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Optimal directed searches for continuous gravitational waves

Jing Ming, Badri Krishnan, Maria Alessandra Papa, Carsten Aulbert, Henning Fehrmann
Max-Planck-Institute for Gravitational Physics, Albert Einstein Institute, Callinstrasse 38, 30167 Hannover

Wide parameter space searches for long lived continuous gravitational wave signals are computa-
tionally limited. It is therefore critically important that available computational resources are used
rationally. In this paper we consider directed searches, i.e. targets for which the sky position is
known accurately but the frequency and spindown parameters are completely unknown. Given a list
of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should
we spend scarce computing resources? What parameter space region in frequency and spindown
should we search? Finally, what is the optimal search set-up that we should use? In this paper
we present a general framework that allows to solve all three of these problems. This framework is
based on maximizing the probability of making a detection subject to a constraint on the maximum
available computational cost. We illustrate the method for a simplified problem.

I. INTRODUCTION

A rapidly rotating non-axially symmetric neutron star
is expected to emit long lived periodic gravitational waves
(GW) signals, also known as “continuous waves” (CW).
These signals could be detectable by the second gener-
ation of ground based GW observatories such as LIGO
[1, 2], Virgo [3], GEO600 [4], KAGRA [5] and LIGO-
India [6]. These observatories are sensitive over a broad
frequency range, typically O(10)-O(103) Hz which means
that the neutron star needs to be rotating fairly rapidly.
The CW signal is parametrized by the sky-position of
the neutron star, a frequency f and its time derivatives
(the spindown parameters) ḟ , f̈ . . ., all measured at some
fiducial reference time. If the neutron star is in a binary
system, we also need to consider the orbital parameters
of the binary, though in this paper we focus on isolated
systems.

There are a number of interesting astrophysical tar-
gets for CW searches. The known pulsars are particu-
larly good examples for which we know all of the afore-
mentioned parameters. Such searches, where the sky-
position, frequency and spindown are all known accu-
rately, are referred to as targeted searches in the litera-
ture. In these cases it is fairly straightforward, at least
from a computational point of view, to search for possible
GW signals emitted by the neutron star. A number of
such searches have been carried out (see e.g. [7]). Most
notably, for the Crab and Vela pulsars, the upper-limit
on the GW amplitude is more constraining than the limit
one derives by assuming that all of the observed spindown
is due to GW emission [8–10].

At the other extreme we have the blind searches where
nothing is known a priori about the source parameters.
One has to survey a data set which could span several
months or years, a frequency range of O(103) Hz, the
entire sky and a reasonable choice of spindown param-
eters. Such searches are computationally limited and
are, by far, the most computationally challenging GW
searches of all. Results from a number of such searches
have been published (see e.g. [11–18]). Some of these
results [16–18]) have utilized the public distributed com-

puting project Einstein@Home [19].
Between these two extremes lie the directed searches

where one targets interesting astrophysical objects or re-
gions. In this case the signals parameters are partially
known. In particular the sky-position is known accu-
rately but no information is available on the spin fre-
quency of the star and hence the GW frequency. Such
searches are also computationally limited. A few such
results have been published in the literature so far : a
search for CW signals from the supernova remnant Cas-
siopeia A [20], from the galactic center [21] which could
potentially harbor a number of young and rapidly rotat-
ing neutron stars and from nine young supernova rem-
nants [22]. A deep search for CW signals from Cassiopeia
A (Cas A)using Einstein@Home was completed last year.
All of these searches were computationally limited. We
expect that similar directed searches will be of great in-
terest in the near future.

When the searches are computationally limited (the
directed and blind searches), the most commonly em-
ployed methods are semi-coherent : rather that matching
the full ∼year long data set with coherent signal tem-
plates, one splits up the data set into N shorter seg-
ments (stacks) typically ∼hours or ∼days long. Each
segment is matched with a set of signal templates coher-
ently and finally the results of these N searches are com-
bined incoherently. Descriptions of such methods can be
found in [23–30]. Semi-coherent methods have also been
considered as parts of multi-stage hierarchical schemes
for surveying large parameter spaces, see for example
[24, 28, 31].

It is very important to spend the computational re-
sources wisely: what search set-up to use, what astro-
physical objects to target and for each target what wave-
forms to search can make the difference between making
a detection or missing it.

In this paper we shall focus on the directed searches
though the general scheme we propose is also applica-
ble to the blind searches. We assume that we have a
list of Nt potential targets. For each of the targets we
assume that we know how far and old it is. We also
make assumptions on the likelihood for different values
of the signal amplitude, its frequency and the frequency-
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derivatives, as discussed in Sec. IV A. Given these pri-
ors, the question we address is: what sources should we
target? What is the optimal search set-up and what is
the search region in frequency and spindown that max-
imizes our probability of making a detection? Various
parts of this problem have been partially addressed pre-
viously and here we present a complete solution. We
explain how the key search pipeline parameters can be
determined, which source and which part of parameter
space to target taking into account the prior astrophys-
ical knowledge, the performance of our search software,
the available computational resources and the quality of
the data from the GW detectors.

Previous works have typically fixed the parameter
space to be searched a priori – often based on reason-
able astrophysical arguments – and then optimized for
the search parameters (e.g. [28, 32, 33]). Conversely
there are studies of what parameter space to search (see
e.g. [34–37]) which have largely neglected the computa-
tional cost of the GW search. One of the aims of the
present work is to integrate both aspects of the problem.

The plan for the rest of this paper is as follows. We
start with a review of the expected GW signal and search
methods in Sec. II. The general scheme for optimizing
the detection probability is explained in Sec. III. Finally
we illustrate the general scheme with specific examples in
Sec. IV and present the application results of this scheme
in Sec. V.

II. THE EXPECTED GW SIGNAL,
ASTROPHYSICAL TARGETS AND SEARCH

METHODS

A. The gravitational waveform

We summarize the GW signal waveform from a rapidly
rotating neutron star; details can be found in [38]. In the
rest frame of the neutron star, the GW signal is ellipti-
cally polarized with constant amplitudes A+,× for the
two polarizations h+,×(t). Thus, we can find a frame in
the plane transverse to the direction of propagation such
that

h+(t) = A+ cosφ(t) , h×(t) = A× sinφ(t) . (1)

The two amplitudes are related to an overall amplitude
h0 and the inclination angle ι between the line of sight
from Earth to the neutron star’s rotation axis:

A+ =
1

2
h0(1 + cos2 ι) , A× = h0 cos ι . (2)

Numerous mechanisms can cause the GW frequency to
change. These include energy loss due to the emission
of gravitational radiation, electromagnetic interactions,
local acceleration of the source and accretion for neutron
stars which have a companion star. The spin frequency of
the neutron star is assumed to vary slowly and smoothly
with time for the observation duration. This assumption

may not hold if the neutron star glitches, but we shall not
consider this complication here. With this assumption,
it is useful to expand the frequency evolution in a Taylor
series expansion

f̂(τ) = f + ḟ(τ − τ0) +
1

2
f̈(τ − τ0)2 + . . . , (3)

where τ is the arrival time of a wavefront at the solar
system barycenter (SSB), f is the frequency at a fiducial

reference time τ0, and (ḟ , f̈) denote the first and second
time derivatives of the frequency at τ0. In this paper
we shall assume that the frequency change is sufficiently
small that we will not have to consider any terms beyond
f̈ . This should suffice for almost all plausible CW sources
over the relevant observation times.

As the detector on the Earth moves relative to the SSB,
the arrival time of a wavefront at the detector, t, differs
from the SSB time τ1:

τ(t) = t+
r(t) · n
c

+ ∆E� −∆S� . (4)

Here r(t) is the position vector of the detector in the SSB
frame, n is the unit vector pointing to the neutron star,
and c is the speed of light; ∆E� and ∆S� are respectively
the relativistic Einstein and Shapiro time delays.

The phase of the signal as observed at the detector,
φ(t), is the same as the phase observed at the source,
ϕ(τ), at the corresponding time: ϕ(τ) = ϕ(τ(t)) = φ(t).
Thus, except for an initial phase φ0, φ(t) depends only

on the sky position n, and on (f0, ḟ , f̈). For this reason

(n, f, ḟ , f̈) are called the phase evolution parameters.
The received signal at the detector is

h(t) = F+(t;n, ψ)h+(t) + F×(t;n, ψ)h×(t), (5)

where F+,× are the detector beam pattern functions
which depend on the sky position n and on the polar-
ization angle ψ. It is often useful to rewrite the signal as
[38]:

hi(t) =

4∑

µ=1

Aµh
µ
i (t) . (6)

with the index i running over the different detectors
whose data we are considering. The four amplitudes Aµ
depend only on (h0, ι, ψ, φ0) which, for this reason are
often referred-to as the amplitude parameters. The four
detector dependent signals hµi (t) depend on the phase
evolution parameters.

B. The expected GW amplitude

The value of h0 that we expect depends on the emis-
sion mechanism that we consider. We refer to [11] and

1 Proper motion of the source can safely be neglected for distances
greater than ∼ 10 pc.
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references therein for a review of emission mechanisms.
The most basic estimate of the largest amplitude that
we can expect (hsd

0 of Eq. (8) below) is given by energy
conservation arguments which we now briefly summarize.

