking and orbital circularization [2]. For non-terrestrial
astrophysical objects these dynamics can provide an indi-
rect probe of the otherwise extremely difficult to measure
internal structure of the body.

In this letter we will focus our attention on orbital tidal
effects for spinning objects, and we will discuss an alter-
native approach to this problem based on effective field
theory (EFT) techniques. The main idea behind any
EFT is that, in a first approximation, physics at large
distances should admit a description that is independent
of the physics that takes place at much smaller length
scales [3]. In our case, this translates into the statement
that the dynamics of astrophysical spinning objects sep-
arated by a distance r much larger than their own size ℓ
can be approximated at a first pass by treating these ob-
jects as point-like and neglecting their internal structure.
For a given accuracy, this may not be adequate. The
power of the EFT framework is that it makes it possible
to still work with the “point-like” degrees of freedom and
yet go beyond this approximation and systematically in-
clude finite-size corrections to the dynamics up to any

desired order in ℓ/r [4].
For compact objects of comparable mass (i.e. objects

whose typical size is comparable to the Schwarzschild ra-
dius ℓ ∼ GM/c2) in near Keplerian orbits, the ratio ℓ/r
is also approximately equal to (v/c)2. Consequently, for
these objects the expansion in ℓ/r is equivalent to a post-
Newtonian expansion. This fact forms the basis for the
Non-Relativistic General Relativity (NRGR) approach to
calculate post-Newtonian corrections to the motion of bi-
nary inspirals and the resulting gravitational wave emis-
sion (see [5] and references therein). This formalism was
extended in [6] to account for the effects of spin, but still
assuming that the latter scales as some power of v/c. 1

This letter represents a first step beyond NRGR, in
that we consider non-compact objects for which ℓ/r, v/c
and the spin are in principle independent expansion pa-
rameters. To be more precise, rather than the spin de-
fined in [6], we will find it convenient to use the ratio
Ω/Ω0 between the angular velocity and the typical (nor-
mal) frequency of the object as our third expansion pa-
rameter. Our starting point will be the action for a rela-
tivistic spinning object coupled to gravity derived in [13].
In principle, this action contains all possible terms that
are compatible with the symmetries (which include both
space-time symmetries as well as symmetries of the ob-
ject itself). In practice, only a finite number of terms
are relevant at any given order in ℓ/r, v/c and Ω/Ω0,
and thus only a finite number of coefficients—so called
“Wilson coefficients”—are needed to describe the orbital
dynamics of a particular body to some specified accu-

1 Spin in general relativity has a long history; for more informa-
tion see, for instance, [7] and the references contained therein.
See also [8–11] for recent developments in finite size effects in
compact objects, and [12] for computations of spin dynamics in
NRGR to higher post-Newtonian order. Notice however, that
these papers are concerned exclusively with conservative aspects
of spin dynamics. In contrast, we will focus on dissipative phe-
nomena.
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racy over a set time period. The equations of motion in
the absence of dissipation can then be easily obtained by
varying the action.
In order to capture dissipative effects such as the ones

associated with tides, we will need to include additional
degrees of freedom in the action [14–16]. This is because
dissipation can be thought of as a process in which
energy is transferred from the “large distance” degrees
of freedom (angular and linear position in our case)
to the “microscopic” ones. Dissipative corrections to
the equations of motion can be obtained by averaging
over such microscopic degrees of freedom. Within the
EFT framework, this averaging procedure can be made
precise and carried out in complete generality, without
resorting to a concrete model for the microscopic physics.

Conventions: we will work in the vierbein formalism
with “mostly plus” metric signature. We will denote
space-time indices with µ, ν, λ..., Lorentz indices with
a, b, c, ..., and spatial components of the latter with
i, j, k, ... . Finally, a boost tensor is parametrized as fol-

lows: B0
0 = γ,B0

i = Bi
0 = γβi, Bi

j = δij + (γ − 1)β̂iβ̂j ,

where as usual γ = (1 − β2)−1/2. Where appropriate,
tildes indicate quantities in the comoving frame while
no tilde indicates that the quantity is in the lab frame.