Neutron stars typically spindown and thus lose their
rotational kinetic energy. Most of this energy loss is
due to electromagnetic interactions. The simplest mod-
els (see e.g. [39]) take the neutron star to be a rotating
magnetic dipole m which is mis-aligned with the rotation
axis. The system then loses energy at a rate proportional
to |m̈|2. Consider instead a hypothetical star, for which
this energy is carried away entirely in gravitational radia-
tion. Let f be the instantaneous frequency of the emitted
GW signal, G Newton’s constant, and D the distance to
the star. Setting the loss in rotational kinetic energy
to the energy carried away by GWs leads to a limit on
h0 known as the spindown limit hsd

0 . GWs carry energy

away at a rate Ėgw given by

〈Ėgw〉 = − c3

16πG

∮

S

〈ḣ2
+ + ḣ2

×〉dS . (7)

Here S is a large sphere of radius D centered at the neu-
tron star, dS is the area element on this sphere, and
the brackets 〈·〉 denote a time average over a sufficiently
large number of GW cycles. We can take the GW wave-
form given in Eq. (1) and calculate Ėgw; it is clear that

〈Ėgw〉 ∝ f2h2
0D

2. Since h0 is proportional to 1/D, Ėgw is
independent of D as it should be. On the other hand, the
rotational kinetic energy of the star is Erot = Iπ2f2/2
(we assume that the GW signal frequency is twice the

rotational frequency) so that Ėrot = πIfḟ . Setting

〈Ėgw〉 = Ėrot and averaging over the sphere S, the GW
amplitude hsd

0 can be shown to be

hsd
0 =

1

D

√
5GI

2c3
|ḟ |
f

and h0 ≤ hsd
0 . (8)

The value hsd
0 is based on energy conservation, and is

independent of the actual mechanism which causes the
neutron star to emit gravitational radiation. This is thus
an upper limit on h0. The actual amplitude of the emit-
ted GWs from isolated neutron stars is expected to be
much smaller and depends on the emission mechanism.
If we assume that not more than a fraction x of the spin-
down energy is carried away in gravitational waves, then
the corresponding limit is smaller by a factor

√
x:

h0 ≤
1

D

√
x · 5GI

2c3
|ḟ |
f
. (9)

Observational limits on GW emission from the Crab and
Vela pulsars constrain x to less than 1% and 10% respec-
tively for these two objects [7].

We concentrate on a particular emission mechanism,
that due to the presence of non-axisymmetric distortions
in the neutron star. The CW amplitude h0 then depends

on the ellipticity ε of the star defined as

ε =
|Ixx − Iyy|

Izz
. (10)

Here Izz is the principal moment of inertia of the star,
and Ixx and Iyy are the moments of inertia about the
other axes. A straightforward application of Einstein’s
quadrupole formula yields:

h0 =
4π2G

c4
Izzf

2ε

D
. (11)

The distribution of ε for neutron stars is uncertain. In
fact predictions exist for the maximum strain that a neu-
tron star crust can sustain before breaking according to
various neutron star models. However these predictions
are only upper limits to the allowed ellipticities rather
than predictions of the actual ellipticity values (see e.g.
[40–42]).

We can combine Eqs. (8) and (11) to get the value of
ε required for emitting at the spindown limit:

εsd =

√
5c5

32π4G

|ḟ |
If5

(12)

and correspondingly for emitting in GW a fraction x of
the spindown energy:

εsd
x =

√
5c5

32π4G

x|ḟ |
If5

. (13)

As already pointed out, neutron star crusts cannot sus-
tain deformations with arbitrarily high values of ε: see
e.g. [40, 41] for discussions on the possible upper limit
on ε. It is important that we take this into account as
we plan our searches.

C. Coherent and semi-coherent search methods

We now turn to techniques for detecting the CW sig-
nals described above. We assume Ndet GW detectors
labeled by an integer i = 1 . . . Ndet. We denote the cali-
brated strain data from the ith detector as xi(t), the de-
tector noise by ni(t) and a possible GW signal by hi(t).
In the absence of a signal xi(t) = ni(t) and in the pres-
ence of a signal, xi(t) = ni(t) + hi(t). We shall assume
that the noise in the detector is Gaussian and station-
ary with zero mean. The noise is then well described by

a power-spectral-density function (PSD), S
(i)
n (f) for the

ith detector. Tobs is the total observation duration.
If computational cost were not an issue, the optimal

technique for detecting the CW signal would be matched
filtering; i.e. correlating the data streams xi(t) coher-
ently with the expected signal hi(t). As shown in the
previous section, hi(t) depend on both the phase and
amplitude parameters. However one can eliminate the
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explicit dependance on the amplitude parameters analyt-
ically either by maximizing ([38, 43]) or by marginalizing
[44, 45] the coherent detection statistic with respect to
these. We use the maximization procedure.

The detection statistic that we obtain is known as the
F-statistic. In Gaussian data the distribution of 2F is
a χ2 distribution with 4 degrees of freedom: χ2

4(2F|ρ2).
ρ2 is the non-centrality parameter determined by the two
amplitudes A+,× and the detector sensitivity and orien-
tation:

ρ2 =

Ndet∑

i=1

ρ2
i = 4

Ndet∑

i=1

∫
df
|h̃i(f)|2

S
(i)
n (f)

, (14)

h̃i is the Fourier transform of the GW signal hi(t) given
in Eq. (6). Since the signal is narrow-band in frequency it
is reasonable to assume that the PSD is constant over the
frequency band of interest. We can take S

(i)
n outside the

integral, evaluate it at the signal frequency f0, and use
Parseval’s identity to replace the integral over frequency
by an integral over time:

ρ2
i =

2

S
(i)
n (f0)

∫ Tobs/2

−Tobs/2

h2
i (t) dt . (15)

We have chosen the observation duration to be placed
symmetrically about t = 0. We can substitute h(t) from
Eqs. (5) and (1) to get the explicit dependence of ρ2

i on
the amplitude parameters:

ρ2
i =

2h2
0Tobs

S
(i)
n (f0)

[
(1 + cos2 ι)2

4
〈(F (i)

+ )2〉t + cos2 ι〈(F (i)
× )2〉t

]
.

(16)

Here the angle brackets 〈·〉t refer to an average over time.
When dealing with a data set spanning a duration of

several months or a year, it is not possible to carry out
a purely coherent (e.g. F-statistic) search over ≥ 1013

templates (waveforms) with the best sensitivity. The
number of templates required to cover the parameter
space grows rapidly with the observation time and soon
becomes unmanageable for a fully coherent search. Semi-
coherent searches have thus been applied in these cases.
The general technique is to break up the full data set
into shorter segments, search each segment coherently
and combine the results of these coherent analyses to
produce the final detection statistic. The combination of
the coherent analyses will not maintain phase coherence
between the segments and for this reason this method is
often called semi-coherent or incoherent. There are sev-
eral methods proposed for this [24, 25, 29, 30, 46]. We
will not go into the details of any of these methods, but
we will use the notions of computational cost and sensi-
tivity of such methods in this context.

In semi-coherent methods the final resolution in the
signal parameter space is obtained in two steps: the co-
herent searches and the incoherent combination of the re-
sults of the coherent searches. Both these stages require

template banks to be set-up. The template bank used in
the coherent analysis of the segments is called the coarse
grid and comprises Nc points. For directed searches the
sky position is fixed and the coarse grid consists of points
in (f, ḟ , f̈). The semi-coherent step requires a different
template grid, the fine grid2, defined by refinement fac-
tors for all parameters. From these an overall refinement
factor can be derived: Nrefine which is the number of fine
grid points for each coarse grid point. The final grid will
consist of a total of Nc ×Nrefine points.

We consider a stack-slide-type of semi-coherent search
where the detection statistic is the average of the F-
statistic across the N segments:

F =
1

N

N∑

`=1

F` . (17)

Here, F` is the F-statistic for the `th segment. The av-
erage F is to be evaluated at a point on the fine grid,
while on the right hand side the F` are evaluated at a
coarse grid point, ideally the closest to the chosen fine
grid point. Since 2F` follows a non-central χ2 distri-
bution with 4 degrees of freedom, it follows that N2F
follows a non-central χ2 distribution with 4N degrees of
freedom. The non-centrality parameter is the sum of ρ2

over the N segments. For our purposes, ρ2 is approx-
imately constant over each segment, and thus the non-
centrality parameter is well approximated by Nρ2.

The computational time for searching a data set that
comprises Nsft 1800-s Short time-baseline Fourier Trans-
forms (SFTs) and is divided in N coherent segments, is
Nc (NsftτF +NNrefineτS), where τF = 7.4 × 10−8 s and
τS = 4.7 × 10−9 s are the timing constants used here for
the F-statistic and semi-coherent computations. τF is
the time necessary to compute the F-statistic for a single
coarse-grid template per SFT. τS

3 is the time necessary
to compute the final detection statistic per fine-grid tem-
plate point and per segment. Both timing constants are
derived by direct timing of the search software.

The false alarm probability, i.e. the probability of ob-

taining a value of 2F above a given threshold, say 2F?,
in the absence of a signal is

α(2F?) =

∫ ∞

N2F?
χ2

4N (y|0)dy, . (18)

We set the detection criterion based on a false-alarm
threshold α? and, from Eq. (18), we find the correspond-

ing threshold 2F?. The probability η of detecting a signal
with parameters λj is the probability of obtaining a value

of the detection statistic 2F higher than the detection

2 It should be emphasized that the fine grid is still much coarser
than the grid that would be required for a coherent search on
the total data set.

3 The subscript “S” stands for “segment” in this stack-slide type
of search [32].
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threshold 2F? when N2F is drawn from a distribution
p(N2F|ρ2) = χ2

4N (N2F|Nρ2):

η(2F?|ρ2) =

∫ ∞

N2F?
χ2

4N (y|Nρ2)dy . (19)

We emphasize that even though we have eliminated the
amplitude parameters from the detection statistic 2F ,
its distribution still depends on them through the non-
centrality parameter.