Effective Action. In order to describe the motion
of a spinning object in a Lorentz invariant fashion, we
need to introduce a tensor Λa

b describing a local Lorentz
transformation that takes a comoving frame (i.e. a frame
embedded in the rigid body) and turns it into an inertial
frame (i.e. the lab frame). We can parametrize such
Lorentz transformation as the product of a boost and a
rotation, Λa

b = Ba
c(β

i)Rc
b(θ

i) where the θ’s are Euler
angles describing the orientation of the rigid body, and

βi =
∂τx

µeµ
i

∂τxνeν0
(1)

with τ the proper time and eµ
a the vierbein (which as

usual is related to the metric by gµν = eµ
aeν

bηab). Using
the vierbein, one can define the spin connection as usual:

ωµ
ab = eνa∂[µeν]

b + 1
2eµce

νaeλb∂λeν
c
− (a ↔ b). (2)

Our action for a spinning object coupled to gravity is
then given by

S =

∫

dτL(Ω̃i, C̃abcd, ∇̃a, Õ), (3)

where Ω̃i are the components of (a relativistic generaliza-
tion of) the angular velocity in a comoving frame, which
are defined as

Ω̃i = −
1
2ǫijkΛa

j(ηab∂τ + ∂τx
µωµ

ab)Λb
k, (4)

the C̃abcd’s are the components of the Weyl tensor2 in

2 Neglecting self energies, the leading order equations of motion

the same comoving frame, i.e.

C̃abcd = (Λ−1)a
a′

(Λ−1)b
b′(Λ−1)c

c′(Λ−1)d
d′

Cabcd, (5)

and ∇̃a = (Λ−1)a
b∇b are covariant derivatives evaluated

in the comoving body frame. Finally, Õ stands for an
infinite collection of composite operators that represent
all the additional degrees of freedom of the object which
are neither its position nor its orientation. By including
in the action all possible operators allowed by the sym-
metries, we will be able to account for such degrees of
freedom in a model-independent way.
Despite appearances, the action (3) is completely

Lorentz invariant. The reason why this is not manifest is
because Lorentz symmetry is realized non-linearly. This
action was originally obtained in [13], and we refer the
reader to that paper for further details on its derivation
and symmetry properties.
In the case of an object that is spherically symmetric at

rest, only rotationally invariant operators are allowed in
the action (3). This is because, as we will discuss later on,
any departure from sphericity caused by rotation is asso-
ciated with higher derivative terms in the action rather
than with terms that explicitly violate rotational invari-
ance. Moreover, higher derivative terms are associated
with higher order correction in the ℓ/r, v/c and Ω/Ω0 ex-
pansions.3 Thus, if we are only interested in the first few
terms in this expansion, the most relevant terms in the
action are the following:

S =

∫

dτ

{

−mc2 +
I

2
Ω̃iΩ̃

i +
J

4
(Ω̃iΩ̃

i)2 + · · ·

+nΩΩ̃
iΩ̃jC̃0i0j + nEC̃0i0jC̃

0i0j + nBC̃0ijkC̃
0ijk + · · ·

+Õ
ij
E C̃0i0j + Õ

ijk
B C̃0ijk + · · ·

}

. (6)

The first line contains all the terms necessary to describe
the dynamics of a relativistic spinning object even in the
absence of gravity; the second line contains terms known
as finite-size terms [4], which encode the fact that the ob-
ject is not truly point-like; finally, the last line contains
the dissipative terms that couple the degrees of freedom
we are interested in (gravity, plus linear and angular posi-
tion of the object) to those that we are not keeping track
of explicitly and are ultimately responsible for dissipa-
tion. Notice that such interactions should vanish on a flat
space-time, since tidal dissipation occurs only in the pres-
ence of gravitational interactions. Following [9, 14], we
have explicitly separated the Weyl tensor into its “elec-
tric” and “magnetic” parity components. Consequently,

for the gravitational field are simply Rµν = 0. Hence, any term
proportional to Rµν can be removed by a field redefinition of the
metric, and therefore we only need the traceless components of
the Riemann tensor—i. e. the Weyl tensor [4, 17].