III. THE GENERAL OPTIMIZATION SCHEME

We are now ready to tackle the problem set out in the
introduction: given a set of potential targets, what is the
optimal choice of parameter space in (f, ḟ , f̈) we should
search for each, and what should be the search set-up
(in this case the coherent segment length)? To this end,
we begin by discretizing the whole parameter space into
many small cells such that:

• The cells are non-overlapping, and the union of all
the cells covers the parameter space of interest

• The computing costs and detection probabilities for
each target vary smoothly from one cell to the next

• The cost of searching any cell for any target is much
smaller that the total computational cost budget
available

As long as these conditions are satisfied our optimization
method will be largely insensitive to how fine the cell-
discretization is chosen.

We associate to each cell, astrophysical target and
search set-up a probability to detect a signal with pa-
rameters in that cell and the computing cost for search-
ing over the cell waveform parameters with a particular
semi-coherent search set-up. The goal of this work is to
choose a collection of cells and targets such that:

• The sum of the computational cost for searching all
the chosen cells is within our computational bud-
get, and

• The sum of the probability values for the chosen
cells is maximized. By this we mean that other
choices of cells, search set-ups or/and targest would
yield a lower detection probability.

A. Single set-up case

To illustrate the procedure we begin by considering a
single astrophysical target, i.e. a source corresponding to
a single sky-position, unknown frequency and unknown
spindowns. We also restrict ourselves to a single search
set-up, i.e. we assume a specific coherent segment length
and number of segments.

Let us indicate the frequency-spindown parameter
space as P. Based on available astrophysical informa-
tion we define a prior probability density P (f, ḟ , f̈) for
different frequency and spindown values. We will later
make a particular choice for this prior but the general
method we describe now is applicable for any choice.

We break the space P into non-overlapping cells small
enough so that the conditions described above are satis-
fied. It is simplest to consider rectangular cells defined by
frequency and spindown widths df, dḟ , df̈ . Next we as-
sign a detection probability to each cell for a given data
set from an arbitrary number of detectors and spanning
a total duration Tobs. We assume that a semi-coherent
method is applied with the data broken up onto N seg-
ments and the detection statistic is 2F , the average value
of 2F over the segments.

We calculate the detection probability for each param-
eter space cell c. In order to do this we need to assume
distributions (priors) for the parameters of the popula-
tion of signals in that cell. In particular, we need priors
for (α, δ), f, ḟ , f̈ , ψ, cos ι, φ0 and h0. We assume that a
compact object is present at the position of the astro-
physical target and hence we will take the priors on (α, δ)
to be 1. The standard physical priors for ψ, cos ι, φ0 are
uniform, leading to an average detection probability for
such population, having assumed a specific value of h0

and f, ḟ , f̈ :

〈η〉φ0,ψ,cos ι(h0) :=
1

8π2

∫ 1

−1

d cos ι

∫ 2π

0

dψ

∫ 2π

0

dΦ0 η .

(20)

For a population of signals with a prior distribution on
the amplitude, p(h0), the average detection probability

having assumed values of f, ḟ , f̈ is:

〈η〉h0,cos ι,ψ,φ0
=

∫ ∞

o

p(h0)〈η〉cos ι,ψ,φ0
dh0 . (21)

Finally folding in the prior P (f, ḟ , f̈ . . . |I) with the de-
tection probability 〈η〉, we find the total probability of
detection for a cell:

Pc = 〈η〉h0,cos ι,ψ,φ0P (fc, ḟc, f̈c)df dḟ df̈ . (22)

We note the difference between Pc and 〈η〉. 〈η〉 is the
detection probability in a cell with an assumption that
the signal is actually in that cell, and Pc is the real
detection probability in a cell because it contains the
prior probability density for that cell. We also note that
〈η〉h0,cos ι,psi,φ is actually independent of f̈ . In fact, it

depends on ḟ only through the prior p(h0). Thus, since

the prior (f, ḟ , f̈) is normalised to unity, we can drop the

f̈ dependence in the above equation:

Pc = 〈η〉h0,cos ι,ψ,φ0
P (fc, ḟc)df dḟ . (23)

The detection probability over the whole parameter space
is

PD =

∫

P
〈η〉h0,cos ι,ψ,φ0

P (f, ḟ)df dḟ . (24)



6

Computational cost is the other quantity of interest.
We define a computational cost density C(f, ḟ , f̈) such
that the cost of searching a cell is

cc = C(fc, ḟc, f̈c)df dḟ df̈ . (25)

In practice, the cost function is strictly speaking not a
density because of overhead and startup costs associated
with a search which make the cost not strictly propor-
tional to the size of the parameter space cell. However
we shall neglect this because in practice these overhead
costs are controlled and can be kept to a minimum by an
appropriate choice of cell size.

We want to define a ranking criterion on the cells such
that when we pick, according to that criterion, the top
nCmax cells that exhaust the computing budget, the re-
sulting total detection probability (Psum =

∑nCmax
i Pi)

is maximum. In other words any other choice of cells
would yield a lower value of the total detection probabil-
ity Psum. These top nCmax cells are then the ones that
we should search.

We use the detection probability and the computa-
tional cost to define a ranking for each cell. We moti-
vate this as follows. As explained at the beginning of
this Section, the cells are small enough so that the cost
for any cell is much smaller than the total available com-
putational budget Cmax. If all the cells had the same
cost, then clearly we would use the detection probability
to rank the cells and we would simply pick as many top
cells as we can before exhausting the computing budget.
However, the cells will generally have different costs asso-
ciated with them hence the ranking by detection proba-
bility does not ensure that the total detection probability
is maximized. A way to fix this would be to adjust the
size of the cells so that they do have the same cost. A
simpler method is to instead use the ratio between the de-
tection probability and the cost, which we call efficiency,
to rank the cells. Thus for each cell we construct the
ratio

e(fc, ḟc, f̈c) =
〈η〉h0,cos ι,ψ,φ0

P (fc, ḟc, f̈c|I)

C(fc, ḟc, f̈c)
. (26)

Note that the efficiency e contains information about
the search set-up through 〈η〉 and C, the detector sen-
sitivity through 〈η〉, the astrophysical priors through

P (fc, ḟc, f̈c), and the computational cost through C.
A more rigorous argument that the efficiency is the

correct ranking function can be modeled on the proof
of the Neyman-Pearson lemma found in most statistics
textbooks. We can formulate the problem as finding a
region P0 ⊂ P in the parameter space (f, ḟ , f̈), such that
the cost of searching over P0 is a chosen value Cmax

∫

P0

C(f, ḟ , f̈)df dḟ df̈ = Cmax . (27)

and such that the detection probability over the region
P0 is larger than over any other region that satisfies the

computing budget requirement (Eq. (27)):

∫

P0

〈η〉h0,cos ι,ψ,φ0P (f, ḟ , f̈)df dḟ df̈ = Pmax . (28)

With the problem formulated in this way, the Neyman-
Pearson lemma is directly applicable and it tells us that
the optimal choice of the region P0 is to consider level sets
of the efficiency function. For a given threshold emin on
the efficiency, the condition e(fc, ḟc, f̈c) ≥ emin defines a
region P0. We choose emin so that the region P0 satisfies
the computational cost constraint for a given maximum
budget Cmax according to Eq. (27).

The optimization procedure for a single source and a
given set-up is then straightforward. For each cell we
compute the efficiency ec, pick the cells starting from the
one with the largest efficiency and continue till we have
used up all the computing power Cmax. By doing this,
we maximise the probability with a limited computing
power budget. If we have more than a single astrophys-
ical target we can still use this same ranking criterion:
we consider the parameter space cells from the different
targets all together and drop the distinction between the
different targets. The same procedure described above
will yield the optimal detection probability.

B. The general case

The efficiency ranking introduced in the previous sub-
section is applicable when we constrain the realm of pos-
sible searches to a single search set-up for all the cells
and for all the sources. It is clear that this is not optimal
and we would gain by allowing for varying set-ups. If we
do this we also need to impose the additional constraint:

• Each parameter space cell for a given source, must
be chosen only once,

because it would clearly be wasteful to search the
same cell in parameter space for the same source more
than once with different set-ups. The Neyman-Pearson
method used earlier cannot incorporate this additional
constraint and we must modify our optimization algo-
rithm.

We reformulate our optimization problem in such a
way that the widely used method of linear programming
(LP) is applicable. LP is a optimization method which
extremizes a linear combination of the parameters also
fulfilling a set of inequalities [47].

We start again with the discrete form of Eqs. (27) and
(28) using the cells as constructed earlier. Let an integer
i label each cell: 1 ≤ i ≤ Nf × Nḟ . For simplicity we
consider searches with a fixed total observation time, 300
days, and use a varying number of segments N to indicate
different coherent observation time-baselines. For each
cell, we can pick among different set-ups, i.e. different
values of N . Let another integer s label the different set-
ups: 1 ≤ s ≤ ns. We now introduce an index j that
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uniquely labels every different cell-set-up combination:
j ↔ (i, s) and 1 ≤ j ≤ ns×Nf×Nḟ . Finding the optimal

solution for our problem means finding which {cell,set-
up} should be picked and which should be discarded. We
describe this choice with an occupation index Xj :

Xj =

{
1, if j is chosen,

0, if j is discarded.