3 The scales ℓ and Ω0 do not appear explicitly in our action, but
they determine the characteristic size of the dimensionful cou-
pling constants.
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the coefficients nE and nB can be understood as the grav-
itational electric and magnetic susceptibility for the ob-
ject. nΩ has a similar interpretation which we will com-
ment on in the next section. In principle, the full action
will also contain a part that specifies the dynamics of
the degrees of freedom associated with the Õ’s. We have
omitted this part for notational simplicity because its de-
tailed form is unknown and, at the same time, irrelevant
for what follows.
As mentioned in the introduction, the action (6)

contains in principle an infinite number of terms.
What makes such a theory predictive is the fact that
only a finite number of them contribute at any given
order in ℓ/r, v/c and Ω/Ω0. For instance, terms with

higher powers of Ω̃i in the first line yield higher order
corrections in Ω/Ω0. When θi = constant, the action
(6) reduces to the action of NRGR [4] in the presence
of dissipation [14]. In this limit for compact objects,
the systematics of the v/c expansion has been fully
worked out [3]. The richer perturbative structure that
become necessary when ℓ/r is different from (v/c)2 will
be more fully discussed elsewhere [18]. Finally, it is
important to stress that our formalism is different from
NRGR with spin [6] because our action contains only
physical degrees of freedom and as such there is no need
to impose any “spin supplementary condition” [19].
For interested readers familiar with the more standard
relativistic spin formalism we clarify this last point with
further discussion in the Appendix.

Newtonian Limit. In the rest of this letter we will
assume that v/c is much smaller than ℓ/r and Ω/Ω0,
as is the case for typical non-compact objects. We will
therefore set τ = t and work in the Newtonian limit. We
should emphasize however that what follows does not
rely in any crucial way on this limit and can be extended
to include Post-Newtonian corrections, as we will discuss
elsewhere [18]. The action (6) reduces to

S =

∫

dt

{

mv2

2
−mΦ +

I

2
ΩiΩ

i +
J

4
(ΩiΩ

i)2 + · · ·

+
nΩ

2
ΩiΩj∂i∂jΦ+

nE

4
∂i∂jΦ∂i∂jΦ+ · · · (7)

+
1

2
∂i∂jΦR

i
kR

j
lÕ

kl
E + · · ·

}

,

where Φ is the Newtonian potential and Ωi =
1
2ǫ

ijkRjl∂tRk
l is now the angular velocity in the iner-

tial/lab frame. Each term in the action above lends itself
to a simple physical interpretation. The first three terms
amount to the usual Lagrangian for a non-relativistic
spinning point particle coupled to gravity. The fourth
term describes the deformation experienced by an ob-
ject due to the centripetal force [13]. In fact, expanding
around a configuration with angular velocity Ω̄i yields an
anisotropic correction to the inertia tensor δI ∝ JΩ̄2 ≃

I(Ω̄/Ω0)
2. Similarly, the first term in the second line

describes the coupling between gravity and the ensuing

quadrupole δQ ∝ Ω̄2. Alternatively, if we expand the
gravitational potential around some background value Φ̄,
we can also view this term as an additional deformation
of the inertia tensor of the form δI ∝ nΩ∂

2Φ̄. The last
term in the second line describes instead the coupling of
the induced quadrupole δQ ∝ nE∂

2Φ̄ to gravity.
Before varying the action (7) with respect to xi and

θi to obtain the equations of motion, we should average
over the degrees of freedom that we are not interested in
explicitly keeping, which are encoded in the composite
operator Õij

E . As was already recognized in the context
of NRGR [20] and other dissipative systems [16], such an
averaging procedure can be implemented in a systematic
way using the in-in formalism [21]. In our context, this
amounts to deriving the equations of motion by perform-
ing the following “modified variation” [18, 22]:

δS + i

∫

dtdt′δJij(t)G̃
ijkl
R (t− t′)Jkl(t

′) = 0 (8)

where Jkl =
1
2∂i∂jΦR

i
kR

j
l and G̃R is the retarded cor-

relation function of the operators Õij
E . If we assume that

the degrees of freedom described by the ÕE ’s are in near-
equilibrium, then very general considerations imply that
the Fourier transform G̃R(ω) must be an odd, analytic
function of ω that is positive for ω > 0 [16]. Therefore,
at low-frequencies we must have

G̃ijkl
R (ω) ≃ ηEω(δ

ikδjl + δilδkj − 2
3δ

ijδkl), (9)

with ηE > 0. Since the ÕE are quantities in the co-
moving frame, this correlation function is independent of
spin, unlike the ones used in [15], which makes our the-
ory more predictive. Moreover, ηE can be extracted from
numerical viscoelastic/hydrodynamic simulations for ob-
jects that are non-spinning.
By combining equations (8) and (9) and varying w.r.t.

xi and θi we finally obtain:

m v̇i = −m∂iΦ+
nΩ

2
ΩkΩj∂i∂j∂kΦ +

nE

2
∂i∂j∂kΦ∂

j∂kΦ

−
ηE
2
∂i∂j∂kΦ(∂

j∂kΦ̇ + 2∂j∂lΦǫ
klmΩm) (10)

∂t(IΩ
i + JΩjΩ

jΩi + nΩΩ
j∂i∂jΦ) = −nΩǫijkΩ

kΩl∂j∂lΦ

+ηE∂
j∂kΦ(3∂i∂jΦΩk − 2∂j∂kΦΩi + ǫikl∂

l∂jΦ̇). (11)

The quantity in parentheses on the LHS of eq. (11) is
simply the rotational angular momentum, which receives
contributions from the terms proportional to J and nΩ

as well. As we can see, this quantity is in general not
conserved. However, it is easy to check that, in the case
of a spherically symmetric potential Φ, the orbital an-
gular momentum also changes in such a way that the
total angular momentum is conserved. The total energy
is instead not conserved by an amount proportional to
the dissipative coefficient ηE . In addition to the general
framework, equations (10) and (11) are the main results
of this paper.
We pause here to note that while (10) and (11) have

terms which are quadratic in the Newtonian potential,
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and hence quadratic in Newton’s constant G, they are
not a post-Newtonian effect. That is, they survive even
in the formal c → ∞ limit and the elimination of any
gravity self coupling.

Tidal Processes. In a general scenario, the Newto-
nian potential Φ in equations (10) and (11) depends on
the coordinates of all other objects interacting gravita-
tionally with the one under consideration, and they in
turn obey similar equations of motion. In this letter, we
will restrict ourselves to a simple setting in which a single
object is moving in the gravitational field generated by
another object with mass M ≫ m, in which case we can
neglect the motion of the latter. This amounts to setting
Φ = −GM/r in (10) and (11), which then reduce to

m~̇v = −
GmMr̂

r2
−

9nEG
2M2r̂

r7

−
3nΩGM

r4

[

~Ω(r̂ · ~Ω) +
r̂Ω2

2
−

5r̂(r̂ · ~Ω)2

2

]

−
9ηEG

2M2

r8

[

~r × ~Ω+ ~v + 2r̂(r̂ · ~v)
]

(12)

∂t

{

I~Ω + JΩ2~Ω+
GMnΩ

r3
[~Ω− 3r̂(r̂ · ~Ω)]

}

=

=
3nΩGM(r̂ · ~Ω)r̂ × ~Ω

r3

+
9ηEG

2M2

r7
[r̂ × ~v − r~Ω + r̂(~r · ~Ω)]. (13)