The ordered set of Xj values with 1 ≤ j ≤ ns×Nf ×Nḟ
constitutes a binary number with ns × Nf × Nḟ digits.
The total probability over the set of chosen cells, which
is the quantity that we want to maximize, is

Psum =
∑

j

PjXj (29)

with Pj being the probability of the cell/set-up j ↔ (i, s).
The computational cost constrain can be expressed as:

∑

j

CjXj ≤ Cmax (30)

We use LP to find the values of Xj that satisfy (29) under
the constraint (30), and taking the Xj to be real num-
bers rather than integers. More details on this method,
and the reason why the optimization procedure yields
(mostly) integers rather than real numbers can be found
in the Appendix A.

If we consider more than a single target and want to
optimize also over targets t, the problem does not change
in nature. We simply consider more (cell,set-ups) combi-
nations, each now also labelled by a target “t” index:

{
Xi,s → X(i,s)t

Ci,s → C(i,s)t .

We want to find the combination of X(i,s)t values that
maximizes

Psum =
∑

t

∑

(i,s)t

P(i,s)tX(i,s)t (31)

with the constraints




∑
t

∑
i,s

Ci,stXi,st ≤ Cmax

∑
t

∑
s
Xi,st ≤ 1 and Xi,st ≥ 0 forevery (i, t).

We emphasize that the solution to this optimization
problem X(i,s)t solves the problem that we posed in
the introduction: it tells us what astrophysical targets
(t) we should search; for each target what frequency-
spindown values (i) we should search and what semi-
coherent search set-up (s) to use in each parameter space
cell. Moreover, the scheme incorporates, through the pri-
ors, any astrophysical information on the distribution of
the relevant signal parameters.

IV. EXAMPLES OF THE OPTIMIZATION
SCHEME

We now illustrate our optimization scheme with a very
specific and practical example, namely searching a list
of potential targets on the public distributed computing
project Einstein@Home [19].

The sources that we consider are taken from [22] and
are listed in Table I. This list comprises supernova-
remnants (SNR) whose position in the sky is very well
known (better than sub-src second accuracy), and de-
scribed by their equatorial sky coordinates α, δ. We as-
sociate with each source its estimated age τt±dτt and an
estimate of what we believe is the maximum intrinsic GW
amplitude that it could be emitting4: hmax

0 t .We label the
different point sources with an index t, and t = 1 . . . Nt.

A. Astrophysical priors

In order to compute the detection probability in every
cell we have to choose the prior on the signal amplitude
h0: p(h0) (see Eqs. (23) and (21)). The most relevant
parameter that h0 depends on, is the ellipticity ε defined
in Eq. (10). We thus recast the integral (21) on h0 as
an integral on ε. Unfortunately the ellipticity is also the
least known parameter so reflecting our ignorance we take
a flat probability density on log ε within a conservative
range of values. Consider a cell i centered at a particu-
lar frequency fi and spindown ḟi for a particular source
chosen from Table I. For this cell we can consider two
upper limits on ε: The first is the spindown ellipticity,
εsd
x of Eq. (13), with x = 0.01, which is consistent with

the latest limits on the emission of gravitational waves
from the Crab pulsar [7]. The second limit is based on
the results of [41], according to which it is unrealistic to
expect ε to exceed ∼ 10−4. We thus set a cell-dependent
maximum acceptable value of ε as (for ease of notation
we drop the subscript “x” in εsd

x ):

εmax
i = min(10−4, εsd

i ). (32)

We consider now the minimum value of ε. If the neutron
star were perfectly axisymmetric then ε = 0, h0 = 0 and
there would be no GW emission. However deviations
from this axisymmetric configuration are expected due
to the internal magnetic field, at a level that should be
at least ε ∼ 10−14 [48]. We hence take

εmin = 10−14. (33)

Based on the above discussion, our prior p(ε) is:

p(ε) =

{
1
ε

1
log(εmax/εmin) εmin < ε < εmax

0 elsewhere .
(34)

4 This is the age-related spindown limit defined for example in [20].
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TABLE I: Point source targets considered in this paper

SNR G name Other name Point source J Dkpc τkyr 1025hage
0

111.7−2.1 Cas A 232327.9+584842 3.3–3.7 0.31–0.35 12

189.1+3.0 IC 443 061705.3+222127 1.5 3–30 3

266.2−1.2 Vela Jr 085201.4−461753 0.2–0.75 0.7–4.3 15–140

347.3−0.5 171328.3−394953 1.3 1.6 14

350.1−0.3 172054.5−372652 4.5 0.9 5.3

As an illustration of this choice of prior, consider Cas
A taken to be a distance of 3.5 kpc from us. Let us
assume the star to be emitting GWs at some frequency
f , the fraction of the rotational energy going into GWs
to be x = 0.01 and the standard value of the moment
of inertia I to be 1038 kg m2 (these two assumptions are
also used for all the other results in this paper). At small

|ḟ |, εmax is given by the spindown limit εsd(f, ḟ). As |ḟ |
increases, the spindown limit εsd(f, ḟ) also increases and
with it also εmax until it reaches the value 10−4. This
happens at a crossover spin down value of

ḟ? = −1.71× 10−8Hz/s

(
f

100Hz

)5

. (35)

For spindown values in absolute value larger than this
crossover spindown value, hmax

0 ceases to increase and re-
mains constant at a value that corresponds to the max-
imum ellipticity value that we have set: 10−4. Corre-
spondingly the detection probability 〈η〉 at a fixed search
frequency will cease to increase as a function of the
spindown. This is shown in Fig. 1 where we assumed
f = 101 Hz, a 20 day coherent integration time and 300
days observation time.

What about the prior P (f, ḟ)? We consider uniform
and log-uniform priors on all these variables with ranges
sufficiently large to cover all possible values of these pa-
rameters5:





0 Hz ≤ f ≤ 1500 Hz

−1× 10−7 Hz/s ≤ ḟ ≤ 0

0 Hz/s
2 ≤ f̈ ≤ 5ḟ2/f.

(36)

For the second order spindown parameter we note that
if the frequency evolution follows ḟ ∝ fn, where n is the
braking index, then

f̈ = nḟ2/f . (37)

For pure GW emission n = 5, for all other possible mech-
anisms n < 5 and in particular for pure electromagnetic

5 In other words, if the detectors were infinitely sensitive and 〈η〉
in Eq. (24) was equal to one, then, with our choice of priors also
PD = 1.

ḟ (Hz/s) ×10
-7

0 0.2 0.4 0.6 0.8 1

〈η
〉

0

0.01

0.02

0.03

0.04

0.05

ḟ ⋆ = 1.8× 10−8Hz/s

FIG. 1: Detection probability as a function of the
source’s spindown, for a source at the position of Cas A,

emitting at 101 Hz and being searched with 20-day
coherent time-baseline segments over 300 days. Due to

our prior on h0 the detection probability stops
increasing at ḟ? = 1.8× 10−8Hz/s.

emission n = 3 (see e.g. [39]). Hence our range for f̈
in (36) encompasses all combinations of emission mecha-
nisms.

Different ranges on ḟ , f̈ and ε could have been set,
based on the estimates of the age of the astrophysical
targets. If we assume that the object has been spinning
down by f at a spindown rate ḟ during a time τc, its
characteristic age, due to some mechanism with a braking
index n, then

τc =
1

n− 1

f

|ḟ |
. (38)

By maximising Eq. (38) with respect to n we derive a

maximum range for ḟ . We then use that value in Eq. (37)

to derive the largest range for f̈ . The conservative search
ranges are then

{
|ḟ | < f/τc

|f̈ | < 5f/τ2
c ,

(39)

having taken the estimated age of the object as a proxy
for its characteristic age τc. Note that these maximum
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ranges for ḟ and f̈ correspond to different n values,
namely 2 and 5. This is physically inconsistent for any
single source but it ensures the broadest prior range over
the search values now, allowing for deviations from the
constant braking index model in the past evolution of the
star.

Let us assume n = 5, which means emission at the
spindown limit, and recast the GW amplitude spindown
upper limit (Eq. (8)) as well as the corresponding ellip-
ticity (Eq. (12)), in terms of τc :

hsd
0 =

1

d

√
5GI

8c3τ
(40)

and

εage =
c2

16π2f2

√
10c

GIτ
. (41)

When n = 5 then τc = f/4|ḟ | is the shortest lifetime
compared to the characteristic ages for other emission
mechanisms. Correspondingly the necessary spindown is
the largest, and so are the GW amplitude upper limit
and the ellipticity. Hence, choosing n = 5 allows for the
highest possible value of ε. Correspondingly, if we choose
to fold in the prior information on the age of the object
Eq. (32) becomes:

εmax
i = min(10−4, εsd

i , ε
age
i ). (42)

We remind the reader that the index i labels a particular
f, ḟ cell in parameter space.

B. Grid spacings

Given the ranges for f , ḟ and f̈ and the duration T of
the coherent segments, we now need to specify the num-
ber of templates needed to cover the parameter space
covered by each cell. This is a pre-requisite for estimat-
ing the computing cost for that cell. As discussed ear-
lier, a semi-coherent search requires a set of templates
for the coherent step and a set for the semi-coherent
steps. These are referred to, as the coarse and fine grids
respectively. The grid spacings in each search parame-
ter can be parametrized in terms of nominal mismatches
mf ,mḟ ,mf̈ in f, ḟ , f̈ respectively[49]:

δf =

√
12mf

πT
, (43)

δḟ =

√
180mḟ

πT 2
, (44)

δf̈ =

√
25200mf̈

πT 3
. (45)

Following that, the semi-coherent grid spacing in each
dimension is taken a factor γk finer than the coarse grid
one:

(δf (k))semi−coh =
δf (k)

γ(k)
, k = 1, 2 . . . (46)

with the index k labelling the frequency and spindown
parameters: f (1) = ḟ and f (2) = f̈ . The refinement
factors γ(k) depend on the number of segments:

γ(1) =
√

5N2 − 4 , (47)

γ(2) =

√
35N4 − 140N2 + 108√

3
. (48)

We note that in the simplified problem that we consider
here we do not include the loss of signal-to-noise ratio
associated with the given mismatches and we do not op-
timize with respect to searches with different grids.