At this point, a few comments are in order. First, notice
that these equations describe the instantaneous change of
velocity and angular momentum. Our derivation did not

rely on any assumption about the direction of ~Ω or about
the shape of the orbit. In particular, we did not assume
a closed orbit and did not average over a single period.
Second, these equations are valid in the non-relativistic,
slowly spinning limit and follow purely from symmetry
considerations, supplemented with the assumption that
the degrees of freedom that we are neglecting are in near-
equilibrium. Last, our equations depend in total on six
parameters (including the mass m and moment of inertia
I). Any detailed model for tidal dissipation corresponds
to a specific choice for the coefficients J, nE, nΩ and ηE .
For instance, the weak friction model [23] corresponds to
setting J = nΩ = 0, ηE = τnE and nE = kℓ5/3G, where
ℓ is the radius of the object, and τ and k are respectively
the time lag and apsidal motion parameters.
Equations (12) and (13) become particularly simple

when ~Ω is perpendicular to the plane of the orbit:

m~̇v = −
GMr̂

r2

[

m+
3nΩΩ

2

2r2
+

9nEGM

r5
+

27ηEGMṙ

r6

]

−
9ηEG

2M2(θ̇ − Ω)θ̂

r7
, (14)

∂t

[(

I + JΩ2 +
GMnΩ

r3

)

Ω

]

=
9ηEG

2M2(θ̇ − Ω)

r6
. (15)

It is easy to see that a circular (ṙ = 0) and tidally locked

(θ̇ = Ω) orbit is a solution to these equations. We can
also consider small perturbations around such a solution
with radius a0 and frequency Ω0. Taking the scalar prod-
uct of (14) with ~v gives an equation for Ė (where by E
we mean the sum of kinetic plus Newtonian potential en-
ergy), whereas taking the cross product with ~r yields an
equation for the time derivative of the orbital angular mo-

mentum, ~̇L. Since for an elliptic orbit with semi-major
axis a and ellipticity e we have E = −GMm/2a and

L =
√

GMm2a(1− e2), we can easily derive equations
for ė and ȧ. Then, because the radius r and the orbital
angle θ are related by

r =
a(1− e2)

1 + e cos θ
, (16)

we can average over one period to obtain

δ̇e ≃ −
δe

Te
,

δ̇a

a0
= −

2

α

˙δΩ

Ω0
≃

2

7Te

(

3
δa

a0
+ 2

δΩ

Ω0

)

, (17)

where the time scale of circularization Te and the param-
eter α are defined as follows:

Te =
7ma80

18ηEG2M2
, α =

ma20
I

. (18)

Using the fact that δa and δΩ are related by conservation
of the total angular momentum, one can also calculate
the typical time scale of variation for a and Ω, Ta and TΩ

respectively, and find

Ta = TΩ =
7Te

2α
∝ Te

ℓ2

a20
(19)

Our effective theory approach makes it clear that this
hierarchy of time scales is a model-independent result,
which could indeed be confirmed by more precise obser-
vational data (see for instance [2] pp. 166-173). Finally,
for a tidally locked and slightly elliptical orbit one can
easily integrate the equation for L̇ to find how the or-
bital angular momentum varies along the orbit (being
turned into spin angular momentum):

L ≃
√

GMm2a0 −
18ηEG

2M2e

a60
sin θ +O(e2). (20)

To conclude, in this letter we have discussed a
framework for studying tidal effects in astrophysics
based on EFT techniques. While for simplicity we
have considered spherically symmetric objects in the
Newtonian limit, our formalism is very general and can
systematically account for departures from sphericity
as well as post-Newtonian and higher order finite-size
corrections, as will be shown in [18].