V. APPLICATION OF THE OPTIMISATION
SCHEME UNDER DIFFERENT ASSUMPTIONS

We now apply our optimization scheme to a search for
a CW signal from the sources listed in Table I. We will
consider different priors and show intermediate optimisa-
tion results: namely we firstly fix the search set-up and
the target and eventually optimise also over these. In
Sections V A 1, V A 2 and V A 3 we will use uniform pri-
ors on f, ḟ in order to illustrate the main features of this
optimization scheme. In Section V B we will show the
results for the more physically meaningful log-uniform
priors.

A. Uniform priors in f and ḟ

1. Optimizing at fixed search set-up and separately for each
target

For illustration purposes, we consider the simplest
case, namely when we have a pre-determined search set-
up, i.e. a fixed value for the number of coherent segments
N . The optimization scheme will rank the parameter
space cells of all the sources in decreasing order of de-
tection probability and hence yield the parameter space
regions that should be searched for each source. We will
consider the data to span a total observation time of 300
days, to be from the LIGO Hanford and Livingston de-
tectors at the best sensitivity level of the S6 science run6

and with a duty factor of 50%. We assume as computing
budget 12-Einstein@Home months (EMs). 1EM corre-
sponds to about 12,000 CPU cores round the clock. Here
and throughout the paper we use mf = mḟ = mf̈=0.18

in Eqs. (43) to (46) for the grid spacings. Note, these are
arbitrary but reasonable choices of values illustrative of
actual searches. We shall take the coherent segments to
each be 10 days long, in this section.

The result will depend on what prior we choose. We
work with two choices: one that does not fold in the

6 https://github.com/gravitationalarry/LIGO-
T1100338/blob/master/H1-SPECTRA-962268343-BEST.txt
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age information (Eq. (32)) and one that does (Eq. (42)).
We name these priors the “distance-based prior” and the
“age-based prior”, respectively. In this section we present
results for the distance-based priors only and the age-
based prior results will be discussed later.

The source in Table I closest to us is Vela Jr with dis-
tance estimates ranging from 0.2 to 0.75 kpc. Age and
distance estimates are highly uncertain due to the overlap
of the SNR with the main Vela SNR and possible inter-
action between them. Other targets such as IC 443 and
G347.3 are relatively close to Earth, with distances of 1.5
kpc and 1.3 kpc respectively. The estimated distance of
Cas A is between 3.3 and 3.7 kpc, which is not very close
compared with the previous three source we mentioned
above. However, Cas A is the youngest source and we
include it in our list as a point of comparison.

We define a quantity R as the sum of detection prob-
abilities for the parameter space cells which are chosen
for a given source:

R =

∫

P0

〈η〉h0,cos ι,ψ,φ0P (f, ḟ)df dḟ . (49)

Note that R is also the actual highest detection proba-
bility that one can obtain for that source with the given
computing budget. Clearly the higher the R, the more
promising is a search for the corresponding target. For
a given amount of computing power Cmax, sources with
higher R are more promising.

The highest value of R, about 1%, is obtained with a
search that targets the closest source, Vela Jr, at 200 pc.
For the other targets the detection probability is even
lower and decreases with increasing distance as summa-
rized in Fig. 2(a).

Figs. 3 and 4 display two plots for each target7. The
(a) plots shows the efficiency, color-coded, for each cell :

e(f, ḟ). The green curve in the efficiency plots shows ḟ?

as a function of f . The (b) plots display the cells selected
by the optimization procedure to be searched within the
computational budget, i.e. the coverage that we can af-
ford. It is interesting to note how the shape of the cov-
ered parameter space changes as the source distance in-
creases. As the distance decreases the detection proba-
bility per cell Pc increases, but it does so more slowly
as the distance decreases because the probability cannot
exceed 1. Below ḟ?, cells with higher ḟ have a higher
detection probability through the maximum allowed h0

in Eq. (34). However higher spindown also means larger

computational cost due to the broader range in f̈ . So,
for the farther away sources like Cas A, the gain in detec-
tion probability offsets the computational cost. However
for sources which are closer, and for which the gain is
smaller, this is not the case. This is the reason why in,
say, Fig. 4 more cells are picked from high ḟ regions than

7 Similar figures for other sources are shown in Figs. 1 to 3 in
Ref. [50].
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FIG. 2: Detection probability for various targets and
search set-ups having assumed uniform and

distance-based priors. The distances that were assumed
for the targets are: Vela Jr (C) 200 pc, Vela Jr (F) 750

pc, G 347.3 1.3 kpc, IC443 1.5kpc, Cas A 3.5 kpc.
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TABLE II: R results with f and ḟ uniform priors and distance-based priors. The highest R with respect to set-up
is in bold font.

103R
Name Dkpc 5D 10D 20D 30D 37.5D 50D 75D LP Optimized

Computing Budget: 12EM 12EM 24EM 48EM

Cas A 3.5 1.91 2.34 1.40 0.622 0.347 0.140 0.032 2.44 4.33 –

IC 443 1.5 2.63 3.95 3.07 1.45 0.858 0.371 0.104 4.14 7.33 –

G347.3 1.3 2.85 4.36 3.42 1.65 0.966 0.429 0.122 4.57 8.19 –

Vela Jr 0.2 4.84 8.36 8.98 4.98 2.92 1.33 0.401 9.17 17.3 –

Vela Jr 0.75 3.43 5.55 4.97 2.58 1.50 0.666 0.199 5.86 10.9 –

Top 3 (0.2 kpc) – – – – – – – – 9.17 17.3 32.3

Top 3 (0.75 kpc) – – – – – – – – 5.87 11.0 20.0

for Fig. 3. In general, given fixed-duration coherent seg-
ment, selected cells in farther source (Cas A) are more

likely from higher ḟ region.

2. Optimizing with respect to search set-ups and targets

We now vary the possible search set-ups and also opti-
mize over these. Again for illustration we consider seven
representative choices of coherent segment lengths: 5, 10,
20, 30, 37.5, 50 and 75 days. As before, the total obser-
vation time is 300 days. We present results for the 3
sources Vela Jr (at 200 pc), G347.3 and Cas A.

A plot of the optimal detection probability as a func-
tion of the set-up is shown in Fig. 2(b), the non-solid
lines. For Vela Jr, 20-day segment gives us the best re-
sult where the detection probability R is 8.98× 10−3.

Fig. 5 shows the efficiency and the parameter space re-
gion that would be searched having optimized separately
for every different set-up8. This plot shows that longer
coherent segment lengths disfavour very high values of ḟ
because the computing power grows more rapidly with
increasing ḟ than the gain in detection probability due
to the larger range in f̈ .

Using LP and optimizing also with respect to search
set-ups we obtain the results shown in Fig. 6 for Vela
Jr and Fig. 7 for Cas A. For illustration purposes we
investigate different computing budgets: 12 EM and 24
EM9.

We note three points from these results:

• For all the targets considered, doubling the com-
puting cost increases the detection probability R
by a factor of about 1.8 which means that the prob-
ability associated with the cells searched with the

8 Similar figures for source G347.3 and Cas A are shown in Figs. 4
and 5 in Ref. [50].

9 LP results for G347.3 are shown in Fig. 6 in Ref. [50].

additional 12 EM is comparable with that associ-
ated to the cells searched by the first 12 EM.

• Optimizing with respect to the set-up yields a
higher R as compared to a fixed set-up. How-
ever this gain is relatively small when compared
to the set-up that by itself gave the highest de-
tection probability, as it is illustrated in Fig. 2(b).
There the solid lines show the detection probability
attainable by combining different set-ups for every
target and the non-continuous line show the de-
tection probability optimized at fixed set-up. For
example, the R for Vela Jr. with the 20-day set-up
is 8.98× 10−3 and it grows to 9.17× 10−3 by com-
bining different set-ups; G347.3 similarly increases
from 4.36 × 10−3 to 4.57 × 10−3 and Cas A from
2.34× 10−3 to 2.44× 10−3.

• When optimizing for each target also with respect
to set-up, the cells selected for Cas A’s cells in-
clude the 5-day set-up (Fig. 7), unlike for the
other targets. The reason is that Cas A is the
farthest of the considered targets and hence we
gain more detection probability by searching higher
spindowns, which in turn means higher maximum
h0 and hence higher detection probability, than by
including more high-frequency cells. The cost of the
high-spindown regions is higher than that of lower
spindown ones and this is compensated by the opti-
mization procedure by using a shorter time-baseline
set-up.

Since our goal is to optimize the probability of making
a detection from any source, we do not want to restrict
ourselves a priori to a particular source, and hence we
optimize now also with respect to the targets.