Appendix: the spin supplementary condition. For
readers well versed in the literature of relativistic spin-
ning objects, the lack of a spin supplementary condition
(SSC) will seem strikingly odd. In this short appendix,
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we comment on the apparent absence of such a condition
in our formalism and attempt to make a connection with
the standard approach to spinning objects.
The dynamics of relativistic objects is usually de-

scribed using the covariant 4-velocity ua and the (anti-
symmetric) angular velocity tensor Ωab, or equivalently,
their conjugate momenta pa and Sab (see e.g. [15]). This
covariant formulation introduces redundant degrees of
freedom beyond the 3-velocity vi and Euler angles θi that
are truly necessary to describe the position and orienta-
tion of the object. These additional degrees of freedom
are of course not physical, as signaled by the fact that
the covariant action is invariant under some local (gauge)
transformations. As usual, this gauge invariance can be
dealt with by imposing suitable gauge-fixing conditions.
This is exactly what happens in electromagnetism, where
a Lorentz covariant description can be achieved only by
introducing gauge invariance. More to the point (pun in-
tended), in the case of a point particle without spin the
gauge transformations in question are reparametrizations
of the world line. These are usually taken care of by im-
posing the “gauge fixing condition” uau

a = −1 to remove
one spurious degree of freedom.
In the case of spinning objects, one also needs to re-

move fictitious degrees of freedom from the relativistic
angular momentum Sab or angular velocity Ωab. The
gauge-fixing condition one imposes in this case is know
as spin supplementary condition (SSC).4 Just as the four
velocity constraint uau

a = −1 has some physical meaning
(the world line is parametrized by the rest frame time of
the moving object), the same is true for different choices
of the SSC. In fact, different SSC’s correspond to dif-
ferent choices of the “center of momentum” about which
the rotation is being defined. One standard choice for the
SSC is paS

ab = 0 where, again, Sab is the anti-symmetric
angular momentum tensor and pa is the four momen-
tum [19, 25, 26]. From an EFT perspective, this choice
is not very convenient. That is because both Sab and pa
are defined as variations of the Lagrangian [6] w.r.t. ωab

and ua respectively. As such the condition paS
ab = 0

depends on the form of the Lagrangian and thus must
be amended anytime higher order corrections are added.
From this viewpoint, imposing a condition on Ωab and
ua seems a more natural choice.
In our language, from equation (4) we are furnished

with the object Ω̃ij = −ǫijkΩ̃k. As it is defined in the rest
frame of the object, it does not transform ideally under a
rotation of the lab frame. However, we could consider in-
stead Ωij ≡ Λi

kΛ
j
lΩ̃

ij , which transforms correctly under
rotations. Based on the construction performed in [13],
this suggests that the natural Lorentz invariant object to
consider is

Ωcd
≡ Λc

eΛ
d
f Ω̃

ef (21)

≡ Λc
eΛ

d
f

[

Λa
e(ηab∂τ + ∂τx

µωµ
ab)Λb

f
]

(22)

= −Λc
a∂τΛ

da + ∂τx
µωµ

cd , (23)

where Ω̃i0 = 0 by definition. We remind the reader
that there is no need to impose additional constraints
on Ωcd, because Λa

b = Ba
c(β

i)Rc
b(θ

i) where the θ’s are
Euler angles describing the orientation of the rigid body
and βi’s are fixed by equation (1). In other words, the
covariant-looking quantity Ωcd has been already gauge-
fixed. We can reverse-engineer the gauge fixing condition
by combining eq. (23) with the fact that ua = Λa

0 [13]
to obtain

uaΩ
ab = −uµ

∇µu
a. (24)

This equation can be thought of as the analog of the
SSC in our formalism. Notice that the RHS of (24) has
the geometrical interpretation of the extrinsic curvature
of the world line [13]. Equation (24) should be thought
of as a geometrical constraint that holds independently
of the equations of motion (it is valid “off-shell” in field
theory parlance). Therefore, eq. (24) is not the same
as uaΩ

ab = 0 even though at lowest order, and in the
absence of non-gravitational forces, the right hand side
evaluates to zero on the equations of motion.
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