Since the distance to Vela Jr is uncertain we consider
two sets of three targets: Vela Jr at 200 pc and at 750
pc, G347.3 and IC 443. We will show results for 12EM,
24EM and 48EM computing budget Cmax. In Fig. 8,
when Vela Jr is assumed at 200 pc, even when Cmax = 48
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FIG. 3: Optimisation results for Vela Jr at 200 pc, assuming uniform and distance-based priors, and a 10-day
coherent segment duration. The left plot shows the efficiency, color-coded, for each cell : e(f, ḟ). The green curve

shows ḟ? as a function of f . The right plot displays the cells selected by the optimization procedure with a
computational budget of 12 EM. The detection probability R is 8.36× 10−3.
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ḟ
(H

z/
s)

×10
-8

1

2

3

4

5

6

7

8

9

×10
-14

0

0.2

0.4

0.6

0.8

1

(a) Efficiency

f (Hz)
0 500 1000 1500

ḟ
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FIG. 4: Cas A at 3500 pc, assuming uniform and distance-based priors, and a 10-day coherent segment duration.
The left plot shows the efficiency, color-coded, for each cell : e(f, ḟ). The green curve shows ḟ? as a function of f .

The right plot displays the cells selected by the optimization procedure to be searched with a computational budget
12 EM. The detection probability R is 2.34× 10−3.

EM, all the picked cells are from Vela Jr. This is because
Vela Jr is so much closer to us than the others that the
detection probability is maximized by always targeting
Vela Jr. Thus, if we really believe that Vela Jr is 200
pc away, then we should concentrate all our computing
budget on it. If in the optimization process we assume
that Vela Jr is 750 pc away, then the result changes. With
a 12 EM budget, cells both from Vela Jr and G347.3
are picked. If we double the budget, some cells from IC
443 become worth searching and this effect becomes even
more prominent if we quadruple the budget. However,
even at Cmax = 48 EM most of the searched parameter
space targets Vela Jr. Table II lists the R numbers and
Fig. 2(c) diplays them as a function of Cmax. Note that
the highest R with respect to set-up is in bold font.

3. Results with age-based priors

We illustrate the results of the optimization when using
the priors of Eq. (39) that fold in the information on the
age of the target. Fig. 10 in this subsection shows the
color-coded PD-maps and the selected parameter space to
target with a 12 EM computing budget allocated to the
closest target Vela Jr. Because of the uncertainty in the
age and the distance of Vela Jr, we have investigated the
two extreme scenarios: a close and young Vela Jr (CY)
and an far and old Vela Jr (FO). Other three sources Cas
A (youngest), G347.3 and G350.1 (close and young) are
also investigated (see Fig. 7 to 10 in Ref. [50]). As done
in the previous section we also optimize the search with
respect to set-ups and further with respect to targets.
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(g) Efficiency, 30 days
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FIG. 5: Optimisation results for Vela Jr at 200 pc, assuming uniform and distance-based priors, for various coherent
search durations: 5, 10, 20, 30, 37.5, 50 and 75 days. The total computing budget is assumed to be 12 EM.
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FIG. 6: Parameter space coverage for Vela Jr at 200 pc, assuming uniform and distance-based priors and optimizing
over the 7 search set-ups also considered above at 12 EM (left plot) and 24 EM (right plot).
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FIG. 7: Parameter space coverage for Cas A at 3500 pc, assuming uniform and distance-based priors and optimizing
over the 7 search set-ups also considered above at 12 EM (left plot) and 24 EM (right plot).

TABLE III: R result with f and ḟ uniform priors and age-based priors. The highest R with respect to set-up is in
bold font.

103R
Name Dkpc τkyr 5D 10D 20D 30D 37.5D 50D 75D LP Optimized

Computing Budget: 12EM 12EM 24EM 48EM

Cas A 3.5 0.35 1.22 2.26 1.38 0.446 0.164 0.036 0.003 2.26 3.32 –

G350.1 4.5 0.9 0.142 0.303 0.480 0.569 0.474 0.187 0.027 0.559 0.640 –

G347.3 1.3 1.6 3.45 5.78 7.89 7.16 4.34 1.89 0.330 8.27 9.89 –

Vela Jr 0.2 0.7 10.2 19.7 17.7 6.62 3.03 0.850 0.097 21.6 38.8 –

Vela Jr 0.2 4.3 33.2 56.7 67.1(11.3EM) 56.2 38.5 20.3 5.35 – – –

Vela Jr 0.75 4.3 5.75 7.76 9.66(11.3EM) 11.2 11.0 7.96 2.55 11.6 13.0 –

Top 3 (CY) – – – – – – – – – 21.6 38.8 69.8

Top 3 (FO) – – – – – – – – – 11.7 14.1 16.6

The complete set of results is summarized in Table III
and Fig. 9. We note the following:

• The younger the target, the steeper is the slope that
determines the prior f−ḟ volume. This means that
for younger targets higher values of ḟ are allowed.
At the same distance and frequency, more detection
probability can be accumulated at higher ḟ values
because of the higher limit in h0.

• However, even when optimizing separately for ev-
ery target the main factor that determines the de-
tection probability at fixed computing cost is the
distance. This is summarized in Fig. 9(a).

• For the eldest target, Vela Jr with τc = 4300 yrs
shown in Fig. 10, the prior f − ḟ volume is small
enough that with the 20-day set-up we do not ex-
haust the available computing budget. For shorter
coherent time-baselines the computational cost is
dominated by the incoherent step. As the coher-
ent time-baseline increases the cost of the incoher-

ent sum decreases because there are fewer segments
to sum while the cost of coherent step increases
rapidly, shifting the balance.

• Unlike in the case where we do not fold in the age
information, doubling the computing budget does
not bring a significant gain in detection probabil-
ity. The reason is that the parameter space that
is available for searching extends just to higher fre-
quencies, not to higher spindowns, and there the
sensitivity is lower and hence the increase in detec-
tion probability is marginal.

• For the older sources the optimal search set-ups
with age-based priors favour longer segment dura-
tions than those found with distance-based priors
because their parameter space is limited to lower ḟ
regions.

We now optimize also with respect to sources. Fig. 12
shows that the covered parameter space increases as com-
puting cost increases. We note the following:
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(a) Coverage of 3 sources, Vela Jr at 200 pc, computing
budget 12EM

(b) Coverage of 3 sources, Vela Jr at 750 pc, computing
budget 12EM

(c) Coverage of 3 sources, Vela Jr at 200 pc, computing
budget 24 EM

(d) Coverage of 3 sources, Vela Jr at 750 pc, computing
budget 24 EM

(e) Coverage of 3 sources, Vela Jr at 200 pc, computing
budget 48 EM

(f) Coverage of 3 sources, Vela Jr at 750 pc, computing
budget 48 EM

FIG. 8: Parameter space coverage assuming uniform and distance-based priors and optimizing over the 7 search
set-ups also considered above and over the three closest targets (left plots: Vela Jr at 200 pc, G347.3, IC443 and

right plots: Vela Jr at 750 pc, G347.3, IC443) at 12, 24 and 48 EMs.
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FIG. 9: Detection probability for various targets and
search set-ups having assumed uniform and age-based

priors. The distances that were assumed for the targets
are: Vela Jr (C) 200 pc, Vela Jr (F) 750 pc, G 347.3 1.3

kpc, Cas A 3.5 kpc, G350.1 4.5 kpc.

• At 12 EM the preferred target is Vela Jr solely, if
we assume that it is CY. The cells picked by the
optimization procedure are obviously the same as
the cells picked in the Figure 11(a), corresponding
to 10 and 20-day set-ups that gave the highest R =
2.16× 10−2.

• If instead we assume that Vela Jr is FO then, at
12 EM, the detection probability is maximized by
spending some fraction of the computing budget
also on G350.1 and Cas A 54% of the prior param-
eter space of Vela Jr FO is searched leaving out high
f - low ḟ cells which have a low detection proba-
bility. Again the optimal set-up is a combination
of the 20, 30 and 37.5-day set-ups which yield the
top three R in the fixed-set-up optimization, cfr.
Figs. 10(f), (h) and (j). 10.2 EM (84.9% of to-
tal) were spent to accumulate 1.12× 10−2 (95.3%)
detection probability from Vela Jr FO and 1.8
EM (15.1%) were spent to accumulate 5.48× 10−4

(4.7%) detection probability jointly from G350.1
and Cas A. So one could say that the Vela Jr FO
searched cells are, on average, a factor of 3.57 more
efficient at accumulating detection probability per
computing cost unit than the cells of the other two
targets. The set-ups for the cells picked for Cas A
are the same as those picked when optimizing with
respect to set-up for Cas A only, cfr. Fig. 13. This
is not the case for G350.1: for the selected cells it
turns out that it is more efficient to use the small
computational budget on more cells with a shorter
coherent time-baseline, than with a longer coherent
baseline as when optimizing the 12 EM for G350.1
alone, cfr. Fig. 14.

• 24 EM buys more parameter space cells for Vela Jr
CY, nearly doubling the detection probability with
respect to the 12 EM case: from 2.16 × 10−2 to
3.88× 10−2.

• Under the assumption that Vela Jr is FO, the addi-
tional 12 EM (total 24 EM) only increase the detec-
tion probability by less than 21%: from 1.17×10−2

to 1.41 × 10−2. This is reasonable: we know in
fact that if we had 12 EM to spend just on Cas A
the maximum probability that we could achieve is
2.26 × 10−3 and on G350.1 it is 5.59 × 10−4. So
if we had an additional 24EM to spend, at most
we could achieve an increase in detection probabil-
ity of 2.82 × 10−3 which amounts to 24% of the
1.17×10−2. With half of that computing power we
achieve just over half of this maximum gain. Re-
garding the set-ups picked for the different sources
the same considerations hold as we made for the 12
EM case.

• With 48 EM more than half of the whole prior pa-
rameter space of Vela Jr CY is covered. With such
a high amount of budget the highest sensitivity cells
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(c) Efficiency, 10 days
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(e) Efficiency, 20 days
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(f) Coverage, 20 days
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ḟ
(H

z/
s)

×10
-8

2

4

6

8

10
×10

-13

0

0.5

1

1.5

(g) Efficiency, 30 days
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FIG. 10: Optimisation results for Vela Jr at 750 pc and 4300 years old, assuming uniform and age-based priors, for
various coherent search durations: 5, 10, 20, 30, 37.5, 50 and 75 days. The total computing budget assumed is 12EM.
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FIG. 11: Parameter space coverage for Vela Jr at 200 pc, 700 years old, assuming uniform and age-based priors and
optimizing over the 7 search set-ups also considered above at 12 EM (left plot) and 24 EM (right plot).
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(a) Coverage of 3 sources, CY, Cost 12 EM (b) Coverage of 3 sources, FO, Cost 12 EM

(c) Coverage of 3 sources, CY, Cost 24 EM (d) Coverage of 3 sources, FO, Cost 24 EM

(e) Coverage of 3 sources, CY, Cost 48 EM (f) Coverage of 3 sources, FO, Cost 48 EM

FIG. 12: Parameter space coverage assuming uniform and age-based priors and optimizing over the 7 search set-ups
also considered above and over the three youngest targets (left plots: Cas A, Vela Jr at 200 pc and 700 years old
(CY), G350.1 and right plots: Cas A, Vela Jr at 750 pc and 4300 years old (FO), G350.1) at 12, 24 and 48 EMs.
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FIG. 13: Parameter space coverage for Cas A at 3500
pc, 330 years old, assuming uniform and age-based
priors and optimizing over the 7 search set-ups also

considered above at 12 EM.
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FIG. 14: Parameter space coverage for G350.1 at 4500
pc, 900 years old, assuming uniform and age-based
priors and optimizing over the 7 search set-ups also

considered above at 12 EM.

are still searched with the most efficient search set-
up: 10 and 20-day. Detection probability is nearly
doubled again and still no computing budget will be
spent on Cas A and G350.1. This is because Vela
Jr CY has larger parameter space in ḟ and more
computing power could be spent on those cells in
the higher ḟ region.

• Under the assumption that Vela Jr is FO, the addi-
tional 24 EM (total 48 EM) only increase the detec-
tion probability by less than 18%. Not only more
cells from Cas A and G350.1 are searched, but also
cells in Vela Jr trend to use longer coherent seg-
ments. This is because rather than to spend more

computing power on the sources with less poten-
tial like Cas A and G350.1, it could be better to
use more expense and also more efficient set-ups
for Vela Jr.

Fig. 15 shows how R and the used computing bud-
get C vary with age, having assumed a search for Vela
Jr. at 200 and 750 pc, a coherent time-baseline of 20
days and a computing budget Cmin of 12 and 24 EM.
In the young age region, C is always flat. That’s be-
cause the older the object, the smaller is the prior f − ḟ
volume available for searching. Hence there is an age
τplat at which the allocated Cmax is large enough to just
cover such a volume. For higher values of the age the
prior space shrinks and less computing power is needed
to cover it. For lower values of the age the prior volume
is larger and the optimization method will select what
cells are the most promising to search while using up all
the computational power, hence the plateau at low age
values.

Let us now look at R. In all these four cases, R has
a maximum value Rpeak at a certain age τpeak. A larger
computing budget gives a higher Rpeak and this happens
at a lower age. However τpeak does not coincide with
τplat because even though as the age increases towards
τplat the fractional covered volume of parameter space is
increasing, at the same time the total volume is shrinking
and the cells that are not any more included are actually
the ones contributing the most to the detection proba-
bility. This is because the dropped cells are the higher
spindown ones which have the highest amplitude cut-off
value h0max.

B. Log-uniform priors in f and ḟ

We do not comment here our findings with the same
level of detail used in the previous section, as that was
done in order to highlight the main factors contributing
to the results10. Based on the material presented there,
we are confident that the interested reader can do this
himself/herself here. We highlight instead the following
points:

• The log-uniform priors favour lower frequency and
lower spindown values with respect to the uniform
priors.

• Generally when assuming distance-based priors,
this decreases the detection probability because the
computing power is more eagerly invested in search-
ing for signals with lower spindowns which typically
have smaller maximum amplitudes (through Eqs.
(32) and (42)). We note about a factor 2-7.6 de-
crease across the board.

10 All results of assuming log-uniform prior are shown in Figs. 14
to 28 in Ref. [50]
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(b) 0.75 kpc, 12 EM budget
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(c) 0.2 kpc, 24 EM budget
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(d) 0.75 kpc, 24 EM budget

FIG. 15: R and C as a function of age for an optimised search for Vela Jr, assuming uniform and age-based priors, a
computing budget of 12 and 24 EMs and a 20-day coherent segment search set-up.

TABLE IV: R result with f and ḟ log-uniform priors and distance-based priors. The highest R with respect to
set-up is in bold font.

103R
Name Dkpc 5D 10D 20D 30D 37.5D 50D 75D LP Optimized

Computing Budget: 12EM 12EM 24EM 48EM

Cas A 3.5 0.167 0.278 0.257 0.187 0.147 0.093 0.039 0.319 0.414 –

IC 443 1.5 0.418 0.669 0.714 0.560 0.481 0.341 0.189 0.804 0.991 –

G347.3 1.3 0.544 0.807 0.820 0.661 0.569 0.422 0.248 0.937 1.15 –

Vela Jr 0.2 2.97 3.91 4.26 3.94 3.54 3.06 2.34 4.51 5.16 –

Vela Jr 0.75 0.906 1.37 1.47 1.29 1.12 0.880 0.604 1.64 1.96 –

Top 3 (0.2 kpc) – – – – – – – – 4.96 5.92 6.95

Top 3 (0.75 kpc) – – – – – – – – 2.32 2.99 3.70

• This is strictly not true when assuming age-based
priors in fact for Vela Jr (CY) the detection proba-
bility at 12 EM increases from 2.16% (uniform and
age-based) to 3.10% (log-uniform and age-based).
For all the other sources the detection probability

decreases but not as much as in the distance-based
case.

• At fixed source, the optimisation scheme prescribes
segment lengths which are higher with respect to
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TABLE V: R result with f and ḟ log-uniform priors and age-based priors. The highest R with respect to set-up is
in bold font.

103R
Name Dkpc τkyr 5D 10D 20D 30D 37.5D 50D 75D LP Optimized

Computing Budget: 12EM 12EM 24EM 48EM

Cas A 3.5 0.35 0.960 1.38 1.44 0.821 0.347 0.091 0.008 1.56 1.81 –

G350.1 4.5 0.9 0.099 0.200 0.300 0.374 0.414 0.236 0.037 0.469 0.504 –

G347.3 1.3 1.6 2.13 2.83 3.52 4.31 3.73 3.30 1.22 4.50 4.75 –

Vela Jr 0.2 0.7 22.9 27.8 29.9 25.5 21.8 14.6 4.62 31.0 33.8 –

Vela Jr 0.2 4.3 26.9 31.5 36.4(11.3EM) 36.6 36.4 31.0 33.8 – – –

Vela Jr 0.75 4.3 3.84 4.93 5.90(11.3EM) 6.78 7.49 7.80 6.40 8.12 8.36 –

Top 3 (CY) – – – – – – – – – 31.1 34.2 37.2

Top 3 (FO) – – – – – – – – – 9.13 9.93 10.5

those of the uniform-priors searches. The reason
for this is that longer duration segments can be
more easily afforded at lower ḟ regions, where the
f̈ costs are lower.

• The prescription for the parameter volumes to
search is quite different: this is evident for all
sources and set-ups. For example from the 3D plots
shown in Figs. 12 and 18 we see how markedly the
log-uniform priors disfavour high f − ḟ combina-
tions with respect to the uniform priors.

• Fig. 19 shows howR and C vary with age. The cost
curve is the same as the cost curve of Fig. 15. This
is quite obvious because the f and ḟ log-uniform
prior does not change the computing cost in each
cell. However the log-uniform prior has a large in-
fluence on the detection probability: the τpeak is
700 years, the smallest. The reason is that the con-
tribution to the detection probability from higher
spindown cells that are excluded with respect to
the uniform-prior case, is not compensated for by
the higher fractional volume of searched parameter
space. This means, for log-uniform priors, for the
sources with the same distance, “The younger, the
better”.

VI. CONCLUSIONS

Searches for continuous GWs, even the directed ones
from sources with known sky-positions, are computation-
ally limited and decisions regarding the parameter space,
search set-up and the astrophysical target can make the
difference between making or missing a detection. We
have described and implemented an optimization scheme
with the goal of maximizing the detection probability
constrained by a limited computing budget. Specifically,
we have addressed the following questions:

• On which target(s) should we spend our computing
resources?

• What parameter space region in frequency and
spindown should we search?

• What is the optimal search set-up that we should
use?

• What is the probability of making a detection,
given prior assumptions on the signal parameters?

The crucial step in our procedure is that of choos-
ing the priors on the frequency, spindown and ellipticity
of the source. We choose the broadest range of plausi-
ble values under combinations of two different assump-
tions: namely using or not the information on the age
of the object (age-based priors) and using uniform pri-
ors or log-uniform priors for the frequency and frequency
derivative. The uniform priors are useful to illustrate the
method. The log-uniform priors are more realistic. With
these we find the following:

• Distance-based priors yield detection probabilities
on average a factor of 4 smaller when used in con-
junction with log-uniform priors than when used
in conjunction with uniform priors. For age-based
priors this difference is no more than a factor of
two.

• The highest detection probability for a search at
the LIGO S6 run sensitivity level, using about a
year of data from two detectors with a duty fac-
tor of 50% and assuming a computing budget of 12
EM, is 6.7%. This is obtained under the assump-
tion that Vela Jr is old, 200 pc away, a uniform
distribution for f and ḟ , an age-based prior, and
assuming that these priors reflect reality. If the f
and ḟ are instead log-uniformly distributed and we
match our priors to this assumption, the detection
probability drops to 3.6%.
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FIG. 16: Detection probability for various targets and
search set-ups having assumed log-uniform and

distance-based priors. The distances that were assumed
for the targets are: Vela Jr (C) 200 pc, Vela Jr (F) 750

pc, G 347.3 1.3 kpc, IC443 1.5kpc, Cas A 3.5 kpc.

Distance (pc)

200 750 1500 4500

D
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

0

0.005

0.01

0.015

0.02

0.025

0.03

(a) R versus distance

Coherent search duration (days)

10 20 30 40 50 60 70

D
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty
 f
o
r 

1
2
 E

M

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Vela Jr.(CY)
Vela Jr.(FO)
G347.3
Cas A
G350.1

(b) R versus Tcoh

Computing budget Cmax (EM)
10 20 30 40 50

D
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty
 a

ls
o
 o

p
ti
m

iz
e
d
 w

it
h
 

re
s
p
e
c
t 
to

 t
a
rg

e
ts

(C
a
s
 A

,V
e
la

 J
r.

,G
3
5
0
.1

) 

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Cas A, Vela Jr.(CY), G350.1
Cas A, Vela Jr.(FO), G350.1

(c) R versus Cmax

FIG. 17: Detection probability for various targets and
search set-ups having assumed log-uniform and

age-based priors. The distances that were assumed for
the targets are: Vela Jr (C) 200 pc, Vela Jr (F) 750 pc,

G 347.3 1.3 kpc, Cas A 3.5 kpc, G350.1 4.5 kpc.
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(a) Coverage of 3 sources, Cost 12 EM (b) Coverage of 3 sources, Cost 12 EM

(c) Coverage of 3 sources, Cost 24 EM (d) Coverage of 3 sources, Cost 24 EM

(e) Coverage of 3 sources, Cost 48 EM (f) Coverage of 3 sources, Cost 48 EM

FIG. 18: Parameter space coverage assuming log-uniform and age-based priors and optimizing over the 7 search
set-ups also considered above and over the three youngest targets (left plots: Cas A, Vela Jr at 200 pc and 700 years
old (CY), G350.1 and right plots: Cas A, Vela Jr at 750 pc and 4300 years old (FO), G350.1) at 12, 24 and 48 EMs.
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FIG. 19: R and C as a function of age for an optimised search for Vela Jr, assuming log-uniform and age-based
priors, a computing budget of 12 and 24 EMs and a 20-day coherent segment search set-up.

• The optimisation over set-up for every cell in pa-
rameter space yields at most 15% increase in detec-
tion probability with respect to single set-up search.
Given the complexity of setting up and analysing
the results of a search that uses different segment
lengths for different areas of parameter space, this
result is relevant because it indicates that using a
single set-up or at most two (a practical solution),
does not significantly impact the chances of making
a detection.

• Independently of all prior assumptions, all optimal
searches cover the broadest fraction of the prior
spin down range around the instruments’ maximum
sensitivity frequencies.

In forthcoming work we will investigate different priors,
consider a range of search set-ups including different mis-
match parameters, grids, number of segments and seg-
ment durations, and optimise over all these. We will fold
in the mismatch distribution arising from our choices of
nominal mismatch values and of the grids, and not only
work with the expected values as done here. Further-

more here we have not considered any uncertainty on the
distance of the target and presented results separately
having assumed different distances. A more general ap-
proach is to marginalize over the distance range using an
appropriate prior, for example that given by [51]. The
same applies to the age estimates.

What we want to stress with this paper is that the
parameter space to be searched and the targets to be
searched should be part of the search optimization pro-
cedure, as well as the search parameters themselves. In
previous works these aspects have been considered sep-
arately: e.g. [28, 32, 33] and [34–37]. The interplay
between these quantities, for some assumed prior, is very
difficult to intuitively predict and hence it is important
to have a rational method to do so. The method that we
propose here effectively achieves this goal and lends itself
to further generalisations.
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Appendix A: Linear programming

In this appendix we provide some further details of the
method of Linear Programming (LP) and its application
to our problem.

Recall that the occupation numbers Xi,s (or equiva-
lently Xj) were originally specified as binary numbers,
i.e. Xi,s could be either 0 or 1. It is however non-trivial to
design an algorithm which solves the optimization prob-
lem described in Sec. III B. Rather than trying to do
so, we have formulated the problem by taking Xi,s to
be real and requiring 0 ≤ Xi,s ≤ 1. We have seen how
the optimization problem can be solved using linear pro-
gramming (LP).

The first question that arises is: by allowing Xi,s to be
real, do the solutions which maximize Psum have the vast
majority of the Xi,s as either 0 or 1? This is observed
empirically to be true in all the cases that we have studied
in this paper. We shall now demonstrate that this is in
fact a more general feature. We shall restrict ourselves
here to the case when there are two possible set-ups for
each cell.

To illustrate this we define the efficiency Ei,s =
Pi,s/Ci,s. LP yields a set of non trivially occupied cells
which can be ordered in decreasing values of Ei,s; thus,
i = 1 corresponds to the cell with the largest efficiency,
i = 2 the second largest and so on. Consider first the
non-degenerate case where all Ei,s are mutually different
and we assume that in each cell i only one of the two
Xi,s is strictly bigger than 0. We will show in this case
that the cell with the lowest efficiency (let j be the index
for this cell) is the only one which can have a fractional
occupation: 0 < Xj,sj ≤ 1. If any cell with index l with
a higher efficiency would have a fractional occupation,
the total Psum can be increased by decreasing Xj,sj and
increasing Xl,sl until either Xl,sl = 1 or Xj,sj = 0 such
that the total cost Cmax remains constant. This argu-
ment holds for all l < j, hence, all Xl,sl with l < j must
be unity. If Xj,sj is set to be 0 the cell with index j − 1
is now the one with the lowest efficiency among all non-
trivially occupied cells. Since Ci,s � Cmax,∀i the total
cost will be changed marginally if we set Xj,sj either to

0 or to 1.
If a subset of non-trivially occupied cells has the same

efficiency, Psum and Cmax do not change if we decrease
the occupation Xi,s by an amount ∆i,s and increase the
occupation of another cell Xj,sj by ∆j,sj if both cells
have the same efficiency and if ∆j,sj/∆i,s = Pi,s/Pj,sj is
fulfilled. We can shift the occupation among these cells
such that one part has occupation 1 and another part 0.
One cell of this subset will likely have a fractional occu-
pation which can be set as well to either 0 or 1 without
changing the total Cmax significantly. Following the pre-
vious argument, all cells with higher efficiency must have
the occupation number equal to unity.

We would now like to show that for each cell i with non-
trivial occupation numbers, only one of the two Xi,s > 0,
unless the cell has the lowest efficiency. We illustrate this
by using the geometrical interpretation of LP. The set
of inequalities described earlier define a polygon in the
space of the Xi,s in which valid solutions exist. The set of
inequalities can lead to either no solutions, an unbounded
problem, a unique solution or infinity many solutions. In
our situation only the latter two cases are possible. If
only a single solution is possible the optimal point lies in
one corner of the polygon. If more than one corner points
were to lead to the same optimal Psum any point in the
volume enveloped by these points yield the same Psum.
The costs of our ordered set of non-trivially occupied cells
can be summed from cell 1 (the one with the highest
efficiency) up to the cell j − 1. The remaining cost is

then Cj = C −∑j−1
i=1

∑
s Ci,sXi,s. We consider now a

subset of inequalities valid for cell j. There is Xj,sj > 0,∑
sj
Xj,sj < 1 and

∑
sj
Cj,sjXj,sj < Cj . The polygon

is either a triangle, if Cj/Cj,sj is either bigger than 1
or smaller than 1 for both sj . As depicted in Fig. 20,
the polygon is a tetragon if one Cj/Cj,sj is bigger than
1 for one of the sj and smaller than 1 for the other.
Both fractions being bigger than 1 means that enough
remaining cost is left to fully occupy the cell with one of
the two Xj,sj . Smaller than 1 means, the cell is the non-
trivially occupied cell with the smallest efficiency. The
remaining costs will be used in this cell.

If the enveloping polygon is a tetragon for the
cell j with the lowest efficiency, Psum is maxi-
mized if we chose the Xj,sj to be in one of the
corners (min(Cj/Cj,0, 1), 0),(0,min(Cj/Cj,0, 1)) or
((Cj,1 − Cj)/(Cj,1 − Cj,0), (Cj,0 − Cj)/(Cj,0 − Cj,1)).
The latter case means that the LP optimization leads
to a fractional occupation of both Xj,sj simultaneously.
Again, setting one Xj,sj to 0, the other one to 1 or
both to 0 will not change Cmax significantly. We can
however not exclude that pathological cases which are
not covered by our assumptions. In practice we only
observed the cases decribed here and moreover, we can
always shift a few Xi,s such that we only have integer
occupations for only a small change in the computational
cost budget.
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FIG. 20: The red tetragon envelops a volume of variable
space in which all inequalities are fulfilled.
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